1
|
Abstract
OBJECTIVE The initial hypothesis that schizophrenia is a manifestation of hyperdopaminergia has recently been faulted. However, several new findings suggest that abnormal, although not necessarily excessive, dopamine activity is an important factor in schizophrenia. The authors discuss these findings and their implications. METHOD All published studies regarding dopamine and schizophrenia and all studies on the role of dopamine in cognition were reviewed. Attention has focused on post-mortem studies, positron emission tomography, neuroleptic drug actions, plasma levels of the dopamine metabolite homovanillic acid (HVA), and cerebral blood flow. RESULTS Evidence, particularly from intracellular recording studies in animals and plasma HVA measurements, suggests that neuroleptics act by reducing dopamine activity in mesolimbic dopamine neurons. Post-mortem studies have shown high dopamine and HVA concentrations in various subcortical brain regions and greater than normal dopamine receptor densities in the brains of schizophrenic patients. On the other hand, the negative/deficit symptom complex of schizophrenia may be associated with low dopamine activity in the prefrontal cortex. Recent animal and human studies suggest that prefrontal dopamine neurons inhibit subcortical dopamine activity. The authors hypothesize that schizophrenia is characterized by abnormally low prefrontal dopamine activity (causing deficit symptoms) leading to excessive dopamine activity in mesolimbic dopamine neurons (causing positive symptoms). CONCLUSIONS The possible co-occurrence of high and low dopamine activity in schizophrenia has implications for the conceptualization of dopamine's role in schizophrenia. It would explain the concurrent presence of negative and positive symptoms. This hypothesis is testable and has important implications for treatment of schizophrenia and schizophrenia spectrum disorders.
Collapse
|
Review |
34 |
1213 |
2
|
Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kähler AK, Akterin S, Bergen SE, Collins AL, Crowley JJ, Fromer M, Kim Y, Lee SH, Magnusson PKE, Sanchez N, Stahl EA, Williams S, Wray NR, Xia K, Bettella F, Borglum AD, Bulik-Sullivan BK, Cormican P, Craddock N, de Leeuw C, Durmishi N, Gill M, Golimbet V, Hamshere ML, Holmans P, Hougaard DM, Kendler KS, Lin K, Morris DW, Mors O, Mortensen PB, Neale BM, O'Neill FA, Owen MJ, Milovancevic MP, Posthuma D, Powell J, Richards AL, Riley BP, Ruderfer D, Rujescu D, Sigurdsson E, Silagadze T, Smit AB, Stefansson H, Steinberg S, Suvisaari J, Tosato S, Verhage M, Walters JT, Levinson DF, Gejman PV, Kendler KS, Laurent C, Mowry BJ, O'Donovan MC, Owen MJ, Pulver AE, Riley BP, Schwab SG, Wildenauer DB, Dudbridge F, Holmans P, Shi J, Albus M, Alexander M, Campion D, Cohen D, Dikeos D, Duan J, Eichhammer P, Godard S, Hansen M, Lerer FB, Liang KY, Maier W, Mallet J, Nertney DA, Nestadt G, Norton N, O'Neill FA, Papadimitriou GN, Ribble R, Sanders AR, Silverman JM, Walsh D, Williams NM, Wormley B, Arranz MJ, Bakker S, Bender S, Bramon E, Collier D, Crespo-Facorro B, Hall J, Iyegbe C, Jablensky A, Kahn RS, Kalaydjieva L, Lawrie S, Lewis CM, Lin K, Linszen DH, Mata I, McIntosh A, Murray RM, Ophoff RA, Powell J, Rujescu D, Van Os J, Walshe M, Weisbrod M, Wiersma D, Donnelly P, Barroso I, Blackwell JM, Bramon E, Brown MA, Casas JP, Corvin AP, Deloukas P, Duncanson A, Jankowski J, Markus HS, Mathew CG, Palmer CNA, Plomin R, Rautanen A, Sawcer SJ, Trembath RC, Viswanathan AC, Wood NW, Spencer CCA, Band G, Bellenguez C, Freeman C, Hellenthal G, Giannoulatou E, Pirinen M, Pearson RD, Strange A, Su Z, Vukcevic D, Donnelly P, Langford C, Hunt SE, Edkins S, Gwilliam R, Blackburn H, Bumpstead SJ, Dronov S, Gillman M, Gray E, Hammond N, Jayakumar A, McCann OT, Liddle J, Potter SC, Ravindrarajah R, Ricketts M, Tashakkori-Ghanbaria A, Waller MJ, Weston P, Widaa S, Whittaker P, Barroso I, Deloukas P, Mathew CG, Blackwell JM, Brown MA, Corvin AP, McCarthy MI, Spencer CCA, Bramon E, Corvin AP, O'Donovan MC, Stefansson K, Scolnick E, Purcell S, McCarroll SA, Sklar P, Hultman CM, Sullivan PF. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45:1150-9. [PMID: 23974872 PMCID: PMC3827979 DOI: 10.1038/ng.2742] [Citation(s) in RCA: 1173] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 08/01/2013] [Indexed: 12/11/2022]
Abstract
Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with previous schizophrenia GWAS (8,832 cases and 12,067 controls) and finally by replication of SNPs in 168 genomic regions in independent samples (7,413 cases, 19,762 controls and 581 parent-offspring trios). We identified 22 loci associated at genome-wide significance; 13 of these are new, and 1 was previously implicated in bipolar disorder. Examination of candidate genes at these loci suggests the involvement of neuronal calcium signaling. We estimate that 8,300 independent, mostly common SNPs (95% credible interval of 6,300-10,200 SNPs) contribute to risk for schizophrenia and that these collectively account for at least 32% of the variance in liability. Common genetic variation has an important role in the etiology of schizophrenia, and larger studies will allow more detailed understanding of this disorder.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
1173 |
3
|
Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, Adler S, Alexopoulos GS, Anagnostou E, Areces-Gonzalez A, Astle DE, Auyeung B, Ayub M, Bae J, Ball G, Baron-Cohen S, Beare R, Bedford SA, Benegal V, Beyer F, Blangero J, Blesa Cábez M, Boardman JP, Borzage M, Bosch-Bayard JF, Bourke N, Calhoun VD, Chakravarty MM, Chen C, Chertavian C, Chetelat G, Chong YS, Cole JH, Corvin A, Costantino M, Courchesne E, Crivello F, Cropley VL, Crosbie J, Crossley N, Delarue M, Delorme R, Desrivieres S, Devenyi GA, Di Biase MA, Dolan R, Donald KA, Donohoe G, Dunlop K, Edwards AD, Elison JT, Ellis CT, Elman JA, Eyler L, Fair DA, Feczko E, Fletcher PC, Fonagy P, Franz CE, Galan-Garcia L, Gholipour A, Giedd J, Gilmore JH, Glahn DC, Goodyer IM, Grant PE, Groenewold NA, Gunning FM, Gur RE, Gur RC, Hammill CF, Hansson O, Hedden T, Heinz A, Henson RN, Heuer K, Hoare J, Holla B, Holmes AJ, Holt R, Huang H, Im K, Ipser J, Jack CR, Jackowski AP, Jia T, Johnson KA, Jones PB, Jones DT, Kahn RS, Karlsson H, Karlsson L, Kawashima R, Kelley EA, Kern S, Kim KW, Kitzbichler MG, Kremen WS, Lalonde F, Landeau B, Lee S, Lerch J, Lewis JD, Li J, Liao W, Liston C, Lombardo MV, Lv J, Lynch C, Mallard TT, Marcelis M, Markello RD, Mathias SR, Mazoyer B, McGuire P, Meaney MJ, Mechelli A, Medic N, Misic B, Morgan SE, Mothersill D, Nigg J, Ong MQW, Ortinau C, Ossenkoppele R, Ouyang M, Palaniyappan L, Paly L, Pan PM, Pantelis C, Park MM, Paus T, Pausova Z, Paz-Linares D, Pichet Binette A, Pierce K, Qian X, Qiu J, Qiu A, Raznahan A, Rittman T, Rodrigue A, Rollins CK, Romero-Garcia R, Ronan L, Rosenberg MD, Rowitch DH, Salum GA, Satterthwaite TD, Schaare HL, Schachar RJ, Schultz AP, Schumann G, Schöll M, Sharp D, Shinohara RT, Skoog I, Smyser CD, Sperling RA, Stein DJ, Stolicyn A, Suckling J, Sullivan G, Taki Y, Thyreau B, Toro R, Traut N, Tsvetanov KA, Turk-Browne NB, Tuulari JJ, Tzourio C, Vachon-Presseau É, Valdes-Sosa MJ, Valdes-Sosa PA, Valk SL, van Amelsvoort T, Vandekar SN, Vasung L, Victoria LW, Villeneuve S, Villringer A, Vértes PE, Wagstyl K, Wang YS, Warfield SK, Warrier V, Westman E, Westwater ML, Whalley HC, Witte AV, Yang N, Yeo B, Yun H, Zalesky A, Zar HJ, Zettergren A, Zhou JH, Ziauddeen H, Zugman A, Zuo XN, Bullmore ET, Alexander-Bloch AF. Brain charts for the human lifespan. Nature 2022; 604:525-533. [PMID: 35388223 PMCID: PMC9021021 DOI: 10.1038/s41586-022-04554-y] [Citation(s) in RCA: 713] [Impact Index Per Article: 237.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/16/2022] [Indexed: 02/02/2023]
Abstract
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data ( http://www.brainchart.io/ ). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
713 |
4
|
van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, Agartz I, Westlye LT, Haukvik UK, Dale AM, Melle I, Hartberg CB, Gruber O, Kraemer B, Zilles D, Donohoe G, Kelly S, McDonald C, Morris DW, Cannon DM, Corvin A, Machielsen MWJ, Koenders L, de Haan L, Veltman DJ, Satterthwaite TD, Wolf DH, Gur RC, Gur RE, Potkin SG, Mathalon DH, Mueller BA, Preda A, Macciardi F, Ehrlich S, Walton E, Hass J, Calhoun VD, Bockholt HJ, Sponheim SR, Shoemaker JM, van Haren NEM, Pol HEH, Ophoff RA, Kahn RS, Roiz-Santiañez R, Crespo-Facorro B, Wang L, Alpert KI, Jönsson EG, Dimitrova R, Bois C, Whalley HC, McIntosh AM, Lawrie SM, Hashimoto R, Thompson PM, Turner JA. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 2016; 21:547-53. [PMID: 26033243 PMCID: PMC4668237 DOI: 10.1038/mp.2015.63] [Citation(s) in RCA: 663] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 12/17/2022]
Abstract
The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen's d=-0.46), amygdala (d=-0.31), thalamus (d=-0.31), accumbens (d=-0.25) and intracranial volumes (d=-0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness.
