126
|
Luján R, Martín-Belmonte A, Ferré S, Ciruela F. Amyloid-beta pathology-induced nanoscale synaptic disruption: the case of the GABAB-GIRK assembly. Neural Regen Res 2025; 20:1409-1410. [PMID: 39075907 DOI: 10.4103/nrr.nrr-d-24-00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 07/31/2024] Open
|
127
|
Adam D, Langerscheidt F, Zempel H. Amyloid-β-induced disruption of axon-initial-segment mitochondria localization: consequences for TAU missorting in Alzheimer's disease pathology. Neural Regen Res 2025; 20:1407-1408. [PMID: 39075906 DOI: 10.4103/nrr.nrr-d-24-00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/07/2024] [Indexed: 07/31/2024] Open
|
128
|
Qu W, Wu X, Wu W, Wang Y, Sun Y, Deng L, Walker M, Chen C, Dai H, Han Q, Ding Y, Xia Y, Smith G, Li R, Liu NK, Xu XM. Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury. Neural Regen Res 2025; 20:1467-1482. [PMID: 39075913 DOI: 10.4103/nrr.nrr-d-23-01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/16/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00029/figure1/v/2024-07-28T173839Z/r/image-tiff Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties. A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury. A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity, and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar, thus limiting axonal reentry into the host spinal cord. Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury. We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders, Schwann cells migrated for considerable distances in both rostral and caudal directions. Such Schwann cell migration led to enhanced axonal regrowth, including the serotonergic and dopaminergic axons originating from supraspinal regions, and promoted recovery of locomotor and urinary bladder functions. Importantly, the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury, even when treatment was delayed for 3 months to mimic chronic spinal cord injury. These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.
Collapse
|
129
|
Cui Y, Ma X, Wei J, Chen C, Shakir N, Guirram H, Dai Z, Anderson T, Ferguson D, Qiu S. MET receptor tyrosine kinase promotes the generation of functional synapses in adult cortical circuits. Neural Regen Res 2025; 20:1431-1444. [PMID: 39075910 DOI: 10.4103/nrr.nrr-d-23-01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/20/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00026/figure1/v/2024-07-28T173839Z/r/image-tiff Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration, however, few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function. We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis. To investigate whether enhancing MET in adult cortex has synapse regenerating potential, we created a knockin mouse line, in which the human MET gene expression and signaling can be turned on in adult (10-12 months) cortical neurons through doxycycline-containing chow. We found that similar to the developing brain, turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons. These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses. Prolonged MET signaling resulted in an increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-D-aspartate (AMPA/NMDA) receptor current ratio, indicative of enhanced synaptic function and connectivity. Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain. These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.
Collapse
|
130
|
Zhou J, Jin L, Zhou Y, Zhong K, Huang K, Zhang Q, Tang J, Zhang X, Peng L, Li S, Lv N, Yu D, Zhu Q, Guo J, Luo Q, Chen G. Associations of multiple metals exposure with immunoglobulin levels in pregnant women: Hangzhou Birth Cohort Study. J Environ Sci (China) 2025; 151:560-572. [PMID: 39481962 DOI: 10.1016/j.jes.2024.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 11/03/2024]
Abstract
Metal may affect maternal immune function, but few epidemiological studies have reported the associations between multiple-metal exposure and maternal immunoglobulin (Ig) levels. Based on the Hangzhou Birth Cohort Study, 1059 participants were included, and eleven metals in whole blood samples and serum IgA, IgG, IgE and IgM levels were measured. Linear regression, quantile-based g-computation (QGC), and Bayesian kernel machine regression (BKMR) models were used to evaluate the associations. Compared with the first tertile of metal levels, arsenic (As) was negatively associated with IgE (β = -0.25, 95% confidence interval (CI) = -0.48 to -0.02). Moreover, significant associations of manganese (Mn) with IgA, IgG and IgM were demonstrated (β = 0.10, 95% CI = 0.04 to 0.18; β = 0.07, 95% CI = 0.03 to 0.12; β = 0.10, 95% CI = 0.03 to 0.18, respectively). Cadmium (Cd) were associated with higher levels of IgM. QGC models showed the positive association of the metal mixtures with IgA and IgG, with Mn playing a major role. Mn and Cd had positive contributions to IgM, while As had negative contributions to IgE. In the BKMR models, the latent continuous outcomes of IgA and IgG showed a significant increase when all the metals were at their 60th percentile or above compared to those at their 50th percentile. Therefore, exposure to metals was associated with maternal Igs, and mainly showed that Mn was associated with increased levels of IgA, IgG and IgM, and As was associated with low IgE levels.
