126
|
Zanchetti G, Floris I, Piccinotti A, Tameni S, Polettini A. Rapid and robust confirmation and quantification of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in urine by column switching LC-MS-MS analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:124-130. [PMID: 22282098 DOI: 10.1002/jms.2034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A method for the rapid and robust confirmation of 11-nor-∆9-tetrahydrocannabinol-9-carboxylic acid (THCA) in urine involving basic hydrolysis with NaOH and direct injection of the hydrolysate in a column-switching LC-MS-MS system was developed and validated. THCA-d3 was used as internal standard. Detection was performed in negative-ion mode by monitoring the transitions from the [M-CO(2) ]- ion m/z 299.2→245.2 and and m/z 299.2→191.1 that were found to provide a better signal-to-noise ratio than the transition from the pseudomolecular ion at m/z 343. The high sensitivity of detection enabled the injection of a small volume (10 µl) of the NaOH hydrolysate which, together with the applied column switching system, proved to confer ruggedness to the method and to avoid the deterioration of the instrumental apparatus despite the large amount of inorganic ions in the hydrolysate. The LLOQ was established at 5 ng/ml, and the LLOD was calculated as 0.2 ng/ml (S/N =3). The method was submitted to thorough validation including evaluation of the calibration range (5-500 ng/ml), accuracy and precision, matrix effects, overall process efficiency, autosampler stability, carryover and cross-talk, and 10-times reduction of sample volume (0.1 ml). Proof of applicability was obtained by direct comparison with the reference GC-MS method in use in the lab (the R(2) between the two methods was 0.9951).
Collapse
|
127
|
Milman G, Schwope DM, Schwilke EW, Darwin WD, Kelly DL, Goodwin RS, Gorelick DA, Huestis MA. Oral fluid and plasma cannabinoid ratios after around-the-clock controlled oral Δ(9)-tetrahydrocannabinol administration. Clin Chem 2011; 57:1597-606. [PMID: 21875944 PMCID: PMC3836268 DOI: 10.1373/clinchem.2011.169490] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Oral fluid (OF) testing is increasingly important for drug treatment, workplace, and drugged-driving programs. There is interest in predicting plasma or whole-blood concentrations from OF concentrations; however, the relationship between these matrices is incompletely characterized because of few controlled drug-administration studies. METHODS Ten male daily cannabis smokers received around-the-clock escalating 20-mg oral Δ(9)-tetrahydrocannabinol (THC, dronabinol) doses (40-120 mg/day) for 8 days. Plasma and OF samples were simultaneously collected before, during, and after dosing. OF THC, 11-hydroxy-THC and 11-nor-9-carboxy-THC (THCCOOH) were quantified by GC-MS at 0.5-μg/L, 0.5-μg/L, and 7.5-ng/L limits of quantification (LOQs), respectively. In plasma, the LOQs were 0.25 μg/L for THC and THCCOOH, and 0.5 μg/L for 11-hydroxy-THC. RESULTS Despite multiple oral THC administrations each day and increasing plasma THC concentrations, OF THC concentrations generally decreased over time, reflecting primarily previously self-administered smoked cannabis. The logarithms of the THC concentrations in oral fluid and plasma were not significantly correlated (r = -0.10; P = 0.065). The OF and plasma THCCOOH concentrations, albeit with 1000-fold higher concentrations in plasma, increased throughout dosing. The logarithms of OF and plasma THCCOOH concentrations were significantly correlated (r = 0.63; P < 0.001), although there was high interindividual variation. A high OF/plasma THC ratio and a high OF THC/THCCOOH ratio indicated recent cannabis smoking. CONCLUSIONS OF monitoring does not reliably detect oral dronabinol intake. The time courses of THC and THCCOOH concentrations in plasma and OF were different after repeated oral THC doses, and high interindividual variation was observed. For these reasons, OF cannabinoid concentrations cannot predict concurrent plasma concentrations.
Collapse
|
128
|
Wiskerke J, Stoop N, Schetters D, Schoffelmeer ANM, Pattij T. Cannabinoid CB1 receptor activation mediates the opposing effects of amphetamine on impulsive action and impulsive choice. PLoS One 2011; 6:e25856. [PMID: 22016780 PMCID: PMC3189229 DOI: 10.1371/journal.pone.0025856] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/12/2011] [Indexed: 11/19/2022] Open
Abstract
It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior.
Collapse
|
129
|
Gorelick DA, Goodwin RS, Schwilke E, Schwope DM, Darwin WD, Kelly DL, McMahon RP, Liu F, Ortemann-Renon C, Bonnet D, Huestis MA. Antagonist-elicited cannabis withdrawal in humans. J Clin Psychopharmacol 2011; 31:603-12. [PMID: 21869692 PMCID: PMC3717344 DOI: 10.1097/jcp.0b013e31822befc1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ⁹-tetrahydrocannabinol (THC) dosages (40-120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0-8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses.