Collapse
|
research-article |
9 |
663 |
5
|
Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS, Keefe RSE, Green AI, Gur RE, McEvoy J, Perkins D, Hamer RM, Gu H, Tohen M. Antipsychotic drug effects on brain morphology in first-episode psychosis. ACTA ACUST UNITED AC 2005; 62:361-70. [PMID: 15809403 DOI: 10.1001/archpsyc.62.4.361] [Citation(s) in RCA: 547] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Pathomorphologic brain changes occurring as early as first-episode schizophrenia have been extensively described. Longitudinal studies have demonstrated that these changes may be progressive and associated with clinical outcome. This raises the possibility that antipsychotics might alter such pathomorphologic progression in early-stage schizophrenia. OBJECTIVE To test a priori hypotheses that olanzapine-treated patients have less change over time in whole brain gray matter volumes and lateral ventricle volumes than haloperidol-treated patients and that gray matter and lateral ventricle volume changes are associated with changes in psychopathology and neurocognition. DESIGN Longitudinal, randomized, controlled, multisite, double-blind study. Patients treated and followed up for up to 104 weeks. Neurocognitive and magnetic resonance imaging (MRI) assessments performed at weeks 0 (baseline), 12, 24, 52, and 104. Mixed-models analyses with time-dependent covariates evaluated treatment effects on MRI end points and explored relationships between MRI, psychopathologic, and neurocognitive outcomes. SETTING Fourteen academic medical centers (United States, 11; Canada, 1; Netherlands, 1; England, 1). PARTICIPANTS Patients with first-episode psychosis (DSM-IV) and healthy volunteers. INTERVENTIONS Random allocation to a conventional antipsychotic, haloperidol (2-20 mg/d), or an atypical antipsychotic, olanzapine (5-20 mg/d). MAIN OUTCOME MEASURES Brain volume changes assessed by MRI. RESULTS Of 263 randomized patients, 161 had baseline and at least 1 postbaseline MRI evaluation. Haloperidol-treated patients exhibited significant decreases in gray matter volume, whereas olanzapine-treated patients did not. A matched sample of healthy volunteers (n = 58) examined contemporaneously showed no change in gray matter volume. CONCLUSIONS Patients with first-episode psychosis exhibited a significant between-treatment difference in MRI volume changes. Haloperidol was associated with significant reductions in gray matter volume, whereas olanzapine was not. Post hoc analyses suggested that treatment effects on brain volume and psychopathology of schizophrenia may be associated. The differential treatment effects on brain morphology could be due to haloperidol-associated toxicity or greater therapeutic effects of olanzapine.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
547 |
6
|
Kelly S, Jahanshad N, Zalesky A, Kochunov P, Agartz I, Alloza C, Andreassen OA, Arango C, Banaj N, Bouix S, Bousman CA, Brouwer RM, Bruggemann J, Bustillo J, Cahn W, Calhoun V, Cannon D, Carr V, Catts S, Chen J, Chen JX, Chen X, Chiapponi C, Cho KK, Ciullo V, Corvin AS, Crespo-Facorro B, Cropley V, De Rossi P, Diaz-Caneja CM, Dickie EW, Ehrlich S, Fan FM, Faskowitz J, Fatouros-Bergman H, Flyckt L, Ford JM, Fouche JP, Fukunaga M, Gill M, Glahn DC, Gollub R, Goudzwaard ED, Guo H, Gur RE, Gur RC, Gurholt TP, Hashimoto R, Hatton SN, Henskens FA, Hibar DP, Hickie IB, Hong LE, Horacek J, Howells FM, Hulshoff Pol HE, Hyde CL, Isaev D, Jablensky A, Jansen PR, Janssen J, Jönsson EG, Jung LA, Kahn RS, Kikinis Z, Liu K, Klauser P, Knöchel C, Kubicki M, Lagopoulos J, Langen C, Lawrie S, Lenroot RK, Lim KO, Lopez-Jaramillo C, Lyall A, Magnotta V, Mandl RCW, Mathalon DH, McCarley RW, McCarthy-Jones S, McDonald C, McEwen S, McIntosh A, Melicher T, Mesholam-Gately RI, Michie PT, Mowry B, Mueller BA, Newell DT, O'Donnell P, Oertel-Knöchel V, Oestreich L, Paciga SA, Pantelis C, Pasternak O, Pearlson G, Pellicano GR, Pereira A, Pineda Zapata J, Piras F, Potkin SG, Preda A, Rasser PE, Roalf DR, Roiz R, Roos A, Rotenberg D, Satterthwaite TD, Savadjiev P, Schall U, Scott RJ, Seal ML, Seidman LJ, Shannon Weickert C, Whelan CD, Shenton ME, Kwon JS, Spalletta G, Spaniel F, Sprooten E, Stäblein M, Stein DJ, Sundram S, Tan Y, Tan S, Tang S, Temmingh HS, Westlye LT, Tønnesen S, Tordesillas-Gutierrez D, Doan NT, Vaidya J, van Haren NEM, Vargas CD, Vecchio D, Velakoulis D, Voineskos A, Voyvodic JQ, Wang Z, Wan P, Wei D, Weickert TW, Whalley H, White T, Whitford TJ, Wojcik JD, Xiang H, Xie Z, Yamamori H, Yang F, Yao N, Zhang G, Zhao J, van Erp TGM, Turner J, Thompson PM, Donohoe G. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA Schizophrenia DTI Working Group. Mol Psychiatry 2018; 23:1261-1269. [PMID: 29038599 PMCID: PMC5984078 DOI: 10.1038/mp.2017.170] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/02/2017] [Accepted: 06/07/2017] [Indexed: 12/15/2022]
Abstract
The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.
