651
|
Phillips-Portillo J, Strausfeld NJ. Representation of the brain's superior protocerebrum of the flesh fly, Neobellieria bullata, in the central body. J Comp Neurol 2012; 520:3070-87. [PMID: 22434505 PMCID: PMC4876858 DOI: 10.1002/cne.23094] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The central complex of the insect brain is a system of midline neuropils involved in transforming sensory information into behavioral outputs. Genetic studies focusing on nerve cells supplying the central complex from the protocerebrum propose that such neurons play key roles in circuits involved in learning the distinction of visual cues during operant conditioning. To better identify the possible sites of such circuits we used Bodian and anti-synapsin staining to resolve divisions of the superior protocerebrum into discrete neuropils. Here we show that in the fly Neobellieria bullata, the superior protocerebrum is composed of at least five clearly defined regions that correspond to those identified in Drosophila melanogaster. Intracellular dye fills and Golgi impregnations resolve "tangential neurons" that have intricate systems of branches in two of these regions. The branches are elaborate, decorated with specializations indicative of pre- and postsynaptic sites. The tangentially arranged terminals of these neurons extend across characteristic levels of the central complex's fan-shaped body. In this and another blowfly species, we identify an asymmetric pair of neuropils situated deep in the fan-shaped body, called the asymmetric bodies because of their likely homology with similar elements in Drosophila. One of the pair of bodies receives collaterals from symmetric arrangements of tangential neuron terminals. Cobalt injections reveal that the superior protocerebrum is richly supplied with local interneurons that are likely participants in microcircuitry associated with the distal processes of tangential neurons. Understanding the morphologies and arrangements of these and other neurons is essential for correctly interpreting functional attributes of the central complex.
Collapse
|
652
|
Goh KY, Ng NW, Hagen T, Inoue T. p21-activated kinase interacts with Wnt signaling to regulate tissue polarity and gene expression. Proc Natl Acad Sci U S A 2012; 109:15853-8. [PMID: 23019370 PMCID: PMC3465426 DOI: 10.1073/pnas.1120795109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wnt signaling is mediated by three classes of receptors, Frizzled, Ryk, and Ror. In Caenorhabditis elegans, Wnt signaling regulates the anterior/posterior polarity of the P7.p vulval lineage, and mutations in lin-17/Frizzled cause loss or reversal of P7.p lineage polarity. We found that pak-1/Pak (p21-activated kinase), along with putative activators of Pak, nck-1/Nck, and ced-10/Rac, regulates P7.p polarity. Mutations in these genes suppress the polarity defect of lin-17 mutants. Furthermore, mutations in pak-1, nck-1, and ced-10 cause constitutive dauer formation at 27 °C, a phenotype also observed in egl-20/Wnt and cam-1/Ror mutants. In HEK293T cells, Pak1 can antagonize canonical Wnt signaling. Moreover, overexpression of Ror2 leads to phosphorylation of Pak1. Together, these results indicate that Pak interacts with Wnt signaling to regulate tissue polarity and gene expression.
Collapse
|
653
|
Prediction of gap asymmetry in differential micro accelerometers. SENSORS 2012; 12:6857-68. [PMID: 22969325 PMCID: PMC3435955 DOI: 10.3390/s120606857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/13/2012] [Accepted: 05/22/2012] [Indexed: 11/16/2022]
Abstract
Gap asymmetry in differential capacitors is the primary source of the zero bias output of force-balanced micro accelerometers. It is also used to evaluate the applicability of differential structures in MEMS manufacturing. Therefore, determining the asymmetry level has considerable significance for the design of MEMS devices. This paper proposes an experimental-theoretical method for predicting gap asymmetry in differential sensing capacitors of micro accelerometers. The method involves three processes: first, bi-directional measurement, which can sharply reduce the influence of the feedback circuit on bias output, is proposed. Experiments are then carried out on a centrifuge to obtain the input and output data of an accelerometer. Second, the analytical input-output relationship of the accelerometer with gap asymmetry and circuit error is theoretically derived. Finally, the prediction methodology combines the measurement results and analytical derivation to identify the asymmetric error of 30 accelerometers fabricated by DRIE. Results indicate that the level of asymmetry induced by fabrication uncertainty is about ±5 × 10(-2), and that the absolute error is about ±0.2 μm under a 4 μm gap.