Collapse
|
130
|
Schwope DM, Karschner EL, Gorelick DA, Huestis MA. Identification of recent cannabis use: whole-blood and plasma free and glucuronidated cannabinoid pharmacokinetics following controlled smoked cannabis administration. Clin Chem 2011; 57:1406-14. [PMID: 21836075 PMCID: PMC3717336 DOI: 10.1373/clinchem.2011.171777] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Δ⁹-Tetrahydrocannabinol (THC) is the most frequently observed illicit drug in investigations of accidents and driving under the influence of drugs. THC-glucuronide has been suggested as a marker of recent cannabis use, but there are no blood data following controlled THC administration to test this hypothesis. Furthermore, there are no studies directly examining whole-blood cannabinoid pharmacokinetics, although this matrix is often the only available specimen. METHODS Participants (9 men, 1 woman) resided on a closed research unit and smoked one 6.8% THC cannabis cigarette ad libitum. We quantified THC, 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), cannabinol (CBN), THC-glucuronide and THCCOOH-glucuronide directly in whole blood and plasma by liquid chromatography/tandem mass spectrometry within 24 h of collection to obviate stability issues. RESULTS Median whole blood (plasma) observed maximum concentrations (C(max)) were 50 (76), 6.4 (10), 41 (67), 1.3 (2.0), 2.4 (3.6), 89 (190), and 0.7 (1.4) μg/L 0.25 h after starting smoking for THC, 11-OH- THC, THCCOOH, CBD, CBN, and THCCOOH-glucuronide, respectively, and 0.5 h for THC-glucuronide. At observed C(max), whole-blood (plasma) detection rates were 60% (80%), 80% (90%), and 50% (80%) for CBD, CBN, and THC-glucuronide, respectively. CBD and CBN were not detectable after 1 h in either matrix (LOQ 1.0 μg/L). CONCLUSIONS Human whole-blood cannabinoid data following cannabis smoking will assist whole blood and plasma cannabinoid interpretation, while furthering identification of recent cannabis intake.
Collapse
|
131
|
Simões SS, Ajenjo AC, Dias MJ. Qualitative and quantitative analysis of THC, 11-hydroxy-THC and 11-nor-9-carboxy-THC in whole blood by ultra-performance liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2603-2610. [PMID: 23657954 DOI: 10.1002/rcm.5165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 06/02/2023]
Abstract
A qualitative and quantitative analytical method was developed for the simultaneous determination of Δ(9) -tetrahydrocannabinol (THC), 11-hydroxy-Δ(9) -tetrahydrocannabinol (11-OH-THC) and l1-nor-9-carboxy-Δ(9) -tetrahydrocannabinol (THC-COOH) in whole blood. The samples were prepared by solid-phase extraction followed by ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) analysis using positive ion electrospray ionization and multiple reaction monitoring. The chromatographic separation was performed with an Acquity UPLC® HSS T3 (50 × 2.1 mm i.d., 1.8 µm) reversed-phase column using a methanol/2 mM ammonium formate (formic acid 0.1%) gradient in a total run time of 9.5 min. MS/MS detection was achieved with two precursor-product ion transitions per substance. The method was fully validated, including selectivity and capacity of identification, according to the identification criteria (two transitions per substance, signal-to-noise ratio, relative retention time and ion ratio) without the presence of interferences, limit of detection (0.2 µg/L for THC and 0.5 µg/L for 11-OH-THC and THC-COOH), limit of quantitation (0.5 µg/L for all cannabinoids), recovery (53-115%), carryover, matrix effect (34-43%), linearity (0.5-100 µg/L), intra-assay precision (CV < 10% for the relative peak area ratios and <0.1% for the relative retention time), inter-assay accuracy (mean relative error <10%) and precision (CV <11%). The method has already been successfully used in proficiency tests and subsequently applied to authentic samples in routine forensic analysis.
Collapse
|
132
|
Shim JY, Bertalovitz AC, Kendall DA. Identification of essential cannabinoid-binding domains: structural insights into early dynamic events in receptor activation. J Biol Chem 2011; 286:33422-35. [PMID: 21795705 PMCID: PMC3190901 DOI: 10.1074/jbc.m111.261651] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/20/2011] [Indexed: 12/16/2022] Open
Abstract
The classical cannabinoid agonist HU210, a structural analog of (-)-Δ(9)-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identified residues Phe-174(2.61), Phe-177(2.64), Leu-193(3.29), and Met-363(6.55) as being critical for HU210 binding by mutational analysis. Using these residues to guide the simulations, we determined essential cannabinoid-binding domains in the CB1 receptor, including the highly sought after hydrophobic pocket important for the binding of the C3 alkyl chain of classical and nonclassical cannabinoids. Analyzing the simulations of the HU210-CB1 receptor complex, the CP55940-CB1 receptor complex, and the (-)-Δ(9)-tetrahydrocannabinol-CB1 receptor complex, we found that the positioning of the C3 alkyl chain and the aromatic stacking between Trp-356(6.48) and Trp-279(5.43) is crucial for the Trp-356(6.48) rotamer change toward receptor activation through the rigid-body movement of H6. The functional data for the mutant receptors demonstrated reductions in potency for G protein activation similar to the reductions seen in ligand binding affinity for HU210.
