26
|
Li B, Zhang C, Ma Y, Zhou Y, Gao L, He D, Li M. Physiological and transcriptome level responses of Microcystis aeruginosa and M. viridis to environmental concentrations of triclosan. CHEMOSPHERE 2024; 363:142822. [PMID: 38986778 DOI: 10.1016/j.chemosphere.2024.142822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
The toxicity of triclosan (TCS) to various aquatic organisms has been demonstrated at environmental concentrations. However, the effects and mechanisms of TCS on toxic cyanobacteria remains largely unexplored. This study investigated the physiological and molecular variations in two representative toxic Microcystis species (M. aeruginosa and M. viridis) under exposure to TCS for 12 d. Our findings demonstrated that the median effective concentration (EC50) of TCS for both Microcystis species were close to the levels detected in the environment (M. aeruginosa: 9.62 μg L-1; M. viridis: 27.56 μg L-1). An increased level of reactive oxygen species (ROS) was observed in Microcystis, resulting in oxidative damage when exposed to TCS at concentrations ranging from 10 μg L-1 to 50 μg L-1. The photosynthetic activity of Microcystis had a certain degree of recovery capability at low concentrations of TCS. Compared to M. aeruginosa, the higher recovery capability of the photosynthetic system in M. viridis would be mainly attributed to the increased ability for PSII repair and phycobilisome synthesis. Additionally, the synthesis of microcystins in the two species and the release rate in M. viridis significantly increased under 10-50 μg L-1 TCS. At the molecular level, exposure to TCS at EC50 for 12 d induced the dysregulation of genes associated with photosynthesis and antioxidant system. The upregulation of genes associated with microcystin synthesis and nitrogen metabolism further increased the potential risk of microcystin release. Our results revealed the aquatic toxicity and secondary ecological risks of TCS at environmental concentrations, and provided theoretical data with practical reference value for TCS monitoring.
Collapse
|
27
|
Albuquerque MVDC, Ramos RDO, de Paula E Silva MCC, Rodrigues RMM, Leite VD, Lopes WS. Allelopathic effects of cyanotoxins on the physiological responses of Chlorella vulgaris. Toxicon 2024; 248:107847. [PMID: 39025449 DOI: 10.1016/j.toxicon.2024.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Contributing to the assessment of potential physiological changes in microalgae subjected to different concentrations and types of cyanotoxins, this study investigated the inhibitory effects of cyanotoxins on the growth, density, biomass, and ecotoxicity of Chlorella vulgaris. Chlorella vulgaris was exposed to crude extracts of cyanobacteria producing microcystin-LR (MC-LR), saxitoxin (SXT), anatoxin-a (ATX-A), and cylindrospermopsin (CYN) with initial concentrations of 5.0, 2.05, 0.61, and 1.42 μg.L-1, respectively. The experiments were conducted under controlled conditions, and monitoring of growth and cell inhibition occurred at 24h, 48h, 72h, and 96h. Chlorophyll-a content and ecotoxicity assessment were conducted with samples collected after 96h of exposure to cyanotoxins. The growth assays of Chlorella vulgaris, with results expressed in terms of average growth rates (doublings/day), indicated the following order for cyanotoxins: SXT (2.03) > CYN (1.66) > MC-LR (1.56) > ATX-A (0.18). This assay revealed the prominent inhibitory potential of ATX-A on Chlorella vulgaris growth compared to the other toxins evaluated. Regarding the inhibition of the photosynthetic process, expressed in terms of the percentage inhibition of Chlorophyll-a, the following order for cyanotoxins was obtained: ATX-A (82%) > MC-LR (76%) > STX (46%) > CYN (16%). These results also indicated that among the cyanotoxins, ATX-A was the most detrimental to the photosynthetic process. However, contrary to the observations in the growth study, SXT proved to be more harmful than CYN in terms of Chlorophyll-a inhibition. Finally, the results of the toxicity assay revealed that only ATX-A and MC-LR exerted a chronic influence on Chlorella vulgaris under the investigated conditions.
Collapse
|
28
|
Yang H, Gu X, Chen H, Zeng Q, Mao Z, Ge Y, Yao Y. Harmful planktonic Microcystis and benthic Oscillatoria-induced toxicological effects on the Asian clam (Corbicula fluminea): A survey on histopathology, behavior, oxidative stress, apoptosis and inflammation. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109961. [PMID: 38889875 DOI: 10.1016/j.cbpc.2024.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Cyanobacterial blooms are worldwide distributed and threaten aquatic ecosystems and public health. The current studies mainly focus on the adverse impacts of planktonic cyanobacteria or pure cyanotoxins, while the benthic cyanobacteria-induced ecotoxic effects are relatively lacking. The cyanobacterial cell-induced toxic effects on aquatic organisms might be more serious and complex than the pure cyanotoxins and crude extracts of cyanobacteria. This study explored the chronic effects of toxin-producing planktonic Microcystis aeruginosa (producing microcystin) and benthic Oscillatoria sp. (producing cylindrospermopsin) on the behaviors, tissue structures, oxidative stress, apoptosis, and inflammation of the Asian clams (Corbicula fluminea) under 28-d exposure. The data showed that both M. aeruginosa and Oscillatoria sp. can decrease the behaviors associated with the feeding activity and induce tissue damage (i.e. gill and digestive gland) in clams. Furthermore, two kinds of cyanobacteria can alter the antioxidant enzyme activities and increase antioxidant, lipid oxidation product, and neurotransmitter degrading enzyme levels in clams. Moreover, two kinds of cyanobacteria can activate apoptosis-related enzyme activities and enhance the proinflammatory cytokine levels of clams. In addition, two kinds of cyanobacteria can disturb the transcript levels of genes linked with oxidative stress, apoptosis, and inflammation. These results suggested harmful cyanobacteria can threaten the survival and health of clams, while the benthic cyanobacteria-induced adverse effects deserve more attention. Our finding also indicated that it is necessary to focus on the entire algal cell-induced ecotoxicity when concerning the ecological impacts of cyanobacterial blooms.
