101
|
Raasch W, Jungbluth B, Schäfer U, Häuser W, Dominiak P. Modification of noradrenaline release in pithed spontaneously hypertensive rats by I1-binding sites in addition to alpha2-adrenoceptors. J Pharmacol Exp Ther 2003; 304:1063-71. [PMID: 12604683 DOI: 10.1124/jpet.102.044966] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is known that moxonidine acts as an agonist at presynaptic alpha(2)-adrenoceptors of the postganglionic sympathetic nerve terminals and leads to a reduction in noradrenaline release. In addition, it is conceivable that I(1)-binding sites located in other regions of the pre- and postganglionic sympathetic neurons are involved in this effect. Our aim was to investigate whether and to what extent activation of the I(1)-binding sites contributes to the moxonidine-induced inhibition of noradrenaline release. Noradrenaline release was induced in pithed spontaneously hypertensive rats (pretreated with phenoxybenzamine/desipramine at 10/0.5 mg/kg) by stimulation of sympathetic overflow from the spinal cord. Noradrenaline overflow was reduced using moxonidine (0.18, 0.6, and 1.8 mg/kg) by 39.4, 70.4, or 78.7%, respectively, even when all alpha(1)-/alpha(2)-adrenoceptors were blocked effectively by phenoxybenzamine. In contrast, the I(1)-antagonist efaroxan (0.1, 1, and 3 mg/kg) increased noradrenaline overflow from 453 (control) to 1710, 1999, or 2754 pg/ml, suggesting an autoreceptor-like function of I(1)-binding sites. In consequence, moxonidine (0.18, 0.6, and 1.8 mg/kg) reduced the increase in noradrenaline overflow in efaroxan-treated animals (1 mg/kg) by 22.7, 41.7, and 50.5%, respectively. Agmatine (6 and 60 mg/kg), an endogenous agonist at I(1)-binding sites, reduced noradrenaline overflow (-36 or 53%), even under alpha(2)-adrenoceptor blockade. When 2-endo-amino-3-exo-isopropylbicyclo[2.2.1]heptane (AGN192403) (10 mg/kg) was injected, a selective blocker of I(1)-binding sites, noradrenaline overflow was not influenced by agmatine. It is concluded that moxonidine reduces noradrenaline overflow by acting at I(1)-binding sites in addition to its agonistic property at alpha(2)-adrenoceptors. The exact location of the I(1)-binding sites on the pre- or postsynaptic sympathetic neurons is unknown, but the location in the pre- or postsynaptic membrane of the sympathetic ganglion is the most plausible explanation.
Collapse
|
102
|
Juhila J, Haapalinna A, Sirviö J, Sallinen J, Honkanen A, Korpi ER, Scheinin M. The alpha2-adrenoceptor antagonist atipamezole reduces the development and expression of d-amphetamine-induced behavioural sensitization. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 367:274-80. [PMID: 12644900 DOI: 10.1007/s00210-003-0695-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2002] [Accepted: 01/07/2003] [Indexed: 12/01/2022]
Abstract
The possible effect of atipamezole, a potent and specific alpha(2)-adrenoceptor antagonist, on the development and expression of d-amphetamine-induced behavioural sensitization was evaluated in mice. Male (C57Bl/6J) mice were given daily doses of d-amphetamine (2 mg/kg). In addition, groups of mice received injections of atipamezole (0.3 or 1 mg/kg) 20 min before d-amphetamine or vehicle administration. Idazoxan (1 mg/kg) was used in some experiments to extend the results to other alpha(2)-adrenoceptor antagonists. Challenge doses of d-amphetamine were administered to the mice on days 7-9 to evaluate the effects of alpha(2)-adrenoceptor antagonists on the d-amphetamine sensitization, evidenced by increased locomotor activation. Mice treated repeatedly with d-amphetamine developed strong locomotor sensitization that was reduced by pretreatment with alpha(2)-adrenoceptor antagonists. Acute atipamezole at both doses attenuated the expression of d-amphetamine-induced sensitization. Atipamezole at 1 mg/kg alone had no effect on locomotor activity, but the lower dose (0.3 mg/kg) increased locomotor activity after repeated administration. These results indicate that alpha(2)-adrenoceptor antagonists modulate the actions of d-amphetamine in a manner not explicable by their enhancing actions on noradrenaline and dopamine release, and may thus provide a novel approach to the treatment of motor complications caused by dopaminergic agents, such as dyskinesias, and perhaps also drug dependence.
Collapse
|
103
|
Bagamery K, Viski S, Predl A, Kovacs L. Imidazoline receptors in the human umbilical cord. Eur J Obstet Gynecol Reprod Biol 2003; 106:151-3. [PMID: 12551782 DOI: 10.1016/s0301-2115(02)00236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Imidazoline binding sites (IBS) are now accepted as being receptors, however, their physiological functions are not yet clearly understood. Previously, the authors demonstrated that the density of IBS in the human placenta significantly increased throughout gestation. The present study was performed for the identification of imidazoline receptors in the human umbilical cord.
Collapse
|
104
|
Takakura ACT, dos Santos Moreira T, De Luca LA, Renzi A, Menani JV. Central alpha(2) adrenergic receptors and cholinergic-induced salivation in rats. Brain Res Bull 2003; 59:383-6. [PMID: 12507689 DOI: 10.1016/s0361-9230(02)00929-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salivation induced by intraperitoneal (i.p.) injections of pilocarpine (cholinergic agonist) is reduced by intracerebroventricular (i.c.v.) injections of moxonidine (alpha(2) adrenergic and imidazoline receptor agonist). In the present study, we investigated the involvement of central alpha(2) adrenergic receptors in the inhibitory effect of i.c.v. moxonidine on i.p. pilocarpine-induced salivation. Male Holtzman rats with stainless steel cannula implanted into the lateral ventricle (LV) were used. Saliva was collected using pre-weighted small cotton balls inserted into the animal's mouth under ketamine (100 mg x kg(-1)) anesthesia. Salivation was induced by i.p. injection of pilocarpine (4 micromol x kg(-1)). Pilocarpine-induced salivation was reduced by i.c.v. injection of moxonidine (10 nmol) and enhanced by i.c.v. injections of either RX 821002 (160 nmol) or yohimbine (320 nmol). The inhibitory effect of i.c.v. moxonidine on pilocarpine-induced salivation was abolished by prior i.c.v. injections of the alpha(2) adrenergic receptor antagonists, RX 821002 (160 nmol) or yohimbine (160 and 320 nmol). The alpha(1) adrenergic receptor antagonist prazosin (320 nmol) injected i.c.v. did not change the effect of moxonidine on pilocarpine-induced salivation. The results suggest that moxonidine acts on central alpha(2) adrenergic receptors to inhibit pilocarpine-induced salivation, and that this salivation is tonically inhibited by central alpha(2) adrenergic receptors.