Collapse
|
654
|
Park JU, Kook YA, Kim Y. Assessment of asymmetry in a normal occlusion sample and asymmetric patients with three-dimensional cone beam computed tomography: a study for a transverse reference plane. Angle Orthod 2012; 82:860-867. [PMID: 22356706 PMCID: PMC8823123 DOI: 10.2319/102911-668.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 01/01/2012] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVE To characterize symmetrical features of patients with facial asymmetry and thus to find the most reliable horizontal reference lines easily used in three-dimensional images. The hypothesis was that there is a difference in the location of bilateral landmarks of the upper skull between the normal occlusion sample and skeletal Class III patients with asymmetry. MATERIALS AND METHODS Group 1 (normal occlusion sample) was composed of 20 Korean adults with normal occlusion and no noticeable asymmetry. Groups 2 through 4 were selected from patients who were diagnosed as skeletal Class III malocclusion and grouped according to the extent of asymmetry (group 2: symmetric mandible, no maxillary cant; group 3: asymmetric mandible, no maxillary cant; group 4: asymmetric mandible, more than 4 mm maxillary cant measured at maxillary first molars). Three-dimensional cone beam computed tomography images were taken before treatment, and bilateral landmarks of the skull were located and their vertical and horizontal differences compared. RESULTS No statistically significant difference was noted in the position of bilateral landmarks between groups, except for AG (P < .05). AG showed significant differences in vertical dimension (P < .001) and in horizontal dimension (P < .0001) between groups. The mean of the difference was clearly greatest at FM. CONCLUSIONS The hypothesis is rejected. All groups had a similar pattern of asymmetry in the upper third of the face. Therefore, the transverse reference line of the bilateral Z or orbitale may be used even in patients with severe asymmetry of the maxilla with reference to the clinical photos.
Collapse
|
655
|
Little AC, Paukner A, Woodward RA, Suomi SJ. FACIAL ASYMMETRY IS NEGATIVELY RELATED TO CONDITION IN FEMALE MACAQUE MONKEYS. Behav Ecol Sociobiol 2012; 66:1311-1318. [PMID: 23667290 PMCID: PMC3649767 DOI: 10.1007/s00265-012-1386-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The face is an important visual trait in social communication across many species. In evolutionary terms there are large and obvious selective advantages in detecting healthy partners, both in terms of avoiding individuals with poor health to minimise contagion and in mating with individuals with high health to help ensure healthy offspring. Many models of sexual selection suggest that an individual's phenotype provides cues to their quality. Fluctuating asymmetry is a trait that is proposed to be an honest indicator of quality and previous studies have demonstrated that rhesus monkeys gaze longer at symmetric faces, suggesting preferences for such faces. The current study examined the relationship between measured facial symmetry and measures of health in a captive population of female rhesus macaque monkeys. We measured asymmetry from landmarks marked on front-on facial photographs and computed measures of health based on veterinary health and condition ratings, number of minor and major wounds sustained, and gain in weight over the first four years of life. Analysis revealed that facial asymmetry was negatively related to condition related health measures, with symmetric individuals being healthier than more asymmetric individuals. Facial asymmetry appears to be an honest indicator of health in rhesus macaques and asymmetry may then be used by conspecifics in mate-choice situations. More broadly, our data support the notion that faces are valuable sources of information in non-human primates and that sexual selection based on facial information is potentially important across the primate lineage.
Collapse
|
656
|
Tomer R, Slagter HA, Christian BT, Fox AS, King CR, Murali D, Davidson RJ. Dopamine asymmetries predict orienting bias in healthy individuals. Cereb Cortex 2012; 23:2899-904. [PMID: 22941721 DOI: 10.1093/cercor/bhs277] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pseudoneglect is traditionally viewed as reflecting right hemisphere specialization for processing spatial information, resulting in orienting toward the contralateral, left, hemispace. Recent evidence suggests that healthy individuals differ from each other in both direction and magnitude of orienting bias, and moreover, the bias displayed by a person is consistent across time, suggesting that it may represent a trait of the individual. Animal studies reveal consistent orienting bias within an individual, which reflects asymmetry in dopaminergic brain systems. We measured basal D2-like receptor binding using positron emission tomography and the high-affinity ligand [F-18]fallypride, to test the hypothesis that asymmetry in dopaminergic neurotransmission in healthy humans modulates the orienting bias in humans. As predicted, we found that individual differences in the direction and magnitude of the orienting bias were strongly associated with the pattern of asymmetric binding of dopamine (DA) D2 receptors in the striatum, as well as clusters in the frontal and temporal cortex. These findings show for the first time that orienting bias reflects individual differences in the lateralization of DA systems in the healthy human brain.