Collapse
|
29
|
Ren Y, Wang J, Guo WW, Chen JW, Xu LZ, Wu ZW, Wang YP. PKM2/Hif-1α signal suppression involved in therapeutics of pulmonary fibrosis with microcystin-RR but not with pirfenidone. Toxicon 2024; 247:107822. [PMID: 38908528 DOI: 10.1016/j.toxicon.2024.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/06/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
To date there are only pirfenidone (PFD) and nintedanib to be given conditional recommendation in idiopathic pulmonary fibrosis (IPF) therapies with slowing disease progression, but neither has prospectively shown a reduced mortality. It is one of the urgent topics to find effective drugs for pulmonary fibrosis in medicine. Previous studies have demonstrated that microcystin-RR (MC-RR) effectively alleviates bleomycin-induced pulmonary fibrosis, but the mechanism has not been fully elucidated yet. We further conducted a comparison of therapeutic effect on the model animals of pulmonary fibrosis between MC-RR and PFD with histopathology and the expression of the molecular markers involved in differentiation, proliferation and metabolism of myofibroblasts, a major effector cell of tissue fibrosis. The levels of the enzyme molecules for maintaining the stability of interstitial structure were also evaluated. Our results showed that MC-RR and PFD effectively alleviated pulmonary fibrosis in model mice with a decreased signaling and marker molecules associated with myofibroblast differentiation and lung fibrotic lesion. In the meantime, both MC-RR and PFD treatment are beneficial to restore molecular dynamics of interstitial tissue and maintain the stability of interstitial architecture. Unexpectedly, MC-RR, rather than PFD, showed a significant effect on inhibiting PKM2-HIF-1α signaling and reducing the level of p-STAT3. Additionally, MC-RR showed a better inhibition effect on FGFR1 expression. Given that PKM2-HIF-1α and activated STAT3 molecular present a critical role in promoting the proliferation of myofibroblasts, MC-RR as a new strategy for IPF treatment has potential advantage over PFD.
Collapse
|
30
|
Bubik A, Frangež R, Žužek MC, Gutiérrez-Aguirre I, Lah TT, Sedmak B. Cyanobacterial Cyclic Peptides Can Disrupt Cytoskeleton Organization in Human Astrocytes-A Contribution to the Understanding of the Systemic Toxicity of Cyanotoxins. Toxins (Basel) 2024; 16:374. [PMID: 39330832 PMCID: PMC11436104 DOI: 10.3390/toxins16090374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The systemic toxicity of cyclic peptides produced by cyanobacteria (CCPs) is not yet completely understood. Apart from the most known damages to the liver and kidneys, symptoms of their neurotoxicity have also been reported. Hepatotoxic CCPs, like microcystins, as well as non-hepatotoxic anabaenopeptins and planktopeptins, all exhibit cytotoxic and cytostatic effects on mammalian cells. However, responses of different cell types to CCPs depend on their specific modes of interaction with cell membranes. This study demonstrates that non-hepatotoxic planktopeptin BL1125 and anabaenopeptins B and F, at concentrations up to 10 µM, affect normal and tumor human astrocytes (NHA and U87-GM) in vitro by their almost immediate insertion into the lipid monolayer. Like microcystin-LR (up to 1 µM), they inhibit Ser/Thr phosphatases and reorganize cytoskeletal elements, with modest effects on their gene expression. Based on the observed effects on intermediate filaments and intermediate filament linkage elements, their direct or indirect influence on tubulin cytoskeletons via post-translational modifications, we conclude that the basic mechanism of CCP toxicities is the induction of inter- and intracellular communication failure. The assessed inhibitory activity on Ser/Thr phosphatases is also crucial since the signal transduction cascades are modulated by phosphorylation/dephosphorylation processes.
Collapse
|
31
|
Yang MY, Yu FR, Ji QQ, Zhang HY, Zhang JX, Chen DJ. Secreted Frizzled-Related Protein 5 Mediates Wnt5a Expression in Microcystin-Leucine-Arginine-Induced Liver Lipid Metabolism Disorder in Mice. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2024; 37:850-864. [PMID: 39198250 DOI: 10.3967/bes2024.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/06/2024] [Indexed: 09/01/2024]
Abstract
Objective Microcystin-leucine-arginine (MC-LR) exposure induces lipid metabolism disorders in the liver. Secreted frizzled-related protein 5 (SFRP5) is a natural antagonist of winglesstype MMTV integration site family, member 5A (Wnt5a) and an anti-inflammatory adipocytokine. In this study, we aimed to investigate whether MC-LR can induce lipid metabolism disorders in hepatocytes and whether SFRP5, which has anti-inflammatory effects, can alleviate the effects of hepatic lipid metabolism by inhibiting the Wnt5a/Jun N-terminal kinase (JNK) pathway. Methods We exposed mice to MC-LR in vivo to induce liver lipid metabolism disorders. Subsequently, mouse hepatocytes that overexpressed SFRP5 or did not express SFRP5 were exposed to MC-LR, and the effects of SFRP5 overexpression on inflammation and Wnt5a/JNK activation by MC-LR were observed. Results MC-LR exposure induced liver lipid metabolism disorders in mice and significantly decreased SFRP5 mRNA and protein levels in a concentration-dependent manner. SFRP5 overexpression in AML12 cells suppressed MC-LR-induced inflammation. Overexpression of SFRP5 also inhibited Wnt5a and phosphorylation of JNK. Conclusion MC-LR can induce lipid metabolism disorders in mice, and SFRP5 can attenuate lipid metabolism disorders in the mouse liver by inhibiting Wnt5a/JNK signaling.