Collapse
|
131
|
Shi C, Guo H, Qiao X, Gao J, Chen Y, Zhang H. Meteorological effects on sources and future projection of nitrogen deposition to lakes in China. J Environ Sci (China) 2025; 151:100-112. [PMID: 39481924 DOI: 10.1016/j.jes.2024.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 11/03/2024]
Abstract
Lake ecosystems are extremely sensitive to nitrogen growth, which leads to water quality degradation and ecosystem health decline. Nitrogen depositions, as one of the main sources of nitrogen in water, are expected to change under future climate change scenarios. However, it remains not clear how nitrogen deposition to lakes respond to future meteorological conditions. In this study, a source-oriented version of Community Multiscale Air Quality (CMAQ) Model was used to estimate nitrogen deposition to 263 lakes in 2013 and under three RCP scenarios (4.5, 6.0 and 8.5) in 2046. Annual total deposition of 58.2 Gg nitrogen was predicted for all lakes, with 23.3 Gg N by wet deposition and 34.9 Gg N by dry deposition. Nitrate and ammonium in aerosol phase are the major forms of wet deposition, while NH3 and HNO3 in gas phase are the major forms of dry deposition. Agriculture emissions contribute to 57% of wet deposition and 44% of dry deposition. Under future meteorological conditions, wet deposition is predicted to increase by 5.5% to 16.4%, while dry deposition would decrease by 0.3% to 13.0%. Changes in wind speed, temperature, relative humidity (RH), and precipitation rates are correlated with dry and wet deposition changes. The predicted changes in deposition to lakes driven by meteorological changes can lead to significant changes in aquatic chemistry and ecosystem functions. Apart from future emission scenarios, different climate scenarios should be considered in future ecosystem health evaluation in response to nitrogen deposition.
Collapse
|
132
|
Lugo PL, Straccia V, Teruel MA, Blanco MB. Kinetics of the reaction of OH radical with ethylfluoroacetate, ethyl 4,4,4-trifluorobutyrate, and butylfluoroacetate. J Environ Sci (China) 2025; 151:273-283. [PMID: 39481939 DOI: 10.1016/j.jes.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 11/03/2024]
Abstract
Kinetics of the gas-phase reactions of •OH radicals with a series of fluoroesters were studied for the first time at 298 ± 3 K and atmospheric pressure. Relative rate coefficients were determined by in situ FTIR spectroscopy in nitrogen and GC-FID in air to monitor the decay of reactants and references. The following coefficient values (in 10-12 cm3/(molecule•sec)) were obtained for ethyl fluoroacetate (EFA), ethyl 4,4,4-trifluorobutyrate (ETB), and butyl fluoroacetate (BFA), respectively: k1 (EFA + OH) = 1.15 ± 0.25 by FTIR and 1.34 ± 0.23 by GC-FID; k2 (ETB + OH) = 1.61 ± 0.36 by FTIR and 2.02 ± 0.30 by GC-FID; k3 (BFA + OH) = 2.24 ± 0.37 by FTIR. Reactivity trends were developed and correlated with the number of CH3 and F substituents in the fluoroester, and structure-activity relationships (SARs) calculations were performed. In addition, the tropospheric lifetimes of EFA, ETB, and BFA upon degradation by OH radicals were calculated to be 9, 6, and 5 days, respectively, indicating that these fluorinated compounds could have a possible regional effect from the emission source. Relatively small photochemical ozone creation potentials of 9, 7, and 19 were estimated for EFA, ETB, and BFA, respectively. The Global Warming Potentials (GWPs) for EFA, ETB, and BFA were calculated for different time horizons. For a 20-year time horizon, the GWPs were 1.393, 0.063, and 0.062, respectively. In the case of a 100-year time horizon, the GWPs were 0.379, 0.017, and 0.017, and for a 500-year time horizon, the GWPs were 0.108, 0.005, and 0.005 for EFA, ETB, and BFA.