Collapse
|
657
|
Angilletta MJ, Wilson RS. Cryptic asymmetry: unreliable signals mask asymmetric performance of crayfish weapons. Biol Lett 2012; 8:551-3. [PMID: 22417793 PMCID: PMC3391454 DOI: 10.1098/rsbl.2012.0029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/20/2012] [Indexed: 11/12/2022] Open
Abstract
Animals commonly use their limbs as signals and weapons during territorial aggression. Asymmetries of limb performance that do not relate to asymmetries of limb size (cryptic asymmetry) could substantially affect disputes, but this phenomenon has not been considered beyond primates. We investigated cryptic asymmetry in male crayfish (Cherax dispar), which commonly use unreliable signals of strength during aggression. Although the strength of a chela can vary by an order of magnitude for a given size, we found repeatable asymmetries of strength that were only weakly related to asymmetries of size. Size-adjusted strength of chelae and the asymmetry of strength between chelae were highly repeatable between environmental conditions, suggesting that asymmetries of strength stemmed from variation in capacity rather than motivation. Cryptic asymmetry adds another dimension of uncertainty during conflict between animals, which could influence the evolution of unreliable signals and morphological asymmetry.
Collapse
|
658
|
Betancur JG, Yoda M, Tomari Y. miRNA-like duplexes as RNAi triggers with improved specificity. Front Genet 2012; 3:127. [PMID: 22807929 PMCID: PMC3395129 DOI: 10.3389/fgene.2012.00127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/22/2012] [Indexed: 11/13/2022] Open
Abstract
siRNA duplexes, the most common triggers of RNA interference, are first loaded into an Argonaute (Ago) protein and then undergo unwinding via passenger strand cleavage, which requires the slicer activity of the Ago protein. In mammals, only Ago2 out of the four Ago proteins possesses such slicer activity. In contrast, miRNA/miRNA* duplexes often contain central mismatches that prevent slicer-dependent unwinding. Instead, mismatches in specific regions (seed and 3′-mid regions) promote efficient slicer-independent unwinding by any of the four mammalian Ago proteins. Both slicer-dependent and slicer-independent unwinding mechanisms produce guide-containing RNA-induced silencing complex (RISC), which silences target mRNAs by cleavage, translational repression, and/or deadenylation that leads to mRNA decay. In this review, we summarize our current knowledge of the RISC assembly pathways, and describe a simple method to rationally design artificial miRNA/miRNA*-like duplexes and highlight its benefits to reduce the unwanted “off-target” effects without compromising the specific target silencing activity.
Collapse
|
659
|
Abstract
One of the key components in sports injury prevention is the identification of imbalances in leg muscle strength. However, different leg muscle characteristics may occur in large playing area (field) sports and small playing area (court) sports, which should be considered in regular injury prevention assessment. This study examined the isokinetic hamstrings-to-quadriceps (H:Q) ratio and bilateral leg strength balance in 40 male college (age: 23.4 ± 2.5 yrs) team sport players (field sport = 23, soccer players; court sport = 17, volleyball and basketball players). Five repetitions of maximal knee concentric flexion and concentric extension were performed on an isokinetic dynamometer at two speeds (slow: 60°·s(-1) and fast: 300°·s(-1)) with 3 minutes rest between tests. Both legs were measured in counterbalanced order with the dominant leg being determined as the leg used to kick a ball. The highest concentric peak torque values (Nm) of the hamstrings and quadriceps of each leg were analyzed after body mass normalization (Nm·kg(-1)). Court sport players showed significantly weaker dominant leg hamstrings muscles at both contraction speeds (P < 0.05). The H:Q ratio was significantly larger in field players in their dominant leg at 60°·s(-1) (P < 0.001), and their non-dominant leg at 300°·s(-1) (P < 0.001) respectively. Sport-specific leg muscle strength was evident in college players from field and court sports. These results suggest the need for different muscle strength training and rehabilitation protocols for college players according to the musculature requirements in their respective sports.