Collapse
|
32
|
Martínez-Jerónimo F, Gonzalez-Trujillo L, Hernández-Zamora M. Continuous and Intermittent Exposure to the Toxigenic Cyanobacterium Microcystis aeruginosa Differentially Affects the Survival and Reproduction of Daphnia curvirostris. Toxins (Basel) 2024; 16:360. [PMID: 39195770 PMCID: PMC11359247 DOI: 10.3390/toxins16080360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Anthropic eutrophication leads to water quality degradation because it may cause the development of harmful cyanobacterial blooms, affecting aquatic biota and threatening human health. Because in the natural environment zooplankters are exposed continuously or intermittently to cyanotoxins in the water or through cyanobacterial consumption, this study aimed to assess the effects of the toxigenic Microcystis aeruginosa VU-5 by different ways of exposure in Daphnia curvirostris. The acute toxicity produced by the cells, the aqueous crude extract of cells (ACE), and the cell-free culture medium (CFM) were determined. The effect on the survival and reproduction of D. curvirostris under continuous and intermittent exposure was determined during 26 d. The LC50 was 407,000 cells mL-1; exposure to the ACE and CFM produced mortality lower than 20%. Daphnia survivorship and reproduction were significantly reduced. Continuous exposure to Microcystis cells caused 100% mortality on the fourth day. Exposure during 4 and 24 h in 48 h cycles produced adult mortality, and reproduction decreased as the exposure time and the Microcystis concentrations increased. The higher toxicity of cells than the ACE could mean that the toxin's absorption is higher in the digestive tract. The temporary exposure to Microcystis cells produced irreversible damage despite the recovery periods with microalgae as food. The form and the continuity in exposure to Microcystis produced adverse effects, warning about threats to the zooplankton during HCBs.
Collapse
|
33
|
Wejnerowski Ł, Dulić T, Akter S, Font-Nájera A, Rybak M, Kamiński O, Czerepska A, Dziuba MK, Jurczak T, Meriluoto J, Mankiewicz-Boczek J, Kokociński M. Community Structure and Toxicity Potential of Cyanobacteria during Summer and Winter in a Temperate-Zone Lake Susceptible to Phytoplankton Blooms. Toxins (Basel) 2024; 16:357. [PMID: 39195767 PMCID: PMC11359657 DOI: 10.3390/toxins16080357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Cyanobacterial blooms are increasingly common during winters, especially when they are mild. The goal of this study was to determine the summer and winter phytoplankton community structure, cyanotoxin presence, and toxigenicity in a eutrophic lake susceptible to cyanobacterial blooms throughout the year, using classical microscopy, an analysis of toxic cyanometabolites, and an analysis of genes involved in biosynthesis of cyanotoxins. We also assessed whether cyanobacterial diversity in the studied lake has changed compared to what was reported in previous reports conducted several years ago. Moreover, the bloom-forming cyanobacterial strains were isolated from the lake and screened for cyanotoxin presence and toxigenicity. Cyanobacteria were the main component of the phytoplankton community in both sampling times, and, in particular, Oscillatoriales were predominant in both summer (Planktothrix/Limnothrix) and winter (Limnothrix) sampling. Compared to the winter community, the summer community was denser; richer in species; and contained alien and invasive Nostocales, including Sphaerospermopsis aphanizomenoides, Raphidiopsis raciborskii, and Raphidiopsis mediterranea. In both sampling times, the blooms contained toxigenic species with genetic determinants for the production of cylindrospermopsin and microcystins. Toxicological screening revealed the presence of microcystins in the lake in summer but no cyanotoxins in the winter period of sampling. However, several cyanobacterial strains isolated from the lake during winter and summer produced anabaenopeptins and microcystins. This study indicates that summer and winter blooms of cyanobacteria in the temperate zone can differ in biomass, structure, and toxicity, and that the toxic hazards associated with cyanobacterial blooms may potentially exist during winter.
Collapse
|
34
|
Huang J, Gu P, Cao X, Miao H, Wang Z. Mechanistic study on the increase of Microcystin-LR synthesis and release in Microcystis aeruginosa by amino-modified nano-plastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134767. [PMID: 38820757 DOI: 10.1016/j.jhazmat.2024.134767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Ecological risk of micro/nano-plastics (MPs/NPs) has become an important environmental issue. Microcystin-leucine-arginine (MC-LR) produced by Microcystis aeruginosa (M. aeruginosa) is the most common and toxic secondary metabolites (SM). However, the influencing mechanism of MPs and NPs exposure on MC-LR synthesis and release have still not been clearly evaluated. In this work, under both acute (4d) and long-term exposure (10d), only high-concentration (10 mg/L) exposure of amino-modified polystyrene NPs (PS-NH2-NPs) promoted MC-LR synthesis (32.94 % and 42.42 %) and release (27.35 % and 31.52 %), respectively. Mechanistically, PS-NH2-NPs inhibited algae cell density, interrupted pigment synthesis, weakened photosynthesis efficiency, and induced oxidative stress, with subsequent enhancing the MC-LR synthesis. Additionally, PS-NH2-NPs exposure up-regulated MC-LR synthesis pathway genes (mcyA, mcyB, mcyD, and mcyG) combined with significantly increased metabolomics (Leucine and Arginine), thereby enhancing MC-LR synthesis. PS-NH2-NPs exposure enhanced the MC-LR release from M. aeruginosa via up-regulated MC-LR transport pathway genes (mcyH) and the shrinkage of plasma membrane. Our results provide new insights into the long-time coexistence of NPs with algae in freshwater systems might pose a potential threat to aquatic environments and human health.
