126
|
Zhang H, Liu R, Lu Q. Separation and Characterization of Phenolamines and Flavonoids from Rape Bee Pollen, and Comparison of Their Antioxidant Activities and Protective Effects Against Oxidative Stress. Molecules 2020; 25:molecules25061264. [PMID: 32168811 PMCID: PMC7144025 DOI: 10.3390/molecules25061264] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 02/03/2023] Open
Abstract
Phenolamines and flavonoids are two important components in bee pollen. There are many reports on the bioactivity of flavonoids in bee pollen, but few on phenolamines. This study aims to separate and characterize the flavonoids and phenolamines from rape bee pollen, and compare their antioxidant activities and protective effects against oxidative stress. The rape bee pollen was separated to obtain 35% and 50% fractions, which were characterized by HPLC-ESI-QTOF-MS/MS. The results showed that the compounds in 35% fraction were quercetin and kaempferol glycosides, while the compounds in 50% fraction were phenolamines, including di-p-coumaroyl spermidine, p-coumaroyl caffeoyl hydroxyferuloyl spermine, di-p-coumaroyl hydroxyferuloyl spermine, and tri-p-coumaroyl spermidine. The antioxidant activities of phenolamines and flavonoids were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and ferric reducing antioxidant power (FRAP) assays. It was found that the antioxidant activity of phenolamines was significantly higher than that of flavonoids. Moreover, phenolamines showed better protective effects than flavonoids on HepG2 cells injured by AAPH. Furthermore, phenolamines could significantly reduce the reactive oxygen species (ROS), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and increase the superoxide dismutase (SOD) and glutathione (GSH) levels. This study lays a foundation for the further understanding of phenolamines in rape bee pollen.
Collapse
|
127
|
Banerjee A, Samanta S, Roychoudhury A. Spermine ameliorates prolonged fluoride toxicity in soil-grown rice seedlings by activating the antioxidant machinery and glyoxalase system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109737. [PMID: 31699405 DOI: 10.1016/j.ecoenv.2019.109737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 05/03/2023]
Abstract
The current manuscript presents the first report on the ameliorative roles of exogenous spermine (Spm) during prolonged fluoride-induced toxicity and oxidative damages in the susceptible rice cultivar, IR-64. The application of Spm increased the overall growth in the stressed seedlings by significantly restricting fluoride bioaccumulation within the shoots and roots. The Spm-treated stressed seedlings exhibited low chlorosis and induced activity of pyruvate dehydrogenase and nitrate reductase due to reduced accumulation and localization of reactive oxygen species (ROS) in the shoot and root. Spm-supplementation during stress reduced the levels of molecular damages by lowering malondialdehyde, electrolyte leakage and protein carbonylation, and lipoxygenase and protease activity due to effective detoxification of ROS by the antioxidants like proline, glycine-betaine, anthocyanin, flavonoids, phenolics and higher polyamines like Spm and spermidine. Excessive accumulation of the toxic methylglyoxal was reversed due to the activation of the glyoxalase system (comprising of glyoxalase I and II) and the ascorbate-glutathione cycle. Exogenous Spm also triggered the activity of superoxide dismutase, guaiacol peroxidase, glutathione peroxidase and phenylalanine ammonia lyase, which efficiently scavenged ROS in the stressed seedlings. Overall, Spm treatment mitigated the fluoride-induced injuries in IR-64 by reducing fluoride bioaccumulation and elaborately refining the various defence machineries.
Collapse
|
128
|
Maglione M, Kochlamazashvili G, Eisenberg T, Rácz B, Michael E, Toppe D, Stumpf A, Wirth A, Zeug A, Müller FE, Moreno-Velasquez L, Sammons RP, Hofer SJ, Madeo F, Maritzen T, Maier N, Ponimaskin E, Schmitz D, Haucke V, Sigrist SJ. Spermidine protects from age-related synaptic alterations at hippocampal mossy fiber-CA3 synapses. Sci Rep 2019; 9:19616. [PMID: 31873156 PMCID: PMC6927957 DOI: 10.1038/s41598-019-56133-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Aging is associated with functional alterations of synapses thought to contribute to age-dependent memory impairment (AMI). While therapeutic avenues to protect from AMI are largely elusive, supplementation of spermidine, a polyamine normally declining with age, has been shown to restore defective proteostasis and to protect from AMI in Drosophila. Here we demonstrate that dietary spermidine protects from age-related synaptic alterations at hippocampal mossy fiber (MF)-CA3 synapses and prevents the aging-induced loss of neuronal mitochondria. Dietary spermidine rescued age-dependent decreases in synaptic vesicle density and largely restored defective presynaptic MF-CA3 long-term potentiation (LTP) at MF-CA3 synapses (MF-CA3) in aged animals. In contrast, spermidine failed to protect CA3-CA1 hippocampal synapses characterized by postsynaptic LTP from age-related changes in function and morphology. Our data demonstrate that dietary spermidine attenuates age-associated deterioration of MF-CA3 synaptic transmission and plasticity. These findings provide a physiological and molecular basis for the future therapeutic usage of spermidine.