Collapse
|
133
|
Chen X, Chen Z, Li M, Guo W, Yuan S, Xu L, Lin C, Shi X, Chen W, Yang S. Tranylcypromine upregulates Sestrin 2 expression to ameliorate NLRP3-related noise-induced hearing loss. Neural Regen Res 2025; 20:1483-1494. [PMID: 39075914 DOI: 10.4103/nrr.nrr-d-24-00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00030/figure1/v/2024-07-28T173839Z/r/image-tiff Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction. However, there are currently no effective pharmacological interventions for patients with noise-induced hearing loss. Here, we present evidence suggesting that the lysine-specific demethylase 1 inhibitor-tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss, and elucidate its underlying regulatory mechanisms. We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 dB for 4 hours. We found that tranylcypromine treatment led to the upregulation of Sestrin2 (SESN2) and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine. The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click, 4, 8, and 16 kHz frequencies compared with the noise exposure group treated with saline. These findings indicate that tranylcypromine treatment resulted in increased SESN2, light chain 3B, and lysosome-associated membrane glycoprotein 1 expression after noise exposure, leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3, thereby reducing noise-induced hair cell loss. Additionally, immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway. Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domain-containing 3 (NLRP3) production. In conclusion, our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2, which induced autophagy, thereby restricting NLRP3-related inflammasome signaling, alleviating cochlear hair cell loss, and protecting hearing function. These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.
Collapse
|
134
|
Zheng J, Li Y, Zhang T, Fu Y, Long P, Gao X, Wang Z, Guan Z, Qi X, Hong W, Xiao Y. Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury: PERK as a potential target for intervention. Neural Regen Res 2025; 20:1455-1466. [PMID: 39075912 DOI: 10.4103/nrr.nrr-d-23-00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/21/2023] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00028/figure1/v/2024-07-28T173839Z/r/image-tiff Several studies have shown that activation of unfolded protein response and endoplasmic reticulum (ER) stress plays a crucial role in severe cerebral ischemia/reperfusion injury. Autophagy occurs within hours after cerebral ischemia, but the relationship between ER stress and autophagy remains unclear. In this study, we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury. We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2 subunit alpha (eIF2α)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP), increased neuronal apoptosis, and induced autophagy. Furthermore, inhibition of ER stress using inhibitors or by siRNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis, indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy. Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis, indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury. Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy, and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.
Collapse
|
135
|
Ma S, Cheng D, Tang Y, Fan Y, Li Q, He C, Zhao Z, Xu T. Investigation of oxidative potential of fresh and O 3-aging PM 2.5 from various emission sources across urban and rural regions. J Environ Sci (China) 2025; 151:608-615. [PMID: 39481966 DOI: 10.1016/j.jes.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 11/03/2024]
Abstract
Inhalation of atmospheric PM2.5 can induce the generation of excessive reactive oxygen species (ROS) in human alveoli, triggering local and systemic inflammation, which can directly or indirectly result in respiratory and cardiovascular diseases. In this study, we assessed the oxidative potential (OP) of fresh and O3-aged PM2.5 particles from various urban and rural emission sources using the dithiothreitol (DTT) method. Our results revealed variations in the OP of fresh PM2.5 among different emission sources, with biomass burning sources exhibiting the highest OP, followed by industrial areas, vehicular emissions, cooking emissions, and suburban areas, respectively. Water-soluble organics and transition metals might potentially exert significant influence on particle OP. O3 aging notably decreased the OP of PM2.5 particles, possibly due to the oxidation of highly DTT-active components into low redox-active small molecules. Moreover, the evolution of OP in different PM2.5 components, including methanol-soluble and insoluble fractions, exhibited distinct responses to O3 aging for source-oriented PM2.5. Additionally, differences in chemical composition between fresh and aged PM2.5 were further elucidated through measurements of component-dependent hygroscopic behaviors and phase transitions. This study systematically delineates variances in the toxic potential of fresh and O3-aged PM2.5 from various anthropogenic sources. The findings highlight the intrinsic compositional dependence of particle OP and provide essential insights for assessing the health effects of source-oriented PM2.5, as well as for formulating human health protection policies.