Collapse
|
35
|
Guo Y, Du X, Wang F, Fu Y, Guo X, Meng R, Ge K, Zhang S. Co-exposure of microcystin-LR and nitrite induced kidney injury through TLR4/NLRP3/GSDMD-mediated pyroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116629. [PMID: 38917587 DOI: 10.1016/j.ecoenv.2024.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The degradation of cyanobacterial blooms releases hazardous contaminants such as microcystin-LR (MC-LR) and nitrite, which may collectively exert toxicity on various bodily systems. To evaluate their individual and combined toxicity in the kidney, mice were subjected to different concentrations of MC-LR and/or nitrite over a 6-month period in this study. The results revealed that combined exposure to MC-LR and nitrite exacerbated renal pathological alterations and dysfunction compared to exposure to either compound alone. Specifically, the protein and mRNA expression of kidney injury biomarkers, such as kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), were notably increased in combined exposure group. Concurrently, co-exposure to MC-LR and nitrite remarkedly upregulated levels of proinflammatory cytokines TNF-α, IL-6 and IL-1β, while decreasing the anti-inflammatory cytokine IL-10. Notably, MC-LR and nitrite exhibited synergistic effects on the upregulation of renal IL-1β levels. Moreover, MC-LR combined with nitrite not only elevated mRNA levels of proinflammatory cytokines but also increased protein levels of pyroptosis biomarkers such as IL-1β, Gasdermin D (GSDMD), and Cleaved-GSDMD. Mechanistic investigations revealed that co-exposure to MC-LR and nitrite promoted pyroptosis both in vivo and in vitro, possibly through the activation of the TLR4/NLRP3/GSDMD pathway. Pretreatment with TLR4 inhibitor and NLRP3 inhibitor effectively suppressed pyroptosis induced by the co-exposure of these two toxins in HEK293T cells. These findings provide compelling evidence that MC-LR combined with nitrite synergistically induces pyroptosis in the kidney by activating the TLR4/NLRP3/GSDMD pathway. Overall, this study significantly enhances our comprehension of how environmental toxins interact and induce harm to the kidneys, offering promising avenues for identifying therapeutic targets to alleviate their toxic effects on renal health.
Collapse
|
36
|
Torres MDA, Dax A, Grand I, Vom Berg C, Pinto E, Janssen EML. Lethal and behavioral effects of semi-purified microcystins, Micropeptin and apolar compounds from cyanobacteria on freshwater microcrustacean Thamnocephalus platyurus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106983. [PMID: 38852545 DOI: 10.1016/j.aquatox.2024.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
The mass proliferation of cyanobacteria, episodes known as blooms, is a concern worldwide. One of the most critical aspects during these blooms is the production of toxic secondary metabolites that are not limited to the four cyanotoxins recognized by the World Health Organization. These metabolites comprise a wide range of structurally diverse compounds that possess bioactive functions. Potential human and ecosystem health risks posed by these metabolites and co-produced mixtures remain largely unknown. We studied acute lethal and sublethal effects measured as impaired mobility on the freshwater microcrustaceans Thamnocephalus platyurus for metabolite mixtures from two cyanobacterial strains, a microcystin (MC) producer and a non-MC producer. Both cyanobacterial extracts, from the MC-producer and non-MC-producer, caused acute toxicity with LC50 (24 h) values of 0.50 and 2.55 mgdw_biomass/mL, respectively, and decreased locomotor activity. Evaluating the contribution of different cyanopeptides revealed that the Micropeptin-K139-dominated fraction from the MC-producer extract contributed significantly to mortality and locomotor impairment of the microcrustaceans, with potential mixture effect with other cyanopeptolins present in this fraction. In the non-MC-producer extract, compounds present in the apolar fraction contributed mainly to mortality, locomotor impairment, and morphological changes in the antennae of the microcrustacean. No lethal or sublethal effects were observed in the fractions dominated by other cyanopetides (Cyanopeptolin 959, Nostoginin BN741). Our findings contribute to the growing body of research indicating that cyanobacterial metabolites beyond traditional cyanotoxins cause detrimental effects. This underscores the importance of toxicological assessments of such compounds, also at sublethal levels.
Collapse
|
37
|
Xue W, Tianrun W, Jiaqi Y, Xin L, Ruxue D, Peng Z. Bta-miR-149-3p suppresses inflammatory response in bovine Sertoli cells exposed to microcystin-leucine arginine (MC-LR) through TLR4/NF-kB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116636. [PMID: 38917588 DOI: 10.1016/j.ecoenv.2024.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
This study explored the regulatory role of bta-miR-149-3p in the inflammatory response induced by microcystin-leucine arginine (MC-LR) exposure in bovine Sertoli cells. The research endeavored to enhance the comprehension of the epigenetic mechanisms underlying MC-LR-induced cytotoxicity in Sertoli cells and establish a foundation for mitigating these effects in vitro. In this study, we elucidated the regulatory mechanism of bta-miR-149-3p in the MC-LR-induced inflammatory response by verifying the target gene of bta-miR-149-3p through luciferase assays and treating the cells with a bta-miR-149-3p inhibitor for 24 h. The results demonstrate that nuclear factor κB (NF-κB) acts as a downstream target gene of bta-miR-149-3p, which inhibits the MC-LR-induced inflammatory response in bovine Sertoli cells. This inhibition occurs by regulating the downregulation of tight junction constitutive proteins of the blood-testis barrier (BTB) through the suppression of the TLR-4/NF-κB signaling pathway (p < 0.05) and the up-regulation of the adhesion junction protein β-catenin (p < 0.05). Notably, MC-LR exposure resulted in the up-regulation (p < 0.05) of inflammatory cytokines (IL-6, IL-1β, and NLRP3) and the down-regulation (p < 0.05) of BTB tight junction constitutive proteins (ZO-1, Occludin) in Sertoli cells. Furthermore, the BTB constitutive protein ZO-1 exhibited significant down-regulation in Sertoli cells pretreated with the bta-miR-149-3p inhibitor compared to controls (p < 0.05), while Occludin showed no significant difference from CTNNB1 (p > 0.05). In summary, our findings suggest that bta-miR-149-3p suppresses the MC-LR-induced inflammatory response and alterations in the expression of BTB proteins in bovine Sertoli cells by inhibiting the TLR-4/NF-κB signaling pathway.
