76
|
Xie N, Huang X, Yang C, Dai M, Cai L, Deng S, Hardiman PJ, Zhou J. Artificial sweeteners affect the glucose transport rate in the Caco-2/NCI-H716 co-culture model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4887-4892. [PMID: 32483817 DOI: 10.1002/jsfa.10549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Artificial sweeteners have been used widely as substitutes for sugar for several decades. In recent years they have been reported to be harmful to human health - especially to glucose absorption. However, as conclusions from previous studies using a single Caco-2 cell model were not consistent, further studies with a more suitable cell model are needed. RESULTS We established a co-culture model with enterocyte Caco-2 and enteroendocrine NCI-H716 cell lines cultured in transwell inserts. The effects of artificial sweeteners, enhancing the glucose transport rate, lasted for 60 min and then began to diminish. Most importantly, different artificial sweeteners with the same sweetness intensity had similar effects on glucose transport. The sodium / glucose co-transporter member 1 (SGLT1) mRNA expression levels increased significantly with an initial glucose concentration of 20 mM, while glucose transporter 2 (GLUT2) mRNA expression significantly increased with initial glucose concentrations of 20 mM and 60 mM. CONCLUSION Based on the Caco-2/NCI-H716 co-culture model, SGLT1 and GLUT2 mediated the enhancing effects of artificial sweeteners on glucose transport, depending on the sweetness intensity and initial glucose concentration.
Collapse
|
77
|
Moriconi E, Feraco A, Marzolla V, Infante M, Lombardo M, Fabbri A, Caprio M. Neuroendocrine and Metabolic Effects of Low-Calorie and Non-Calorie Sweeteners. Front Endocrinol (Lausanne) 2020; 11:444. [PMID: 32765425 PMCID: PMC7378387 DOI: 10.3389/fendo.2020.00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Since excessive sugar consumption has been related to the development of chronic metabolic diseases prevalent in the western world, the use of sweeteners has gradually increased worldwide over the last few years. Although low- and non-calorie sweeteners may represent a valuable tool to reduce calorie intake and prevent weight gain, studies investigating the safety and efficacy of these compounds in the short- and long-term period are scarce and controversial. Therefore, future studies will need to elucidate the potential beneficial and/or detrimental effects of different types of sweeteners on metabolic health (energy balance, appetite, body weight, cardiometabolic risk factors) in healthy subjects and patients with diabetes, obesity and metabolic syndrome. In this regard, the impact of different sweeteners on central nervous system, gut hormones and gut microbiota is important, given the strong implications that changes in such systems may have for human health. The aim of this narrative review is to summarize the current evidence for the neuroendocrine and metabolic effects of sweeteners, as well as their impact on gut microbiota. Finally, we briefly discuss the advantages of the use of sweeteners in the context of very-low calorie ketogenic diets.
Collapse
|
78
|
Garousi J, Vorobyeva A, Altai M. Influence of Several Compounds and Drugs on the Renal Uptake of Radiolabeled Affibody Molecules. Molecules 2020; 25:molecules25112673. [PMID: 32526905 PMCID: PMC7321166 DOI: 10.3390/molecules25112673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
Affibody molecules are the most studied class of engineered scaffold proteins (ESPs) in radionuclide molecular imaging. Attempts to use affibody molecules directly labelled with radiometals for targeted radionuclide therapy were hampered by the high uptake and retention of radioactivity in kidneys. Several promising strategies have been implemented to circumvent this problem. Here, we investigated whether a pharmacological approach targeting different components of the reabsorption system could be used to lower the uptake of [99mTc]Tc-ZHER:2395 affibody molecule in kidneys. Pre-injection of probenecid, furosemide, mannitol or colchicine had no influence on activity uptake in kidneys compared to the control group. Mice pre-injected with maleate and fructose had 33% and 51% reduction in the kidney-associated activity, respectively, compared to the control group. Autoradiography images showed that the accumulation of activity after [99mTc]Tc-ZHER2:2395 injection was in the renal cortex and that both maleate and fructose could significantly reduce it. Results from this study demonstrate that pharmacological intervention with maleate and fructose was effective in reducing the kidney uptake of affibody molecules. A presumable mechanism is the disruption of ATP-mediated cellular uptake and endocytosis processes of affibody molecules by tubular cells.
Collapse
|
79
|
Poothong J, Pottekat A, Siirin M, Campos AR, Paton AW, Paton JC, Lagunas-Acosta J, Chen Z, Swift M, Volkmann N, Hanein D, Yong J, Kaufman RJ. Factor VIII exhibits chaperone-dependent and glucose-regulated reversible amyloid formation in the endoplasmic reticulum. Blood 2020; 135:1899-1911. [PMID: 32128578 PMCID: PMC7243144 DOI: 10.1182/blood.2019002867] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Hemophilia A, an X-linked bleeding disorder caused by deficiency of factor VIII (FVIII), is treated by protein replacement. Unfortunately, this regimen is costly due to the expense of producing recombinant FVIII as a consequence of its low-level secretion from mammalian host cells. FVIII expression activates the endoplasmic reticulum (ER) stress response, causes oxidative stress, and induces apoptosis. Importantly, little is known about the factors that cause protein misfolding and aggregation in metazoans. Here, we identified intrinsic and extrinsic factors that cause FVIII to form aggregates. We show that FVIII forms amyloid-like fibrils within the ER lumen upon increased FVIII synthesis or inhibition of glucose metabolism. Significantly, FVIII amyloids can be dissolved upon restoration of glucose metabolism to produce functional secreted FVIII. Two ER chaperone families and their cochaperones, immunoglobulin binding protein (BiP) and calnexin/calreticulin, promote FVIII solubility in the ER, where the former is also required for disaggregation. A short aggregation motif in the FVIII A1 domain (termed Aggron) is necessary and sufficient to seed β-sheet polymerization, and BiP binding to this Aggron prevents amyloidogenesis. Our findings provide novel insight into mechanisms that limit FVIII secretion and ER protein aggregation in general and have implication for ongoing hemophilia A gene-therapy clinical trials.