Collapse
|
research-article |
7 |
479 |
7
|
Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, Versace A, Bilderbeck AC, Uhlmann A, Mwangi B, Krämer B, Overs B, Hartberg CB, Abé C, Dima D, Grotegerd D, Sprooten E, Bøen E, Jimenez E, Howells FM, Delvecchio G, Temmingh H, Starke J, Almeida JRC, Goikolea JM, Houenou J, Beard LM, Rauer L, Abramovic L, Bonnin M, Ponteduro MF, Keil M, Rive MM, Yao N, Yalin N, Najt P, Rosa PG, Redlich R, Trost S, Hagenaars S, Fears SC, Alonso-Lana S, van Erp TGM, Nickson T, Chaim-Avancini TM, Meier TB, Elvsåshagen T, Haukvik UK, Lee WH, Schene AH, Lloyd AJ, Young AH, Nugent A, Dale AM, Pfennig A, McIntosh AM, Lafer B, Baune BT, Ekman CJ, Zarate CA, Bearden CE, Henry C, Simhandl C, McDonald C, Bourne C, Stein DJ, Wolf DH, Cannon DM, Glahn DC, Veltman DJ, Pomarol-Clotet E, Vieta E, Canales-Rodriguez EJ, Nery FG, Duran FLS, Busatto GF, Roberts G, Pearlson GD, Goodwin GM, Kugel H, Whalley HC, Ruhe HG, Soares JC, Fullerton JM, Rybakowski JK, Savitz J, Chaim KT, Fatjó-Vilas M, Soeiro-de-Souza MG, Boks MP, Zanetti MV, Otaduy MCG, Schaufelberger MS, Alda M, Ingvar M, Phillips ML, Kempton MJ, Bauer M, Landén M, Lawrence NS, van Haren NEM, Horn NR, Freimer NB, Gruber O, Schofield PR, Mitchell PB, Kahn RS, Lenroot R, Machado-Vieira R, Ophoff RA, Sarró S, Frangou S, Satterthwaite TD, Hajek T, Dannlowski U, Malt UF, Arolt V, Gattaz WF, Drevets WC, Caseras X, Agartz I, Thompson PM, Andreassen OA. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry 2018; 23:932-942. [PMID: 28461699 PMCID: PMC5668195 DOI: 10.1038/mp.2017.73] [Citation(s) in RCA: 475] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Despite decades of research, the pathophysiology of bipolar disorder (BD) is still not well understood. Structural brain differences have been associated with BD, but results from neuroimaging studies have been inconsistent. To address this, we performed the largest study to date of cortical gray matter thickness and surface area measures from brain magnetic resonance imaging scans of 6503 individuals including 1837 unrelated adults with BD and 2582 unrelated healthy controls for group differences while also examining the effects of commonly prescribed medications, age of illness onset, history of psychosis, mood state, age and sex differences on cortical regions. In BD, cortical gray matter was thinner in frontal, temporal and parietal regions of both brain hemispheres. BD had the strongest effects on left pars opercularis (Cohen's d=-0.293; P=1.71 × 10-21), left fusiform gyrus (d=-0.288; P=8.25 × 10-21) and left rostral middle frontal cortex (d=-0.276; P=2.99 × 10-19). Longer duration of illness (after accounting for age at the time of scanning) was associated with reduced cortical thickness in frontal, medial parietal and occipital regions. We found that several commonly prescribed medications, including lithium, antiepileptic and antipsychotic treatment showed significant associations with cortical thickness and surface area, even after accounting for patients who received multiple medications. We found evidence of reduced cortical surface area associated with a history of psychosis but no associations with mood state at the time of scanning. Our analysis revealed previously undetected associations and provides an extensive analysis of potential confounding variables in neuroimaging studies of BD.
Collapse
|
research-article |
7 |
475 |
8
|
Hibar DP, Westlye LT, van Erp TGM, Rasmussen J, Leonardo CD, Faskowitz J, Haukvik UK, Hartberg CB, Doan NT, Agartz I, Dale AM, Gruber O, Krämer B, Trost S, Liberg B, Abé C, Ekman CJ, Ingvar M, Landén M, Fears SC, Freimer NB, Bearden CE, Sprooten E, Glahn DC, Pearlson GD, Emsell L, Kenney J, Scanlon C, McDonald C, Cannon DM, Almeida J, Versace A, Caseras X, Lawrence NS, Phillips ML, Dima D, Delvecchio G, Frangou S, Satterthwaite TD, Wolf D, Houenou J, Henry C, Malt UF, Bøen E, Elvsåshagen T, Young AH, Lloyd AJ, Goodwin GM, Mackay CE, Bourne C, Bilderbeck A, Abramovic L, Boks MP, van Haren NEM, Ophoff RA, Kahn RS, Bauer M, Pfennig A, Alda M, Hajek T, Mwangi B, Soares JC, Nickson T, Dimitrova R, Sussmann JE, Hagenaars S, Whalley HC, McIntosh AM, Thompson PM, Andreassen OA. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry 2016; 21:1710-1716. [PMID: 26857596 PMCID: PMC5116479 DOI: 10.1038/mp.2015.227] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 11/29/2022]
Abstract
Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case-control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen's d=-0.232; P=3.50 × 10-7) and thalamus (d=-0.148; P=4.27 × 10-3) and enlarged lateral ventricles (d=-0.260; P=3.93 × 10-5) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
331 |
9
|
Abstract
OBJECTIVE Memory impairment is well documented in schizophrenia. Less is known, however, about the exact magnitude, pattern, and extent of the impairment. The effect of potential moderator variables, such as medication status and duration of illness, is also unclear. In this article, the authors presented meta-analyses of the published literature on recall and recognition memory performance between patients with schizophrenia and normal comparison subjects. METHOD Meta-analyses were conducted on 70 studies that reported measures of long-term memory (free recall, cued recall, and recognition of verbal and nonverbal material) and short-term memory (digit span). Tests of categorical models were used in analyses of potential moderators (clinical variables and study characteristics). RESULTS The findings revealed a significant and stable association between schizophrenia and memory impairment. The composite effect size for recall performance was large. Recognition showed less, but still significant, impairment. The magnitude of memory impairment was not affected by age, medication, duration of illness, patient status, severity of psychopathology, or positive symptoms. Negative symptoms showed a small but significant relation with memory impairment. CONCLUSIONS This meta-analysis documented significant memory impairment in schizophrenia. The impairment was stable, wide ranging, and not substantially affected by potential moderating factors such as severity of psychopathology and duration of illness.