Collapse
|
105
|
Wang WZ, Yuan WJ, Yang J, Wang JW, Tang CS, Su DF. Involvement of I(1)-imidazoline receptors in baroreceptor reflex in the caudal ventrolateral medulla of rats. Brain Res 2003; 960:16-24. [PMID: 12505653 DOI: 10.1016/s0006-8993(02)03732-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is ample evidence to show the existence of center I(1)-imidazoline receptors that are involved in the regulation of cardiovascular activities. The purpose of this study was to examine the possible role of I(1)-imidazoline receptors and alpha(2)-adrenoceptors within the caudal ventrolateral medulla (CVLM) in mediating the baroreceptor reflex in anesthetized rats. Unilateral microinjection of idazoxan (2 nmol in 50 nl), a mixed antagonist of I(1)-imidazoline receptors and alpha(2)-adrenoceptors, into the CVLM significantly (P<0.01) decreased blood pressure (BP), heart rate (HR), and the firing rate of presympathetic neurons in the rostral ventrolateral medulla (RVLM) by 21+/-6 mmHg, 25+/-5 beats per min and 3.5+/-0.9 spikes/s, respectively. Moreover, unilateral injection of idazoxan into the CVLM significantly (P<0.01) reduced the inhibitory responses of the ipsilateral RVLM presympathetic neurons evoked by stimulation of aortic nerve and elevation of BP, and partially inhibited the neuronal cardiac cycle-related rhythm. Depressor responses evoked by aortic nerve stimulation were significantly (P<0.01) attenuated 10 and 20 min after bilateral microinjection of idazoxan (2 nmol in 50 nl for each side) into the CVLM (-20+/-4 and -30+/-4 vs. -40+/-1 mmHg). However, injection of yohimbine (500 pmol in 50 nl), a selective alpha(2)-adrenoceptor antagonist, into the CVLM did not affect the resting cardiovascular activities and baroreceptor reflex. It is concluded that the CVLM I(1)-imidazoline receptors are involved in maintenance of tonic cardiovascular activities and transmission of the baroreceptor reflex.
Collapse
|
106
|
Oliveira Margatho L, Pereira Barbosa S, Antonio De Luca L, Vanderlei Menani J. Central serotonergic and adrenergic/imidazoline inhibitory mechanisms on sodium and water intake. Brain Res 2002; 956:103-9. [PMID: 12426052 DOI: 10.1016/s0006-8993(02)03486-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent studies have shown the existence of two important inhibitory mechanisms for the control of NACL and water intake: one mechanism involves serotonin in the lateral parabrachial nucleus (LPBN) and the other depends on alpha(2)-adrenergic/imidazoline receptors probably in the forebrain areas. In the present study we investigated if alpha(2)-adrenergic/imidazoline and serotonergic inhibitory mechanisms interact to control NaCl and water intake. Male Holtzman rats with cannulas implanted simultaneously into the lateral ventricle (LV) and bilaterally into the LPBN were used. The ingestion of 0.3 M NaCl and water was induced by treatment with the diuretic furosemide (10 mg/kg of body weight)+the angiotensin converting enzyme inhibitor captopril (5 mg/kg) injected subcutaneously 1 h before the access of rats to water and 0.3 M NaCl. Intracerebroventricular (i.c.v.) injection of the alpha(2)-adrenergic/imidazoline agonist clonidine (20 nmol/1 microl) almost abolished water (1.6+/-1.2, vs. vehicle: 7.5+/-2.2 ml/2 h) and 0.3 M NaCl intake (0.5+/-0.3, vs. vehicle: 2.2+/-0.8 ml/2 h). Similar effects were produced by bilateral injections of the 5HT(2a/2c) serotonergic agonist 2,5-dimetoxy-4-iodoamphetamine (DOI, 5 microg/0.2 microl each site) into the LPBN on water (3.6+/-0.9 ml/2 h) and 0.3 M NaCl intake (0.4+/-0.2 ml/2 h). Injection of the alpha(2)-adrenergic/imidazoline antagonist idazoxan (320 nmol) i.c.v. completely blocked the effects of clonidine on water (8.4+/-1.5 ml/2 h) and NaCl intake (4.0+/-1.2 ml/2 h), but did not change the effects of LPBN injections of DOI on water (4.2+/-1.0 ml/2 h) and NaCl intake (0.7+/-0.2 ml/2 h). Bilateral injections of methysergide (4 microg/0.2 microl each site) into the LPBN increased 0.3 M NaCl intake (6.4+/-1.9 ml/2 h), not water intake. The inhibitory effect of i.c.v. clonidine on water and 0.3 M NaCl was still present after injections of methysergide into the LPBN (1.5+/-0.8 and 1.7+/-1.4 ml/2 h, respectively). The results show that the inhibitory effects of the activation of alpha(2)-adrenergic/imidazoline receptors in the forebrain are still present after blockade of the LPBN serotonergic mechanisms and vice versa for the activation of serotonergic mechanisms of the LPBN. Therefore, each system may act independently to inhibit NaCl and water intake.