Collapse
|
129
|
Banerjee A, Singh A, Roychoudhury A. Spermidine application reduces fluoride uptake and ameliorates physiological injuries in a susceptible rice cultivar by activating diverse regulators of the defense machinery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36598-36614. [PMID: 31734839 DOI: 10.1007/s11356-019-06711-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The manuscript illustrates the ameliorative effects of exogenously applied higher polyamine (PA), spermidine (Spd) in the susceptible indica rice cultivar IR-64 subjected to prolonged fluoride stress. The Spd treatment drastically reduced fluoride bioaccumulation by restricting entry of the anions through chloride channels and enabled better maintenance of the proton gradient via accumulation of P-H+/ATPase, thereby improving the root and shoot lengths, fresh and dry weights, RWC, chlorophyll content and activities of pyruvate dehydrogenase (PyrDH), α-amylase, and nitrate reductase (NR) in the Spd-treated, stressed plants. Expression of RuBisCo, PyrDH, α-amylase, and NR was stimulated. Spd supplementation reduced the molecular damage indices like malondialdehyde, lipoxygenase, protease activity, electrolyte leakage, protein carbonylation, H2O2, and methylglyoxal (detoxified by glyoxalase II). Mitigation of oxidative damage was facilitated by the accumulation and utilization of proline, glycine-betaine, total amino acids, higher PAs, anthocyanin, flavonoids, β-carotene, xanthophyll, and phenolics as verified from the expression of genes like P5CS, BADH1, SAMDC, SPDS, SPMS, DAO, PAO, and PAL. Spd treatment activated the ascorbate-glutathione cycle in the stressed seedlings. Expression and activities of enzymatic antioxidants showed that GPOX, APX, GPX, and GST were the chief ROS scavengers. Exogenous Spd promoted ABA accumulation by upregulating NCED3 and suppressing ABA8ox1 expression. ABA-dependent osmotic stress-responsive genes like Osem, WRKY71, and TRAB1 as well as ABA-independent transcription factor encoding gene DREB2A were induced by Spd. Thus, Spd treatment ameliorated fluoride-mediated injuries in IR-64 by restricting fluoride uptake, refining the defense machinery and activating the ABA-dependent as well as ABA-independent stress-responsive genes.
Collapse
|
130
|
Hussain A, Nazir F, Fariduddin Q. Polyamines (spermidine and putrescine) mitigate the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea. CHEMOSPHERE 2019; 236:124830. [PMID: 31549671 DOI: 10.1016/j.chemosphere.2019.124830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 05/09/2023]
Abstract
Polyamines (PAs) are recognized as plant growth regulators that are involved in the stress management in various crops. In the current study, mitigative roles of spermidine (Spd) and putrescine (Put) were assessed in manganese (Mn) stressed Brassica juncea plants. Spd or Put (1.0 mM) were applied to the foliage of Brassica juncea at 35 days after sowing (DAS) grown in the presence of Mn (30 or 150 mg kg-1 soil). The higher level of Mn (150 mg kg-1) diminished photosynthetic attributes and growth, enhanced the production of reactive oxygen species (ROS) like hydrogen peroxide (H2O2) and superoxide anion ( [Formula: see text] ) content, affected stomatal movement and increased the Mn concentration in roots and shoots of the plant at 45 DAS, whereas it enhanced the activities of various antioxidant enzymes and proline content in the foliage of Brassica juncea plants. On the other hand, treatment of PAs (Spd or Put) to Mn stressed as well as non-stressed plants resulted in a remarkable improvement in the stomatal behaviour, photosynthetic attributes, growth and biochemical traits, decreased the production of ROS (H2O2 and [Formula: see text] ) and concentration of Mn in different parts of plant. It is concluded that out of the two polyamines (Spd or Put), Spd proved more efficient and enhanced growth, photosynthesis, and metabolic state of the plants which bestowed tolerance and helped the plants to cope efficiently under Mn stress.