Collapse
|
80
|
Nachtigal D, Green BG. Sweet Thermal Taste: Perceptual Characteristics in Water and Dependence on TAS1R2/TAS1R3. Chem Senses 2020; 45:219-230. [PMID: 32072157 PMCID: PMC7320217 DOI: 10.1093/chemse/bjaa009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The initial objective of this study was to determine if activation of the sweet taste receptor TAS1R2/TAS1R3 is necessary for perception of sweet thermal taste (swTT). Our approach was to inhibit the receptor with the inverse agonist lactisole using a temperature-controlled flow gustometer. Because all prior studies of thermal taste (TT) used metal thermodes to heat the tongue tip, we first investigated whether it could be generated in heated water. Experiment 1 showed that sweetness could be evoked when deionized water was heated from 20 to 35 °C, and testing with static temperatures between 20 and 35 °C demonstrated the importance of heating from a cool temperature. As in previous studies, thermal sweetness was reported by only a subset of participants, and replicate measurements found variability in reports of sweetness across trials and between sessions. Experiment 2 then showed that exposure to 8 mM lactisole blocked perception of swTT. Confirmation of the involvement of TAS1R2/TAS1R3 led to an investigation of possible sensory and cognitive interactions between thermal and chemical sweetness. Using sucrose as a sweet stimulus and quinine as a nonsweet control, we found that dynamic heating capable of producing thermal sweetness did not increase the sweetness of sucrose compared with static heating at 35 °C. However, swTT was disrupted if trials containing sucrose (but not quinine) were interspersed among heating-only trials. These findings provide new information relevant to understanding the perceptual processes and receptor mechanisms of swTT, as well as the heat sensitivity of sweet taste in general.
Collapse
|
81
|
Bueno-Hernández N, Esquivel-Velázquez M, Alcántara-Suárez R, Gómez-Arauz AY, Espinosa-Flores AJ, de León-Barrera KL, Mendoza-Martínez VM, Sánchez Medina GA, León-Hernández M, Ruiz-Barranco A, Escobedo G, Meléndez G. Chronic sucralose consumption induces elevation of serum insulin in young healthy adults: a randomized, double blind, controlled trial. Nutr J 2020; 19:32. [PMID: 32284053 PMCID: PMC7155288 DOI: 10.1186/s12937-020-00549-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Non-nutritive sweeteners (NNS) are widely consumed by humans due to their apparent innocuity, especially sucralose. However, several studies link sucralose consumption to weight gain and metabolic derangements, although data are still contradictory. OBJECTIVE To determine the effect of acute and chronic consumption of sucralose on insulin and glucose profiles in young healthy adults. MATERIAL AND METHODS This was a randomized, parallel, double-blind, placebo-controlled trial conducted in healthy young adults from 18 to 35 years old, without insulin resistance. A hundred thirty seven participants were randomized into three groups: a) volunteers receiving 48 mg sucralose, b) volunteers receiving 96 mg sucralose, and c) controls receiving water as placebo. All participants underwent a 3-h oral glucose tolerance test (OGTT) preceded by consuming sucralose or placebo 15 min before glucose load, at two time points: week zero (Wk0) and week ten (Wk10). Serum insulin and glucose were measured every 15 min during both OGTTs. RESULTS Compared to Wk0, consumption of sucralose for 10 weeks provoked 1) increased insulin concentrations at 0 min (7.5 ± 3.4 vs 8.8 ± 4.1 μIU/mL; p = 0.01), 30 min (91.3 ± 56.2 vs 110.1 ± 49.4 μIU/mL; p = 0.05), 105 min (47.7 ± 24.4 vs 64.3 ± 48.2 μIU/mL; p = 0.04) and 120 min (44.8 ± 22.1 vs 63.1 ± 47.8 μIU/mL; p = 0.01) in the 48 mg sucralose group; 2) increased blood glucose at - 15 min (87.9 ± 4.6 vs 91.4 ± 5.4 mg/dL; p = 0.003), 0 min (88.7 ± 4 vs 91.3 ± 6 mg/dL; p = 0.04) and 120 min (95.2 ± 23.7 vs 106.9 ± 19.5 mg/dL; p = 0.009) in the 48 mg sucralose group; 3) increased area under the curve (AUC) of insulin in both 48 and 96 mg sucralose groups (9262 vs 11,398; p = 0.02 and 6962 vs 8394; p = 0.12, respectively); and 4) reduced Matsuda index in the 48 mg sucralose group (6.04 ± 3.19 vs 4.86 ± 2.13; p = 0.01). CONCLUSIONS These data show that chronic consumption of sucralose can affect insulin and glucose responses in non-insulin resistant healthy young adults with normal body mass index (between 18.5 and 24.9 kg/m2), however, the effects are not consistent with dose; further research is required. CLINICAL TRIAL REGISTRY NCT03703141.