Collapse
|
Comparative Study |
26 |
324 |
10
|
van Kesteren CFMG, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG, Kahn RS, Sommer IEC. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry 2017; 7:e1075. [PMID: 28350400 PMCID: PMC5404615 DOI: 10.1038/tp.2017.4] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/06/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Although the precise pathogenesis of schizophrenia is unknown, genetic, biomarker and imaging studies suggest involvement of the immune system. In this study, we performed a systematic review and meta-analysis of studies investigating factors related to the immune system in postmortem brains of schizophrenia patients and healthy controls. Forty-one studies were included, reporting on 783 patients and 762 controls. We divided these studies into those investigating histological alterations of cellular composition and those assessing molecular parameters; meta-analyses were performed on both categories. Our pooled estimate on cellular level showed a significant increase in the density of microglia (P=0.0028) in the brains of schizophrenia patients compared with controls, albeit with substantial heterogeneity between studies. Meta-regression on brain regions demonstrated this increase was most consistently observed in the temporal cortex. Densities of macroglia (astrocytes and oligodendrocytes) did not differ significantly between schizophrenia patients and healthy controls. The results of postmortem histology are paralleled on the molecular level, where we observed an overall increase in expression of proinflammatory genes on transcript and protein level (P=0.0052) in patients, while anti-inflammatory gene expression levels were not different between schizophrenia and controls. The results of this meta-analysis strengthen the hypothesis that components of the immune system are involved in the pathogenesis of schizophrenia.
Collapse
|
research-article |
8 |
250 |
11
|
Hannon E, Dempster E, Viana J, Burrage J, Smith AR, Macdonald R, St Clair D, Mustard C, Breen G, Therman S, Kaprio J, Toulopoulou T, Pol HEH, Bohlken MM, Kahn RS, Nenadic I, Hultman CM, Murray RM, Collier DA, Bass N, Gurling H, McQuillin A, Schalkwyk L, Mill J. An integrated genetic-epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential DNA methylation. Genome Biol 2016; 17:176. [PMID: 27572077 PMCID: PMC5004279 DOI: 10.1186/s13059-016-1041-x] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Schizophrenia is a highly heritable, neuropsychiatric disorder characterized by episodic psychosis and altered cognitive function. Despite success in identifying genetic variants associated with schizophrenia, there remains uncertainty about the causal genes involved in disease pathogenesis and how their function is regulated. RESULTS We performed a multi-stage epigenome-wide association study, quantifying genome-wide patterns of DNA methylation in a total of 1714 individuals from three independent sample cohorts. We have identified multiple differentially methylated positions and regions consistently associated with schizophrenia across the three cohorts; these effects are independent of important confounders such as smoking. We also show that epigenetic variation at multiple loci across the genome contributes to the polygenic nature of schizophrenia. Finally, we show how DNA methylation quantitative trait loci in combination with Bayesian co-localization analyses can be used to annotate extended genomic regions nominated by studies of schizophrenia, and to identify potential regulatory variation causally involved in disease. CONCLUSIONS This study represents the first systematic integrated analysis of genetic and epigenetic variation in schizophrenia, introducing a methodological approach that can be used to inform epigenome-wide association study analyses of other complex traits and diseases. We demonstrate the utility of using a polygenic risk score to identify molecular variation associated with etiological variation, and of using DNA methylation quantitative trait loci to refine the functional and regulatory variation associated with schizophrenia risk variants. Finally, we present strong evidence for the co-localization of genetic associations for schizophrenia and differential DNA methylation.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
238 |
12
|
Friedman JI, Vrijenhoek T, Markx S, Janssen IM, van der Vliet WA, Faas BHW, Knoers NV, Cahn W, Kahn RS, Edelmann L, Davis KL, Silverman JM, Brunner HG, van Kessel AG, Wijmenga C, Ophoff RA, Veltman JA. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol Psychiatry 2008; 13:261-6. [PMID: 17646849 DOI: 10.1038/sj.mp.4002049] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A homozygous mutation of the CNTNAP2 gene has been associated with a syndrome of focal epilepsy, mental retardation, language regression and other neuropsychiatric problems in children of the Old Order Amish community. Here we report genomic rearrangements resulting in haploinsufficiency of the CNTNAP2 gene in association with epilepsy and schizophrenia. Genomic deletions of varying sizes affecting the CNTNAP2 gene were identified in three non-related Caucasian patients. In contrast, we did not observe any dosage variation for this gene in 512 healthy controls. Moreover, this genomic region has not been identified as showing large-scale copy number variation. Our data thus confirm an association of CNTNAP2 to epilepsy outside the Old Order Amish population and suggest that dosage alteration of this gene may lead to a complex phenotype of schizophrenia, epilepsy and cognitive impairment.
