26
|
Reimann F, Williams L, da Silva Xavier G, Rutter GA, Gribble FM. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia 2004; 47:1592-601. [PMID: 15365617 DOI: 10.1007/s00125-004-1498-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 06/02/2004] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are secreted from enteroendocrine L cells in response to nutrient ingestion. As glutamine is an important metabolic fuel for the gut, the aim of this study was to investigate the effect of glutamine on the GLP-1-secreting cell line, GLUTag. METHODS GLP-1 release was measured following incubation of GLUTag cells under a range of conditions. Single cells were studied by electrophysiology, calcium imaging and cytosolic ATP measurement using recombinant luciferase. RESULTS Glutamine was a more potent GLP-1 secretagogue than glucose or other amino acids, increasing GLP-1 release 7.1+/-0.7-fold ( n=19) at 10 mmol/l, with an estimated median effective concentration of between 0.1 and 1 mmol/l. Glutamine (10 mmol/l) induced a sodium-dependent inward current of 3.2+/-1.2 pA per cell ( n=9), which triggered membrane depolarisation and an increase in intracellular calcium. Asparagine and alanine produced electrophysiological and calcium changes that were at least as large as those caused by glutamine, but they were less effective GLP-1 secretagogues, suggesting that glutamine also potentiates secretion downstream of the calcium signal. This was confirmed by measuring secretion in the presence of 30 mmol/l KCl + diazoxide, or in alpha-haemolysin-permeabilised cells. Glutamine increased cytosolic ATP, but was less effective than glucose. CONCLUSIONS/INTERPRETATION Glutamine acts as a trigger and potentiator of GLP-1 release, consistent with its role as the major metabolic fuel for the gut. The results suggest that nutritional agents like glutamine might have beneficial effects in diabetes and obesity.
Collapse
|
|
21 |
188 |
27
|
Kim SK, Melton DA. Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proc Natl Acad Sci U S A 1998; 95:13036-41. [PMID: 9789036 PMCID: PMC23700 DOI: 10.1073/pnas.95.22.13036] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exposure to cyclopamine, a steroid alkaloid that blocks Sonic hedgehog (Shh) signaling, promotes pancreatic expansion in embryonic chicks. Heterotopic development of pancreatic endocrine and exocrine structures occurs in regions adjacent to the pancreas including stomach and duodenum, and insulin-producing islets in the pancreas are enlarged. The homeodomain transcription factor PDX1, required for pancreas development, is expressed broadly in the posterior foregut but pancreas development normally initiates only in a restricted region of PDX1-expressing posterior foregut where endodermal Shh expression is repressed. The results suggests that cyclopamine expands the endodermal region where Shh signaling does not occur, resulting in pancreatic differentiation in a larger region of PDX1-expressing foregut endoderm. Cyclopamine reveals the capacity of a broad region of the posterior embryonic foregut to form pancreatic cells and provides a means for expanding embryonic pancreas development.
Collapse
|
research-article |
27 |
187 |
28
|
Gremlich S, Bonny C, Waeber G, Thorens B. Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J Biol Chem 1997; 272:30261-9. [PMID: 9374511 DOI: 10.1074/jbc.272.48.30261] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IDX-1 (islet/duodenum homeobox-1) is a transcription factor expressed in the duodenum and pancreatic beta and delta cells. It is required for embryonic development of the pancreas and transactivates the Glut2, glucokinase, insulin, and somatostatin genes. Here we show that exposure of isolated rat pancreatic islets to palmitic acid induced a approximately 70% decrease in IDX-1 mRNA and protein expression as well as 40 and 65% decreases in the binding activity of IDX-1 for its cognate cis-regulatory elements of the Glut2 and insulin promoters, respectively. The inhibitory effect of palmitic acid required its mitochondrial oxidation since it was prevented by the carnitine palmitoyltransferase I inhibitor bromopalmitic acid. The palmitic acid effect on IDX-1 was correlated with decreases in GLUT2 and glucokinase expression of 40 and 25%, respectively, at both the mRNA and protein levels. Insulin and somatostatin mRNA expression was also decreased by 40 and 60%, whereas glucagon mRNA expression was not modified. After 48 h of exposure to fatty acids, total islet insulin, somatostatin, and glucagon contents were decreased by 85, 55, and 65%, respectively. At the same time, total hormone release was strongly stimulated (13-fold) for glucagon, whereas its was only marginally increased for insulin and somatostatin (1.5- and 1.7-fold, respectively). These results indicate that elevated fatty acid levels 1) negatively regulate Idx-1 expression; 2) decrease the expression of genes transactivated by IDX-1 such as those for GLUT2, glucokinase, insulin, and somatostatin; and 3) lead to an important increase in glucagon synthesis and secretion. Fatty acids thus have pleiotropic effects on pancreatic islet gene expression, and the negative control of Idx-1 expression may be an initial event in the development of these multiple defects.