Collapse
|
133
|
Milman G, Barnes AJ, Schwope DM, Schwilke EW, Goodwin RS, Kelly DL, Gorelick DA, Huestis MA. Cannabinoids and metabolites in expectorated oral fluid after 8 days of controlled around-the-clock oral THC administration. Anal Bioanal Chem 2011; 401:599-607. [PMID: 21637933 PMCID: PMC3842229 DOI: 10.1007/s00216-011-5066-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/20/2011] [Accepted: 04/26/2011] [Indexed: 11/25/2022]
Abstract
Oral fluid (OF) is an increasingly accepted matrix for drug testing programs, but questions remain about its usefulness for monitoring cannabinoids. Expectorated OF specimens (n = 360) were obtained from 10 adult daily cannabis smokers before, during, and after 37 20-mg oral Δ(9)-tetrahydrocannabinol (THC) doses over 9 days to characterize cannabinoid disposition in this matrix. Specimens were extracted and analyzed by gas chromatography-mass spectrometry with electron-impact ionization for THC, 11-hydroxy-THC, cannabidiol, and cannabinol, and negative chemical ionization for 11-nor-9-carboxy-THC (THCCOOH). Linear ranges for THC, 11-hydroxy-THC, and cannabidiol were 0.25-50 ng/mL; cannabinol 1-50 ng/mL; and THCCOOH 5-500 pg/mL. THCCOOH was the most prevalent analyte in 344 specimens (96.9%), with concentrations up to 1,390.3 pg/mL. 11-hydroxy-THC, cannabidiol, and cannabinol were detected in 1, 1, and 3 specimens, respectively. THC was detected in only 13.8% of specimens. The highest THC concentrations were obtained at admission (median 1.4 ng/mL, range 0.3-113.6) from previously self-administered smoked cannabis. A total of 2.5 and 3.7% of specimens were THC-positive at the recommended Substance Abuse and Mental Health Services Administration (2 ng/mL) and Driving Under the Influence of Drugs, Alcohol and Medicines (DRUID) (1 ng/mL) confirmation cutoffs, respectively. THC is currently the only analyte for monitoring cannabis exposure in OF; however, these data indicate chronic therapeutic oral THC administration and illicit oral THC use are unlikely to be identified with current guidelines. Measurement of THCCOOH may improve the detection and interpretation of OF cannabinoid tests and minimize the possibility of OF contamination from passive inhalation of cannabis smoke.
Collapse
|
134
|
Moore C, Coulter C, Uges D, Tuyay J, van der Linde S, van Leeuwen A, Garnier M, Orbita J. Cannabinoids in oral fluid following passive exposure to marijuana smoke. Forensic Sci Int 2011; 212:227-30. [PMID: 21763088 DOI: 10.1016/j.forsciint.2011.06.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/11/2011] [Accepted: 06/19/2011] [Indexed: 11/19/2022]
Abstract
The concentration of tetrahydrocannabinol (THC) and its main metabolite 11-nor-Δ(9)-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) as well as cannabinol (CBN), and cannabidiol (CBD) were measured in oral fluid following realistic exposure to marijuana in a Dutch coffee-shop. Ten healthy subjects, who were not marijuana smokers, volunteered to spend 3h in two different coffee shops in Groningen, The Netherlands. Subjects gave two oral fluid specimens at each time point: before entering the store, after 20 min, 40 min, 1h, 2h, and 3h of exposure. The specimens were collected outside the shop. Volunteers left the shop completely after 3h and also provided specimens approximately 12-22 h after beginning the exposure. The oral fluid specimens were subjected to immunoassay screening; confirmation for THC, cannabinol and cannabidiol using GC/MS; and THC-COOH using two-dimensional GC-GC/MS. THC was detectable in all oral fluid specimens taken 3h after exposure to smoke from recreationally used marijuana. In 50% of the volunteers, the concentration at the 3h time-point exceeded 4 ng/mL of THC, which is the current recommended cut-off concentration for immunoassay screening; the concentration of THC in 70% of the oral fluid specimens exceeded 2 ng/mL, currently proposed as the confirmatory cut-off concentration. THC-COOH was not detected in any specimens from passively exposed individuals. Therefore it is recommended that in order to avoid false positive oral fluid results assigned to marijuana use, by analyzing for only THC, the metabolite THC-COOH should also be monitored.
Collapse
|
135
|
Conti M, Tazzari V, Bertona M, Brambilla M, Brambilla P. Surface-activated chemical ionization combined with electrospray ionization and mass spectrometry for the analysis of cannabinoids in biological samples. Part I: analysis of 11-nor-9-carboxytetrahydro-cannabinol. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1552-8. [PMID: 21594929 DOI: 10.1002/rcm.5029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recently, electrospray ionization mass spectroscopy (ESI-MS) has been widely used for the identification of drugs of abuse and their metabolites in biological samples. However, the sensitivity and selectivity of this technique are commonly inadequate for the analysis of tetrahydrocannabinol (THC) and its metabolites at very low levels, such as those sometimes required in forensic and clinical-legal applications. We coupled electrospray ionization and surface-activated chemical ionization (ESI-SACI) to various types of mass analyzers (ion trap, triple quadrupole and orbitrap) (ESI-SACI-MS) to improve the detection of 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH), the most common marker of THC abuse. The benefits of this approach in terms of sensitivity and selectivity compared with a common ESI-MS approach are clearly demonstrated.