Collapse
|
660
|
Szeszko PR, Narr KL, Phillips OR, McCormack J, Sevy S, Gunduz-Bruce H, Kane JM, Bilder RM, Robinson DG. Magnetic resonance imaging predictors of treatment response in first-episode schizophrenia. Schizophr Bull 2012; 38:569-78. [PMID: 21084552 PMCID: PMC3329996 DOI: 10.1093/schbul/sbq126] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Identifying neurobiological predictors of response to antipsychotics in patients with schizophrenia is a critical goal of translational psychiatry. Few studies, however, have investigated the relationship between indices of brain structure and treatment response in the context of a controlled clinical trial. In this study, we sought to identify magnetic resonance (MR) imaging measures of the brain that predict treatment response in patients experiencing a first-episode of schizophrenia. Structural MR imaging scans were acquired in 39 patients experiencing a first-episode of schizophrenia with minimal or no prior exposure to antipsychotics participating in a double-blind 16-week clinical trial comparing the efficacy of risperidone vs olanzapine. Twenty-five patients were classified as responders by meeting operationally defined treatment response criteria on 2 consecutive study visits. Fourteen patients never responded to antipsychotic medication at any point during the clinical trial. MR imaging scans were also acquired in 45 age- and sex-matched healthy volunteers. Cortical pattern matching methods were used to compare cortical thickness and asymmetry measures among groups. Statistical mapping results, confirmed by permutation testing, indicated that responders had greater cortical thickness in occipital regions and greater frontal cortical asymmetry compared with nonresponders. Moreover, among responders, greater thickness in temporal regions was associated with less time to respond. Our findings are consistent with the hypothesis that plasticity and cortical thickness may be more preserved in responders and that MR imaging may assist in the prediction of antipsychotic drug response in patients experiencing a first-episode of schizophrenia.
Collapse
|
661
|
Beretta CA, Dross N, Guiterrez-Triana JA, Ryu S, Carl M. Habenula circuit development: past, present, and future. Front Neurosci 2012; 6:51. [PMID: 22536170 PMCID: PMC3332237 DOI: 10.3389/fnins.2012.00051] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/27/2012] [Indexed: 12/23/2022] Open
Abstract
The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development, and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction, and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the dorsal diencephalic conduction system (DDC) with the habenulae in its center at the end of the nineteenth century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain, and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left–right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques, and others that are needed to fully understand habenular circuit development.
Collapse
|
662
|
Bonilha HS, Deliyski DD, Whiteside JP, Gerlach TT. Vocal fold phase asymmetries in patients with voice disorders: a study across visualization techniques. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2012; 21:3-15. [PMID: 22049403 PMCID: PMC7587608 DOI: 10.1044/1058-0360(2011/09-0086)] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
PURPOSE To examine differences in vocal fold vibratory phase asymmetry judged from stroboscopy, high-speed videoendoscopy (HSV), and the HSV-derived playbacks of mucosal wave kymography, digital kymography, and a static medial digital kymography image of persons with hypofunctional and hyperfunctional voice disorders. Differences between the methods of visual judgments and objective measures of left-right phase asymmetry were assessed. The findings were compared with those from a previous study with vocally normal speakers. METHOD Forty-nine persons with voice disorders underwent stroboscopy and HSV. The HSV images were processed, resulting in 4 different spatial or kymographic displays. Two types of phase asymmetries, left-right and anterior-posterior, were visually rated. Objective measures of left-right phase asymmetry were obtained. RESULTS From stroboscopy, the HSV playback, and the HSV-derived playbacks, left-right phase symmetry was judged to be symmetrical in 41%, 32%, and 19% of cases, respectively. This difference in playbacks was not seen for anterior-posterior asymmetry. Correlation between visual judgments and objective measures was mild for stroboscopy and moderate to high for all HSV-based playbacks. CONCLUSIONS The use of kymography appears important for judgments of phase asymmetry. Stroboscopy appears to be sensitive, but possibly not specific, to phase asymmetries. Further development of objective measures is warranted for this feature.
Collapse
|
663
|
Woolard AA, Heckers S. Anatomical and functional correlates of human hippocampal volume asymmetry. Psychiatry Res 2012; 201:48-53. [PMID: 22285719 PMCID: PMC3289761 DOI: 10.1016/j.pscychresns.2011.07.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/24/2011] [Accepted: 07/28/2011] [Indexed: 10/14/2022]
Abstract
Hemispheric asymmetry of the human hippocampus is well established, but poorly understood. We studied 110 healthy subjects with 3-Tesla MRI to explore the anatomical and functional correlates of the R>L volume asymmetry. We found that the asymmetry is limited to the anterior hippocampus (hemisphere×region interaction: F(1,109)=42.6, p<.001). Anterior hippocampal volume was correlated strongly with the volumes of all four cortical lobes. In contrast, posterior hippocampal volume was correlated strongly only with occipital lobe volume, moderately with the parietal and temporal lobe volumes and not with the frontal lobe volume. The degree of R>L anterior hippocampal volume asymmetry predicted performance on a measure of basic cognitive abilities. This provides evidence for regional specificity and functional implications of the well-known hemispheric asymmetry of hippocampal volume. We suggest that the developmental profile, genetic mechanisms and functional implications of R>L anterior hippocampal volume asymmetry in the human brain deserve further study.