Collapse
|
|
17 |
228 |
13
|
Baaré WF, Hulshoff Pol HE, Boomsma DI, Posthuma D, de Geus EJ, Schnack HG, van Haren NE, van Oel CJ, Kahn RS. Quantitative genetic modeling of variation in human brain morphology. Cereb Cortex 2001; 11:816-24. [PMID: 11532887 DOI: 10.1093/cercor/11.9.816] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The degree to which individual variation in brain structure in humans is genetically or environmentally determined is as yet not well understood. We studied the brains of 54 monozygotic (33 male, 21 female) and 58 dizygotic (17 male, 20 female, 21 opposite sex) pairs of twins and 34 of their full siblings (19 male, 15 female) by means of high resolution magnetic resonance imaging scans. Structural equation modeling was used to quantify the genetic and environmental contributions to phenotypic (co)variance in whole brain, gray and white matter volume of the cerebrum, lateral ventricle volume and associated variables such as intracranial volume and height. Because the cerebral cortex makes up more that two-thirds of the brain mass and almost three-quarters of its synapses, our data predominantly concerns the telencephalon. Genetic factors accounted for most of the individual differences in whole brain (90%), gray (82%) and white (88%) matter volume. Individual differences in lateral ventricle volume were best explained by a model containing common (58%) and unique (42%) environmental factors, indicating genes to be of no or minor influence. In our sample, genetic or environmental influences were not different for males and females. The same genes influenced brain volumes and intracranial volume and almost completely explained their high phenotypic correlation. Genes influencing gray and white matter overlapped to a large extent and completely determined their phenotypic correlation. The high heritability estimates that were found indicate that brain volumes may be useful as intermediate phenotypes in behavioral genetic research.
Collapse
|
|
24 |
223 |
14
|
van Praag HM, Kahn RS, Asnis GM, Wetzler S, Brown SL, Bleich A, Korn ML. Denosologization of biological psychiatry or the specificity of 5-HT disturbances in psychiatric disorders. J Affect Disord 1987; 13:1-8. [PMID: 2959695 DOI: 10.1016/0165-0327(87)90067-x] [Citation(s) in RCA: 208] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
5-Hydroxytryptamine (5-HT) disorders have been reported to occur in a variety of psychiatric disorders. The situation has been called chaotic, the disturbances non-specific. We reject this viewpoint. 5-HT disturbances are non-specific only from a nosological/categorical viewpoint; they seem rather specific from a functional/dimensional point of view, correlating as they do with particular psychopathological dimensions, i.e. aggression-, anxiety- and possibly mood-disregulation, across diagnosis. The evolution of 5-HT research in psychiatry illustrates the importance of what we have called the functional approach, implying dissection of a given psychopathological syndrome in its component parts, i.e., the psychological dysfunctions, and searching for correlations between biological and psychological dysfunctions. The rigid preoccupation of biological psychiatry with the search for markers of disease entities has hampered progress. The functional approach should be incorporated in biological psychiatry, not as an alternative for the nosological approach but as its complement.
Collapse
|
Review |
38 |
208 |
15
|
Abstract
m-Chlorophenylpiperazine (mCPP) is the most extensively used probe of serotonin function in psychiatry. This article reviews its in vitro and in vivo properties in animals, normal human subjects, and psychiatric patients. mCPP is a safe, reliable, direct 5-hydroxytryptamine (5HT) agonist, which may be used to evaluate 5HT receptor sensitivity. It causes a consistent, dose-dependent elevation of ACTH, cortisol, and prolactin levels in both animals and humans, as well as increased body temperature in man. It also causes a variety of behavioral effects, depending on the population studied. These effects are probably 5HT receptor-related, although specific 5HT receptor subtype mechanisms have not yet been established. mCPP may be considered an important addition to armamentarium of 5HT receptor probes, which is especially useful until more selective 5HT receptor agonists have been tested.
Collapse
|
Review |
34 |
207 |
16
|
|
Review |
37 |
202 |
17
|
Jansma JM, Ramsey NF, Slagter HA, Kahn RS. Functional anatomical correlates of controlled and automatic processing. J Cogn Neurosci 2001; 13:730-43. [PMID: 11564318 DOI: 10.1162/08989290152541403] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Behavioral studies have shown that consistent practice of a cognitive task can increase the speed of performance and reduce variability of responses and error rate, reflecting a shift from controlled to automatic processing. This study examines how the shift from controlled to automatic processing changes brain activity. A verbal Sternberg task was used with continuously changing targets (novel task, NT) and with constant, practiced targets (practiced task, PT). NT and PT were presented in a blocked design and contrasted to a choice reaction time (RT) control task (CT) to isolate working memory (WM)-related activity. The three-dimensional (3-D) PRESTO functional magnetic resonance imaging (fMRI) sequence was used to measure hemodynamic responses. Behavioral data revealed that task processing became automated after practice, as responses were faster, less variable, and more accurate. This was accompanied specifically by a decrease in activation in regions related to WM (bilateral but predominantly left dorsolateral prefrontal cortex (DLPFC), right superior frontal cortex (SFC), and right frontopolar area) and the supplementary motor area. Results showed no evidence for a shift of foci of activity within or across regions of the brain. The findings have theoretical implications for understanding the functional anatomical substrates of automatic and controlled processing, indicating that these types of information processing have the same functional anatomical substrate, but differ in efficiency. In addition, there are practical implications for interpreting activity as a measure for task performance, such as in patient studies. Whereas reduced activity can reflect poor performance if a task is not sensitive to practice effects, it can reflect good performance if a task is sensitive to practice effects.
Collapse
|
|
24 |
199 |
18
|
Kahn RS, Wise PH, Kennedy BP, Kawachi I. State income inequality, household income, and maternal mental and physical health: cross sectional national survey. BMJ (CLINICAL RESEARCH ED.) 2000; 321:1311-5. [PMID: 11090512 PMCID: PMC27533 DOI: 10.1136/bmj.321.7272.1311] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To examine the association of state income inequality and individual household income with the mental and physical health of women with young children. DESIGN Cross sectional study. Individual level data (outcomes, income, and other sociodemographic covariates) from a 1991 follow up survey of a birth cohort established in 1988. State level income inequality calculated from the income distribution of each state from 1990 US census. SETTING United States, 1991. PARTICIPANTS Nationally representative stratified random sample of 8060 women who gave birth in 1988 and were successfully contacted (89%) in 1991. MAIN OUTCOME MEASURES Depressive symptoms (Center for Epidemiologic Studies depression score >15) and self rated health RESULTS 19% of women reported depressive symptoms, and 7.5% reported fair or poor health. Compared with women in the highest fifth of distribution of household income, women in the lowest fifth were more likely to report depressive symptoms (33% v 9%, P<0.001) and fair or poor health (15% v 2%, P<0. 001). Compared with low income women in states with low income inequality, low income women in states with high income inequality had a higher risk of depressive symptoms (odds ratio 1.6, 95% confidence interval 1.0 to 2.6) and fair or poor health (1.8, 0.9 to 3.5). CONCLUSIONS High income inequality confers an increased risk of poor mental and physical health, particularly among the poorest women. Both income inequality and household income are important for health in this population.