Collapse
|
136
|
Wu S, Tong C, Liu J. Obesogenic effects of six classes of emerging contaminants. J Environ Sci (China) 2025; 151:252-272. [PMID: 39481937 DOI: 10.1016/j.jes.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 11/03/2024]
Abstract
There is growing concern about the concept that exposure to environmental chemicals may be contributing to the obesity epidemic. However, there is no consensus on the obesogenic effects of emerging contaminants from a toxicological and environmental perspective. The potential human exposure and experimental evidence for obesogenic effects of emerging contaminants need to be systematically discussed. The main objective of this review is to provide recommendations for further subsequent policy development following a critical analysis of the literature for humans and experimental animals exposed to emerging contaminants. This article reviews human exposure to emerging contaminants (with a focus on antimicrobials, preservatives, water and oil repellents, flame retardants, antibiotics and bisphenols) and the impact of emerging contaminants on obesity. These emerging contaminants have been widely detected in human biological samples. Epidemiological studies provide evidence linking exposure to emerging contaminants to the risks of obesity in humans. Studies based on animal models and adipose cells show the obesogenic effects of emerging contaminants and identify modes of action by which contaminants may induce changes in body fat accumulation and lipid metabolic homeostasis. Some knowledge gaps in this area and future directions for further investigation are discussed.
Collapse
|
137
|
Cao J, Wu Q, Liu X, Zhu X, Huang C, Wang X, Song Y. Mechanistic insight on nanomaterial-induced reactive oxygen species formation. J Environ Sci (China) 2025; 151:200-210. [PMID: 39481933 DOI: 10.1016/j.jes.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 11/03/2024]
Abstract
Reactive oxygen species (ROS) are closely related to cell death, proliferation and inflammation. However, excessive ROS levels may exceed the cellular oxidative capacity and cause irreversible damage. Organisms are often inadvertently exposed to nanomaterials (NMs). Therefore, elucidating the specific routes of ROS generation induced by NMs is crucial for comprehending the toxicity mechanisms of NMs and regulating their potential applications. This paper provides a comprehensive review of the toxicity mechanisms and applications of NMs from three perspectives: (1) Organelle perspective. Investigating the impact of NM-mediated ROS on mitochondria, unraveling mechanisms at the organelle level. (2) NMs' perspective. Exploring the broad applications and biosafety considerations of Nanozymes, a unique class of NMs. (3) Cellular system. Examining the toxic effects and mechanisms of NMs in cells at a holistic cellular level. Expanding on these perspectives, the paper scrutinizes the regulation of Fenton reactions by NMs in organisms. Furthermore, it introduces diseases resulting from NM-mediated ROS at the organism level. This comprehensive review aims to provide valuable insights for studying NM-mediated mechanisms at both cellular and organism levels, offering considerations for the safe design of nanomaterials.