Collapse
|
664
|
Kashima T, Akiyama H, Kishi S. Asymmetric severity of diabetic retinopathy in Waardenburg syndrome. Clin Ophthalmol 2011; 5:1717-20. [PMID: 22205830 PMCID: PMC3245192 DOI: 10.2147/opth.s27490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A 30-year-old female patient was referred to our institution due to vitreous hemorrhage. Best corrected visual acuity of her right and left eyes at her initial visit was 10/20 and 20/20, respectively. Although hypochromic iris was observed in the superior iris between the 10 and 2 o’clock positions in her right eye, her entire left eye exhibited hypochromic iris. Hypopigmentation of the fundus was seen in the superior part of her right eye. This eye also had a huge neovascularization on the optic disc that was 7 discs in diameter. Conversely, her left fundi showed hypopigmentation of the fundus in the entire region of the left eye, and dot hemorrhages were observed all over the left fundi, although no neovascularization could be seen microscopically. Fluorescein angiography showed a huge neovascularization in the right eye and a tiny neovascularization in the left eye. Gene analysis revealed the presence of the PAX3 gene homeobox domain mutation, which led to her being diagnosed as Waardenburg syndrome type 1. Magnetic resonance angiography showed there was no obstructive region at either of the internal carotid arteries and ophthalmic arteries. The severity of the diabetic retinopathy appeared to be correlated with the degree of hypopigmentation in the posterior fundus. We speculate that hypopigmentation of the fundus in Waardenburg syndrome may be responsible for the reduction in retinal metabolism, which led to a reduction in oxygen consumption and prevented further aggravation of the diabetic retinopathy. Only laser treatments using short wavelengths was effective in this case. While the extinction coefficient for hemoglobin when using green light is higher than when using yellow light, the differences between these wavelengths tend to disappear when oxygenated hemoglobin is present. To the best of the authors’ knowledge, this is the first case report of a patient with Waardenburg syndrome and diabetic retinopathy.
Collapse
|
665
|
Veli I, Uysal T, Ozer T, Ucar FI, Eruz M. Mandibular asymmetry in unilateral and bilateral posterior crossbite patients using cone-beam computed tomography. Angle Orthod 2011; 81:966-74. [PMID: 21591969 PMCID: PMC8903853 DOI: 10.2319/022011-122.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/01/2011] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE To test the hypotheses that (1) there is no difference in mandibular asymmetry between the crossbite and normal side in a unilateral crossbite group (UCG) and between the right and left sides in a bilateral crossbite group (BCG) and a control group (CG); and (2) there is no significant difference in mandibular asymmetry among crossbite groups and control group. MATERIALS AND METHODS The cone-beam computed tomography scans of three groups were studied: (1) 15 patients (6 male, 9 female; mean age: 13.51 ± 2.03 years) with unilateral posterior crossbite; (2) 15 patients (8 male, 7 female; mean age: 13.36 ± 2.12 years) with bilateral posterior crossbite; and (3) 15 patients (8 male, 7 female; mean age: 13.46 ± 1.53 years) as a control group. Fourteen parameters (eight linear, three surface, and three volumetric) were measured. Side comparisons were analyzed with paired samples t-test, and for the intergroup comparison, analysis of variance (ANOVA) and Tukey tests were used at the P < .05 level. RESULTS According to side comparisons, no statistically significant difference was found in the UCG. There were statistically significant differences in hemimandibular (P = .008) and ramal (P = .004) volumes for the BCG and in ramal height (P = .024) and body length (P = .021) for the CG. Intergroup comparisons revealed significant differences in hemimandibular (P = .002) and body volume (P < .001) for the normal side of the UCG and left sides of the other groups, and in angular unit length (P = .025) and condylar width (P = .007) for the crossbite side of the UCG and the right sides of the other groups. CONCLUSIONS Contrary to UCG, CG and BCG were found to have side-specific asymmetry. Skeletal components of the mandible have significant asymmetry among the crossbite groups and the CG.