Collapse
|
136
|
Beardsley GD, Christensen JM. Elimination of 11-nor-9-carboxy-delta-9-tetrahydrocannabinol when normalized to urinary creatinine. RESEARCH COMMUNICATIONS IN MOLECULAR PATHOLOGY AND PHARMACOLOGY 2011; 120-121:67-78. [PMID: 21469505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gas chromatography mass/spectrometry quantitative analysis of 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THCCOOH), the major metabolite of delta-9-tetrahydrocannabinol (THC) found in urine following marijuana use, was performed on serial urine specimens collected from an inpatient adolescent population of marijuana users. Creatinine normalization of THCCOOH was used to compensate for dilute or concentrated urine specimens. The urinary terminal elimination rate constant and terminal half-life was calculated for each subject. The mean urinary elimination rate constant for THCCOOH normalized to creatinine was 0.08433 days(-1) (range 0.05408-0.16544) reflecting a 8.22 day terminal half-life. A half-life of 1.15 days was observed for the initial decline phase of THCCOOH corrected by creatinine suggesting that reuse of marijuana can be detected after this phase ends. The creatinine normalized THCCOOH level was a better indicator for predicting reuse of marijuana than urinary concentrations of THCCOOH. The Mean Residence Time (MRT) of THCCOOH/Cr (5.7 days) correlated well with the length of time a subject will have detectable urinary THCCOOH concentrations (20.8 days).
Collapse
|
137
|
Huestis MA, Verstraete A, Kwong TC, Morland J, Vincent MJ, de la Torre R. Oral fluid testing: promises and pitfalls. Clin Chem 2011; 57:805-10. [PMID: 21350039 PMCID: PMC3717340 DOI: 10.1373/clinchem.2010.152124] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
138
|
Schwilke EW, Gullberg RG, Darwin WD, Chiang CN, Cadet JL, Gorelick DA, Pope HG, Huestis MA. Differentiating new cannabis use from residual urinary cannabinoid excretion in chronic, daily cannabis users. Addiction 2011; 106:499-506. [PMID: 21134021 PMCID: PMC3461262 DOI: 10.1111/j.1360-0443.2010.03228.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIMS To develop and validate empirically a mathematical model for identifying new cannabis use in chronic, daily cannabis smokers. DESIGN Models were based on urinary creatinine-normalized (CN) cannabinoid excretion in chronic cannabis smokers. SETTING For model development, participants resided on a secure research unit for 30 days. For model validation, participants were abstinent with daily observed urine specimens for 28 days. PARTICIPANTS A total of 48 (model development) and 67 (model validation) daily cannabis smokers were recruited. MEASUREMENTS All voided urine was collected and analyzed for 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) by gas chromatography-mass spectrometry (GCMS; limit of quantification 2.5 ng/ml) and creatinine (mg/ml). Urine THCCOOH was normalized to creatinine, yielding ng/mg CN-THCCOOH concentrations. Urine concentration ratios were determined from 123,513 specimen pairs collected 2-30 days apart. FINDINGS A mono-exponential model (with two parameters, initial urine specimen CN-THCCOOH concentration and time between specimens), based on the Marquardt-Levenberg algorithm, provided a reasonable data fit. Prediction intervals with varying probability levels (80, 90, 95, 99%) provide upper ratio limits for each urine specimen pair. Ratios above these limits suggest cannabis re-use. Disproportionate numbers of ratios were higher than expected for some participants, prompting development of two additional rules that avoid misidentification of re-use in participants with unusual CN-THCCOOH excretion patterns. CONCLUSIONS For the first time, a validated model is available to aid in the differentiation of new cannabis use from residual creatinine-normalized 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (CN-THCCOOH) excretion in chronic, daily cannabis users. These models are valuable for clinicians, toxicologists and drug treatment staff and work-place, military and criminal justice drug-testing programs.
Collapse
|
139
|
Karschner EL, Darwin WD, Goodwin RS, Wright S, Huestis MA. Plasma cannabinoid pharmacokinetics following controlled oral delta9-tetrahydrocannabinol and oromucosal cannabis extract administration. Clin Chem 2011; 57:66-75. [PMID: 21078841 PMCID: PMC3717338 DOI: 10.1373/clinchem.2010.152439] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Sativex(®), a cannabis extract oromucosal spray containing Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), is currently in phase III trials as an adjunct to opioids for cancer pain treatment, and recently received United Kingdom approval for treatment of spasticity. There are indications that CBD modulates THC's effects, but it is unclear if this is due to a pharmacokinetic and/or pharmacodynamic interaction. METHODS Cannabis smokers provided written informed consent to participate in this randomized, controlled, double-blind, double-dummy institutional review board-approved study. Participants received 5 and 15 mg synthetic oral THC, low-dose (5.4 mg THC and 5.0 mg CBD) and high-dose (16.2 mg THC and 15.0 mg CBD) Sativex, and placebo over 5 sessions. CBD, THC, 11-hydroxy-THC, and 11-nor- 9-carboxy-THC were quantified in plasma by 2-dimensional GC-MS. Lower limits of quantification were ≤0.25 μg/L. RESULTS Nine cannabis smokers completed all 5 dosing sessions. Significant differences (P < 0.05) in maximum plasma concentrations (C(max)) and areas under the curve from 0-10.5 h postdose (AUC(0→10.5)) for all analytes were found between low and high doses of synthetic THC and Sativex. There were no statistically significant differences in C(max), time to maximum concentration or in the AUC(0→10.5) between similar oral THC and Sativex doses. Relative bioavailability was calculated to determine the relative rate and extent of THC absorption; 5 and 15 mg oral THC bioavailability was 92.6% (13.1%) and 98.8% (11.0%) of low- and high-dose Sativex, respectively. CONCLUSION These data suggest that CBD modulation of THC's effects is not due to a pharmacokinetic interaction at these therapeutic doses.