Collapse
|
82
|
Zhang J, Juhl CR, Hylten-Cavallius L, Salling-Olsen M, Linneberg A, Holst JJ, Hansen T, Kanters JK, Torekov SS. Gain-of-function mutation in the voltage-gated potassium channel gene KCNQ1 and glucose-stimulated hypoinsulinemia - case report. BMC Endocr Disord 2020; 20:38. [PMID: 32164657 PMCID: PMC7069191 DOI: 10.1186/s12902-020-0513-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/25/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The voltage-gated potassium channel Kv7.1 encoded by KCNQ1 is located in both cardiac myocytes and insulin producing beta cells. Loss-of-function mutations in KCNQ1 causes long QT syndrome along with glucose-stimulated hyperinsulinemia, increased C-peptide and postprandial hypoglycemia. The KCNE1 protein modulates Kv7.1 in cardiac myocytes, but is not expressed in beta cells. Gain-of-function mutations in KCNQ1 and KCNE1 shorten the action potential duration in cardiac myocytes, but their effect on beta cells and insulin secretion is unknown. CASE PRESENTATION Two patients with atrial fibrillation due to gain-of-function mutations in KCNQ1 (R670K) and KCNE1 (G60D) were BMI-, age-, and sex-matched to six control participants and underwent a 6-h oral glucose tolerance test (OGTT). During the OGTT, the KCNQ1 gain-of-function mutation carrier had 86% lower C-peptide response after glucose stimulation compared with matched control participants (iAUC360min = 34 pmol/l*min VS iAUC360min = 246 ± 71 pmol/l*min). The KCNE1 gain-of-function mutation carrier had normal C-peptide levels. CONCLUSIONS This case story presents a patient with a gain-of-function mutation KCNQ1 R670K with low glucose-stimulated C-peptide secretion, additionally suggesting involvement of the voltage-gated potassium channel KCNQ1 in glucose-stimulated insulin regulation.
Collapse
|
83
|
Ahrén B, Yamada Y, Seino Y. Islet adaptation in GIP receptor knockout mice. Peptides 2020; 125:170152. [PMID: 31522751 DOI: 10.1016/j.peptides.2019.170152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) receptor knockout (KO) mice are tools for studying GIP physiology. Previous results have demonstrated that these mice have impaired insulin response to oral glucose. In this study, we examined the insulin response to intravenous glucose by measuring glucose, insulin and C-peptide after intravenous glucose (0.35 g/kg) in 5-h fasted female GIP receptor KO mice and their wild-type (WT) littermates. The 1 min insulin and C-peptide responses to intravenous glucose were significantly enhanced in GIP receptor KO mice (n = 26) compared to WT mice (n = 30) as was beta cell function (area under the 50 min C-peptide curve divided by area under the 50 min curve for glucose) (P = 0.001). Beta cell function after intravenous glucose was also enhanced in GIP receptor KO mice in the presence of the glucagon-like peptide-1 receptor antagonist exendin 9 (30 nmol/kg; P = 0.007), the muscarinic antagonist atropine (5 mg/kg; P = 0.007) and the combination of the alpha-adrenoceptor antagonist yohimbine (1.4 mg/kg) and the beta-adrenoceptor antagonist propranolol (2.5 mg/kg; P = 0.042). Analysis of the regression between fasting glucose (6.8 ± 0.1 mmol/l in GIP receptor KO mice and 7.5 ± 0.2 mmol/l in WT mice, P = 0.003) and the 1 min C-peptide response to intravenous glucose showed a negative linear regression between these variables in both WT (n = 60; r = -0.425, P = 0.001) and GIP receptor KO mice (n = 56; r = -0.474, P < 0.001). We conclude that there is a beta cell adaptation in GIP receptor KO mice resulting in enhanced insulin secretion after intravenous glucose to which slight long-term reduction in circulating glucose in these mice may contribute.
Collapse
|
84
|
Dong G, Li X, Han G, Du L, Li M. Zebrafish neuro-behavioral profiles altered by acesulfame (ACE) within the range of "no observed effect concentrations (NOECs)". CHEMOSPHERE 2020; 243:125431. [PMID: 31995882 DOI: 10.1016/j.chemosphere.2019.125431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Recently, artificial sweeteners have received widespread attention as the emerging environmental pollutants, among which, acesulfame (ACE) is ubiquitously present and extremely persistent in the ecosystem. Although the environmental behavior of ACE has already been well studied, its chronic eco-toxicological effects on aquatic organisms are rarely reported. Thus, more researches should be performed to determine the concentration which exerted the observable toxicological effect. Herein, we examined neuro-behavioral effects of ACE at 1, 10 and 100 mg/L on adult zebrafish via performing the behavioral test batteries including light/dark preference test, novel tank diving test, novel object exploration test, social preference test and colour-enhanced CPP test. In addition, in order to fully phenotype the behavioral alteration induced by ACE, we applied the techniques deriving from behavioral phenomics to analyze and interpret the big data from a large number of behavioral variables. Furthermore, the alterations of neurotransmitter in brain were also assayed to confirm the behavioral results. We found that ACE within the concentration range of No Observed Effect Concentrations (NOECs) had remarkably altered the neuro-behavioral profiles: altered the preference for light/dark, reduced the exploration ability of zebrafish in the novel tank and novel object exploration test, affected the group preference of zebrafish, changed the colour preference, learning and memory ability of zebrafish and disturbed the quantitative patterns of neurotransmitter in brain. As a result, this research can offer a reference for readjusting the NOECs of ACE and assessing neurotoxicity of artificial sweeteners.