Collapse
|
666
|
Bruce NDB, Tsotsos JK. Visual representation determines search difficulty: explaining visual search asymmetries. Front Comput Neurosci 2011; 5:33. [PMID: 21808617 PMCID: PMC3139212 DOI: 10.3389/fncom.2011.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/24/2011] [Indexed: 11/21/2022] Open
Abstract
In visual search experiments there exist a variety of experimental paradigms in which a symmetric set of experimental conditions yields asymmetric corresponding task performance. There are a variety of examples of this that currently lack a satisfactory explanation. In this paper, we demonstrate that distinct classes of asymmetries may be explained by virtue of a few simple conditions that are consistent with current thinking surrounding computational modeling of visual search and coding in the primate brain. This includes a detailed look at the role that stimulus familiarity plays in the determination of search performance. Overall, we demonstrate that all of these asymmetries have a common origin, namely, they are a consequence of the encoding that appears in the visual cortex. The analysis associated with these cases yields insight into the problem of visual search in general and predictions of novel search asymmetries.
Collapse
|
667
|
Woods DL, Herron TJ, Cate AD, Kang X, Yund EW. Phonological processing in human auditory cortical fields. Front Hum Neurosci 2011; 5:42. [PMID: 21541252 PMCID: PMC3082852 DOI: 10.3389/fnhum.2011.00042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/01/2011] [Indexed: 11/30/2022] Open
Abstract
We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features.
Collapse
|
668
|
Boyle KL. Managing a female patient with left low back pain and sacroiliac joint pain with therapeutic exercise: a case report. Physiother Can 2011; 63:154-63. [PMID: 22379254 PMCID: PMC3076916 DOI: 10.3138/ptc.2009-37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE The purpose of this case study is to describe the management of a female patient with chronic left low back pain and sacroiliac joint pain (LBP/SIJP) using unique unilateral exercises developed by the Postural Restoration Institute (PRI) to address pelvic asymmetry and left hip capsule restriction, which is consistent with a Right Handed and Left Anterior Interior Chain pattern of postural asymmetry.Client Description: The client was 65-year-old woman with a 10-month history of constant left LBP/SIJP and leg pain. INTERVENTION The patient was seen six times to correct pelvic position/posture and left hip posterior capsule restriction via (1) muscle activation (left hamstrings, adductor magnus, and anterior gluteus medius) and (2) left hip adduction to lengthen the left posterior capsule/ischiofemoral ligament. Stabilization exercises included bilateral hamstrings, gluteus maximus, adductors, and abdominals to maintain pelvic position/posture.Measures and Outcome: Left Ober's test (initially positive) was negative at discharge. Pain as measured on the Numeric Pain Rating Scale (initially 1/10 at best and 8/10 at worst) was 0/10-0/10 at discharge. Oswestry Disability Index score (initially 20%) was 0% at discharge. The patient no longer had numbness in her left leg, and sexual intercourse had become pain free. IMPLICATIONS INTERVENTIONs to restore and maintain the optimal position of pelvis and hip (femoral head in the acetabulum) may be beneficial for treating patients with chronic LBP/SIJP. The patient's pain was eliminated 13 days after she first performed three exercises to reposition the pelvis and restore left posterior hip capsule extensibility and internal rotation.
Collapse
|
669
|
Gibson LM, Celeste LR, Lovelace LL, Lebioda L. Structures of human thymidylate synthase R163K with dUMP, FdUMP and glutathione show asymmetric ligand binding. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:60-6. [PMID: 21206062 PMCID: PMC3016017 DOI: 10.1107/s0907444910044732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/01/2010] [Indexed: 11/10/2022]
Abstract
Thymidylate synthase (TS) is a well validated target in cancer chemotherapy. Here, a new crystal form of the R163K variant of human TS (hTS) with five subunits per asymmetric part of the unit cell, all with loop 181-197 in the active conformation, is reported. This form allows binding studies by soaking crystals in artificial mother liquors containing ligands that bind in the active site. Using this approach, crystal structures of hTS complexes with FdUMP and dUMP were obtained, indicating that this form should facilitate high-throughput analysis of hTS complexes with drug candidates. Crystal soaking experiments using oxidized glutathione revealed that hTS binds this ligand. Interestingly, the two types of binding observed are both asymmetric. In one subunit of the physiological dimer covalent modification of the catalytic nucleophile Cys195 takes place, while in another dimer a noncovalent adduct with reduced glutathione is formed in one of the active sites.
Collapse
|
670
|
Boscá S, Knauer S, Laux T. Embryonic development in Arabidopsis thaliana: from the zygote division to the shoot meristem. FRONTIERS IN PLANT SCIENCE 2011; 2:93. [PMID: 22639618 PMCID: PMC3355580 DOI: 10.3389/fpls.2011.00093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/20/2011] [Indexed: 05/19/2023]
Abstract
Postembryonic organ formation of plants is fueled with cells from the stem cell niches in the shoot and root meristems. During the last two decades many players that regulate stem cell maintenance have been identified. With these factors in hand, the mechanisms establishing stem cell niches during embryo development can be addressed. Here we discuss current models of how the shoot meristem stem cell niche arises during Arabidopsis embryo pattern formation.