Collapse
|
107
|
Kim NN, Min K, Huang YH, Goldstein I, Traish AM. Biochemical and functional characterization of alpha-adrenergic receptors in the rabbit vagina. Life Sci 2002; 71:2909-20. [PMID: 12377271 DOI: 10.1016/s0024-3205(02)02162-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vascular and non-vascular smooth muscle within the vagina mediate important physiological changes during sexual arousal in women. In this study, we have characterized alpha-adrenergic receptors (AR) in rabbit vagina by assessment of radioligand binding, contractility of isolated tissue strips and genital hemodynamics. [3H]Prazosin and [3H]RX821002 (alpha-1 and alpha-2 AR selective antagonists) bound to rabbit vaginal membrane preparations with high affinity and limited capacity. Competition binding assays using both non-selective and subtype selective ligands for AR (phentolamine, prazosin, delequamine, rauwolscine and UK14304) further confirmed the presence of alpha-1 and alpha-2 AR in vaginal tissue. In organ bath preparations of vaginal tissue strips, norepinephrine-induced contraction was attenuated by alpha-1 and alpha-2 AR antagonists (prazosin, tamsulosin, delequamine and phentolamine). In anesthetized rabbits, intravaginal injection of the alpha-1 AR selective antagonist REC 15/2615 (50 and 100 microg/kg) caused a 2 to 3-fold increase in genital tissue oxyhemoglobin (OHb) concentration. Similar increases in tissue OHb were observed with intravaginal injection of phentolamine (500 microg/kg) or a tri-mixture of vasodilators (PGE1, papaverine, phentolamine). REC 15/2615, phentolamine or the tri-mixture also enhanced the amplitude and/or duration of change in genital tissue OHb after pelvic nerve stimulation. Thus, vaginal tissue expresses functional alpha-1 and alpha-2 AR, which modulate vaginal smooth muscle contractility and genital engorgement.
Collapse
|
108
|
Vayssettes-Courchay C, Bouysset F, Cordi A, Laubie M, Verbeuren TJ. Effects of medullary alpha2-adrenoceptor blockade in the rat. Eur J Pharmacol 2002; 453:287-97. [PMID: 12398917 DOI: 10.1016/s0014-2999(02)02456-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of alpha2-adrenoceptor blockade in the medulla was studied in pentobarbital anesthetized rats in which arterial blood pressure, heart rate and renal sympathetic nerve activity were analysed. Three series of experiments were performed: (1) i.c. administration of alpha2-adrenoceptor antagonists with different subtype affinities; (2) i.v. administration of methoxy-idazoxan to study its effects on neuronal activity into the rostral ventral medulla; (3) microinjections of methoxy-idazoxan in rostral ventral medulla and nucleus tractus solitarii. Methoxy-idazoxan (0.1-3 microg x kg(-1) i.c., n=5), but not saline, rauwolscine, BRL 44408 (2-[2H-(1,3,dihydroisoindol)methyl]-4,5dihydroimidazol) or ARC 239 (2-[2-(4-(2-methoxyphenyl)piperazin-1-yl)ethyl]-4,4-dimethyl-1,3-(2H,4H)-isoquilindione) (each at 10-100 microg x kg(-1) i.c., n=5-5-6-5, respectively), increased mean arterial blood pressure, heart rate and renal nerve activity (+19+/-6 mm Hg, +72+/-22 beats x min(-1), +43+/-9%) and blocked the sympatho-inhibitory action of clonidine (10 microg x kg(-1) i.v.). In further experiments, methoxy-idazoxan, BRL 44408 and the highest dose of rauwolscine i.c., reversed the clonidine-induced sympatho-inhibition (order of potency: methoxy-idazoxan>BRL4440>rauwolscine, n=6 each), whereas ARC 239 (n=5) or saline (n=7) did not. Methoxy-idazoxan i.v. (n=7, 10-100 microg x kg(-1)) increased the renal sympathetic nerve and rostral ventral medulla neuronal activity and the heart rate (+36+/-7%, +66+/-29% and +18+/-9 beats x min(-1)) without a significant effect on mean arterial blood pressure. Microinjection of methoxy-idazoxan (1 nmol/40 nl) into the rostral ventral medulla reversed the effect of clonidine microinjected into the same site (2 nmol/40 nl, n=5). In another group of rats (n=8), methoxy-idazoxan increased mean arterial blood pressure, heart rate and renal nerve activity (+16+/-2 mm Hg, +42+/-7 beats x min(-1), +24+/-5%) and blocked the effect of clonidine i.v. (10 microg x kg(-1)). Bilateral microinjections into the nucleus tractus solitarii (n=5) did not alter mean arterial blood pressure but decreased heart rate and sympathetic nerve activity (-30+/-16 beats x min(-1), -20+/-14%). Our results offer direct in vivo evidence for the main role of the alpha2A/D-adrenoceptors located in the ventral pressor area. The data show that the sympathy-excitatory effect of alpha2-adrenoceptor antagonists is due to the blockade of a tonic activation of these alpha2A/D-adrenoceptors present in the rostral ventral pressor area.
Collapse
|
109
|
Erami C, Zhang H, Ho JG, French DM, Faber JE. Alpha(1)-adrenoceptor stimulation directly induces growth of vascular wall in vivo. Am J Physiol Heart Circ Physiol 2002; 283:H1577-87. [PMID: 12234812 DOI: 10.1152/ajpheart.00218.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies suggesting that norepinephrine is directly trophic for the vascular wall have been confounded by concomitant hemodynamic disturbances. Herein, a microcatheter connected to an osmotic minipump was implanted adjacent to the rat carotid for 2-wk perivascular suffusion of agents at systemic levels ~1,000 times below the threshold for altering arterial pressure. Norepinephrine decreased lumen and adventitial areas and circumference by 10, 14, and 5%, respectively (all P < 0.05); a nonsubtype-specific alpha(1)-adrenoceptor (AR) antagonist had no effect. When begun at the time of balloon injury, 2-wk norepinephrine increased lumen loss by 45%, increased neointimal area by 64% and collagen content by 33%, and reduced vessel circumference by 5% (all P < 0.05). alpha(1)-AR antagonists decreased neointimal area by 33% (all P < 0.05). alpha(1)A-AR antagonist reduced lumen loss by 70%, neointimal area by 54%, circumference decline by 84%, and adventitial thickening by 87% (all P < 0.05), whereas alpha(1B)-, alpha(1D)-, alpha(2)- and beta-AR antagonists were without effect. These are the first in vivo studies demonstrating that norepinephrine is directly trophic for the vascular wall and augments injury-induced intimal lesion growth.