Collapse
|
38
|
Zhang C, Wang F, Bao F, Zhu J, Xu J, Lin D. The effects of nanoplastics and microcystin-LR coexposure on Aristichthys nobilis at the early developmental stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107006. [PMID: 38909583 DOI: 10.1016/j.aquatox.2024.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Nanoplastics (NPs) and microcystin-LR (MC-LR) are two common and harmful pollutants in water environments, especially at aquafarm where are full of plastic products and algae. It is of great significance to study the toxic effects and mechanisms of the NPs and/or MC-LR on fish at the early stage. In this study, the embryo and larvae of a filtering-feeding fish, Aristichthys nobilis, were used as the research objects. The results showed that the survival and hatching rates of the embryo were not significantly affected by the environmental concentration exposure of these two pollutants. Scanning electron microscopy (SEM) observation displayed that NPs adhered to the surface of the embryo membrane. Transcriptomic and bioinformatic analyses revealed that the NPs exposure activated neuromuscular junction development and skeletal muscle fiber in larvae, and affected C5-Branched dibasic acid metabolism. The metabolic and biosynthetic processes of zeaxanthin, xanthophyll, tetraterpenoid, and carotenoid were suppressed after the MC-LR exposure, which was harmful to the retinol metabolism of fish. Excessive production of superoxide dismutase (SOD) was detected under the MC-LR exposure. The MC-LR and NPs coexposure triggered primary immunodeficiency and adaptive immune response, leading to the possibility of reduced fitness of A.nobilis during the development. Collectively, our results indicate that environmental concentration NPs and MC-LR coexposure could cause toxic damage and enhance sick risk in A.nobilis, providing new insights into the risk of NPs and MC-LR on filtering-feeding fish.
Collapse
|
39
|
Alnahas M, Almuhtaram H, Hofmann R. Oxidation of Microcystis aeruginosa and Microcystins with Peracetic Acid. Toxins (Basel) 2024; 16:328. [PMID: 39195738 PMCID: PMC11360697 DOI: 10.3390/toxins16080328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Peracetic acid (PAA) shows potential for use in drinking water treatment as an alternative to prechlorination, such as for mussel control and disinfection by-product precursor destruction, though its impact as a preoxidant during cyanobacterial blooms remains underexplored. Here, Microcystis aeruginosa inactivation and microcystin-LR and -RR release and degradation using PAA were explored. The toxin degradation rates were found to be higher in alkaline conditions than in neutral and acidic conditions. However, all rates were significantly smaller than comparable rates when using free chlorine. The inactivation of M. aeruginosa cells using PAA was faster at acidic pH, showing immediate cell damage and subsequent cell death after 15-60 min of exposure to 10 mg/L PAA. In neutral and alkaline conditions, cell death occurred after a longer lag phase (3-6 h). During cell inactivation, microcystin-LR was released slowly, with <35% of the initial intracellular toxins measured in solution after 12 h of exposure to 10 mg/L PAA. Overall, PAA appears impractically slow for M. aeruginosa cell inactivation or microcystin-LR and -RR destruction in drinking water treatment, but this slow reactivity may also allow it to continue to be applied as a preoxidant for other purposes during cyanobacterial blooms without the risk of toxin release.
Collapse
|
40
|
Vicentini M, Calado SLM, Pessati JBK, Perussolo MC, Lirola JR, Marcondes FR, Nascimento ND, Beghetto CL, Vilar MCP, Mela M, Coral LAA, Magalhães VF, Prodocimo V, Cestari MM, Silva de Assis HC. Temperature rise and its influence on the toxic effects caused by cyanotoxins in a neotropical catfish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 353:124166. [PMID: 38754694 DOI: 10.1016/j.envpol.2024.124166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Potentially toxic cyanobacterial blooms (cyanoHABs) have become a problem in public water supply reservoirs. Temperature rise caused by climate change can increase the frequency and intensity of blooms, which may influence the cyanotoxins concentration in the environment. This study aimed to evaluate the effect of the temperature on the responses of a Neotropical catfish exposed to a neurotoxin-rich cyanobacterial crude extract (Raphidiopsis raciborskii T3). Juveniles of Rhamdia quelen were exposed to four treatments, based on study data: control at 25 °C (C25), control at 30 °C (C30), crude extract equivalent to 105 cells.mL-l of R. raciborskii at 25 °C (CE25) and 30 °C (CE30). After 96 h of exposure, the fish were anesthetized and blood was taken. After euthanasia, the gill, posterior kidney, brain, muscle, liver and gonad were sampled for hematological, biochemical, genotoxic and histopathological biomarker analysis. Liver was sampled for proteomic analysis for identification of proteins related to energy production. Water samples were collected at the beginning and the end of the experiment for neurotoxins quantification. Different parameters in both males and females were altered at CE25, evidencing the effects of neurotoxins in freshwater fish. At CE30, a water warming scenario, more effects were observed in females than at 25 °C, such as activation of saxitoxin metabolism pathway and genotoxicity. More damage to macromolecules was observed in females at the higher temperature, demonstrating that the increase in temperature can aggravate the toxicity of neurotoxins produced by R. raciborskii T3.
Collapse
|
41
|
Yang J, Zhang Z, Du X, Wang Y, Meng R, Ge K, Wu C, Liang X, Zhang H, Guo H. The effect and mechanism of combined exposure of MC-LR and NaNO 2 on liver lipid metabolism. ENVIRONMENTAL RESEARCH 2024; 252:119113. [PMID: 38729410 DOI: 10.1016/j.envres.2024.119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Microcystin-LR (MC-LR) and sodium nitrite (NaNO2) co-exist in the environment and are hepatotoxic. The liver has the function of lipid metabolism, but the impacts and mechanisms of MC-LR and NaNO2 on liver lipid metabolism are unclear. Therefore, we established a chronic exposure model of Balb/c mice and used LO2 cells for in vitro verification to investigate the effects and mechanisms of liver lipid metabolism caused by MC-LR and NaNO2. The results showed that after 6 months of exposure to MC-LR and NaNO2, the lipid droplets content was increased, and the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were raised in the liver (P < 0.05). Moreover, MC-LR and NaNO2 synergistically induced hepatic oxidative stress by decreasing total superoxide dismutase (T-SOD) activity and glutathione (GSH) levels and increasing malondialdehyde (MDA) content levels. In addition, the levels of Nrf2, HO-1, NQO1 and P-AMPK was decreased and Keap1 was increased in the Nrf2/HO-1 pathway. The key factors of lipid metabolism, SREBP-1c, FASN and ACC, were up-regulated in the liver. More importantly, there was a combined effect on lipid deposition of MC-LR and NaNO2 co-exposure. In vitro experiments, MC-LR and NaNO2-induced lipid deposition and changes in lipid metabolism-related changes were mitigated after activation of the Nrf2/HO-1 signaling pathway by the Nrf2 activator tertiary butylhydroquinone (TBHQ). Additionally, TBHQ alleviated the rise of reactive oxygen species (ROS) in LO2 cells induced by MC-LR and NaNO2. Overall, our findings indicated that MC-LR and NaNO2 can cause abnormal liver lipid metabolism, and the combined effects were observed after MC-LR and NaNO2 co-exposure. The Nrf2/HO-1 signal pathway may be a potential target for prevention and control of liver toxicity caused by MC-LR and NaNO2.