Collapse
|
85
|
Ferreira SM, Costa-Júnior JM, Kurauti MA, Leite NC, Ortis F, Rezende LF, Barbosa HC, Boschero AC, Santos GJ. ARHGAP21 Acts as an Inhibitor of the Glucose-Stimulated Insulin Secretion Process. Front Endocrinol (Lausanne) 2020; 11:599165. [PMID: 33324349 PMCID: PMC7726208 DOI: 10.3389/fendo.2020.599165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
ARHGAP21 is a RhoGAP protein implicated in the modulation of insulin secretion and energy metabolism. ARHGAP21 transient-inhibition increase glucose-stimulated insulin secretion (GSIS) in neonatal islets; however, ARHGAP21 heterozygote mice have a reduced insulin secretion. These discrepancies are not totally understood, and it might be related to functional maturation of beta cells and peripheral sensitivity. Here, we investigated the real ARHGAP21 role in the insulin secretion process using an adult mouse model of acute ARHGAP21 inhibition, induced by antisense. After ARHGAP21 knockdown induction by antisense injection in 60-day old male mice, we investigated glucose and insulin tolerance test, glucose-induced insulin secretion, glucose-induced intracellular calcium dynamics, and gene expression. Our results showed that ARHGAP21 acts negatively in the GSIS of adult islet. This effect seems to be due to the modulation of important points of insulin secretion process, such as the energy metabolism (PGC1α), Ca2+ signalization (SYTVII), granule-extrusion (SNAP25), and cell-cell interaction (CX36). Therefore, based on these finds, ARHGAP21 may be an important target in Diabetes Mellitus (DM) treatment.
Collapse
|
86
|
Smith EVL, Dyson RM, Berry MJ, Gray C. Fructose Consumption During Pregnancy Influences Milk Lipid Composition and Offspring Lipid Profiles in Guinea Pigs. Front Endocrinol (Lausanne) 2020; 11:550. [PMID: 32849314 PMCID: PMC7431635 DOI: 10.3389/fendo.2020.00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
Excess dietary fructose is a major public health concern (1-4). Evidence shows increased fructose intake can cause insulin resistance, hepatic de novo lipogenesis, hypertriglyceridemia, obesity and non-alcoholic fatty liver disease (NAFLD) (5-9). However, little is known about the effects of fructose during pregnancy and its influence on offspring development and predisposition to later-life disease. To determine whether moderately increased maternal fructose intake could have health consequences on offspring, we have investigated the effects of 10% w/v fructose water intake during preconception and pregnancy. Female Dunkin Hartley guinea pigs were fed a control diet (CD) or fructose diet (FD;10% kcal from fructose) ad-libitum 60 days prior to mating and throughout gestation. Offspring were culled at weaning, day 21 (d21). Compared to CD dams, FD dams had altered glucose metabolism and increased milk free fatty acid content. Matsuda-DeFronzo insulin sensitivity index (M-ISI) from OGTT plasma showed no significant difference in whole-body insulin sensitivity between FD and CD dams 60 days post-dietary intervention and during midgestation. Fetal exposure to increased maternal fructose resulted in offspring with significantly altered serum free fatty acids at days 0, 7, 14, and 21 [including pentadecanoic acid (15:0), dma16:0, margaric acid (17:0) palmitoleic acid, total omega-7 and total saturates], increased levels of uric acid and triglycerides were also observed at d21. We have demonstrated that increased fructose intake during pregnancy can cause significant changes in maternal metabolic function and milk composition, which alters offspring metabolism. Taken together, these changes in pregnancy outcomes and feto-maternal condition may underlie their offspring's predisposition to metabolic dysfunction during later-life.
Collapse
|
87
|
Abstract
PURPOSE OF REVIEW The goal of this review is to discuss the data on natural alternative sweeteners and their effects on glucose homeostasis and other metabolic parameters within the past five years. We sought to answer whether common natural alternative sweeteners have a positive or negative effect on glucose control in both human and animal models, and whether the data supports their widespread use as a tool to help reduce the prevalence of diabetes and associated comorbid conditions. RECENT FINDINGS Recent studies suggest that natural alternative sweeteners may reduce hyperglycemia, improve lipid metabolism, and have antioxidant effects particularly in those that have baseline diabetes. Diabetes and metabolic syndrome have become a global healthcare crisis and the sugar overconsumption plays a major role. The use of artificial sweeteners has become more prevalent to improve insulin resistance in those with diabetes, obesity, and metabolic syndrome, although the evidence does not support this result. There are however some promising data to suggest that natural alternative sweeteners may be a better alternative to sugar and artificial sweeteners.
Collapse
|
88
|
Hunter SR, Reister EJ, Cheon E, Mattes RD. Low Calorie Sweeteners Differ in Their Physiological Effects in Humans. Nutrients 2019; 11:E2717. [PMID: 31717525 PMCID: PMC6893706 DOI: 10.3390/nu11112717] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Low calorie sweeteners (LCS) are prevalent in the food supply for their primary functional property of providing sweetness with little or no energy. Though tested for safety individually, there has been extremely limited work on the efficacy of each LCS. It is commonly assumed all LCS act similarly in their behavioral and physiological effects. However, each LCS has its own chemical structure that influences its metabolism, making each LCS unique in its potential effects on body weight, energy intake, and appetite. LCS may have different behavioral and physiological effects mediated at the sweet taste receptor, in brain activation, with gut hormones, at the microbiota and on appetitive responses. Further elucidation of the unique effects of the different commercially available LCS may hold important implications for recommendations about their use for different health outcomes.