Collapse
|
110
|
Clarke RW, Eves S, Harris J, Peachey JE, Stuart E. Interactions between cutaneous afferent inputs to a withdrawal reflex in the decerebrated rabbit and their control by descending and segmental systems. Neuroscience 2002; 112:555-71. [PMID: 12074898 DOI: 10.1016/s0306-4522(02)00093-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have suggested that activation of nociceptive afferents from the heel recruits a supraspinal mechanism, which is modulated by adrenergic descending inhibition, that augments withdrawal reflexes in medial gastrocnemius (MG) motoneurones. To test this idea, we have studied the temporal evolution of reflexes evoked in MG by electrical stimulation of sural nerve A(beta)-, A(delta)- and C-fibre axons at 1 Hz, in decerebrated rabbits. Reflexes were analysed in three time bands, estimated to accord to afferent drive from A(beta)- (phase 1), A(delta)- (phase 2) and C-fibre (phase 3) inputs. Stimulation of A(delta)- and C-fibres gave significant temporal summation of all reflexes. The alpha(2)-adrenoceptor antagonist RX 821002 ((2-(2,3-dihydro-2-methoxy-1,4-benzodioxin-2-yl)-4,5-dihydro-1-H-imidazole)-HCl) (100 microg intrathecal (i.t.)) potentiated, and the alpha(2)-agonist dexmedetomidine (1-30 microg i.t.) depressed all reflexes per se, but the effects of these drugs on temporal summation were secondary to changes in baseline excitability. When C-fibres were stimulated, the N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (1 mg i.t.) reduced temporal summation of phase 2 and 3 but not phase 1 reflexes. Spinalisation at L1 in the absence of drugs increased phase 2 and 3 reflexes but had no effect on phase 1, whereas spinalisation after RX 821002 resulted in decreased phase 1 responses with no significant change in later phases. Spinalisation in the presence of dizocilpine resulted in small reductions in phase 3 reflexes only. In all cases spinalisation virtually abolished temporal summation. In spinalised animals, dizocilpine selectively reduced late reflexes, and the opioid antagonist naloxone (100 microg i.t.) augmented all reflexes but gave rise to temporal subtraction of reflexes when C-fibres were stimulated.The present experiments have revealed a number of novel and important features of the sural-MG reflex pathway: (i) activity in fine afferent axons augments the reflexogenic potential of all subsequent afferent input, thereby allowing all afferent drive from the sural field to contribute to withdrawal of the heel; (ii) endogenous adrenergic control of this reflex pathway is completely non-selective; (iii) there is a non-adrenergic element of descending inhibition that is selective for the late components of MG reflex responses, and this element is directed particularly against transmission through NMDA receptors; (iv) temporal summation in this reflex is dependent on NMDA receptor-dependent and -independent mechanisms; and (v) this temporal summation is in some way dependent on the integrity of descending pathways.
Collapse
|
111
|
Szabo ST, Blier P. Effects of serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibition plus 5-HT(2A) receptor antagonism on the firing activity of norepinephrine neurons. J Pharmacol Exp Ther 2002; 302:983-91. [PMID: 12183655 DOI: 10.1124/jpet.102.033282] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
YM992 [(S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride] is a selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) and a potent 5-HT(2A) antagonist. The aim of the present study was to assess, using in vivo extracellular unitary recordings, the effect of acute and sustained administration of YM992 (40 mg kg(-1) day(-1) s.c., using osmotic minipumps) on the spontaneous firing activity of locus coeruleus (LC) norepinephrine (NE) neurons. Acute intravenous injection of YM992 (4 mg kg(-1)) significantly decreased NE neuron firing activity by 29% and blocked the inhibitory effect of a subsequent injection of the 5-HT(2) agonist DOI [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride]. A 2-day treatment with YM992 decreased the firing rate of NE neurons by 66%, whereas a partial recovery was observed after a 7-day treatment and a complete one after a 21-day treatment. Following the injection of the alpha(2)-adrenoceptor antagonist idazoxan (1 mg kg(-1) i.v.), NE neuron firing was equalized in controls and 2-day YM992-treated rats. This put into evidence an increased degree of activation of alpha(2)-adrenergic autoreceptors in the treated rats. The suppressant effect of the alpha(2)-adrenoceptor agonist clonidine was significantly decreased in long-term YM992-treated rats. The recovery of LC firing activity after long-term YM992 administration could thus be explained by a decreased sensitivity of alpha(2)-adrenergic autoreceptors. Sustained SSRI administration leads to a gradual reduction of the firing activity of NE neurons during long-term administration, whereas YM992 produced opposite effects. The exact basis for the increased synaptic availability of NE by YM992 remains to be elucidated. This NE activity, resulting from 5-HT reuptake inhibition plus 5-HT(2A) receptor antagonism, might confer additional benefits in affective and anxiety disorders.
Collapse
|
112
|
Pauwels PJ, Tardif S. Enhanced stability of wild-type and constitutively active alpha(2A)-adrenoceptors by ligands with agonist, silent and inverse agonist properties. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2002; 366:134-41. [PMID: 12122500 DOI: 10.1007/s00210-002-0562-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2001] [Accepted: 02/15/2002] [Indexed: 10/27/2022]
Abstract
The hypothesis that prolonged treatment of a constitutively active receptor with inverse agonists may lead to increased receptor density was tested for the alpha(2)-adrenoceptor (AR) inverse agonist (+)-RX 811059 at both the wild-type (WT) and Thr(373)Lys alpha(2A) ARs in CHO-K1 cells by monitoring [(3)H]RX 821002 and [(35)S]GTPgammaS binding responses. One-hundred micromolar KCl instead of NaCl in the [(35)S]GTPgammaS membrane binding assay favoured the detection of a high-magnitude constitutive alpha(2A) AR activity. Under this condition, (+)-RX 811059 was an inverse agonist [ E(max) (% vs. basal): Thr(373)Lys alpha(2A) AR (-52+/-2) > WT alpha(2A) AR (-31+/-6)] while atipamezole was a silent neutral antagonist for both WT and Thr(373)Lys alpha(2A) ARs. The B(max) value of [(3)H]RX 821002 binding sites to membranes of transfected CHO-K1 cells was <90% for the Thr(373)Lys alpha(2A) AR compared with the WT alpha(2A) AR (9.1+/-1.4 pmol/mg protein); K(d) values were similar (1.16+/-0.19 nM and 1.51+/-0.15 nM, respectively). Forty-eight-hours' pre-treatment of cells with either 0.1 microM (+)-RX 811059, 1 microM atipamezole or 1 microM of the efficacious agonist d-medetomidine increased the amount of [(3)H]RX 821002 binding sites of both WT (52%-59%) and mutant (306%-447%) Thr(373)Lys alpha(2A) ARs. The same alpha(2) AR ligands also prevented the loss of [(3)H]RX 821002 binding sites as induced by incubation of transfected CHO-K1 cellular membranes at 37 degrees C for 4 h (WT alpha(2A) AR) and 2 h (Thr(373)Lys alpha(2A) AR); 0.1 microM (+)-RX 811059 and 1 microM atipamezole caused an increase compared with the control amount of [(3)H]RX 821002 binding sites to the Thr(373)Lys alpha(2A) AR by 73% and 50%, respectively. In conclusion, no relationship was found between inverse agonism and alpha(2A) AR up-regulation. It is suggested that this is due to structural stabilisation of the alpha(2A) AR, irrespective of the nature of the ligand.