Collapse
|
138
|
Wang H, Feng S, Pan E, Ji X, Zhou M, Zhang S, Xu B, Feng H, Yin J, Dong Z. Ferulic acid alleviates long-term avermectin-induced damage to the spleen of carp and restores its inflammatory response and oxidative balance. J Environ Sci (China) 2025; 151:616-626. [PMID: 39481967 DOI: 10.1016/j.jes.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 11/03/2024]
Abstract
Extensive use of avermectin (AVM) in agriculture can seriously contaminate fish in aquaculture. Ferulic acid (FA) is a strong antioxidant sourced from plants and is widely applied in food and medicine, but its protective function on the immunological damage caused by AVM is still lacking. In this study, carp were chronically exposed to (1/10 96 hr LC50) AVM for 30 day(s), with a dietary supplement of FA (400 mg/kg) to assess its effects on carp spleen. The experimental groups (n = 10) included: control, AVM-exposed (2.404 µg/L), FA + AVM co-treated, and FA alone. Long-term AVM exposure altered spleen tissue, reducing serum complement C3 (p < 0.01) and immunoglobulin M levels (p < 0.001), and increasing pro-inflammatory tnf-α (p < 0.001), il-6 (p < 0.001), il-1β (p < 0.001), and inos mRNA levels, whilst down-regulating the anti-inflammatory tgf-β (p < 0.05). Additionally, it disrupted the balance of oxidative stress indicators such as MDA (p < 0.001), T-AOC, GSH, and CAT, leading to spleen tissue apoptosis (42.4%). However, the addition of FA reversed these conditions, elevated the anti-inflammatory factor, and improved spleen immune function following chronic exposure to AVM in carp. Moreover, the ability to restore oxidative homeostasis in carp by adjusting the Nrf2/NQO-1 axis protected the health of spleen tissues. This discovery also supports the development of fish feed for aquaculture.
Collapse
|
139
|
Tohda C. Pharmacological intervention for chronic phase of spinal cord injury. Neural Regen Res 2025; 20:1377-1389. [PMID: 38934397 DOI: 10.4103/nrr.nrr-d-24-00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury-specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research ( in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc (AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide, (-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury.
Collapse
|
140
|
Tang B, Wang J, Gao X, Li Z. Strategies for efficient enrichment of anaerobic ammonia oxidizing bacteria in activated sludge. J Environ Sci (China) 2025; 151:703-713. [PMID: 39481975 DOI: 10.1016/j.jes.2024.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 11/03/2024]
Abstract
Anaerobic ammonia oxidation (Anammox) is an economical and sustainable wastewater nitrogen removal technology, and its application in the mainstream process is the inevitable trend of the development of Anammox. However, how to effectively enriching Anammox bacteria from the activated sludge remains challenging and restricts its extensive applications. In this study, the rapid and efficient enrichment of Anammox bacteria was achieved by raising the reflux ratio and nitrogen loading rate (NLR) using conventional activated sludge as the inoculant. In the screening phase (days 1-90), the reflux ratio was increased to discharge partial floc sludge, resulting in the relative abundance of Candidatus Brocadiaceae increased from 0.04% to 22.54%, which effectively reduced the matrix and spatial competition between other microorganisms and Anammox bacteria. On day 90, the stoichiometric ratio of the Anammox process closely approached the theoretical value of 1:1.32:0.26, indicating that the Anammox reaction was the primary nitrogen removal process in the system. In the enrichment phase (days 91-238), the NLR increased from 0.43 to 1.20 kgN/(m3·d) and removal efficiency was 71.89%, resulting in the relative abundance of Candidatus Brocadiaceae increased to 61.27% on day 180. The reactor operated steadily from days 444 to 498, maintaining the nitrogen removal rate (NRR) of 3.00 kgN/(m3·d) and achieving successful sludge granulation with the particle size of 392.4 µm. In short, this study provided a simple and efficient approach for enriching Anammox bacteria from the activated sludge, supporting to start an Anammox process efficiently.
Collapse
|
141
|
La Barbera L, Krashia P, Nobili A. How dopamine tunes parvalbumin interneurons in the hippocampus: new experimental observations in Alzheimer's disease. Neural Regen Res 2025; 20:1405-1406. [PMID: 39075905 DOI: 10.4103/nrr.nrr-d-24-00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024] Open
|
142
|
Shao X, He L, Liu Y. The effects of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents: a meta-analysis. Neural Regen Res 2025; 20:1513-1520. [PMID: 39075917 DOI: 10.4103/nrr.nrr-d-23-01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/27/2024] [Indexed: 07/31/2024] Open
Abstract
Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the PubMed, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using ReviewManager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference (MD; before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants (60 children and 471 adolescents, 10.9-16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I2 test provided by ReviewManager software. The meta-analysis showed that there was no heterogeneity among the studies (P = 0.67, I2 = 0.00%). The combined effect of the interventions was significant (MD = 2.88, 95% CI: 1.53-4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This meta-analysis was registered at PROSPERO (registration ID: CRD42023439408).