Collapse
|
89
|
Keesing C, Mills B, Rapsey C, Haszard J, Venn B. Cognitive Performance Following Ingestion of Glucose-Fructose Sweeteners That Impart Different Postprandial Glycaemic Responses: A Randomised Control Trial. Nutrients 2019; 11:nu11112647. [PMID: 31689943 PMCID: PMC6893461 DOI: 10.3390/nu11112647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022] Open
Abstract
We aimed to investigate the isolated effect of glycaemia on cognitive test performance by using beverages sweetened with two different glucose–fructose disaccharides, sucrose and isomaltulose. In a randomised crossover design, 70 healthy adults received a low-glycaemic-index (GI) isomaltulose and sucralose beverage (GI 32) and a high-GI sucrose beverage (GI 65) on two occasions that were separated by two weeks. Following beverage ingestion, declarative memory and immediate word recall were examined at 30, 80 and 130 min. At 140 min, executive function was tested. To confirm that the glycaemic response of the test beverages matched published GI estimates, a subsample (n = 12) of the cognitive testing population (n = 70) underwent glycaemic response testing on different test days. A significantly lower value of mean (95% CI) blood glucose concentration incremental area under the curve (iAUC) was found for isomaltulose, in comparison to the blood glucose concentration iAUC value for sucrose, the difference corresponding to −44 mmol/L∙min (−70, −18), p = 0.003. The mean (95% CI) difference in numbers of correct answers or words recalled between beverages at 30, 80 and 130 min were 0.1 (−0.2, 0.5), −0.3 (−0.8, 0.2) and 0.0 (−0.5, 0.5) for declarative memory, and −0.5 (−1.4, 0.3), 0.4 (−0.4, 1.3) and −0.4 (−1.1, 0.4) for immediate free word recall. At 140 min, the mean difference in the trail-making test between beverages was −0.3 sec (−6.9, 6.3). None of these differences were statistically or clinically significant. In summary, cognitive performance was unaffected by different glycaemic responses to beverages during the postprandial period of 140 min.
Collapse
|
90
|
Cancelliere R, Leone S, Gatto C, Mazzoli A, Ercole C, Iossa S, Liverini G, Picone D, Crescenzo R. Metabolic Effects of the Sweet Protein MNEI as a Sweetener in Drinking Water. A Pilot Study of a High Fat Dietary Regimen in a Rodent Model. Nutrients 2019; 11:nu11112643. [PMID: 31689911 PMCID: PMC6893535 DOI: 10.3390/nu11112643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
Sweeteners have become integrating components of the typical western diet, in response to the spreading of sugar-related pathologies (diabetes, obesity and metabolic syndrome) that have stemmed from the adoption of unbalanced dietary habits. Sweet proteins are a relatively unstudied class of sweet compounds that could serve as innovative sweeteners, but their introduction on the food market has been delayed by some factors, among which is the lack of thorough metabolic and toxicological studies. We have tried to shed light on the potential of a sweet protein, MNEI, as a fructose substitute in beverages in a typical western diet, by studying the metabolic consequences of its consumption on a Wistar rat model of high fat diet-induced obesity. In particular, we investigated the lipid profile, insulin sensitivity and other indicators of metabolic syndrome. We also evaluated systemic inflammation and potential colon damage. MNEI consumption rescued the metabolic derangement elicited by the intake of fructose, namely insulin resistance, altered plasma lipid profile, colon inflammation and translocation of lipopolysaccharides from the gut lumen into the circulatory system. We concluded that MNEI could represent a valid alternative to fructose, particularly when concomitant metabolic disorders such as diabetes and/or glucose intolerance are present.
Collapse
|
91
|
Soejarto DD, Addo EM, Kinghorn AD. Highly sweet compounds of plant origin: From ethnobotanical observations to wide utilization. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112056. [PMID: 31279071 DOI: 10.1016/j.jep.2019.112056] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ethnobotanical studies have been of very great importance in recognizing plants that contain substances that modulate the heterodimer T1R2-T1R3 sweet taste receptor, inclusive of Stevia rebaudiana (Asteraceae) and Siraitia grosvenorii (Cucurbitaceae). AIM OF THE REVIEW In addition to reviewing relevant ethnobotanical literature, inclusive of original field work conducted, the authors have provided a progress report on the ultimate regulatory acceptance of highly sweet ent-kaurane (steviol) diterpene glycosides from S. rebaudiana leaves ("stevia") and cucurbitane triterpene glycosides (mogrosides) from the fruits of S. grosvenorii (popularly known as "monk fruit"). Despite their relatively high prices relative to that of sucrose, the steviol glycosides and mogrosides are of current great interest for further more extensive utilization on the market as sweet-tasting non-caloric food additives, due to increases in the rates of obesity and diabetes all over the world. Recent phytochemical work on the sweet principles of these two species is highlighted, including the important "next-generation" sweetener, rebaudioside M, from S. rebaudiana. RESULTS Initial observations on the ethnobotany of both S. rebaudiana and S. grosvenorii have proved crucial to indicating the presence of their sweet-tasting principles to the wider scientific community. CONCLUSIONS Ethnobotanical observations have been pivotal in enabling the discovery of many sweet-tasting plant constituents, with those of S. rebaudiana and S. grosvenorii both being examples. Extractives prepared from these species are now commercially used widely in the U.S. as additives for the sweetening of foods and beverages.