Collapse
|
|
28 |
183 |
29
|
Kaestner KH, Katz J, Liu Y, Drucker DJ, Schütz G. Inactivation of the winged helix transcription factor HNF3alpha affects glucose homeostasis and islet glucagon gene expression in vivo. Genes Dev 1999; 13:495-504. [PMID: 10049364 PMCID: PMC316473 DOI: 10.1101/gad.13.4.495] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mice homozygous for a null mutation in the winged helix transcription factor HNF3alpha showed severe postnatal growth retardation followed by death between P2 and P12. Homozygous mutant mice were hypoglycemic despite unchanged expression of HNF3 target genes involved in hepatic gluconeogenesis. Whereas insulin and corticosteroid levels were altered as expected, plasma glucagon was reduced markedly in the mutant animals despite the hypoglycemia that should be expected to increase glucagon levels. This correlated with a 70% reduction in pancreatic proglucagon gene expression. We also showed that HNF3alpha could bind to and transactivate the proglucagon gene promoter. These observations invoke a central role for HNF3alpha in the regulatory control of islet genes essential for glucose homeostasis in vivo.
Collapse
|
research-article |
26 |
183 |
30
|
Suzuki A, Nakauchi H, Taniguchi H. Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes 2004; 53:2143-52. [PMID: 15277399 DOI: 10.2337/diabetes.53.8.2143] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
During pancreatic development, neogenesis, and regeneration, stem cells might act as a central player to generate endocrine, acinar, and duct cells. Although these cells are well known as pancreatic stem cells (PSCs), indisputable proof of their existence has not been reported. Identification of phenotypic markers for PSCs leads to their prospective isolation and precise characterization to clear whether stem cells exist in the pancreas. By combining flow cytometry and clonal analysis, we show here that a possible pancreatic stem or progenitor cell candidate that resides in the developing and adult mouse pancreas expresses the receptor for the hepatocyte growth factor (HGF) c-Met, but does not express hematopoietic and vascular endothelial antigens such as CD45, TER119, c-Kit, and Flk-1. These cells formed clonal colonies in vitro and differentiated into multiple pancreatic lineage cells from single cells. Some of them could largely expand with self-renewing cell divisions in culture, and, following cell transplantation, they differentiated into pancreatic endocrine and acinar cells in vivo. Furthermore, they produced cells expressing multiple markers of nonpancreatic organs including liver, stomach, and intestine in vitro. Our data strongly suggest that c-Met/HGF signaling plays an important role in stem/progenitor cell function in both developing and adult pancreas. By using this antigen, PSCs could be isolated prospectively, enabling a detailed investigation of stem cell markers and application toward regenerative therapies for diabetes.
Collapse
|
|
21 |
181 |
31
|
Ostenson CG, Gaisano H, Sheu L, Tibell A, Bartfai T. Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. Diabetes 2006; 55:435-40. [PMID: 16443778 DOI: 10.2337/diabetes.55.02.06.db04-1575] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exocytosis of insulin is dependent on the soluble N-ethylmaleimide attachment protein receptor (SNARE) complex proteins in the B-cells. We assessed insulin release as well as gene and protein expression of SNARE complex protein in isolated pancreatic islets of type 2 diabetic patients (n = 4) and nondiabetic control subjects (n = 4). In islets from the diabetic patients, insulin responses to 8.3 and 16.7 mmol/l glucose were markedly reduced compared with control islets (4.7 +/- 0.3 and 8.4 +/- 1.8 vs. 17.5 +/- 0.1 and 24.3 +/- 1.2 microU . islet(-1) . h(-1), respectively; P < 0.001). Western blot analysis revealed decreased amounts of islet SNARE complex and SNARE-modulating proteins in diabetes: syntaxin-1A (21 +/- 5% of control levels), SNAP-25 (12 +/- 4%), VAMP-2 (7 +/- 4%), nSec1 (Munc 18; 34 +/- 13%), Munc 13-1 (27 +/- 4%), and synaptophysin (64 +/- 7%). Microarray gene chip analysis, confirmed by quantitative PCR, showed that gene expression was decreased in diabetes islets: syntaxin-1A (27 +/- 2% of control levels), SNAP-25 (31 +/- 7%), VAMP-2 (18 +/- 3%), nSec1 (27 +/- 5%), synaptotagmin V (24 +/- 2%), and synaptophysin (12 +/- 2%). In conclusion, these data support the view that decreased islet RNA and protein expression of SNARE and SNARE-modulating proteins plays a role in impaired insulin secretion in type 2 diabetic patients. It remains unclear, however, to which extent this defect is primary or secondary to, e.g., glucotoxicity.
Collapse
|
|
19 |
179 |
32
|
Lund PK, Goodman RH, Dee PC, Habener JF. Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged in tandem. Proc Natl Acad Sci U S A 1982; 79:345-9. [PMID: 7043459 PMCID: PMC345726 DOI: 10.1073/pnas.79.2.345] [Citation(s) in RCA: 177] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We have constructed and cloned in bacteria recombinant plasmids containing DNA complementary to the mRNA encoding a pancreatic preproglucagon (Mr 14,500), a product of cell-free translation of angler fish islet mRNAs shown previously by immunoprecipitation analyses to be a precursor of glucagon. cDNAs of 630, 180, and 120 base pairs were isolated and correspond to most of the mRNA for the preproglucagon (650 bases). The cDNAs contain a protein coding sequence of 372 nucleotides and 5'- and 3'-untranslated regions of 58 and 206 nucleotides, respectively. From the coding sequence of the cDNAs, we find that the sequence of glucagon, identical to mammalian glucagon in 20 of 29 positions, resides in the preproglucagon of 124 amino acids flanked by NH2- and COOH-peptide extensions of 52 and 43 amino acids, respectively. The peptide extensions are linked to the glucagon by Lys-Arg sequences characteristic of the sites that are cleaved during the posttranslational processing of prohormones. Notable is the finding that, following the initial Lys-Arg sequence in the COOH-peptide extension is a pentapeptide. Ser-Gly-Val-Ala-Glu, followed by another Lys-Arg and a sequence of 34 residues that shows striking homology with glucagon and the other peptides of the glucagon family--gastric inhibitory peptide, vasoactive intestinal peptide, and secretin. Thus, the preproglucagon mRNA contains two glucagon-related coding sequences arranged in tandem. The finding of Lys-Arg sequences flanking the glucagon and glucagon-related sequences suggests that these two peptides and a pentapeptide are formed in vivo by posttranslational cleavages of a common precursor.