Collapse
|
143
|
Luo Q, Tian S, Qiang Q, Song F, Su W, He H, An Q, Li C. Copper-catalyzed C-C bond cleavage coupling with CN bond formation toward mild synthesis of lignin-based benzonitriles. J Environ Sci (China) 2025; 151:505-515. [PMID: 39481956 DOI: 10.1016/j.jes.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 11/03/2024]
Abstract
N-participated lignin depolymerization is of great importance for the transformation of waste lignin into value-added chemicals. The vast majority of developed strategies employ organic amines as nitrogen source, and considerable methods rely on excessive use of strong base, which suffers severe environmental issues. Herein, benzonitrile derivatives are synthesized from oxidized lignin β-O-4 model compounds in the presence of solid nitrogen source (NH4)2CO3 under mild, base-free conditions over commercially available copper catalyst. Mechanism studies suggest the transformation undergoes a one-pot, highly coupled cascade reaction path involving oxidative C-C bond cleavage and in-situ formation of CN bond. Of which, Cu(OAc)2 catalyzes the transfer of hydrogen from Cβ (Cβ-H) to Cα, leading to the cleavage of Cα-Cβ bonds to offer benzaldehyde derivative, this intermediate then reacts in-situ with (NH4)2CO3 to afford the targeted aromatic nitrile product. Tetrabutylammonium iodide (TBAI), acting as a promoter, plays a key role in breaking the Cα-Cβ bonds to form the intermediate benzaldehyde derivative. With this protocol, the feasibility of the production of value-added syringonitrile from birchwood lignin has been demonstrated. This transformation provides a sustainable approach to benzonitrile chemicals from renewable source of lignin.
Collapse
|
144
|
Li S, Liu H, Hu X, Fang Y, Cao X, Chen Q. Selective activation of dioxygen to singlet oxygen over La-Si co-doped TiO 2 microspheres for photocatalytic degradation of formaldehyde. J Environ Sci (China) 2025; 151:594-607. [PMID: 39481965 DOI: 10.1016/j.jes.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 11/03/2024]
Abstract
Volatile Organic Compounds (VOCs) are highly harmful to human beings and other organisms, and thus the elimination of VOCs is extremely urgent. Here, La-Si co-doped TiO2 microsphere photocatalysts, which were prepared by a hydrothermal method, exhibited high photocatalytic activity in the decomposition of formaldehyde compared with TiO2. The improved activity can be attributed to the promoted separation efficiency and density of the charge carriers, as verified by the electrochemical results in combination with density functional theory calculations. In addition, the Si dopant changed the microstructure and surface acidity, while the addition of La promoted the separation efficiency of charge carriers. More interestingly, it was found that singlet oxygen was the key species in the activation of molecular dioxygen, and it played a pivotal role in the photocatalytic decomposition of formaldehyde. This work provides a novel strategy for the selective activation of dioxygen for use in the decomposition of formaldehyde.