Collapse
|
research-article |
25 |
198 |
19
|
van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, Agartz I, Westlye LT, Haukvik UK, Dale AM, Melle I, Hartberg CB, Gruber O, Kraemer B, Zilles D, Donohoe G, Kelly S, McDonald C, Morris DW, Cannon DM, Corvin A, Machielsen MWJ, Koenders L, de Haan L, Veltman DJ, Satterthwaite TD, Wolf DH, Gur RC, Gur RE, Potkin SG, Mathalon DH, Mueller BA, Preda A, Macciardi F, Ehrlich S, Walton E, Hass J, Calhoun VD, Bockholt HJ, Sponheim SR, Shoemaker JM, van Haren NEM, Pol HEH, Ophoff RA, Kahn RS, Roiz-Santiañez R, Crespo-Facorro B, Wang L, Alpert KI, Jönsson EG, Dimitrova R, Bois C, Whalley HC, McIntosh AM, Lawrie SM, Hashimoto R, Thompson PM. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 2016; 21:585. [PMID: 26283641 PMCID: PMC5751698 DOI: 10.1038/mp.2015.118] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
correction |
9 |
192 |
20
|
Hulshoff Pol HE, Schnack HG, Mandl RC, van Haren NE, Koning H, Collins DL, Evans AC, Kahn RS. Focal gray matter density changes in schizophrenia. ARCHIVES OF GENERAL PSYCHIATRY 2001; 58:1118-25. [PMID: 11735840 DOI: 10.1001/archpsyc.58.12.1118] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND The view that schizophrenia is a brain disease particularly involving decrements in gray matter is supported by findings from many imaging studies. However, it is unknown whether the (progressive) loss of tissue affects the brain globally or whether tissue loss is more prominent in some areas than in others. METHODS Magnetic resonance whole brain images were acquired from 159 patients with schizophrenia or a schizophreniform disorder and 158 healthy subjects across a 55-year age span. Gray matter density maps were made and analyzed using voxel-based morphometry. RESULTS Compared with healthy subjects, decreases in gray matter density were found in the left amygdala; left hippocampus; right supramarginal gyrus; thalamus; (orbito) frontal, (superior) temporal, occipitotemporal, precuneate, posterior cingulate, and insular cortices bilaterally in patients with schizophrenia or schizophreniform disorder. Compared with healthy subjects, increases in gray matter density were exclusively found in the right caudate and globus pallidus in patients with schizophrenia or schizophreniform disorder. A group-by-age interaction for density was found in the left amygdala, owing to a negative regression slope of gray matter density on age in the left amygdala in patients compared with healthy subjects. CONCLUSIONS Gray matter density is decreased in distinct focal areas in the brains of patients with schizophrenia or schizophreniform disorder. The decreased density in the left amygdala is more pronounced in older patients with schizophrenia.
Collapse
|
Comparative Study |
24 |
190 |
21
|
Abstract
Anatomical studies have shown that cerebral asymmetry is reduced in schizophrenia. Functional asymmetry appears to be reduced also, as was shown with dichotic listening studies. These studies, however, have not revealed whether reduced lateralization is the result of decreased language activity of the left hemisphere or whether it is the consequence of increased language-related activity in the right hemisphere. To elucidate this, we examined hemispheric dominance for language processing by means of functional MRI. Twelve schizophrenic patients and twelve healthy controls were scanned while they were engaged in a verb-generation and a semantic decision task. Activation was measured bilaterally in the frontal, temporal and temporo-parietal language areas, and a laterality index was derived from activity in these regions of interest in the left and the right hemispheres. Clinical symptoms were rated at the time of scanning. The results indicate that language processing is less lateralized in patients than in controls (a mean laterality index of 0.35 versus 0.63, respectively, difference p<0.01). Analysis of variance of the extent of activity, i.e. numbers of active voxels, revealed a significant hemisphere by group interaction (F(1,22)=11.2, p<0.001), which was due to increased activation in the right hemisphere of the patients (post hoc t-test p<0.05). We found no evidence of reduced activity in the left hemisphere. Further analysis of clinical symptoms rated prior to scanning revealed that decreased language lateralization was associated with more severe hallucinations (r=-0.54, p<0.05). We postulate that decreased language lateralization in schizophrenia may result from failure to inhibit the right hemisphere.