Collapse
|
92
|
Malbert CH, Horowitz M, Young RL. Low-calorie sweeteners augment tissue-specific insulin sensitivity in a large animal model of obesity. Eur J Nucl Med Mol Imaging 2019; 46:2380-2391. [PMID: 31338548 DOI: 10.1007/s00259-019-04430-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
PURPOSES Whether low-calorie sweeteners (LCS), such as sucralose and acesulfame K, can alter glucose metabolism is uncertain, particularly given the inconsistent observations relating to insulin resistance in recent human trials. We hypothesized that these discrepancies are accounted for by the surrogate tools used to evaluate insulin resistance and that PET 18FDG, given its capacity to quantify insulin sensitivity in individual organs, would be more sensitive in identifying changes in glucose metabolism. Accordingly, we performed a comprehensive evaluation of the effects of LCS on whole-body and organ-specific glucose uptake and insulin sensitivity in a large animal model of morbid obesity. METHODS Twenty mini-pigs with morbid obesity were fed an obesogenic diet enriched with LCS (sucralose 1 mg/kg/day and acesulfame K 0.5 mg/kg/day, LCS diet group), or without LCS (control group), for 3 months. Glucose uptake and insulin sensitivity were determined for the duodenum, liver, skeletal muscle, adipose tissue and brain using dynamic PET 18FDG scanning together with direct measurement of arterial input function. Body composition was also measured using CT imaging and energy metabolism quantified with indirect calorimetry. RESULTS The LCS diet increased subcutaneous abdominal fat by ≈ 20% without causing weight gain, and reduced insulin clearance by ≈ 40%, while whole-body glucose uptake and insulin sensitivity were unchanged. In contrast, glucose uptake in the duodenum, liver and brain increased by 57, 66 and 29% relative to the control diet group (P < 0.05 for all), while insulin sensitivity increased by 53, 55 and 28% (P < 0.05 for all), respectively. In the brain, glucose uptake increased significantly only in the frontal cortex, associated with improved metabolic connectivity towards the hippocampus and the amygdala. CONCLUSIONS In miniature pigs, the combination of sucralose and acesulfame K is biologically active. While not affecting whole-body insulin resistance, it increases insulin sensitivity and glucose uptake in specific tissues, mimicking the effects of obesity in the adipose tissue and in the brain.
Collapse
|
93
|
Kim D, Lee D, Trackman PC, Roy S. Effects of High Glucose-Induced Lysyl Oxidase Propeptide on Retinal Endothelial Cell Survival: Implications for Diabetic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1945-1952. [PMID: 31537300 PMCID: PMC6880772 DOI: 10.1016/j.ajpath.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 01/19/2023]
Abstract
Diabetic retinopathy (DR) is characterized by apoptotic cell loss in the retinal vasculature. Lysyl oxidase propeptide (LOX-PP), released during LOX processing, has been implicated in promoting apoptosis in various diseased tissues. However, its role in the development and progression of DR is unknown. We investigated whether high glucose (HG) or diabetes alters LOX-PP expression and thereby influences AKT pathway and affects retinal endothelial cell survival. Rat retinal endothelial cells were grown in normal medium, normal medium and exposed to recombinant LOX-PP (rLOX-PP) or HG medium and examined for LOX-PP expression, AKT and caspase-3 activation. Similarly, rats intravitreally injected with rLOX-PP were examined for changes in retinal LOX-PP levels, AKT phosphorylation, and the number of acellular capillaries and pericyte loss compared with those of control diabetic and nondiabetic rats. Results indicate that HG up-regulates LOX-PP expression and reduces AKT activation. In addition, cells exposed to rLOX-PP alone exhibited increased apoptosis concomitant with decreased AKT phosphorylation. In retinas of diabetic rats, increased LOX-PP level, decreased AKT phosphorylation, and increased number of acellular capillaries and pericyte loss compared with those of nondiabetic rats were observed. Of interest, similar changes were noted in the retinas of rats injected with rLOX-PP. Findings from this study suggest that hyperglycemia-induced LOX-PP overexpression may contribute to retinal vascular cell loss associated with DR.
Collapse
|
94
|
Egan AE, Seemiller LR, Packard AEB, Solomon MB, Ulrich-Lai YM. Palatable food reduces anxiety-like behaviors and HPA axis responses to stress in female rats in an estrous-cycle specific manner. Horm Behav 2019; 115:104557. [PMID: 31310760 PMCID: PMC6765440 DOI: 10.1016/j.yhbeh.2019.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022]
Abstract
Eating tasty foods dampens responses to stress - an idea reflected in the colloquial term 'comfort foods'. To study the neurobiological mechanisms by which palatable foods provide stress relief, we previously characterized a limited sucrose intake (LSI) paradigm in which male rats are given twice-daily access to 4 ml of 30% sucrose solution (vs. water as a control), and subsequently have reduced hypothalamic-pituitary-adrenocortical (HPA) axis responsivity and anxiety-related behaviors. Notably, women may be more prone to 'comfort feeding' than men, and this may vary across the menstrual cycle, suggesting the potential for important sex and estrous cycle differences. In support of this idea, LSI reduces HPA axis responses in female rats during the proestrus/estrus (P/E), as opposed to the diestrus 1/diestrus 2 (D1/D2) estrous cycle stage. However, the effect of LSI on anxiety-related behaviors in females remains unknown. Here we show that LSI reduced stress-related behaviors in female rats in the elevated plus-maze and restraint tests, but not in the open field test, though only during P/E. LSI also decreased the HPA axis stress response primarily during P/E, consistent with prior findings. Finally, cFos immunolabeling (a marker of neuronal activation) revealed that LSI increased post-restraint cFos in the central amygdala medial subdivision (CeM) and the bed nucleus of the stria terminalis posterior subnuclei (BSTp) exclusively during P/E. These results suggest that in female rats, palatable food reduces both behavioral and neuroendocrine stress responses in an estrous cycle-dependent manner, and the CeM and BSTp are implicated as potential mediators of these effects.