Collapse
|
140
|
Huffman JW, Hepburn SA, Lyutenko N, Thompson ALS, Wiley JL, Selley DE, Martin BR. 1-Bromo-3-(1',1'-dimethylalkyl)-1-deoxy-Δ(8)-tetrahydrocannabinols: New selective ligands for the cannabinoid CB(2) receptor. Bioorg Med Chem 2010; 18:7809-15. [PMID: 20943404 PMCID: PMC2978510 DOI: 10.1016/j.bmc.2010.09.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/16/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
Abstract
Δ(8)-Tetrahydrocannabinol (26), 3-(1',1'-dimethylbutyl)- (12), 3-(1',1'-dimethylpentyl)- (13), 3-(1',1'-dimethylhexyl)- (14) and 3-(1',1'-dimethylheptyl)-Δ(8)-tetrahydrocannabinol (15) have been converted into the corresponding 1-bromo-1-deoxy-Δ(8)-tetrahydrocannabinols (25, 8-11). This was accomplished using a protocol developed in our laboratory in which the trifluoromethanesulfonate of a phenol undergoes palladium mediated coupling with pinacolborane. Reaction of this dioxaborolane with aqueous-methanolic copper(II) bromide provides the aryl bromide. The affinities of these bromo cannabinoids for the cannabinoid CB(1) and CB(2) receptors were determined. All of these compounds showed selectivity for the CB(2) receptor and one of them, 1-bromo-1-deoxy-3-(1',1'-dimethylhexyl)-Δ(8)-tetrahydrocannabinol (10), exhibits 52-fold selectivity for this receptor with good (28nM) affinity.
Collapse
|
141
|
Zhang A, Wang Q, Mo S. [Simultaneous determination of delta-9-tetrahydrocannabinol cannabidiol and cannabinol in edible oil using ultra performance liquid chromatography-tandem mass spectrometry]. Se Pu 2010; 28:1015-1019. [PMID: 21381415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
A method for the simultaneous determination of delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in edible oil was developed using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The target compounds were extracted with methanol, purified by an LC-Alumina-N solid phase extraction cartridge, separated and detected by the UPLC-MS/MS. Quantitative analysis was corrected by an isotope internal standard method using delta-9-THC-D3 as internal standard. Average recoveries for the target compounds varied from 68.0% to 101.6% with the relative standard deviations ranging from 7.0% to 20.1% at three spiked levels. The limits of detection (LOD) of the method were from 0.06-0.17 microg/kg and the limits of quantification (LOQ) were in the range of 0.20-0.52 microg/kg. The results showed that the method is able to meet the requirements for the simultaneous determination of THC, CBD and CBN in edible oil.
Collapse
|
142
|
Van Eenoo P, Van Gansbeke W, De Brabanter N, Deventer K, Delbeke FT. A fast, comprehensive screening method for doping agents in urine by gas chromatography-triple quadrupole mass spectrometry. J Chromatogr A 2010; 1218:3306-16. [PMID: 20970803 DOI: 10.1016/j.chroma.2010.09.082] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 11/19/2022]
Abstract
The use of performance enhancing drugs in sports is prohibited. For the detection of misuse of such substances gas chromatography or liquid chromatography coupled to mass spectrometry are the most frequently used detection techniques. In this work the development and validation of a fast gas chromatography tandem mass spectrometric method for the detection of a wide range of doping agents is described. The method can determine 13 endogenous steroids (the steroid profile), 19-norandrosterone, salbutamol and 11-nor-Δ9-tetrahydrocannabinol.9carboxylic acid in the applicable ranges and to detect qualitatively over 140 substances in accordance with the minimum required performance levels of the World Anti-Doping Agency in 1ml of urine. The classes of substances included in the method are anabolic steroids, β2-agonists, stimulants, narcotics, hormone antagonists and modulators and beta-blockers. Moreover, using a short capillary column and hydrogen as a carrier gas the run time of the method is less than 8min.