Collapse
|
145
|
Hong S, Zhang Y, Zhang Q, Su Z, Hu G, Wang L, Yu S, Zhu X, Jia G. Health risks of rare earth elements exposure: Impact on mitochondrial DNA copy number and micronucleus frequency. J Environ Sci (China) 2025; 151:150-160. [PMID: 39481929 DOI: 10.1016/j.jes.2024.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 11/03/2024]
Abstract
Toxic effects in terms of mitochondria and hereditary substances have been characterized in vitro for individual rare earth elements, while, the joint effects of mixed elements exposure in the population remain ambiguous. Based on the Occupational Chromate Exposure Dynamic Cohort of China, this study investigated the relationship between 15 blood rare earth elements (cerium, dysprosium, erbium, europium, gadolinium, holmium, lanthanum, lutetium, neodymium, praseodymium, samarium, terbium, thulium, yttrium, and ytterbium) and mitochondrial DNA copy number (MtDNACN) as well as peripheral blood lymphocyte micronucleus frequency (MNF). The elastic net was used to select elements highly correlated with effect indicators, whose dose-response relationships were further illustrated by restricted cubic splines. Bayesian kernel regression was employed to explore the combined effects of elements and the contributions of single element. The results showed that most rare earth elements were positively correlated with effect indicators, with yttrium showing the strongest association (β (95% CI): 0.139 (0.1089 - 0.189) for MtDNACN, 0.937 (0.345 - 1.684) for MNF). In the mixed exposure model, with the exposure level fixed at the 50th percentile as the reference, the effect estimates on MtDNACN and MNF increased by 0.228 and 0.598 units, respectively, at the 75th percentile. The single effect analysis implied that yttrium, lanthanum and terbium contributed the most to the elevation of MtDNACN, while yttrium posed the highest risk for genetic damage, accordingly, we provided recommendations to prioritize these elements of concern. In addition, we observed a chief mediating effect of MtDNACN on the elevation of MNF caused by lanthanum, whereas further mechanistic exploration is required to confirm this finding.
Collapse
|
146
|
Ma K, Li K, Ning P, Feng J, Bao J, Shi L, Wang X, Sun X. Effect of Cu/HZSM-5 sorbents with different Si/Al ratios on the adsorption and oxidation performance of H 2S. J Environ Sci (China) 2025; 151:161-173. [PMID: 39481930 DOI: 10.1016/j.jes.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 11/03/2024]
Abstract
This study employed a wet impregnation method to synthesize five types of Cu/HZSM-5 adsorbents with Si/Al ratios of 25, 50, 85, 200, and 300, used for the removal of H2S in low-temperature, low-oxygen environments. The impact of different Si/Al ratios on the adsorption oxidative performance of Cu30/HZSM-5-85 adsorbents was investigated. According to the performance test results, Cu30/HZSM-5-85 exhibited the highest breakthrough capacity, reaching 231.75 mg H2S/gsorbent. Cu/HZSM-5 sorbent maintains a strong ability to remove H2S even under humid conditions and shows excellent water resistance. XRD, BET, and XPS results revealed that CuO is the primary active species, with Cu30/HZSM-5-85 having the largest surface area and highest CuO content, providing more active sites for H2S adsorption. H2-TPR and O2-TPD results confirmed that Cu30/HZSM-5-85 sorbent exhibits outstanding redox properties and oxygen storage capacity, contributing to excellent oxygen transferability in the molecular sieve adsorption-oxidation process. With notable characteristics such as a large surface area, high desulfurization efficiency, and water resistance, Cu30/HZSM-5-85 sorbents hold significant importance for industrial applications.
Collapse
|
147
|
Lee SH, Lee KH, Lee SH, Lee SK, Jeon OS, Jeon YP, Hong D, Yoo YJ, Park SY, Yoo HY. Conversion of N-doped biochar from carotenoid-extracted Tetraselmis suecica and its application to produce supercapacitors. J Environ Sci (China) 2025; 151:410-423. [PMID: 39481948 DOI: 10.1016/j.jes.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 11/03/2024]
Abstract
Microalgae are one of the promising feedstocks for biorefinery, contributing significantly to net-zero emissions through carbon capture and utilization. However, the disposal of microalgal byproducts from the manufacturing process causes additional environmental pollution, thus, a new application strategy is required. In this study, the Tetraselmis suecica byproduct from the carotenoid extraction process was carbonized and converted into biochar. The converted biochar was proved to be nitrogen-doped biochar (NDB), up to 4.69%, with a specific surface area of 206.59 m2/g and was used as an electrode for a supercapacitor. The NDB electrode (NDB-E) in half-cell showed a maximum specific capacitance of 191 F/g. In a full-cell test, the NDB-E exhibited a high energy density of 7.396 Wh/kg and a high-power density of 18,100 W/kg, and maintained specific capacity of 95.5% after charge and discharge of 10,000 cycles. In conclusion, our study demonstrated that the carotenoid-extracted microalgal byproducts are a useful resource for the supercapacitor production. This approach is the first to convert T. suecica into active materials for supercapacitors.