Collapse
|
research-article |
43 |
177 |
33
|
Gittes GK, Rutter WJ. Onset of cell-specific gene expression in the developing mouse pancreas. Proc Natl Acad Sci U S A 1992; 89:1128-32. [PMID: 1371010 PMCID: PMC48399 DOI: 10.1073/pnas.89.3.1128] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A central question in developmental biology has been the initiation of cell-specific gene expression and its temporal relationship to morphogenesis. We have coupled embryo microdissection with the exquisite sensitivity of the polymerase chain reaction to define the onset of cell-specific gene expression during pancreatic organogenesis. Using the precise assignment of gestational age by the number of somites in each embryo, we determined the onset of transcription of major genes of the endocrine and exocrine pancreas during mouse development to within 2-3 hr. Somatostatin mRNA was detected at the 10-somite stage throughout the foregut, consistent with the presence of somatostatin-producing cells throughout the adult gut. Mature mRNA for insulin and glucagon first appears surprisingly early, at the 20-somite stage in the wall of the embryonic foregut and is restricted to only the area of the duodenum from which the pancreas will arise 10-12 hr later. In contrast, exocrine gene transcription begins 24 hr after formation of the pancreatic diverticulum. Thus cell-specific gene expression in the endocrine pancreas begins in a "pre-morphogenetic phase." This early expression of insulin and glucagon could reflect the initiation of an endocrine cell lineage.
Collapse
|
Journal Article |
33 |
173 |
34
|
Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology 2002; 143:3152-61. [PMID: 12130581 DOI: 10.1210/endo.143.8.8973] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an intestinal incretin hormone, derived from the processing of proglucagon, that exerts insulinotropic actions on insulin-producing pancreatic islet beta-cells. Recently GLP-1 was shown to stimulate the growth and differentiation (neogenesis) of beta-cells and appears to do so by inducing the expression of the homeodomain protein IDX-1 (islet duodenum homeobox-1; also known as PDX-1, pancreatic and duodenal homeobox gene; and as IPF-1, insulin promoter factor), which is required for pancreas development and the expression of beta-cell-specific genes. Earlier we identified multipotential progenitor cells in the islet and ducts of the pancreas, termed nestin-positive islet-derived progenitor cells (NIPs). Here we report the expression of functional GLP-1 receptors on NIPs and that GLP-1 stimulates the differentiation of NIPs into insulin-producing cells. Furthermore, confluent NIP cultures express the proglucagon gene and secrete GLP-1. These findings suggest a model of islet development in which pancreatic progenitor cells express both GLP-1 receptors and proglucagon with the formation of GLP-1. Locally produced GLP-1 may act as an autocrine/paracrine developmental morphogen on receptors on NIPs, resulting in the activation of IDX-1 and the expression of the proinsulin gene conferring a beta-cell phenotype. GLP-1 may be an important morphogen both for the embryonic development of the pancreas and for the neogenesis of beta-cells in the islets of the adult pancreas.
Collapse
|
|
23 |
172 |
35
|
Dean ED, Li M, Prasad N, Wisniewski SN, Von Deylen A, Spaeth J, Maddison L, Botros A, Sedgeman LR, Bozadjieva N, Ilkayeva O, Coldren A, Poffenberger G, Shostak A, Semich MC, Aamodt KI, Phillips N, Yan H, Bernal-Mizrachi E, Corbin JD, Vickers KC, Levy SE, Dai C, Newgard C, Gu W, Stein R, Chen W, Powers AC. Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation. Cell Metab 2017; 25:1362-1373.e5. [PMID: 28591638 PMCID: PMC5572896 DOI: 10.1016/j.cmet.2017.05.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
Decreasing glucagon action lowers the blood glucose and may be useful therapeutically for diabetes. However, interrupted glucagon signaling leads to α cell proliferation. To identify postulated hepatic-derived circulating factor(s) responsible for α cell proliferation, we used transcriptomics/proteomics/metabolomics in three models of interrupted glucagon signaling and found that proliferation of mouse, zebrafish, and human α cells was mTOR and FoxP transcription factor dependent. Changes in hepatic amino acid (AA) catabolism gene expression predicted the observed increase in circulating AAs. Mimicking these AA levels stimulated α cell proliferation in a newly developed in vitro assay with L-glutamine being a critical AA. α cell expression of the AA transporter Slc38a5 was markedly increased in mice with interrupted glucagon signaling and played a role in α cell proliferation. These results indicate a hepatic α islet cell axis where glucagon regulates serum AA availability and AAs, especially L-glutamine, regulate α cell proliferation and mass via mTOR-dependent nutrient sensing.