Collapse
|
113
|
Lin CR, Chuang YC, Cheng JT, Wang CJ, Yang LC. Intrathecal clonidine decreases spinal nitric oxide release in a rat model of complete Freund's adjuvant induced inflammatory pain. Inflammation 2002; 26:161-6. [PMID: 12184629 DOI: 10.1023/a:1016563628274] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A long-lasting antihyperalgesic effect has been demonstrated for intrathecal (IT) clonidine, an alpha2-adrenergic agonist. In the present study, the mechanism and antihyperalgesic effects of IT clonidine were examined post-treatment in a rat model of Complete Freund's Adjuvant (CFA)-induced inflammatory hyperalgesia. Using a chronic model of spinal cord dialysis, we examined the effect of the adjuvant-induced inflammation on spinal release of nitric oxide (NO) and the development of chronic pain and assessed the antinociceptive effects and mechanisms of the alpha2-adrenergic agonist, clonidine (IT). Chronic, persistent inflammatory pain was induced by left hind paw injection of 0.3 ml CFA prepared in a mixture with Mycobacterium butyricum. Rats were randomly assigned to groups receiving IT clonidine in discrete doses of 1, 10 or 50 microg, 3 or 24 hr post-inflammation. Measurement of total NOx (NO + NO2- + NO3-) was used to determine NO release into the cerebrospinal fluid. Rat thermal antinociception was assessed using a radiant heat thermal hyperalgesia model. CFA injection resulted in significant thermal hyperalgesia throughout the four days of observation. A dose-dependent suppression of thermal hyperalgesia and spinal NO release was observed after IT clonidine treatment. Evidence from this CFA-induced inflammatory pain model suggests that clonidine's spinal antihyperalgesic mechanisms act through inhibition of spinal NO release.
Collapse
|
114
|
Artigues-Varin C, Richard V, Varin R, Mulder P, Thuillez C. Alpha2-adrenoceptor ligands inhibit alpha1-adrenoceptor-mediated contraction of isolated rat arteries. Fundam Clin Pharmacol 2002; 16:281-7. [PMID: 12570016 DOI: 10.1046/j.1472-8206.2002.00091.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The experiments in this study were designed to investigate the potential relaxing effects of different compounds known as alpha2-imidazoline ligands (either agonists or antagonists) in isolated rat arteries, and to test the role of nitric oxide (NO) and prostaglandins, in addition to the influence of the nature of the contracting agent in these responses. Segments of mesenteric arteries were isolated and mounted in a small vessel myograph (JP Trading, Aarhus, Denmark) for isometric tension recording, while segments of gracilis muscle arteries were cannulated and studied in the pressurized state using an arteriograph (Living Systems Instrumentation, Burlington, VT, USA). In phenylephrine precontracted mesenteric arteries, the agonists clonidine, BHT920, UK 14304, and rilmenidine, as well as the antagonists idazoxan, yohimbine and rauwolscine, all induced marked relaxations. Similarly, clonidine and idazoxan, both induced marked dilatations of phenylephrine preconstricted gracilis muscle arteries. In both mesenteric and gracilis muscle arteries, the responses to clonidine and idazoxan were not affected by the NO synthase inhibitor (omega)-nitro-L-arginine (L-NA, 10(-5) M) or the cyclooxygenase inhibitor diclofenac (10(-5) M). In mesenteric arteries, the responses to clonidine or idazoxan were similar when the arteries were precontracted by different alpha1-adrenoceptor agonists (phenylephrine, methoxamine or norepinephrine). In contrast, in arteries precontracted by PGF2alpha or endothelin, clonidine induced contractions while idazoxan induced very modest relaxations. Thus, alpha2-adrenoceptor/imidazoline ligands (whether agonists and antagonists) induce paradoxical relaxation of small mesenteric or gracilis muscle arteries of rats, which are not affected by NO-synthase or cyclooxygenase inhibition, and appear related to direct non specific interactions of the alpha2-imidazoline ligands with alpha1-adrenergic receptors in vascular smooth muscle.
Collapse
|
115
|
Bayer LE, Kakumanu S, Mactutus CF, Booze RM, Strupp BJ. Prenatal cocaine exposure alters sensitivity to the effects of idazoxan in a distraction task. Behav Brain Res 2002; 133:185-96. [PMID: 12110452 DOI: 10.1016/s0166-4328(02)00002-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study was designed to test whether prenatal cocaine (COC) exposure alters sensitivity to the attentional effects of idazoxan (IDZ), an alpha-2 adrenergic antagonist that increases coeruleocortical NE activity. The task assessed subjects' ability to selectively attend to an unpredictable light cue and disregard olfactory distractors. IDZ increased commission errors specifically under conditions of distraction, an effect that was similar in the COC and control groups. In contrast, COC animals were significantly more sensitive than controls to the effects of IDZ on omission errors and nontrials. The pattern of effects suggests that the differential treatment response to IDZ on these latter measures resulted from an alteration in norepinephrine (NE)-modulated dopamine release in the COC animals, reflecting lasting changes in dopaminergic and/or noradrenergic systems as a result of the early cocaine exposure. Based on the behavioral measures that showed a differential response to IDZ in the COC animals, it seems likely that these changes may contribute to the alterations in sustained attention and arousal regulation that have been reported in both animals and humans exposed to cocaine in utero.