Collapse
|
143
|
Kinsey SG, Mahadevan A, Zhao B, Sun H, Naidu PS, Razdan RK, Selley DE, Imad Damaj M, Lichtman AH. The CB2 cannabinoid receptor-selective agonist O-3223 reduces pain and inflammation without apparent cannabinoid behavioral effects. Neuropharmacology 2010; 60:244-51. [PMID: 20849866 DOI: 10.1016/j.neuropharm.2010.09.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 08/01/2010] [Accepted: 09/06/2010] [Indexed: 01/05/2023]
Abstract
Although Δ(9)-tetrahydrocannabinol (THC) and other mixed CB(1)/CB(2) receptor agonists are well established to elicit antinociceptive effects, their psychomimetic actions and potential for abuse have dampened enthusiasm for their therapeutic development. Conversely, CB(2) receptor-selective agonists have been shown to reduce pain and inflammation, without eliciting apparent cannabinoid behavioral effects. In the present study, we developed a novel ethyl sulfonamide THC analog, O-3223, and compared its pharmacological effects to those of the potent, mixed CB(1)/CB(2) receptor agonist, CP55,940, in a battery of preclinical pain models. Competitive cannabinoid receptor binding experiments revealed that O-3223 was approximately 80-fold more selective for CB(2) than CB(1) receptors. Additionally, O-3223 behaved as a full CB(2) receptor agonist in [(35)S]GTPγS binding. O-3223 reduced nociceptive behavior in both phases of the formalin test, reduced thermal hyperalgesia in the chronic constriction injury of the sciatic nerve (CCI) model, and reduced edema and thermal hyperalgesia elicited by intraplantar injection of LPS. These effects were blocked by pretreatment with the CB(2) receptor-selective antagonist SR144528, but not by the CB(1) receptor antagonist, rimonabant. Unlike CP55,940, O-3223 did not elicit acute antinociceptive effects in the hot-plate test, hypothermia, or motor disturbances, as assessed in the rotarod test. These data indicate that the CB(2) receptor-selective agonist, O-3223, reduces inflammatory and neuropathic nociception, without affecting basal nociception or eliciting overt behavioral effects. Moreover, this compound can serve as a template to develop new CB(2) receptor agonists with increased receptor selectivity and increased potency in treating inflammatory and neuropathic pain.
Collapse
|
144
|
Mair KM, Robinson E, Kane KA, Pyne S, Brett RR, Pyne NJ, Kennedy S. Interaction between anandamide and sphingosine-1-phosphate in mediating vasorelaxation in rat coronary artery. Br J Pharmacol 2010; 161:176-92. [PMID: 20718749 PMCID: PMC2962826 DOI: 10.1111/j.1476-5381.2010.00878.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/07/2010] [Accepted: 04/13/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Anandamide and sphingosine-1-phosphate (S1P) both regulate vascular tone in a variety of vessels. This study aimed to examine the mechanisms involved in the regulation of coronary vascular tone by anandamide and S1P, and to determine whether any functional interaction occurs between these receptor systems. EXPERIMENTAL APPROACH Mechanisms used by anandamide and S1P to regulate rat coronary artery (CA) reactivity were investigated using wire myography. Interactions between S1P and the cannabinoid (CB)(2) receptor were determined using human embryonic kidney 293 (HEK293) cells that stably over-express recombinant CB(2) receptor. KEY RESULTS Anandamide and S1P induced relaxation of the rat CA. CB(2) receptor antagonists attenuated anandamide-induced relaxation, while S1P-mediated relaxation was dependent on the vascular endothelium and S1P(3). Anandamide treatment resulted in an increase in the phosphorylation of sphingosine kinase-1 within the CA. Conversely, anandamide-mediated relaxation was attenuated by inhibition of sphingosine kinase. Moreover, S1P(3), specifically within the vascular endothelium, was required for anandamide-mediated vasorelaxation. In addition to this, S1P-mediated relaxation was also reduced by CB(2) receptor antagonists and sphingosine kinase inhibition. Further evidence that S1P functionally interacts with the CB(2) receptor was also observed in HEK293 cells over-expressing the CB(2) receptor. CONCLUSIONS AND IMPLICATIONS In the vascular endothelium of rat CA, anandamide induces relaxation via a mechanism requiring sphingosine kinase-1 and S1P/S1P(3). In addition, we report that S1P may exert some of its effects via a CB(2) receptor- and sphingosine kinase-dependent mechanism, where subsequently formed S1P may have privileged access to S1P(3) to induce vascular relaxation.
Collapse
|
145
|
Verdurand M, Dalton VS, Zavitsanou K. GABA(A) receptor density is altered by cannabinoid treatment in the hippocampus of adult but not adolescent rats. Brain Res 2010; 1351:238-245. [PMID: 20599838 DOI: 10.1016/j.brainres.2010.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 06/10/2010] [Accepted: 06/10/2010] [Indexed: 02/05/2023]
Abstract
Cannabinoids are known to induce transient psychotic symptoms and cognitive dysfunction in healthy individuals and contribute to trigger schizophrenia in vulnerable individuals, particularly during adolescence. Converging preclinical evidence suggests important interactions between cannabinoid and GABAergic systems. In the present study, we compared the effects of cannabinoid treatment on GABA(A) receptor binding in the brain of adolescent and adult rats. Adolescent (5 weeks old) and adult (10 weeks old) rats were treated with the synthetic cannabinoid HU210 (25, 50 or 100 microg/kg/day) or vehicle for 1, 4 or 14 days. Rats were sacrificed 24 h after the last injection and GABA(A) receptor density was measured in several brain regions using [(35)S]TBPS and in vitro autoradiography. Adolescent rats had higher numbers of GABA(A) receptors compared to adults. A 24% increase of binding in adult rats treated with 100 microg/kg HU210 for 14 days compared to controls was observed in the CA1 region of the hippocampus (16.1 versus 12.9 fmol/mg tissue equivalent, t=2.720, p<0.05). HU210 did not affect GABA(A) receptors in adolescent rats in any treatment regimen and in adult rats treated with HU210 for 1 or 4 days. These data suggest that long-term, high-dose treatment with HU210 increases GABA(A) receptors in the hippocampus of adult rats, changes that may interfere with associated hippocampal cognitive functions such as learning and memory. In addition, our results suggest that the adolescent brain does not display the same compensatory mechanisms that are activated in the adult brain following cannabinoid treatment.