Collapse
|
148
|
Jiang Y, Ma Y, Zheng J, Ye N, Yuan C. Characterization of size-resolved aerosol hygroscopicity and liquid water content in Nanjing of the Yangtze River Delta. J Environ Sci (China) 2025; 151:26-41. [PMID: 39481938 DOI: 10.1016/j.jes.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 11/03/2024]
Abstract
Aerosol hygroscopicity and liquid water content (ALWC) have important influences on the environmental and climate effect of aerosols. In this study, we measured the hygroscopic growth factors (GF) of particles with dry diameters of 40, 80, 150, and 200 nm during the wintertime in Nanjing. Both the GF-derived hygroscopicity parameter (κgf) and ALWC increased with particle size, but displayed differing diurnal variations, with κgf peaking around the midday, while ALWC peaking in the early morning. Nitrate, ammonium and oxygenated organic aerosols (OOA) were found as the chemical components mostly strongly correlated with ALWC. A closure study suggests that during midday photo-oxidation and nighttime high ALWC periods, the κ of organic aerosols (κorg) was underestimated when using previous parameterizations. Accordingly, we re-constructed parameterizations for κorg and the oxidation level of organics for these periods, which indicates a higher hygroscopicity of photochemically formed OOA than the aqueous OOA, yet both being much higher than the generally assumed OOA hygroscopicity. Additionally, in a typical high ALWC episode, concurrently increased ALWC, nitrate, OOA as well as aerosol surface area and mass concentrations were observed under elevated ambient RH. This strongly indicates a coupled effect that the hygroscopic secondary aerosols, in particular nitrate with strong hygroscopicity, led to large increase in ALWC, which in turn synergistically boosted nitrate and OOA formation by heterogeneous/aqueous reactions. Such interaction may represent an important mechanism contributing to enhanced formation of secondary aerosols and rapid growth of fine particulate matter under relatively high RH conditions.
Collapse
|
149
|
Mi X, Wang T, Chen Y, Cao D, Ma N, Dai W. Ingenious construction of a magnetic-recyclable photo-Fenton catalyst ZnFe 2O 4@MIL-88A(Fe) and its adsorption-degradation activity toward levofloxacin. J Environ Sci (China) 2025; 151:677-691. [PMID: 39481972 DOI: 10.1016/j.jes.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 11/03/2024]
Abstract
Monotonic pore size and particles inseparability of metal-organic frameworks (MOFs) caused serious effects on its light absorption ability and charge separation, restricting its application for antibiotic such as levofloxacin (LEV) degradation in water. In this study, a magnetically detachable nano-photocatalyst (ZnFe2O4@MIL-88A(Fe)) was synthesized using a simple two-step hydrothermal technique. The morphology and microstructure analyses showed that n-type ZnFe2O4 catalyst particles were efficiently assembled onto the surface of MIL-88A(Fe) crystal. Photocatalytic activity studies indicated that the ZnFe2O4@MIL-88A(Fe) plus H2O2 exhibiting a significantly boosted photo-Fenton activity toward LEV at visible light irradiation, compared to the pure ZnFe2O4 and MIL-88A(Fe), the degradation efficiency accordingly reached up to nearly 82% and 25% within 60 min. This excellent photocatalytic performance was ascribed to the synergistic effects of the heterogeneous structure of ZnFe2O4 and MIL-88A(Fe), whereby the efficient separation of charge carriers in the catalytic system is mutually reinforced with the efficient reduction of Fe3+ and Fe2+. Meanwhile, the degradation mechanism and intermediates of LEV during the photo-Fenton reaction process were also studied in depth through free radical burst, electron paramagnetic resonance, and mass spectrometry analyses, etc. Additionally, the ZnFe2O4@MIL-88A(Fe) composite catalyst displayed significant stability and ease of separation, indicating potential for the photo-oxidative degradation of organic pollutants.
Collapse
|
150
|
Weng C, Groh AMR, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
|