Collapse
|
116
|
Franowicz JS, Arnsten AFT. Actions of alpha-2 noradrenergic agonists on spatial working memory and blood pressure in rhesus monkeys appear to be mediated by the same receptor subtype. Psychopharmacology (Berl) 2002; 162:304-12. [PMID: 12122489 DOI: 10.1007/s00213-002-1110-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2001] [Accepted: 03/15/2002] [Indexed: 10/27/2022]
Abstract
RATIONALE alpha-2 Noradrenergic agonists improve spatial working memory in animals and in humans. Of the three alpha-2 receptor subtypes, evidence has suggested that this cognitive improvement may be mediated by the alpha-2A receptor subtype, but this has not been established. alpha-2 Agonists are also known to decrease blood pressure significantly. Recent evidence using genetically altered mice indicates that the alpha-2A receptor subtype mediates this decrease in blood pressure. OBJECTIVES The present study examined whether the cognitive improvement and hypotension produced by alpha-2 agonists are mediated by the same receptor subtype in rhesus monkeys. The hypotensive and cognitive-enhancing effects of clonidine and guanfacine were challenged with two alpha-2 antagonists with differing affinities for the three alpha-2 receptor subtypes: MK912, a potent antagonist which shows preferential binding to the alpha-2C receptor subtype, and idazoxan, which slightly prefers the alpha-2A receptor subtype. If alpha-2C receptors contribute to the cognitive enhancement, MK912 should reverse the cognitive-enhancing effects of alpha-2 agonists at lower doses than those needed to reverse the hypotensive effects of these compounds. Conversely, if alpha-2A receptors contribute to cognitive enhancement, MK912 and idazoxan should reverse the cognitive-enhancing effects of alpha-2 agonists at the same doses as those needed to reverse the hypotensive effects of these compounds. RESULTS MK-912 and idazoxan dose-dependently reversed both clonidine and guanfacine-induced cognitive improvement and hypotension. Both antagonists were equally potent in reversing either the cognitive enhancement or the hypotension. CONCLUSIONS The identical pattern of dose-dependent reversal of cognitive improvement and hypotension indicates that, in non-human primates, the same receptor subtype mediates both effects. Previous evidence suggests that the most likely candidate is the alpha-2A receptor subtype.
Collapse
|
117
|
Finn DP, Lalies MD, Harbuz MS, Jessop DS, Hudson AL, Nutt DJ. Imidazoline(2) (I(2)) binding site- and alpha(2)-adrenoceptor-mediated modulation of central noradrenergic and HPA axis function in control rats and chronically stressed rats with adjuvant-induced arthritis. Neuropharmacology 2002; 42:958-65. [PMID: 12069906 DOI: 10.1016/s0028-3908(02)00046-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aim of this study was to investigate imidazoline(2) (I(2)) binding site- and alpha(2)-adrenoceptor-mediated control of central noradrenergic and HPA axis activity in control rats and chronically stressed rats with adjuvant-induced arthritis (AA). Basal levels of extracellular nonadrenaline (NA) in the region of the hypothalamic paraventricular nucleus (PVN) of AA rats were significantly greater than controls. Both the I(2) binding site selective ligand BU224 (10 mg kg(-1) i.p.) and the alpha(2)-adrenoceptor antagonist RX821002 (2.5 mg kg(-1) i.p.) significantly elevated extracellular levels of NA in the PVN region and plasma corticosterone (CORT) in a rapid and transient manner in both control and AA rats. The noradrenergic response of AA rats to BU224 was significantly enhanced compared with drug treated controls. There was a significant correlation between extracellular NA in the PVN region and plasma CORT following BU224 and RX821002. In conclusion, central noradrenergic and HPA axis activity in control and chronically stressed AA rats appear to be under the control of both I(2) binding sites and alpha(2)-adrenoceptors. Increased basal levels of extracellular NA in the PVN region of AA rats suggests increased noradrenergic activity in these animals which is modulated to a greater extent by I(2) binding sites than by alpha(2)-adrenoceptors.
Collapse
|
118
|
Hayward LF, Riley AP, Felder RB. alpha(2)-Adrenergic receptors in NTS facilitate baroreflex function in adult spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2002; 282:H2336-45. [PMID: 12003844 DOI: 10.1152/ajpheart.00167.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effect of alpha(2)-adrenoreceptor blockade in the nucleus of the solitary tract (NTS) on baroreflex responses elicited by electrical stimulation of the left aortic depressor nerve (ADN) in urethane-anesthetized spontaneously hypertensive rats (SHR, n = 11) and normotensive Wistar-Kyoto rats (WKY, n = 11). ADN stimulation produced a frequency-dependent decrease in mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and heart rate (HR). In SHR, unilateral microinjection of idazoxan into the NTS markedly reduced baroreflex control of MAP, RSNA, and HR and had a disproportionately greater influence on baroreflex control of MAP than of RSNA. In WKY, idazoxan microinjections did not significantly alter baroreflex function relative to control vehicle injections. These results suggest that baroreflex regulation of arterial pressure in SHR is highly dependent on NTS adrenergic mechanisms. The reflex regulation of sympathetic outflow to the kidney is less influenced by the altered alpha(2)-adrenoreceptor mechanisms in SHR.