Collapse
|
research-article |
8 |
164 |
36
|
Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 2000; 21:619-70. [PMID: 11133067 DOI: 10.1210/edrv.21.6.0414] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP)/ glucagon superfamily includes nine hormones in humans that are related by structure, distribution (especially the brain and gut), function (often by activation of cAMP), and receptors (a subset of seven-transmembrane receptors). The nine hormones include glucagon, glucagon-like peptide-1 (GLP-1), GLP-2, glucose-dependent insulinotropic polypeptide (GIP), GH-releasing hormone (GRF), peptide histidine-methionine (PHM), PACAP, secretin, and vasoactive intestinal polypeptide (VIP). The origin of the ancestral superfamily members is at least as old as the invertebrates; the most ancient and tightly conserved members are PACAP and glucagon. Evidence to date suggests the superfamily began with a gene or exon duplication and then continued to diverge with some gene duplications in vertebrates. The function of PACAP is considered in detail because it is newly (1989) discovered; it is tightly conserved (96% over 700 million years); and it is probably the ancestral molecule. The diverse functions of PACAP include regulation of proliferation, differentiation, and apoptosis in some cell populations. In addition, PACAP regulates metabolism and the cardiovascular, endocrine, and immune systems, although the physiological event(s) that coordinates PACAP responses remains to be identified.
Collapse
|
Review |
25 |
157 |
37
|
Artner I, Le Lay J, Hang Y, Elghazi L, Schisler JC, Henderson E, Sosa-Pineda B, Stein R. MafB: an activator of the glucagon gene expressed in developing islet alpha- and beta-cells. Diabetes 2006; 55:297-304. [PMID: 16443760 DOI: 10.2337/diabetes.55.02.06.db05-0946] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The large Maf family of basic leucine-zipper-containing transcription factors are known regulators of key developmental and functional processes in various cell types, including pancreatic islets. Here, we demonstrate that within the adult pancreas, MafB is only expressed in islet alpha-cells and contributes to cell type-specific expression of the glucagon gene through activation of a conserved control element found between nucleotides -77 to -51. MafB was also shown to be expressed in developing alpha- and beta-cells as well as in proliferating hormone-negative cells during pancreatogenesis. In addition, MafB expression is maintained in the insulin(+) and glucagon(+) cells remaining in mice lacking either the Pax4 or Pax6 developmental regulators, implicating a potentially early role for MafB in gene regulation during islet cell development. These results indicate that MafB is not only important to islet alpha-cell function but may also be involved in regulating genes required in both endocrine alpha- and beta-cell differentiation.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
150 |
38
|
Thorens B, Guillam MT, Beermann F, Burcelin R, Jaquet M. Transgenic reexpression of GLUT1 or GLUT2 in pancreatic beta cells rescues GLUT2-null mice from early death and restores normal glucose-stimulated insulin secretion. J Biol Chem 2000; 275:23751-8. [PMID: 10823833 DOI: 10.1074/jbc.m002908200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GLUT2-null mice are hyperglycemic, hypoinsulinemic, hyperglucagonemic, and glycosuric and die within the first 3 weeks of life. Their endocrine pancreas shows a loss of first phase glucose-stimulated insulin secretion (GSIS) and inverse alpha to beta cell ratio. Here we show that reexpression by transgenesis of either GLUT1 or GLUT2 in the pancreatic beta cells of these mice allowed mouse survival and breeding. The rescued mice had normal-fed glycemia but fasted hypoglycemia, glycosuria, and an elevated glucagon to insulin ratio. Glucose tolerance was, however, normal. In vivo, insulin secretion assessed following hyperglycemic clamps was normal. In vitro, islet perifusion studies revealed that first phase of insulin secretion was restored as well by GLUT1 or GLUT2, and this was accompanied by normalization of the glucose utilization rate. The ratio of pancreatic insulin to glucagon and volume densities of alpha to beta cells were, however, not corrected. These data demonstrate that 1) reexpression of GLUT1 or GLUT2 in beta cells is sufficient to rescue GLUT2-null mice from lethality, 2) GLUT1 as well as GLUT2 can restore normal GSIS, 3) restoration of GSIS does not correct the abnormal composition of the endocrine pancreas. Thus, normal GSIS does not depend on transporter affinity but on the rate of uptake at stimulatory glucose concentrations.
Collapse
|
Comparative Study |
25 |
149 |
39
|
De León DD, Deng S, Madani R, Ahima RS, Drucker DJ, Stoffers DA. Role of endogenous glucagon-like peptide-1 in islet regeneration after partial pancreatectomy. Diabetes 2003; 52:365-71. [PMID: 12540609 DOI: 10.2337/diabetes.52.2.365] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A reduction in beta-cell mass is an important causative factor in type 1 and type 2 diabetes. Glucagon-like peptide-1 (GLP-1) and the long-acting agonist exendin 4 (Ex-4) expand beta-cell mass by stimulating neogenesis and proliferation. In the partial pancreatectomy (Ppx) model, exogenous Ex-4 promotes islet regeneration, leading to sustained improvement in glucose tolerance. In this study, we investigate the potential role of endogenous GLP-1 in islet growth. We examined beta-cell mass regeneration after 70% Ppx in mice receiving the GLP-1 antagonist Ex9-39 and in GLP-1R(-/-) mice. In Ex9-39-treated sham-operated mice, persistent fasting hyperglycemia was observed, but beta-cell mass was not diminished. In pancreatectomized mice, persistent glucose intolerance was noted, but this was not further exacerbated by Ex9-39. Accordingly, beta-cell mass recovery of Ppx mice was not impaired by Ex9-39. In contrast, GLP-1R(-/-) CD1 mice showed worse glucose intolerance after Ppx compared with wild-type CD1 Ppx mice, and this correlated with a significant defect in beta-cell mass regeneration. The recovery of beta-cell mass differed markedly in the BALB/c and CD1 control mice, indicating a significant role of genetic background in the regulation of beta-cell mass. These studies point to a role for endogenous GLP-1 in beta-cell regeneration after Ppx in mice.