Collapse
|
42
|
Xiao Y, Hu L, Duan J, Che H, Wang W, Yuan Y, Xu J, Chen D, Zhao S. Polystyrene microplastics enhance microcystin-LR-induced cardiovascular toxicity and oxidative stress in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124022. [PMID: 38679130 DOI: 10.1016/j.envpol.2024.124022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
The health risks associated with combined exposure to microplastics (MPs) and cyanobacteria toxins have gained increasing attention due to the large-scale prevalence of cyanobacterial blooms and accumulation of MPs in aquatic environments. Therefore, we explored the cardiovascular toxic effects of microcystin-LR (MC-LR, 1, 10, 100 μg/L) in the presence of 5 μm polystyrene microplastics (PS-MPs, 100 μg/L) and 80 nm polystyrene nanoplastics (PS-NPs, 100 μg/L) in zebrafish models. Embryos were exposed to certain PS-MPs and PS-NPs conditions in water between 3 h post-fertilization (hpf) and 168 hpf. Compared to MC-LR alone, a significant decrease in heart rate was observed as well as notable pericardial edema in the MC-LR + PS-MPs/NPs groups. At the same time, sinus venosus and bulbus arteriosus (SV-BA) distances were significantly increased. Furthermore, the addition of PS-MPs/NPs caused thrombosis in the caudal vein and more severe vascular damage in zebrafish larvae compared to MC-LR alone. Our findings revealed that combined exposure to PS-NPs and MC-LR could significantly decreased the expression of genes associated with cardiovascular development (myh6, nkx2.5, tnnt2a, and vegfaa), ATPase (atp1a3b, atp1b2b, atp2a1l, atp2b1a, and atp2b4), and the calcium channel (cacna1ab and ryr2a) compared to exposure to MC-LR alone. In addition, co-exposure with PS-MPs/NPs exacerbated the MC-LR-induced reactive oxygen species (ROS) production, as well as the ROS-stimulated apoptosis and heightened inflammation. We also discovered that astaxanthin (ASTA) treatment partially attenuated these cardiovascular toxic effects. Our findings confirm that exposure to MC-LR and PS-MPs/NPs affects cardiovascular development through calcium signaling interference and ROS-induced cardiovascular cell apoptosis. This study highlights the potential environmental risks of the co-existence of MC-LR and PS-MPs/NPs for fetal health, particularly cardiovascular development.
Collapse
|
43
|
Cai S, Zhang Y, Pan M, Zhang Z, Lu B, Tian C, Wang C, Fang T, Wu X. Combined effect of freshwater salinization and harmful algae on the benthic invertebrate Chironomus pallidivittatus. CHEMOSPHERE 2024; 359:142149. [PMID: 38685334 DOI: 10.1016/j.chemosphere.2024.142149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Global climate change as well as human activities have been reported to increase the frequency and severity of both salinization and harmful algal blooms (HABs) in many freshwater systems, but their co-effect on benthic invertebrates has rarely been studied. This study simultaneously examined the joint toxicity of salinity and different cyanobacterial diets on the behavior, development, select biomarkers, and partial life cycle of Chironomus pallidivittatus (Diptera). High concentrations of salts (e.g., 1 g/L Ca2+ and Mg2+) and toxic Microcystis had synergistic toxicity, inhibiting development, burrowing ability and causing high mortality of C. pallidivittatus, especially for the Mg2+ treatment, which caused around 90% death. Low Ca2+ concentration (e.g., 0.01 g/L) promoted larval burrowing ability and inhibited toxin accumulation, which increased the tolerance of Chironomus to toxic Microcystis. However, low Mg2+ concentration (e.g., 0.01 g/L) was shown to inhibit the behavior, development and increase algal toxicity to Chironomus. Toxic Microcystis resulted in microcystin (MC) accumulation, inhibited the burrowing ability of larvae, and increased the proportion of male adults (>50%). The combined toxicity level from low to high was verified by the weight of evidence and the grey TOPSIS model, which integrated five lines of evidence to increase the risk assessment accuracy and efficiency. This is the first study that provided insights into ecological risk arising from the joint effect of salinity and harmful algae on benthic organisms. We suggest that freshwater salinization and HABs should be considered together when assessing ecological threats that arise from external stress.