Collapse
|
119
|
Zhang H, Facemire CS, Banes AJ, Faber JE. Different alpha-adrenoceptors mediate migration of vascular smooth muscle cells and adventitial fibroblasts in vitro. Am J Physiol Heart Circ Physiol 2002; 282:H2364-70. [PMID: 12003847 DOI: 10.1152/ajpheart.00858.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Norepinephrine directly induces growth of the vascular wall, which may involve not only proliferation of smooth muscle cells (SMCs) and adventitial fibroblasts (AFBs) but also augmentation of their migration. To test this hypothesis, growth-arrested SMCs and AFBs from rat aorta were exposed to norepinephrine. Norepinephrine caused dose-dependent migration of both cell types that was dependent on chemotaxis. In contrast, platelet-derived growth factor (PDGF)-BB, used as a positive control, stimulated both chemotaxis and chemokinesis. Only alpha(1D)-adrenoceptors (AR) and alpha(2)-AR antagonists inhibited norepinephrine migration of SMCs, whereas norepinephrine migration of AFBs was only inhibited by alpha(1A)-AR and alpha(1B)-AR antagonists; beta-AR blockade was without effect. Norepinephrine and PDGF-BB were additive for AFB, but not SMC, migration. Stimulation of migration was reversed at high norepinephrine concentrations (10 microM); this inhibition was mediated by alpha(2)- and beta-ARs in AFBs but not in SMCs. Thus norepinephrine induces migration of SMCs and AFBs via different alpha-ARs. This action may participate in wall remodeling and norepinephrine potentiation of injury-induced intimal lesion growth.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Aorta, Thoracic
- Becaplermin
- Cell Movement/drug effects
- Chemotaxis
- Fibroblasts/cytology
- Idazoxan/analogs & derivatives
- Idazoxan/pharmacology
- Muscle, Smooth, Vascular/cytology
- Norepinephrine/administration & dosage
- Norepinephrine/pharmacology
- Platelet-Derived Growth Factor/pharmacology
- Proto-Oncogene Proteins c-sis
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha/physiology
- Receptors, Adrenergic, alpha-1/physiology
- Receptors, Adrenergic, alpha-2/physiology
- Receptors, Adrenergic, beta/physiology
Collapse
|
120
|
Bishai JM, Penninga L, Nijland R, Meulenaar R, Gheorghe CP, Zhao Y, Buchholz JN, Zhang L, Longo LD. Pre- and postjunctional alpha(2)-adrenergic receptors in fetal and adult ovine cerebral arteries. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1654-62. [PMID: 12010747 DOI: 10.1152/ajpregu.00475.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In ovine cerebral arteries, adrenergic-mediated vasoconstrictor responses differ significantly with developmental age. We tested the hypothesis that, in part, these differences are a consequence of altered alpha(2)-adrenergic receptor (alpha(2)-AR) density and/or affinity. In fetal (approximately 140 days) and adult sheep, we measured alpha(2)-AR density and affinity with the antagonist [(3)H]idazoxan in main branch cerebral arteries and other vessels. We also quantified contractile responses in middle cerebral artery (MCA) to norepinephrine (NE) or phenylephrine in the presence of the alpha(2)-AR antagonists yohimbine and idazoxan and contractile responses to the alpha(2)-AR agonists clonidine and UK-14304. In fetal and adult cerebral artery homogenates, alpha(2)-AR density was 201 +/- 18 and 52 +/- 6 fmol/mg protein, respectively (P < 0.01); however, antagonist affinity values did not differ. In fetal, but not adult, MCA, 10(-7) M yohimbine significantly decreased the pD(2) for NE-induced tension in the presence of 3 x 10(-5) M cocaine, 10(-5) M deoxycorticosterone, and 10(-6) M tetrodotoxin. In fetal, but not adult, MCA, UK-14304 induced a significant decrease in pD(2) for the phenylephrine dose-response relation. In addition, stimulation-evoked fractional NE release was significantly greater in fetal than in adult cerebral arteries. In the presence of 10(-6) M idazoxan to block alpha(2)-AR-mediated inhibition of prejunctional NE release, the fractional NE release was significantly increased in both age groups. We conclude that in fetal and adult ovine cerebral arteries, alpha(2)-AR appear to be chiefly prejunctional. Nonetheless, the fetal cerebral arteries appear to have a significant component of postjunctional alpha(2)-AR.
Collapse
|
121
|
Moreira TDS, Takakura ACT, De Luca LA, Renzi A, Menani JV. Inhibition of pilocarpine-induced salivation in rats by central noradrenaline. Arch Oral Biol 2002; 47:429-34. [PMID: 12102758 DOI: 10.1016/s0003-9969(02)00031-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peripheral treatment with cholinergic or adrenergic agonists results in salivation and the possibility of synergy between cholinergic and adrenergic efferent mechanisms in the control of salivation has been proposed. Central injections of the cholinergic agonist pilocarpine also induce salivation, while the effects of central injections of noradrenaline (norepinephrine) are not known. Here (a) the effects of intracerebroventricular (i.c.v.) injection of noradrenaline on the salivation induced by i.c.v. or intraperitoneal (i.p.) injection of pilocarpine and (b) the receptors involved in the effects of central noradrenaline on pilocarpine-induced salivation were investigated. Male Holtzman rats with a stainless-steel guide cannula implanted into the lateral ventricle were used. Rats were anaesthetized with tribromoethanol (200mg/kg body weight) and saliva was collected on small, preweighed cotton balls inserted into the animal's mouth. Noradrenaline (40, 80 and 160 nmol/1 microl) injected i.c.v. reduced the salivary secretion induced by pilocarpine (0.5 micro mol/1 microl) injected i.c.v.. Noradrenaline (80 and 160 nmol/1 microl) injected i.c.v. also reduced the salivation induced by pilocarpine (4 micromol/kg) injected i.p. Previous treatment with the alpha(2)-adrenergic receptor antagonists RX 821002 (40, 80 and 160 nmol/1 microl) or yohimbine (160 and 320 nmol/1 microl) abolished the inhibitory effect produced by i.c.v. injection of noradrenaline on pilocarpine-induced salivation in rats. Prazosin (alpha(1)-adrenergic receptor antagonist) injected icv did not change the effect of noradrenaline on pilocarpine-induced salivation. Prior icv injection of only RX 821002 (80 or 160 nmol/1 microl) or yohimbine (320 nmol/1 microl) increased pilocarpine-induced salivation. The results show that (1) contrary to its peripheral effects, noradrenaline acting centrally inhibits cholinergic-induced salivation in rats; (2) central mechanisms involving alpha(2)-adrenergic receptors inhibit pilocarpine-induced salivation.