Collapse
|
95
|
Xu Y, Li K, Liu Y, Liu Z, Wang L, Pu J, Xu Z, Sun H. Combined effects of artificial sweetener acesulfame on the uptake of Cd in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:171-179. [PMID: 31146232 DOI: 10.1016/j.envpol.2019.05.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Organic pollutants are widely detected in surface water, groundwater and irrigation sewage in farmland soil, some of which can form complexes with heavy metal ions as ligands in the environment. Acesulfame (ACE), one of the most popular artificial sweeteners, has been found in wastewater sometimes at tens of microgram per liter. However, the combined effects of heavy metals and ACE are still unclear. In the present study, the effects of ACE on cadmium (Cd) absorption and translocation in rice seedlings (Oryza sativa L.) under different exposure conditions were investigated using hydroponic experiments. Under the combined exposure treatments of ACE and Cd, absorption of Cd and ACE in rice significantly decreased when compared with the single exposure treatments, while the alleviation of oxidative damage in rice was also found. Under the sequential exposure treatments of Cd and ACE, the post-exposed ACE activated the pre-absorbed Cd in plant, and accelerated the release of Cd to the environment as well as its translocation from the roots to shoots. In addition, compared with the single Cd exposure, the accumulated ACE can alleviate the oxidative damage in rice shoots induced by Cd, although the Cd concentrations in shoots changed little. In summary, the combined pollution of artificial sweetener ACE was beneficial to relieve the toxicological damage and ecological risk caused by Cd.
Collapse
|
96
|
Salli K, Lehtinen MJ, Tiihonen K, Ouwehand AC. Xylitol's Health Benefits beyond Dental Health: A Comprehensive Review. Nutrients 2019; 11:nu11081813. [PMID: 31390800 PMCID: PMC6723878 DOI: 10.3390/nu11081813] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022] Open
Abstract
Xylitol has been widely documented to have dental health benefits, such as reducing the risk for dental caries. Here we report on other health benefits that have been investigated for xylitol. In skin, xylitol has been reported to improve barrier function and suppress the growth of potential skin pathogens. As a non-digestible carbohydrate, xylitol enters the colon where it is fermented by members of the colonic microbiota; species of the genus Anaerostipes have been reported to ferment xylitol and produce butyrate. The most common Lactobacillus and Bifidobacterium species do not appear to be able to grow on xylitol. The non-digestible but fermentable nature of xylitol also contributes to a constipation relieving effect and improved bone mineral density. Xylitol also modulates the immune system, which, together with its antimicrobial activity contribute to a reduced respiratory tract infection, sinusitis, and otitis media risk. As a low caloric sweetener, xylitol may contribute to weight management. It has been suggested that xylitol also increases satiety, but these results are not convincing yet. The benefit of xylitol on metabolic health, in addition to the benefit of the mere replacement of sucrose, remains to be determined in humans. Additional health benefits of xylitol have thus been reported and indicate further opportunities but need to be confirmed in human studies.
Collapse
|
97
|
Souto DL, Lima ÉDS, Dantas JR, Zajdenverg L, Rodacki M, Rosado EL. Postprandial metabolic effects of fructose and glucose in type 1 diabetes patients: a pilot randomized crossover clinical trial. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:376-384. [PMID: 31365624 PMCID: PMC10528643 DOI: 10.20945/2359-3997000000148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/12/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To test the influence of oral fructose and glucose dose-response solutions in blood glucose (BG), glucagon, triglycerides, uricaemia, and malondialdehyde in postprandial states in type 1 diabetes mellitus (T1DM) patients. SUBJECTS AND METHODS The study had a simple-blind, randomized, two-way crossover design in which T1DM patients were selected to receive fructose and glucose solutions (75g of sugars dissolved in 200 mL of mineral-water) in two separate study days, with 2-7 weeks washout period. In each day, blood samples were drawn after 8h fasting and at 180 min postprandial to obtain glucose, glucagon, triglycerides, uric acid, lactate, and malondialdehyde levels. RESULTS Sixteen T1DM patients (seven men) were evaluated, with a mean age of 25.19 ± 8.8 years, a mean duration of disease of 14.88 ± 4.73 years, and glycated hemoglobin of 8.13 ± 1.84%. Fructose resulted in lower postprandial BG levels than glucose (4.4 ± 5.5 mmol/L; and 12.9 ± 4.1 mmol/L, respectively; p < 0.01). Uric acid levels increased after fructose (26.1 ± 49.9 µmol/L; p < 0.01) and reduced after glucose (-13.6 ± 9.5 µmol/L; p < 0.01). The malondialdehyde increased after fructose (1.4 ± 1.6 µmol/L; p < 0.01) and did not change after glucose solution (-0.2 ± 1.6 µmol/L; p = 0.40). Other variables did not change. CONCLUSIONS Fructose and glucose had similar sweetness, flavor and aftertaste characteristics and did not change triglycerides, lactate or glucagon levels. Although fructose resulted in lower postprandial BG than glucose, it increased uric acid and malondialdehyde levels in T1DM patients. Therefore it should be used with caution. ClinicalTrials.gov registration: NCT01713023.