Collapse
|
671
|
The what and why of perceptual asymmetries in the visual domain. Adv Cogn Psychol 2010; 6:103-15. [PMID: 21228922 PMCID: PMC3019986 DOI: 10.2478/v10053-008-0080-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 06/19/2010] [Indexed: 11/20/2022] Open
Abstract
Perceptual asymmetry is one of the most important characteristics of our visual
functioning. We carefully reviewed the scientific literature in order to examine
such asymmetries, separating them into two major categories: within-visual field
asymmetries and between-visual field asymmetries. We explain these asymmetries
in terms of perceptual aspects or tasks, the what of the
asymmetries; and in terms of underlying mechanisms, the why of
the asymmetries. Tthe within-visual field asymmetries are fundamental to
orientation, motion direction, and spatial frequency processing. between-visual
field asymmetries have been reported for a wide range of perceptual phenomena.
foveal dominance over the periphery, in particular, has been prominent for
visual acuity, contrast sensitivity, and colour discrimination. Tthis also holds
true for object or face recognition and reading performance. upper-lower visual
field asymmetries in favour of the lower have been demonstrated for temporal and
contrast sensitivities, visual acuity, spatial resolution, orientation, hue and
motion processing. Iin contrast, the upper field advantages have been seen in
visual search, apparent size, and object recognition tasks. left-right visual
field asymmetries include the left field dominance in spatial (e.g.,
orientation) processing and the right field dominance in non-spatial (e.g.,
temporal) processing. left field is also better at low spatial frequency or
global and coordinate spatial processing, whereas the right field is better at
high spatial frequency or local and categorical spatial processing. All these
asymmetries have inborn neural/physiological origins, the primary
why, but can be also susceptible to visual experience, the
critical why (promotes or blocks the asymmetries by
altering neural functions).
Collapse
|
672
|
Seeley MK, Umberger BR, Clasey JL, Shapiro R. The relation between mild leg-length inequality and able-bodied gait asymmetry. J Sports Sci Med 2010; 9:572-9. [PMID: 24149783 PMCID: PMC3761822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 08/17/2010] [Indexed: 06/02/2023]
Abstract
The causes of able-bodied gait asymmetries are unclear. Mild (< 3 cm) leg-length inequality (LLI) may be one cause of these asymmetries; however, this idea has not been thoroughly investigated. The purpose of this study was to investigate the nature of the relationship between LLI and able-bodied gait asymmetries. We hypothesized that subjects (n = 26) with relatively large LLI, quantified radiographically, would display less symmetrical gait than subjects with relatively small LLI. Gait asymmetries for joint kinematics and joint kinetics were determined using standard gait analysis procedures. Symmetry coefficients were used to quantify bilateral gait symmetry for sagittal-plane hip, knee, and ankle joint angles, moments, and powers. A Pearson product-moment correlation coefficient (r) was used to evaluate the relationship between LLI and the aforementioned symmetry coefficients. Also, these symmetry coefficients were compared between subjects with relatively small LLI (LLI < 1 cm; n = 19) and relatively large LLI (LLI ≥ 1 cm; n = 7). Statistically significant relationships were observed between LLI and the symmetry coefficient for knee joint moment (r = -0.48) and power (r = -0.51), and ankle joint moment (r = -0.41) and power (r = -0.42). Similarly, subjects with relatively large LLI exhibited significantly lower symmetry coefficients for knee joint moment (p = 0.40) and power (p = 0.35), and ankle joint moment (p = 0.40) and power (p = 0.22) than subjects with relatively small LLI. Degree of bilateral symmetry for knee and ankle joint kinetics appears to be related to LLI in able- bodied gait. This finding supports the idea that LLI is one cause of able-bodied gait asymmetries. Other factors, however, are also likely to contribute to these gait asymmetries; these may include other morphological asymmetries as well as asymmetrical neuromuscular input to the lower limb muscles. Key pointsModerate negative relationships were observed between mild limb-length inequality and gait symmetry for knee and ankle moment and power.Subjects with relatively large mild limb-length inequality (between 1.0 and 2.3 cm) exhibited significantly less symmetrical gait for knee and ankle joint moment and power than subjects with relatively small mild limb-length inequality (< 1 cm).These results indicate that the degree of symmetry for knee and ankle joint kinetics appears to be related to mild limb-length inequality in able-bodied gait.These results further our understanding of normal human walking and provide important background information for future studies on gait pathology associated with mild limb-length inequality.