Collapse
|
44
|
Wang L, Chen W, Jin H, Tan Y, Guo C, Fu W, Wu Z, Cui K, Wang Y, Qiu Z, Zhang G, Liu W, Zhou Z. CXCL1/IGHG1 signaling enhances crosstalk between tumor cells and tumor-associated macrophages to promote MC-LR-induced colorectal cancer progression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124081. [PMID: 38697251 DOI: 10.1016/j.envpol.2024.124081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/12/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Microcystin-leucine arginine (MC-LR) is a common cyantotoxin produced by hazardous cyanobacterial blooms, and eutrophication is increasing the contamination level of MC-LR in drinking water supplies and aquatic foods. MC-LR has been linked to colorectal cancer (CRC) progression associated with tumor microenvironment, however, the underlying mechanism is not clearly understood. In present study, by using GEO, KEGG, GESA and ImmPort database, MC-LR related differentially expressed genes (DEGs) and pathway- and gene set-enrichment analysis were performed. Of the three identified DEGs (CXCL1, GUCA2A and GDF15), CXCL1 was shown a positive association with tumor infiltration, and was validated to have a dominantly higher upregulation in MC-LR-treated tumor-associated macrophages (TAMs) rather than in MC-LR-treated CRC cells. Both CRC cell/macrophage co-culture and xenograft mouse models indicated that MC-LR stimulated TAMs to secrete CXCL1 resulting in promoted proliferation, migration, and invasion capability of CRC cells. Furtherly, IP-MS assay found that interaction between TAMs-derived CXCL1 and CRC cell-derived IGHG1 may enhance CRC cell proliferation and migration after MC-LR treatment, and this effect can be attenuated by silencing IGHG1 in CRC cell. In addition, molecular docking analysis, co-immunoprecipitation and immunofluorescence further proved the interactions between CXCL1 and IGHG1. In conclusion, CXCL1 secreted by TAMs can trigger IGHG1 expression in CRC cells, which provides a new clue in elucidating the mechanism of MC-LR-mediated CRC progression.
Collapse
|
45
|
Cao A, Vilariño N, de Castro-Alves L, Piñeiro Y, Rivas J, Botana AM, Carrera C, Sainz MJ, Botana LM. Nanostructured Magnetic Particles for Removing Cyanotoxins: Assessing Effectiveness and Toxicity In Vitro. Toxins (Basel) 2024; 16:269. [PMID: 38922163 PMCID: PMC11209371 DOI: 10.3390/toxins16060269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The rise in cyanobacterial blooms due to eutrophication and climate change has increased cyanotoxin presence in water. Most current water treatment plants do not effectively remove these toxins, posing a potential risk to public health. This study introduces a water treatment approach using nanostructured beads containing magnetic nanoparticles (MNPs) for easy removal from liquid suspension, coated with different adsorbent materials to eliminate cyanotoxins. Thirteen particle types were produced using activated carbon, CMK-3 mesoporous carbon, graphene, chitosan, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidised cellulose nanofibers (TOCNF), esterified pectin, and calcined lignin as an adsorbent component. The particles' effectiveness for detoxification of microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-A (ATX-A) was assessed in an aqueous solution. Two particle compositions presented the best adsorption characteristics for the most common cyanotoxins. In the conditions tested, mesoporous carbon nanostructured particles, P1-CMK3, provide good removal of MC-LR and Merck-activated carbon nanostructured particles, P9-MAC, can remove ATX-A and CYN with high and fair efficacy, respectively. Additionally, in vitro toxicity of water treated with each particle type was evaluated in cultured cell lines, revealing no alteration of viability in human renal, neuronal, hepatic, and intestinal cells. Although further research is needed to fully characterise this new water treatment approach, it appears to be a safe, practical, and effective method for eliminating cyanotoxins from water.
Collapse
|
46
|
Cortés-Téllez AA, D'ors A, Sánchez-Fortún A, Fajardo C, Mengs G, Nande M, Martín C, Costa G, Martín M, Bartolomé-Camacho MC, Sánchez-Fortún S. Using single-species and algal communities to determine long-term adverse effects of silver nanoparticles on freshwater phytoplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172500. [PMID: 38631630 DOI: 10.1016/j.scitotenv.2024.172500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
The physical and chemical properties of silver nanoparticles (AgNPs) have led to their increasing use in various fields such as medicine, food, and industry. Evidence has proven that AgNPs cause adverse effects in aquatic ecosystems, especially when the release of Ag is prolonged in time. Several studies have shown short-term adverse effects of AgNPs on freshwater phytoplankton, but few studies have analysed the impact of long-term exposures on these populations. Our studies were carried out to assess the effects of AgNPs on growth rate, photosynthesis activity, and reactive oxygen species (ROS) generation on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa, and additionally on microcystin (MC-LR) generation from these cyanobacteria. The tests were conducted both in single-species cultures and in phytoplanktonic communities exposed to 1 ngL-1 AgNPs for 28 days. The results showed that cell growth rate of both single-species cultures decreased significantly at the beginning and progressively reached control-like values at 28 days post-exposure. This effect was similar for the community-cultured cyanobacteria, but not for the green algae, which maintained a sustained decrease in growth rate. While gross photosynthesis (Pg) increased in both strains exposed in single cultures, dark respiration (R) and net photosynthesis (Pn) decreased in S. armatus and M. aeruginosa, respectively. These effects were mitigated when both strains were exposed under community culture conditions. Similarly, the ROS generation shown by both strains exposed in single-species cultures was mitigated when exposure occurred in community cultures. MC-LR production and release were significantly decreased in both single-species and community exposures. These results can supply helpful information to further investigate the potential risks of AgNPs and ultimately help policymakers make better-informed decisions about their utilization for environmental restoration.
Collapse
|
47
|
Liu BL, Yu PF, Guo JJ, Xie LS, Liu X, Li YW, Xiang L, Zhao HM, Feng NX, Cai QY, Mo CH, Li QX. Congener-specific fate and impact of microcystins in the soil-earthworm system. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134439. [PMID: 38677123 DOI: 10.1016/j.jhazmat.2024.134439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Microcystins (MCs) have a significant influence on aquatic ecosystems, but little is known about their terrestrial fate and impact. Here, we investigated the fate of two MCs (MC-LR and MC-RR) in the soil-earthworm system, with consideration of their congener-specific impact on earthworm health, soil bacteria, and soil metabolome. Although MCs had little acute lethal effect on earthworms, they caused obvious growth inhibition and setae rupture. Relative to MC-RR, MC-LR exhibited higher bioaccumulation and the resulting dermal lesions and deformation of longitudinal muscles. While the incorporation of both MCs into soils stimulated pathogenic bacteria and depressed oxidative stress tolerant bacteria, the response among soil nitrification and glutathione metabolism differed between the two congeners. The dissipation kinetics of MCs obeyed the first-order model. Earthworms stimulated soil N-cycling enzyme activities, increased the abundance of MC-degrading bacteria, and promoted bacterial metabolic functions related to glutathione metabolism, xenobiotics biodegradation, and metabolism of amino acids that comprise MCs, which accelerated the dissipation of MC-LR and MC-RR by 227% and 82%, respectively. These results provide evidence of significant congener differences in the terrestrial fate and impact of MCs, which will enable a better understanding of their role in mediating soil functions and ecosystem services.