Collapse
|
122
|
Fernández-Pastor B, Meana JJ. In vivo tonic modulation of the noradrenaline release in the rat cortex by locus coeruleus somatodendritic alpha(2)-adrenoceptors. Eur J Pharmacol 2002; 442:225-9. [PMID: 12065075 DOI: 10.1016/s0014-2999(02)01543-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The regulation of noradrenaline release in the rat cingulate cortex by somatodendritic alpha(2)-adrenoceptors placed in the locus coeruleus was evaluated by dual-probe microdialysis. The alpha(2)-adrenoceptor antagonists BRL44408 (2-[2H-(1-methyl-1,3-dihydroisoindole)methyl]-4,5-dihydroimidazole), RS79948 ((8,12,13)-decahydro-3methoxy-12-(ethylsulphonyl)-6H-isoquino[2,1-g][1,6]-naphthyridine) and RX821002 (2-methoxyidazoxan) administered by reverse dialysis into the locus coeruleus increased concentration-dependently (0.01-100 microM) noradrenaline release in the cortex (maximal effects 170+/-30%, 543+/-17%, 195+/-26%, respectively). Administration of the alpha(2)-adrenoceptor antagonist idazoxan increased at lower (0.1-10 microM) but decreased at the highest dose (100 microM) noradrenaline in the cortex. These data demonstrate that somatodendritic alpha(2)-adrenoceptors in the locus coeruleus exert an inhibitory tonic modulation on noradrenaline release in noradrenergic terminal areas.
Collapse
|
123
|
Pozzoli C, Todorov S, Schunack W, Timmerman H, Coruzzi G, Poli E. Role of histamine H3 receptors in control of mouse intestinal motility in vivo and in vitro: comparison with alpha2-adrenoceptors. Dig Dis Sci 2002; 47:1065-72. [PMID: 12018901 DOI: 10.1023/a:1015038107315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
We tested drugs acting at histamine H3 receptors in mice on the gastrointestinal transit of a charcoal meal in vivo and on neurogenic contractions of isolated ileal preparations. The agonist (R)-alpha-methylhistamine (100 micromol/kg) caused a maximum 25% reduction of gastrointestinal transit, an effect mimicked by immepip (100 micromol/kg) and antagonized by thioperamide (20 micromol/kg) or clobenpropit (20 micromol/kg). In the isolated ileum, (R)-alpha-methylhistamine (10-100 microM) caused a slight, thioperamide-insensitive, reduction (maximum 15%) of electrically evoked cholinergic contractions. In comparison, the alpha2-adrenoceptor agonist clonidine (0.1 micromol/kg) caused a 35.2% inhibition of the gastrointestinal transit and almost completely reduced (maximum 82% at 1 microM) the cholinergic contraction of the isolated ileum, both effects being antagonized by idazoxan (0.4 micromol/kg and 1 microM, respectively). These results suggest that histamine H3 receptors, located outside the myenteric plexus, mediate an inhibition of the gastrointestinal transit in vivo. Conversely, the presence of a2-adrenoceptors in the cholinergic nerve endings and their inhibitory role in the control of gastrointestinal propulsion is confirmed.
Collapse
|
124
|
Cussac D, Schaak S, Gales C, Flordellis C, Denis C, Paris H. alpha(2B)-Adrenergic receptors activate MAPK and modulate proliferation of primary cultured proximal tubule cells. Am J Physiol Renal Physiol 2002; 282:F943-52. [PMID: 11934705 DOI: 10.1152/ajprenal.0108.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the rat proximal tubule, the alpha(2B)-adrenergic receptor (alpha(2B)-AR) enhances Na(+) reabsorption by increasing the activity of Na(+)/H(+) exchanger isoform NHE3. The mechanisms involved are unclear, and inhibition of cAMP production remains controversial. In this study, we reinvestigated alpha(2B)-AR signaling pathways using rat proximal tubule cells (PTC) in primary culture and LLC-PK(1) cells permanently transfected with the RNG gene (rat nonglycosylated alpha(2)-AR). Binding experiments indicated that PTC express substantial amounts of alpha(2B)-AR (130 fmol/mg protein), and only RNG transcripts were detected. In both cell types, the alpha(2B)-AR is coupled to G protein, and its stimulation by dexmedetomidine, but not by UK-14304, provoked a significant inhibition of the accumulation of cAMP induced by forskolin or parathyroid hormone. Exposure to alpha(2)-agonists increased arachidonic acid release and caused extracellular signal-regulated kinase (ERK)1/2 phosphorylation, which correlated with enhanced mitogen-activated protein kinse (MAPK) activity and nuclear translocation. MAPK phosphorylation was blunted by pertussis toxin but not by protein kinase C desensitization, and it coincided with transient phosphorylation of Shc. Finally, treatment with UK-14304 accelerated cell growth. Further studies will be necessary to clarify the precise mechanism of MAPK activation, but the present data suggest that alpha(2B)-AR may play a positive role during tubular regeneration.
Collapse
|
125
|
Li X, Conklin D, Ma W, Zhu X, Eisenach JC. Spinal noradrenergic activation mediates allodynia reduction from an allosteric adenosine modulator in a rat model of neuropathic pain. Pain 2002; 97:117-25. [PMID: 12031785 DOI: 10.1016/s0304-3959(02)00011-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of adenosine A1 receptors by endogenous adenosine or synthetic agonists produces anti-nociception in animal models of acute pain and also reduces hypersensitivity in models of inflammatory and nerve-injury pain. Allosteric adenosine modulators facilitate adenosine agonist binding to the A1 receptor. The purpose of the current study was to examine the effect, mechanisms of action, and interaction with noradrenergic systems of intrathecal (i.t.) or oral administration of the allosteric adenosine modulator T62 in a rat model of neuropathic pain. A spinal nerve ligation rat model (SNL; ligation of left L5 and L6 spinal nerve roots) was used. One week after SNL surgery, an i.t. catheter was inserted. Withdrawal threshold to mechanical stimulation of the left hind paw was determined before and after surgery, confirming mechanical hypersensitivity. Oral or i.t. T62 reduced hypersensitivity induced by SNL. The effects of i.t. T62 were inhibited by i.t. injection of an A1 receptor antagonist and by an 2-adrenergic antagonist but not by an A2 adenosine receptor antagonist. Anti-dopamine hydroxylase (DH)-saporin treatment reduce spinal norepinephrine content by 97%, accompanied by an almost complete loss of DH immunoreactive axons in the spinal dorsal horn and neurons in the locus coeruleus. The effect of T62 was completely lost in animals treated with anti-DH-saporin. These data support the hypothesis that activation of the A1 receptor by the allosteric modulator, T62, produces anti-nociception via spinal noradrenergic activation.
Collapse
|