Collapse
|
146
|
Chebbah C, Pozo OJ, Deventer K, Van Eenoo P, Delbeke FT. Direct quantification of 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid in urine by liquid chromatography/tandem mass spectrometry in relation to doping control analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1133-1141. [PMID: 20301101 DOI: 10.1002/rcm.4499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
An accurate and precise method for the quantification of 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid (THCA) in urine by liquid chromatography/tandem mass spectrometry (LC/MS/MS) for doping analysis purposes has been developed. The method involves the use of only 200 microL of urine and the use of D(9)-THCA as internal standard. No extraction procedure is used. The urine samples are hydrolysed using sodium hydroxide and diluted with a mixture of methanol/glacial acetic acid (1:1). Chromatographic separation is achieved using a C8 column with gradient elution. All MS and MS/MS parameters were optimised in both positive and negative electrospray ionisation modes. For the identification and the quantification of THCA three product ions are monitored in both ionisation modes. The method is linear over the studied range (5-40 ng/mL), with satisfactory intra-and inter-assay precision, and the relative standard deviations (RSDs) are lower than 15%. Good accuracy is achieved with bias less than 10% at all levels tested. No significant matrix effects are observed. The selectivity and specificity are satisfactory, and no interferences are detected. The LC/MS/MS method was applied for the analysis of 48 real urine samples previously analysed with a routine gas chromatography/mass spectrometry (GC/MS) method. A good correlation between the two methods was obtained (r(2) > 0.98) with a slope close to 1.
Collapse
|
147
|
Foadi N, Leuwer M, Demir R, Dengler R, Buchholz V, de la Roche J, Karst M, Haeseler G, Ahrens J. Lack of positive allosteric modulation of mutated alpha(1)S267I glycine receptors by cannabinoids. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:477-82. [PMID: 20339834 DOI: 10.1007/s00210-010-0506-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 02/24/2010] [Indexed: 01/28/2023]
Abstract
Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. Ajulemic acid and HU210 are non-psychotropic, synthetic cannabinoids. Cannabidiol is a non-psychotropic plant constituent of cannabis sativa. There are hints that non-cannabinoid receptor mechanisms of these cannabinoids might be mediated via glycine receptors. In this study, we investigated the impact of the amino acid residue serine at position 267 on the glycine-modulatory effects of ajulemic acid, cannabidiol and HU210. Mutated alpha(1)S267I glycine receptors transiently expressed in HEK293 cells were studied by utilising the whole-cell clamp technique. The mutation of the alpha(1) subunit TM2 serine residue to isoleucine abolished the co-activation and the direct activation of the glycine receptor by the investigated cannabinoids. The nature of the TM2 (267) residue of the glycine alpha(1) subunit is crucial for the glycine-modulatory effect of ajulemic acid, cannabidiol and HU210. An investigation of the impact of such mutations on the in vivo interaction of cannabinoids with glycine receptors should permit a better understanding of the molecular determinants of action of cannabinoids.
Collapse
|
148
|
Toennes SW, Röhrich J, Wunder C. [Interpretation of blood analysis data found after passive exposure to cannabis]. ARCHIV FUR KRIMINOLOGIE 2010; 225:90-98. [PMID: 20506708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
When defendants are confronted with evidence of cannabinoids in their blood suggesting consumption of cannabis they sometimes argue that this could only be due to a passive exposure. The small number of controlled studies available showed that tetrahydrocannabinol (THC), the active ingredient of cannabis, was actually found in the blood after passive exposure to cannabis smoke. The resulting blood concentrations were dependent on the applied THC doses and the size of the room in which the passive exposure occurred. However, the quantitative data indicated in the publications of the 1980s cannot be fully compared with the results of modern analytical methods. Due to the rapid distribution of THC in the body, which occurs also after passive exposure to low doses, the THC concentration in serum to be expected in a blood sample taken 1 hour after exposure is less than 1 ng/mL. For assessment of an alleged passive exposure, the metabolic THC-carboxylic acid, which is excreted more slowly, must also be taken into account. After passive exposure, similar and very low serum concentrations of THC and THC-carboxylic acid are to be expected (< 2 ng/mL), while higher blood levels suggest the deliberate consumption of a psychoactive dose.