Collapse
|
98
|
Zhang CH, Lv X, Du W, Cheng MJ, Liu YP, Zhu L, Hao J. The Akt/mTOR cascade mediates high glucose-induced reductions in BDNF via DNMT1 in Schwann cells in diabetic peripheral neuropathy. Exp Cell Res 2019; 383:111502. [PMID: 31323191 DOI: 10.1016/j.yexcr.2019.111502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Brain-derived neurotropic factor (BDNF) deficiency in Schwann cells plays an important role in the pathogenesis of diabetic peripheral neuropathy (DPN). Little is known about the mechanism involved in BDNF downregulation in Schwann cells in DPN. In this study, we first confirmed downregulation of BDNF and neurotrophin 3 expression in the sciatic nerves of diabetic mice, which was accompanied by myelin sheath abnormalities. Moreover, in vitro, high glucose was revealed to cause downregulation of BDNF, but not neurotrophin 3, expression in RSC96 cells, which was accompanied by DNA hypermethylation of BDNF promoters I and II. DNMT1 was subsequently revealed to be enhanced at the mRNA and protein levels in high glucose-stimulated RSC96 cells, and inhibition of DNMT1 with 5-Aza treatment or shRNA vector transfection reversed high glucose-induced reductions in BDNF expression. Furthermore, the mTOR and upstream Akt pathways were indicated to mediate high glucose-induced DNMT1 and BDNF expression in RSC96 cells. Taken together, our results suggest that the Akt/mTOR cascade mediates high glucose-induced reductions in BDNF via DNMT1 in Schwann cells in DPN.
Collapse
|
99
|
Emfinger CH, Lőrincz R, Wang Y, York NW, Singareddy SS, Ikle JM, Tryon RC, McClenaghan C, Shyr ZA, Huang Y, Reissaus CA, Meyer D, Piston DW, Hyrc K, Remedi MS, Nichols CG. Beta-cell excitability and excitability-driven diabetes in adult Zebrafish islets. Physiol Rep 2019; 7:e14101. [PMID: 31161721 PMCID: PMC6546968 DOI: 10.14814/phy2.14101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Islet β-cell membrane excitability is a well-established regulator of mammalian insulin secretion, and defects in β-cell excitability are linked to multiple forms of diabetes. Evolutionary conservation of islet excitability in lower organisms is largely unexplored. Here we show that adult zebrafish islet calcium levels rise in response to elevated extracellular [glucose], with similar concentration-response relationship to mammalian β-cells. However, zebrafish islet calcium transients are nor well coupled, with a shallower glucose-dependence of cytoplasmic calcium concentration. We have also generated transgenic zebrafish that conditionally express gain-of-function mutations in ATP-sensitive K+ channels (KATP -GOF) in β-cells. Following induction, these fish become profoundly diabetic, paralleling features of mammalian diabetes resulting from equivalent mutations. KATP -GOF fish become severely hyperglycemic, with slowed growth, and their islets lose glucose-induced calcium responses. These results indicate that, although lacking tight cell-cell coupling of intracellular Ca2+ , adult zebrafish islets recapitulate similar excitability-driven β-cell glucose responsiveness to those in mammals, and exhibit profound susceptibility to diabetes as a result of inexcitability. While illustrating evolutionary conservation of islet excitability in lower vertebrates, these results also provide important validation of zebrafish as a suitable animal model in which to identify modulators of islet excitability and diabetes.
Collapse
|
100
|
Bacharach SZ, Calu DJ. Stability of individual differences in sucralose taste preference. PLoS One 2019; 14:e0216431. [PMID: 31086418 PMCID: PMC6516736 DOI: 10.1371/journal.pone.0216431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/21/2019] [Indexed: 11/19/2022] Open
Abstract
Outbred rats display variable preferences for bittersweet solutions, expressed as preference or avoidance of high concentrations of artificial sweeteners over water. This may reflect individual differences in appetitive/aversive conflict processing that may have predictive validity for disorders of motivation. Here we use a homecage two-bottle choice procedure to examine the test/retest stability and between-tastant consistency in sucralose preference to determine the reliability of bittersweet taste preference. Sucralose is a non-caloric artificial sweetener that is preferred by some rats and avoided by others. We sought to determine whether sucralose preference is consistent with preference of sucrose/quinine solutions that have known sweet and bitter taste qualities, respectively. We give fluid restricted rats 45-minutes homecage access to water and ascending concentrations of sucralose (SUCRA; 0.0025-10mM) or a compound solution of sucrose (116mM) + quinine (0.002-2mM) (SQ). We use a within-subject counterbalanced design (SUCRA or SQ testing) to determine preference of each bittersweet solution relative to water. We observed individual variability in preference for SUCRA and SQ, such that some rats preferred bittersweet solutions over water (preferring) while other rats preferred water over bittersweet solutions (avoiding). Within tastant, this preference remained stable across repeated testing. Between solutions, SUCRA preference scores correlated with SQ scores, suggesting consistent taste conflict processing for both bittersweet solutions. Population level analyses confirmed that preference generalizes across bittersweet solutions, and that rats' preferences for bittersweet solutions relative to water are stable over time. The test/retest and between-tastant reliability of this taste conflict screening procedure support the potential utility of this model for exploring individual variability in appetitive/aversive conflict processes mediating motivated behavior.
Collapse
|