Collapse
|
|
22 |
139 |
40
|
Furuta M, Zhou A, Webb G, Carroll R, Ravazzola M, Orci L, Steiner DF. Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice. J Biol Chem 2001; 276:27197-202. [PMID: 11356850 DOI: 10.1074/jbc.m103362200] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice homozygous for a deletion in the gene encoding prohormone convertase 2 (PC2) are generally healthy but have mild hypoglycemia and flat glucose-tolerance curves. Their islets show marked alpha (A)-cell hyperplasia, suggesting a possible defect in glucagon processing (Furuta, M., Yano, H., Zhou, A., Rouille, Y., Holst, J., Carroll, R., Ravazzola, M., Orci, L., Furuta, H., and Steiner, D. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 6646-6651). In this report we have examined the biosynthesis and processing of proglucagon in isolated islets from these mice via pulse-chase labeling and find that proglucagon undergoes essentially no processing in chase periods up to 8 h in duration. Only a small percent of cleavage at the sensitive interdomain site (residues 71 and 72) appears to occur. These observations thus conclusively demonstrate the essentiality of PC2 for the production of glucagon in the islet A-cells. Ultrastructural and immunocytochemical studies indicate the presence of large amounts of proglucagon in atypical appearing secretory granules in the hyperplastic and hypertrophic A-cells, along with morphological evidence of high rates of proglucagon secretion in PC2 null islets. These findings provide strong evidence that active glucagon is required to maintain normal blood glucose levels, counterbalancing the action of insulin at all times.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
24 |
136 |
41
|
Lopez LC, Frazier ML, Su CJ, Kumar A, Saunders GF. Mammalian pancreatic preproglucagon contains three glucagon-related peptides. Proc Natl Acad Sci U S A 1983; 80:5485-9. [PMID: 6577439 PMCID: PMC384282 DOI: 10.1073/pnas.80.18.5485] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We have isolated cDNA clones encoding bovine pancreatic preproglucagon. Twenty-five putative preproglucagon clones were selected by screening 3,100 clones of a fetal bovine pancreas cDNA library with a synthetic oligodeoxynucleotide probe. The probe was a mixture of synthetic 17-base DNA oligomers constructed to correspond to the six carboxyl-terminal amino acids (residues 24-29) of mature glucagon. Restriction mapping of six of these clones suggested that they represented a single mRNA species. Primary sequence analysis of one clone containing a 1,200-base-pair DNA insert revealed that it contained an essentially full-length copy of glucagon mRNA. Analysis of the cDNA suggested a protein coding sequence of 540 nucleotides and 5'- and 3'-untranslated regions of 90 and 471 nucleotides, respectively. This cDNA sequence encoded a 20-amino acid signal sequence followed by one for glicentin, a 69-amino acid polypeptide containing an internal glucagon moiety that has been found in porcine intestines. Glicentin is followed by two additional glucagon-like peptides, each flanked by paired basic amino acids (Lys, Arg) characteristic of prohormone processing. These polypeptide sequences show striking homology with those for glucagon and other members of the glucagon family of peptides.
Collapse
|
research-article |
42 |
134 |
42
|
Smith SB, Ee HC, Conners JR, German MS. Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol 1999; 19:8272-80. [PMID: 10567552 PMCID: PMC84911 DOI: 10.1128/mcb.19.12.8272] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The paired-homeodomain transcription factor PAX4 is expressed in the developing pancreas and along with PAX6 is required for normal development of the endocrine cells. In the absence of PAX4, the numbers of insulin-producing beta cells and somatostatin-producing delta cells are drastically reduced, while the numbers of glucagon-producing alpha cells are increased. To gain insight into PAX4 function, we cloned a full-length Pax4 cDNA from a beta-cell cDNA library and identified a bipartite consensus DNA binding sequence consisting of a homeodomain binding site separated from a paired domain binding site by 15 nucleotides. The paired half of this consensus sequence has similarities to the PAX6 paired domain consensus binding site, and the two proteins bind to common sequences in several islet genes, although with different relative affinities. When expressed in an alpha-cell line, PAX4 represses transcription through the glucagon or insulin promoters or through an isolated PAX4 binding site. This repression is not simply due to competition with the PAX6 transcriptional activator for the same binding site, since PAX4 fused to the unrelated yeast GAL4 DNA binding domain also represses transcription through the GAL4 binding site in the alpha-cell line and to a lesser degree in beta-cell lines and NIH 3T3 cells. Repressor activity maps to more than one domain within the molecule, although the homeodomain and carboxyl terminus give the strongest repression. PAX4 transcriptional regulation apparently plays a role only early in islet development, since Pax4 mRNA as determined by reverse transcriptase PCR peaks at embryonic day 13.5 in the fetal mouse pancreas and is undetectable in adult islets. In summary, PAX4 can function as a transcriptional repressor and is expressed early in pancreatic development, which may allow it to suppress alpha-cell differentiation and permit beta-cell differentiation.