Collapse
|
|
24 |
179 |
22
|
Muntjewerff JW, Kahn RS, Blom HJ, den Heijer M. Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol Psychiatry 2006; 11:143-9. [PMID: 16172608 DOI: 10.1038/sj.mp.4001746] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Elevated plasma homocysteine concentration has been suggested as a risk factor for schizophrenia, but the results of epidemiological studies have been inconsistent. The most extensively studied genetic variant in the homocysteine metabolism is the 677C>T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene, resulting in reduced enzyme activity and, subsequently, in elevated homocysteine. A meta-analysis of eight retrospective studies (812 cases and 2113 control subjects) was carried out to examine the association between homocysteine and schizophrenia. In addition, a meta-analysis of 10 studies (2265 cases and 2721 control subjects) on the homozygous (TT) genotype of the MTHFR 677C>T polymorphism was carried out to assess if this association is causal. A 5 micromol/l higher homocysteine level was associated with a 70% (95% confidence interval, CI: 27-129) higher risk of schizophrenia. The TT genotype was associated with a 36% (95% CI: 7-72) higher risk of schizophrenia compared to the CC genotype. The performed meta-analyses showed no evidence of publication bias or excessive influence attributable to any given study. In conclusion, our study provides evidence for an association of homocysteine with schizophrenia. The elevated risk of schizophrenia associated with the homozygous genotype of the MTHFR 677C>T polymorphism provides support for causality between a disturbed homocysteine metabolism and risk of schizophrenia.
Collapse
|
Comparative Study |
19 |
169 |
23
|
Durston S, Fossella JA, Casey BJ, Hulshoff Pol HE, Galvan A, Schnack HG, Steenhuis MP, Minderaa RB, Buitelaar JK, Kahn RS, van Engeland H. Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Mol Psychiatry 2005; 10:678-85. [PMID: 15724142 DOI: 10.1038/sj.mp.4001649] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic influences on behavior are complex and, as such, the effect of any single gene is likely to be modest. Neuroimaging measures may serve as a biological intermediate phenotype to investigate the effect of genes on human behavior. In particular, it is possible to constrain investigations by prior knowledge of gene characteristics and by including samples of subjects where the distribution of phenotypic variance is both wide and under heritable influences. Here, we use this approach to show a dissociation between the effects of two dopamine genes that are differentially expressed in the brain. We show that the DAT1 gene, a gene expressed predominantly in the basal ganglia, preferentially influences caudate volume, whereas the DRD4 gene, a gene expressed predominantly in the prefrontal cortex, preferentially influences prefrontal gray matter volume in a sample of subjects including subjects with ADHD, their unaffected siblings, and healthy controls. This demonstrates that, by constraining our investigations by prior knowledge of gene expression, including samples in which the distribution of phenotypic variance is wide and under heritable influences, and by using intermediate phenotypes, such as neuroimaging, we may begin to map out the pathways by which genes influence behavior.
Collapse
|
Clinical Trial |
20 |
166 |
24
|
Staal WG, Hulshoff Pol HE, Schnack HG, Hoogendoorn ML, Jellema K, Kahn RS. Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatry 2000; 157:416-21. [PMID: 10698818 DOI: 10.1176/appi.ajp.157.3.416] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors sought to investigate the contribution of genotype on structural brain abnormalities in schizophrenia. METHOD Intracranial volumes and volumes of the cerebrum, white and gray matter, lateral and third ventricles, frontal lobes, caudate nucleus, amygdala, hippocampus, parahippocampal gyrus, and the cerebellum were measured in 32 same-sex siblings discordant for schizophrenia and 32 matched comparison subjects by means of magnetic resonance imaging. RESULTS Third ventricle volumes did not differ between the schizophrenic patients and their healthy siblings. However, both had higher third ventricle volumes than did the comparison subjects. The schizophrenic patients had lower cerebrum volumes than did the comparison subjects, whereas the cerebrum volume of the healthy siblings did not significantly differ from the patients or comparison subjects. Additionally, patients with schizophrenia displayed a volume reduction of the frontal lobe gray matter and a volume increase of the caudate nuclei and lateral ventricles compared to both their healthy siblings and comparison subjects. Intracranial volume, CSF volume, or volumes of the cerebellum, amygdala, hippocampus, or the parahippocampal gyrus did not significantly differ among the patients, siblings, and comparison subjects. CONCLUSIONS Healthy siblings share third ventricle enlargement with their affected relatives and may partially display a reduction in cerebral volume. These findings suggest that third ventricular enlargement, and to some extent cerebral volume decrease, may be related to genetic defects that produce a susceptibility to schizophrenia.
Collapse
|
Comparative Study |
25 |
161 |
25
|
Scheewe TW, Backx FJG, Takken T, Jörg F, van Strater ACP, Kroes AG, Kahn RS, Cahn W. Exercise therapy improves mental and physical health in schizophrenia: a randomised controlled trial. Acta Psychiatr Scand 2013; 127:464-73. [PMID: 23106093 DOI: 10.1111/acps.12029] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective of this multicenter randomised clinical trial was to examine the effect of exercise versus occupational therapy on mental and physical health in schizophrenia patients. METHOD Sixty-three patients with schizophrenia were randomly assigned to 2 h of structured exercise (n = 31) or occupational therapy (n = 32) weekly for 6 months. Symptoms (Positive and Negative Syndrome Scale) and cardiovascular fitness levels (Wpeak and VO2peak ), as assessed with a cardiopulmonary exercise test, were the primary outcome measures. Secondary outcome measures were the Montgomery and Åsberg Depression Rating Scale, Camberwell Assessment of Needs, body mass index, body fat percentage, and metabolic syndrome (MetS). RESULTS Intention-to-treat analyses showed exercise therapy had a trend-level effect on depressive symptoms (P = 0.07) and a significant effect on cardiovascular fitness, measured by Wpeak (P < 0.01), compared with occupational therapy. Per protocol analyses showed that exercise therapy reduced symptoms of schizophrenia (P = 0.001), depression (P = 0.012), need of care (P = 0.050), and increased cardiovascular fitness (P < 0.001) compared with occupational therapy. No effect for MetS (factors) was found except a trend reduction in triglycerides (P = 0.08). CONCLUSION Exercise therapy, when performed once to twice a week, improved mental health and cardiovascular fitness and reduced need of care in patients with schizophrenia.
Collapse
|
Multicenter Study |
12 |
161 |