Collapse
|
149
|
Milman G, Barnes AJ, Lowe RH, Huestis MA. Simultaneous quantification of cannabinoids and metabolites in oral fluid by two-dimensional gas chromatography mass spectrometry. J Chromatogr A 2010; 1217:1513-21. [PMID: 20083251 PMCID: PMC2849720 DOI: 10.1016/j.chroma.2009.12.053] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 11/30/2009] [Accepted: 12/22/2009] [Indexed: 11/25/2022]
Abstract
Development and validation of a method for simultaneous identification and quantification of Delta9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), and metabolites 11-hydroxy-THC (11-OH-THC) and 11-nor-9-carboxy-THC (THCCOOH) in oral fluid. Simultaneous analysis was problematic due to different physicochemical characteristics and concentration ranges. Neutral analytes, such as THC and CBD, are present in ng/mL, rather than pg/mL concentrations, as observed for the acidic THCCOOH biomarker in oral fluid. THCCOOH is not present in cannabis smoke, definitively differentiating cannabis use from passive smoke exposure. THC, 11-OH-THC, THCCOOH, CBD, and CBN quantification was achieved in a single oral fluid specimen collected with the Quantisal device. One mL oral fluid/buffer solution (0.25 mL oral fluid and 0.75 mL buffer) was applied to conditioned CEREX Polycrom THC solid-phase extraction (SPE) columns. After washing, THC, 11-OH-THC, CBD, and CBN were eluted with hexane/acetone/ethyl acetate (60:30:20, v/v/v), derivatized with N,O-bis-(trimethylsilyl)trifluoroacetamide and quantified by two-dimensional gas chromatography electron ionization mass spectrometry (2D-GCMS) with cold trapping. Acidic THCCOOH was separately eluted with hexane/ethyl acetate/acetic acid (75:25:2.5, v/v/v), derivatized with trifluoroacetic anhydride and hexafluoroisopropanol, and quantified by the more sensitive 2D-GCMS-electron capture negative chemical ionization (NCI-MS). Linearity was 0.5-50 ng/mL for THC, 11-OH-THC, CBD and 1-50 ng/mL for CBN. The linear dynamic range for THCCOOH was 7.5-500 pg/mL. Intra- and inter-assay imprecision as percent RSD at three concentrations across the linear dynamic range were 0.3-6.6%. Analytical recovery was within 13.8% of target. This new SPE 2D-GCMS assay achieved efficient quantification of five cannabinoids in oral fluid, including pg/mL concentrations of THCCOOH by combining differential elution, 2D-GCMS with electron ionization and negative chemical ionization. This method will be applied to quantification of cannabinoids in oral fluid specimens from individuals participating in controlled cannabis and Sativex (50% THC and 50% CBD) administration studies, and during cannabis withdrawal.
Collapse
|
150
|
Mbvundula EC, Bunning RAD, Rainsford KD. Arthritis and cannabinoids: HU-210 and Win-55,212–2 prevent IL-1 α-induced matrix degradation in bovine articular chondrocytes in-vitro. J Pharm Pharmacol 2010; 58:351-8. [PMID: 16536902 DOI: 10.1211/jpp.58.3.0009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Cannabinoids have analgesic, immunomodulatory and anti-inflammatory properties and attenuate joint damage in animal models of arthritis. In this study the mechanisms of action of the synthetic cannabinoid agonists, HU-210 and Win-55,212–2, were studied to determine if they affected interleukin-1 alpha (IL-1α)-induced proteoglycan and collagen degradation in bovine nasal cartilage explant cultures and prostaglandin E2 (PGE2) production in primary cultures of bovine articular chondrocytes. The effects of the inactive enantiomer, Win-55,212–3, were compared with those of the active enantiomer, Win-55,212–2, to determine if the effects were cannabinoid (CB)-receptor mediated. The chondrocytes and explants were stimulated by IL-1α (100 U mL−1 ≡ 0.06 nm and 500 U mL−1 ≡ 0.3 nm, respectively). Proteoglycan breakdown was determined as sulfated glycosaminoglycan (sGAG) release using the dimethylmethylene blue assay. Collagen degradation was determined as hydroxyproline in the conditioned culture media and cartilage digests. PGE2 was determined by ELISA. Expression of cannabinoid receptors, CB1 and CB2; cyclooxygenase-1 and −2 (COX-1 and COX-2); inducible nitric oxide synthase (iNOS); as well as activation of nuclear factor-kappa B (NF-κB) in chondrocytes were studied using immunoblotting techniques and immunofluorescence. The results showed that HU-210 and Win-55,212–2 (5–15 μm) significantly inhibited IL-1α-stimulated proteoglycan (P < 0.001) and collagen degradation (P < 0.001). Win-55,212–2 (5–10 μm) also significantly inhibited PGE2 production (P < 0.01). At 5 μm, Win-55,212–2 inhibited the expression of iNOS and COX-2 and activation of NF-κB. Chondrocytes appeared to constitutively express cannabinoid receptors CB1 and CB2. It is concluded that biologically stable synthetic cannabinoids protect cartilage matrix from degradation induced by cytokines and this effect is possibly CB-receptor mediated and involves effects on prostaglandin and nitric oxide metabolism. Cannabinoids could also be producing these effects via inhibition of NF-κB activation.
Collapse
MESH Headings
- Animals
- Benzoxazines
- Cartilage/drug effects
- Cartilage/metabolism
- Cartilage, Articular/drug effects
- Cartilage, Articular/metabolism
- Cattle
- Cells, Cultured
- Chondrocytes/drug effects
- Chondrocytes/metabolism
- Chondrocytes/ultrastructure
- Collagen/metabolism
- Cyclooxygenase 1/biosynthesis
- Cyclooxygenase 2/biosynthesis
- Dinoprostone/biosynthesis
- Dronabinol/analogs & derivatives
- Dronabinol/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- In Vitro Techniques
- Interleukin-1/pharmacology
- Morpholines/chemistry
- Morpholines/pharmacology
- Naphthalenes/chemistry
- Naphthalenes/pharmacology
- Proteoglycans/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/biosynthesis
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/biosynthesis
- Stereoisomerism
Collapse
|