Collapse
|
research-article |
26 |
133 |
43
|
Schisler JC, Jensen PB, Taylor DG, Becker TC, Knop FK, Takekawa S, German M, Weir GC, Lu D, Mirmira RG, Newgard CB. The Nkx6.1 homeodomain transcription factor suppresses glucagon expression and regulates glucose-stimulated insulin secretion in islet beta cells. Proc Natl Acad Sci U S A 2005; 102:7297-302. [PMID: 15883383 PMCID: PMC1091752 DOI: 10.1073/pnas.0502168102] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have previously described rat insulinoma INS-1-derived cell lines with robust or poor glucose-stimulated insulin secretion (GSIS). In the current study, we have further resolved these lines into three classes: class 1, glucose-unresponsive/glucagon-expressing; class 2, glucose-unresponsive/glucagon-negative; and class 3, glucose-responsive/glucagon-negative. The transcription factor Nkx2.2 was expressed with relative abundance of 3.3, 1.0, and 1.0 in class 1, class 2, and class 3 cells, respectively, whereas Nkx6.1 expression had the opposite trend: 1.0, 2.6, and 6.4 in class 1, class 2, and class 3 cells, respectively. In class 1 cells, overexpressed Nkx6.1 suppressed glucagon expression but did not affect the levels of several other prominent beta cell transcription factors. RNA interference (RNAi)-mediated suppression of Nkx6.1 in class 3 cells resulted in a doubling of glucagon mRNA, with no effect on Pdx1 levels, whereas suppression of Pdx1 in class 3 cells caused a 12-fold increase in glucagon transcript levels, demonstrating independent effects of Nkx6.1 and Pdx1 on glucagon expression in beta cell lines. RNAi-mediated suppression of Nkx6.1 expression in class 3 cells also caused a decrease in GSIS from 13.9- to 3.7-fold, whereas suppression of Pdx1 reduced absolute amounts of insulin secretion without affecting fold response. Finally, RNAi-mediated suppression of Nkx6.1 mRNA in primary rat islets was accompanied by a significant decrease in GSIS relative to control cells. In sum, our studies have revealed roles for Nkx6.1 in suppression of glucagon expression and control of GSIS in islet beta cells.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
129 |
44
|
Hansotia T, Drucker DJ. GIP and GLP-1 as incretin hormones: lessons from single and double incretin receptor knockout mice. ACTA ACUST UNITED AC 2005; 128:125-34. [PMID: 15780432 DOI: 10.1016/j.regpep.2004.07.019] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 07/08/2004] [Accepted: 07/15/2004] [Indexed: 11/18/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut-derived incretins secreted in response to nutrient ingestion. Both incretins potentiate glucose-dependent insulin secretion and enhance beta-cell mass through regulation of beta-cell proliferation, neogenesis and apoptosis. In contrast, GLP-1, but not GIP, inhibits gastric emptying, glucagon secretion, and food intake. Furthermore, human subjects with Type 2 diabetes exhibit relative resistance to the actions of GIP, but not GLP-1R agonists. The physiological importance of both incretins has been investigated through generation and analysis of incretin receptor knockout mice. Elimination of incretin receptor action in GIPR-/- or GLP-1R-/- mice produces only modest impairment in glucose homeostasis. Similarly, double incretin receptor knockout (DIRKO) mice exhibit normal body weight and normal levels of plasma glucagon and hypoglycemic responses to exogenous insulin. However, glucose-stimulated insulin secretion is significantly decreased following oral but not intraperitoneal glucose challenge in DIRKO mice and the glucose lowering actions of dipeptidyl peptidase-IV (DPP-IV) inhibitors are extinguished in DIRKO mice. Hence, incretin receptor signaling exerts physiologically relevant actions critical for glucose homeostasis, and represents a pharmacologically attractive target for development of agents for the treatment of Type 2 diabetes.
Collapse
|
|
20 |
128 |
45
|
Massimino SP, McBurney MI, Field CJ, Thomson AB, Keelan M, Hayek MG, Sunvold GD. Fermentable dietary fiber increases GLP-1 secretion and improves glucose homeostasis despite increased intestinal glucose transport capacity in healthy dogs. J Nutr 1998; 128:1786-93. [PMID: 9772150 DOI: 10.1093/jn/128.10.1786] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ileal proglucagon gene expression and postprandial plasma concentrations of proglucagon-derived peptides are reported to change with the type and quantity of dietary fiber ingested by rats. Within the intestine, proglucagon encodes several proglucagon-derived peptides known to modulate intestinal absorption capacity and pancreatic insulin secretion. To determine whether the chronic ingestion of fermentable dietary fiber regulates the expression and synthesis of proglucagon-derived peptides in the distal intestine to modulate glucose homeostasis, the following study was conducted: 16 adult dogs (23 +/- 2 kg) were fed isoenergetic, isonitrogenous diets containing a mixture of high fermentable dietary fibers (HFF) or low fermentable (LFF) wood cellulose for 14 d in a randomized cross-over design. Food was withheld for 16 h before an oral glucose tolerance test was conducted supplying 2 g of glucose/kg body wt, and peripheral blood was collected via a hind-leg catheter at 0, 15, 30, 45, 60, 90 and 120 min for plasma glucose, insulin and glucagon-like peptide-1(7-36)NH2 (GLP-1) analyses. Intestinal samples were collected after the second dietary treatment. Ileal proglucagon mRNA, intestinal (GLP-1) concentrations and the integrated area under the curves (AUC) for plasma GLP-1 and insulin were greater and plasma glucose AUC was reduced when dogs were fed the HFF diet compared to the LFF diet (P < 0.05). Intestinal villi heights, brush border and basolateral glucose transporter protein abundance and jejunal transport capacities were significantly greater when dogs were fed the HFF diet than when fed the LFF diet. In conclusion, improvements in glucose homeostasis are observed in healthy dogs when they ingest fermentable fibers.