Collapse
|
673
|
Trilisky EI, Lenhoff AM. Effect of bioparticle size on dispersion and retention in monolithic and perfusive beds. J Chromatogr A 2010; 1217:7372-84. [PMID: 20951383 PMCID: PMC2978737 DOI: 10.1016/j.chroma.2010.09.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 09/06/2010] [Accepted: 09/10/2010] [Indexed: 11/15/2022]
Abstract
Single-component pulse response studies were used to compare the retention and transport behavior of small molecules, proteins, and a virus on commercially available monolithic and perfusive ion-exchangers. Temporal distortion and extra-column effects were corrected for using a simple algorithm based on the method of moments. It was found that temporal distortion is inversely related to the number of theoretical plates. With increasing bioparticle size, retention increased and the transition from a non-eluting to a non-adsorbing state with increasing ionic strength became more abrupt. Both of these observations are qualitatively explained by calculations of particle-surface electrostatic attractive energy. Calculations also suggest that, for sufficiently large bioparticles, such as viruses or cells, hydrodynamic drag can promote elution. Under non-adsorbing conditions, plate height increased only weakly with flow rate and the skew remained unchanged. With increasing retention, plate height increased dramatically for proteins. Plate height was scaled by permeability rather than bead diameter to enable comparison among different stationary phases.
Collapse
|
674
|
Abstract
Two psychophysical experiments were conducted at the horizontal and vertical
orientations respectively, demonstrating substantial main effect of
configuration, but no effect of offset direction on vernier acuity. In
Experiment 1, a pair of horizontal bars were arranged side by side with a large
gap between them. The observers were, on average, significantly better at
discriminating a vertical offset if the right-hand bar was below the left-hand
bar than vice versa, regardless of which bar they experienced as displaced and
which as constant. A similar asymmetry was evident in Experiment 2 where
observers judged horizontal offset for a pair of vertically oriented bars, where
one was placed above the other. In this case average performance was better if
the upper bar was on the right of the lower bar rather than on its left. There
were large individual variations in the asymmetrical trend, but the effect could
not be explained by subjective response bias. Furthermore, vernier acuity
improved significantly and the asymmetry decreased more or less as a function of
training. The average asymmetrical trend was consistent across training days and
across two orientations, which indicates that the processing of line vernier
stimuli is possibly configuration-specific in the cardinal orientation.
Collapse
|
675
|
Hale TS, Smalley SL, Dang J, Hanada G, Macion J, McCracken JT, McGough JJ, Loo SK. ADHD familial loading and abnormal EEG alpha asymmetry in children with ADHD. J Psychiatr Res 2010; 44:605-15. [PMID: 20006344 PMCID: PMC2878884 DOI: 10.1016/j.jpsychires.2009.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Abnormal brain laterality (ABL) is indicated in ADHD. ADHD and brain laterality are heritable. Genetic factors contributing to lateralization of brain function may contribute to ADHD. If so, increased ADHD family loading should be associated with greater ABL. Previous studies have shown increased rightward alpha asymmetry in ADHD. We tested whether this was more pronounced in ADHD children with increased ADHD family loading. METHODS We compared EEG alpha asymmetry at rest and during the Conner's Continuous Performance Test (CPT) in ADHD children with and without ADHD affected parents, and replicated our findings in a second larger sample. The replication study additionally stratified the parent-affected sample by parental persistent versus non-persistent ADHD status, increased spatial resolution of EEG measures, and assessed low versus high-alpha. RESULTS Study-1: the parent-affected group showed increased rightward asymmetry across frontal and central regions and reduced rightward parietal asymmetry during an eyes closed (EC) condition, as well as increasing rightward parietal asymmetry with advancing age during the CPT. Study-2 replicated these findings and further delineated influences of low versus high-alpha, recording site, and effects of parental persistent versus non-persistent ADHD status. CONCLUSION Increased ADHD familial loading was associated with increased rightward frontal asymmetry. In contrast, increased rightward parietal asymmetry was associated with reduced ADHD family loading. Frontal results are consistent with an ADHD endophenotype. Parietal results suggest an ADHD adaptive trait prevalent with less ADHD family loading. Age effects indicate a unique developmental course among ADHD children whose parents have non-persistent ADHD.
Collapse
|