Collapse
|
48
|
Liu Z, Zhang Y, Jia X, Hoskins TD, Lu L, Han Y, Zhang X, Lin H, Shen L, Feng Y, Zheng Y, Hu C, Zhang H. Microcystin-LR Induces Estrogenic Effects at Environmentally Relevant Concentration in Black-Spotted Pond Frogs ( Pelophylax nigromaculatus): In Situ, In Vivo, In Vitro, and In Silico Investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9559-9569. [PMID: 38710655 DOI: 10.1021/acs.est.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Harmful cyanobacterial blooms are frequent and intense worldwide, creating hazards for aquatic biodiversity. The potential estrogen-like effect of Microcystin-LR (MC-LR) is a growing concern. In this study, we assessed the estrogenic potency of MC-LR in black-spotted frogs through combined field and laboratory approaches. In 13 bloom areas of Zhejiang province, China, the MC-LR concentrations in water ranged from 0.87 to 8.77 μg/L and were correlated with sex hormone profiles in frogs, suggesting possible estrogenic activity of MC-LR. Tadpoles exposed to 1 μg/L, an environmentally relevant concentration, displayed a female-biased sex ratio relative to controls. Transcriptomic results revealed that MC-LR induces numerous and complex effects on gene expression across multiple endocrine axes. In addition, exposure of male adults significantly increased the estradiol (E2)/testosterone (T) ratio by 3.5-fold relative to controls. Downregulation of genes related to male reproductive endocrine function was also identified. We also showed how MC-LR enhances the expression of specific estrogen receptor (ER) proteins, which induce estrogenic effects by activating the ER pathway and hypothalamic-pituitary-gonadal (HPG) axis. In aggregate, our results reveal multiple lines of evidence demonstrating that, for amphibians, MC-LR is an estrogenic endocrine disruptor at environmentally relevant concentrations. The data presented here support the need for a shift in the MC-LR risk assessment. While hepatoxicity has historically been the focus of MC-LR risk assessments, our data clearly demonstrate that estrogenicity is a major mode of toxicity at environmental levels and that estrogenic effects should be considered for risk assessments on MC-LR going forward.
Collapse
|
49
|
Duan Y, Nan Y, Xiao M, Yang Y. Toxicity of three microcystin variants on the histology, physiological and metabolism of hepatopancreas and intestinal microbiota of Litopenaeus vannamei. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109904. [PMID: 38508355 DOI: 10.1016/j.cbpc.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Microcystins (MCs) are prevalent harmful contaminants within shrimp aquaculture systems, exhibiting a diverse array of variants. Gut microbiota can engage in mutual interactions with the host through the gut-liver axis. In this study, the shrimp Litopenaeus vannamei were subjected to three different variants of MCs (LR, YR, RR) at a concentration of 1 μg/L each, and elucidated the alterations in both intestinal microbiota and hepatopancreas physiological homeostasis. The results showed that all three variants of MCs prompted histological alterations in the hepatopancreas, induced elevated levels of oxidative stress biomarkers (H2O2, T-SOD, and CAT), disturbed the transcription levels of immune-related genes (Crus, ALF, and Lys), along with an increase in apoptotic genes (Casp-3 and P53). Furthermore, the metabolic profiles of the hepatopancreas were perturbed, particularly in amino acid metabolism such as "lysine degradation" and "β-alanine metabolism"; the mTOR and FoxO signaling were also influenced, encompassing alterations in the transcription levels of related genes. Additionally, the alterations were observed in the intestinal microbiota's diversity and composition, particularly potential beneficial bacteria (Alloprevotella, Bacteroides, Collinsella, Faecalibacterium, and Prevotellaceae UCG-001), which exhibited a positive correlation with the metabolite berberine. These findings reveal that the three MCs variants can impact the health of the shrimp by interfering with the homeostasis of intestinal microbial and hepatopancreas physiology.
Collapse
|
50
|
Mohanty S, Paul A, Banerjee S, Rajendran KV, Tripathi G, Das PC, Sahoo PK. Ultrastructural, molecular and haemato-immunological changes: Multifaceted toxicological effects of microcystin-LR in rohu, Labeo rohita. CHEMOSPHERE 2024; 358:142097. [PMID: 38657687 DOI: 10.1016/j.chemosphere.2024.142097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
No water body is resilient to afflicts of algal bloom, if goes unmanaged. With the increasing trend of intensification, eutrophication and climate change, Labeo rohita (rohu) is highly anticipated to suffer from the deleterious effects of bloom and eventually its toxins. A comprehensive study was conducted to understand the toxicopathological effects of microcystin-LR (MC-LR) in rohu following intraperitoneal injection of 96 h-LD50 dose i.e., 713 μg kg-1. Substantial changes in micro- and ultrastructural level were evident in histopathology and transmission electron microscope (TEM) study. The haematological, biochemical, cellular and humoral innate immune biomarkers were significantly altered (p < 0.05) in MC-LR treated fish. The mRNA transcript levels of IL-1β, IL-10, IgM and IgZ in liver and kidney tissues were significantly up-regulated in 12 hpi and declined in 96 hpi MC-LR exposed fish. The relative mRNA expression of caspase 9 in the liver and kidney indicates mitochondrial-mediated apoptosis which was strongly supported by TEM study. In a nutshell, our study illustrates for the first time MC-LR induced toxicological implications in rohu displaying immunosuppression, enhanced oxidative stress, pathophysiology, modulation in mRNA transcription, genotoxicity, structural and ultrastructural alterations signifying it as a vulnerable species for MC-LR intoxication.
Collapse
|