Collapse
|
Comparative Study |
27 |
126 |
46
|
Chen YE, Drucker DJ. Tissue-specific expression of unique mRNAs that encode proglucagon-derived peptides or exendin 4 in the lizard. J Biol Chem 1997; 272:4108-15. [PMID: 9020121 DOI: 10.1074/jbc.272.7.4108] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Glucagon-like peptide 1 stimulates insulin secretion and inhibits glucagon secretion, gastric emptying, and feeding, suggesting it may be biologically useful for the treatment of diabetes. A lizard glucagon-like peptide 1 (GLP-1)-related peptide, exendin 4, binds to the GLP-1 receptor and mimics the actions of GLP-1 in vivo. To determine the genetic relationship between exendin 4 and GLP-1, we analyzed the structure and expression of pancreatic and intestinal proglucagon mRNAs in the reptile Heloderma suspectum. Two different proglucagon cDNAs (lizard proglucagon I (LPI) and lizard proglucagon II (LPII)), with unique 3'-untranslated regions were identified. Two LPI mRNA transcripts, approximately 1.6 and 2.1 kilobases, encoded glucagon and GLP-1 but not GLP-2 and were restricted in expression to the pancreas. In contrast, a 1.1-kilobase LPII mRNA transcript, encoding glucagon, GLP-1, and GLP-2 utilized a different 3'-untranslated region and was expressed in both pancreas and intestine. Lizard proglucagon mRNA transcripts were not detectable by reverse transcription-polymerase chain reaction or Northern blotting in salivary gland. A single class of lizard salivary gland proexendin cDNAs encoded the sequence of exendin 4 and a 45-amino acid exendin NH2-terminal peptide. Exendin mRNA transcripts were expressed in the salivary gland, but not pancreas or intestine. These data demonstrate that GLP-1 and exendin 4 represent related yet distinct peptides encoded by different genes in the lizard.
Collapse
|
|
28 |
123 |
47
|
Nauck MA, Meier JJ. Glucagon-like peptide 1 and its derivatives in the treatment of diabetes. ACTA ACUST UNITED AC 2005; 128:135-48. [PMID: 15780433 DOI: 10.1016/j.regpep.2004.07.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 07/08/2004] [Indexed: 01/09/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) was discovered as an insulinotropic gut hormone, suggesting a physiological role as an incretin hormone, i.e., being responsible, in part, for the higher insulin secretory response after oral as compared to intravenous glucose administration. This difference, the incretin effect, is partially lost in patients with Type 2 diabetes. The actions of GLP-1 include (a) a stimulation of insulin secretion in a glucose-dependent manner, (b) a suppression of glucagon, (c) a reduction in appetite and food intake, (d) a deceleration of gastric emptying, (e) a stimulation of beta-cell neogenesis, growth and differentiation in animal and tissue culture experiments, and (f) an in vitro inhibition of beta-cell apoptosis induced by different toxins. Intravenous GLP-1 can normalize and subcutaneous GLP-1 can significantly lower plasma glucose in the majority of patients with Type 2 diabetes. GLP-1 itself, however, is inactivated rapidly in vivo and thus does not appear to be useful as a therapeutic agent in the long-term treatment of Type 2 diabetes. Other agents acting on GLP-1 receptors have been found (like exendin-4) or developed as GLP-1 derivatives (like liraglutide or GLP-1/CJC-1131). Clinical trials with exenatide (two injections per day) and liraglutide (one injection per day) have shown reductions in glucose concentrations and HbA1c by more than 1%, associated with moderate weight loss (2-3 kg), but also some nausea and, rarely, vomiting. It is hoped that this new class of drugs interacting with the GLP-1 or other incretin receptors, the so-called "incretin mimetics", will broaden our armamentarium of antidiabetic medications in the nearest future.
Collapse
|
|
20 |
123 |
48
|
Light PE, Manning Fox JE, Riedel MJ, Wheeler MB. Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol Endocrinol 2002; 16:2135-44. [PMID: 12198249 DOI: 10.1210/me.2002-0084] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) elicits a glucose-dependent insulin secretory effect via elevation of cAMP and activation of protein kinase A (PKA). GLP-1-mediated closure of ATP-sensitive potassium (K(ATP)) channels is involved in this process, although the mechanism of action of PKA on the K(ATP) channels is not fully understood. K(ATP) channel currents and membrane potentials were measured from insulin-secreting INS-1 cells and recombinant beta-cell K(ATP) channels. 20 nM GLP-1 depolarized INS-1 cells significantly by 6.68 +/- 1.29 mV. GLP-1 reduced recombinant K(ATP) channel currents by 54.1 +/- 6.9% in mammalian cells coexpressing SUR1, Kir6.2, and GLP-1 receptor clones. In the presence of 0.2 mM ATP, the catalytic subunit of PKA (cPKA, 20 nM) had no effect on SUR1/Kir6.2 activity in inside-out patches. However, the stimulatory effects of 0.2 mM ADP on SUR1/Kir6.2 currents were reduced by 26.7 +/- 2.9% (P < 0.05) in the presence of cPKA. cPKA increased SUR1/Kir6.2 currents by 201.2 +/- 20.8% (P < 0.05) with 0.5 mM ADP present. The point mutation S1448A in the ADP-sensing region of SUR1 removed the modulatory effects of cPKA. Our results indicate that PKA-mediated phosphorylation of S1448 in the SUR1 subunit leads to K(ATP) channel closure via an ADP-dependent mechanism. The marked alteration of the PKA-mediated effects at different ADP levels may provide a cellular mechanism for the glucose-sensitivity of GLP-1.
Collapse
|
|
23 |
122 |
49
|
Cordier-Bussat M, Bernard C, Levenez F, Klages N, Laser-Ritz B, Philippe J, Chayvialle JA, Cuber JC. Peptones stimulate both the secretion of the incretin hormone glucagon-like peptide 1 and the transcription of the proglucagon gene. Diabetes 1998; 47:1038-45. [PMID: 9648826 DOI: 10.2337/diabetes.47.7.1038] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Truncated glucagon-like peptide (GLP)-1 is a potent incretin. Its synthesis and secretion are modulated by food, but the influence of individual nutrients remains to be established. The hypothesis that protein hydrolysates (peptones) can directly regulate both GLP-1 secretion and proglucagon (PG) gene transcription was tested in this study, ex vivo in the isolated vascularly perfused rat intestine and in vitro in the murine enteroendocrine cell line STC-1. Peptones were albumin egg hydrolysate (AEH) and meat hydrolysate (MH). We demonstrate in these two models that peptones dose-dependently stimulate GLP-1 release, whereas isocaloric quantities of bovine serum albumin or of an amino acid mixture had no stimulatory effect. A strong and rapid increase of PG RNA level was observed in STC-1 cells treated with peptones (14-fold and 7-fold increase after 4 h of incubation with 3% wt/vol MH and AEH, respectively). Peptones also increased the PG RNA level in the colonic PG-expressing cell line GLUTag. In contrast, peptones did not modify the PG RNA level in two pancreatic glucagon-producing cell lines, namely, the RINm5F and INR1G9 cells. The peptone effect in STC-1 cells was completely abolished by blocking transcription before MH treatment. The stability of proglugacon transcripts was not modified by MH treatment, but nascent transcripts were more abundant in STC-1 cells preincubated with MH. Finally, MH treatment strongly stimulated (15-fold stimulation) the transcriptional activity of two PG gene promoter fragments (-1100 and -350 base pair) linked to the CAT reporter gene transiently transfected in STC-1 cells. Overall, peptones evoke an as yet undescribed release of GLP-1 when brought into contact with native intestinal L-cells or with STC-1 enteroendocrine cells. The increased transcription of the glucagon gene in the latter system suggests an important role of protein hydrolysates in the control of not only the secretion but also the synthesis of the incretin hormone.
Collapse
|
|
27 |
121 |
50
|
Cani PD, Daubioul CA, Reusens B, Remacle C, Catillon G, Delzenne NM. Involvement of endogenous glucagon-like peptide-1(7-36) amide on glycaemia-lowering effect of oligofructose in streptozotocin-treated rats. J Endocrinol 2005; 185:457-65. [PMID: 15930172 DOI: 10.1677/joe.1.06100] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have evaluated the influence of oligofructose (OFS), a fermentable dietary fibre, on glucose homeostasis, insulin production and intestinal glucagon-like peptide-1 (GLP-1) in streptozotocin-treated diabetic rats. Male Wistar rats received either i.v. streptozotocin (STZ; 40 mg/kg) or vehicle (CT); one week later, they were fed for 6 weeks with either the standard diet (STZ-CT), or with a diet containing 10% oligofructose (STZ-OFS); both diets were available ad libitum. In a second set of experiments (duration 4 weeks), a supplemental group of food-restricted rats (STZ-Res) receiving a similar intake as CT rats, was added. OFS improved glucose tolerance and reduced food intake as compared with STZ-CT rats in both the post-prandial state and after an oral glucose tolerance test. After 6 weeks, portal and pancreatic insulin concentrations were doubled in STZ-OFS rats. Food restriction improved these parameters when compared with STZ-CT rats, but to a lesser extent than in the STZ-OFS group. We have shown that OFS treatment increased portal and colonic GLP-1(7-36) amide levels and doubled colonic proglucagon and prohormone convertase 1 mRNA levels; both OFS and food restriction lowered ileal GLP-1(7-36) amide levels as compared with levels in STZ-CT rats. We propose that OFS, through its fermentation in the colon, promotes the expression and secretion of colonic peptides, namely GLP-1(7-36) amide, with beneficial consequences on glycaemia, insulin secretion and hyperphagia in diabetic rats.
Collapse
|
|
20 |
120 |