Collapse
|
131
|
Nishio T, Yoshikawa Y, Shew CY, Umezawa N, Higuchi T, Yoshikawa K. Specific effects of antitumor active norspermidine on the structure and function of DNA. Sci Rep 2019; 9:14971. [PMID: 31628357 PMCID: PMC6802174 DOI: 10.1038/s41598-019-50943-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Abstract
We compared the effects of trivalent polyamines, spermidine (SPD) and norspermidine (NSPD), a chemical homologue of SPD, on the structure of DNA and gene expression. The chemical structures of SPD and NSPD are different only with the number of methylene groups between amine groups, [N-3-N-4-N] and [N-3-N-3-N], respectively. SPD plays vital roles in cell function and survival, including in mammals. On the other hand, NSPD has antitumor activity and is found in some species of plants, bacteria and algae, but not in humans. We found that both polyamines exhibit biphasic effect; enhancement and inhibition on in vitro gene expression, where SPD shows definitely higher potency in enhancement but NSPD causes stronger inhibition. Based on the results of AFM (atomic force microscopy) observations together with single DNA measurements with fluorescence microscopy, it becomes clear that SPD tends to align DNA orientation, whereas NSPD induces shrinkage with a greater potency. The measurement of binding equilibrium by NMR indicates that NSPD shows 4-5 times higher affinity to DNA than SPD. Our theoretical study with Monte Carlo simulation provides the insights into the underlying mechanism of the specific effect of NSPD on DNA.
Collapse
|
132
|
Zhang H, Alsaleh G, Feltham J, Sun Y, Napolitano G, Riffelmacher T, Charles P, Frau L, Hublitz P, Yu Z, Mohammed S, Ballabio A, Balabanov S, Mellor J, Simon AK. Polyamines Control eIF5A Hypusination, TFEB Translation, and Autophagy to Reverse B Cell Senescence. Mol Cell 2019; 76:110-125.e9. [PMID: 31474573 PMCID: PMC6863385 DOI: 10.1016/j.molcel.2019.08.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/30/2019] [Accepted: 08/02/2019] [Indexed: 02/08/2023]
Abstract
Failure to make adaptive immune responses is a hallmark of aging. Reduced B cell function leads to poor vaccination efficacy and a high prevalence of infections in the elderly. Here we show that reduced autophagy is a central molecular mechanism underlying immune senescence. Autophagy levels are specifically reduced in mature lymphocytes, leading to compromised memory B cell responses in old individuals. Spermidine, an endogenous polyamine metabolite, induces autophagy in vivo and rejuvenates memory B cell responses. Mechanistically, spermidine post-translationally modifies the translation factor eIF5A, which is essential for the synthesis of the autophagy transcription factor TFEB. Spermidine is depleted in the elderly, leading to reduced TFEB expression and autophagy. Spermidine supplementation restored this pathway and improved the responses of old human B cells. Taken together, our results reveal an unexpected autophagy regulatory mechanism mediated by eIF5A at the translational level, which can be harnessed to reverse immune senescence in humans.
Collapse
|
133
|
Liu H, Dong J, Song S, Zhao Y, Wang J, Fu Z, Yang J. Spermidine ameliorates liver ischaemia-reperfusion injury through the regulation of autophagy by the AMPK-mTOR-ULK1 signalling pathway. Biochem Biophys Res Commun 2019; 519:227-233. [PMID: 31493865 DOI: 10.1016/j.bbrc.2019.08.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hepatic ischaemia-reperfusion (IR) injury is a common clinical challenge lacking effective therapy. The aim of this study was to investigate whether spermidine has protective effects against hepatic IR injury through autophagy. METHODS Liver ischaemia reperfusion was induced in male C57BL/6 mice. Then, liver function, histopathology, cytokine production and immunofluorescence were evaluated to assess the impact of spermidine pre-treatment on IR-induced liver injury. Autophagosome formation was observed by transmission electron microscopy. Western blotting was used to explore the underlying mechanism and its relationship with autophagy, and TUNEL staining was conducted to determine the relationship between apoptosis and autophagy in the ischaemic liver. RESULTS The results of the transaminase assay, histopathological examination, and pro-inflammatory cytokine production and immunofluorescence evaluations demonstrated that mice pre-treated with spermidine showed significantly preserved liver function. Further experiments demonstrated that mice administered spermidine before the induction of IR exhibited increased autophagy via the AMPK-mTOR-ULK1 pathway, and TUNEL staining revealed that spermidine attenuated IR-induced apoptosis in the liver. CONCLUSIONS Our results provide the first line of evidence that spermidine provides protection against IR-induced injury in the liver by regulating autophagy through the AMPK-mTOR-ULK1 signalling pathway. These results suggest that spermidine may be beneficial for hepatic IR injury.
Collapse
|
134
|
Yan J, Yan J, Wang Y, Ling Y, Song X, Wang S, Liu H, Liu Q, Zhang Y, Yang P, Wang X, Chen A. Spermidine-enhanced autophagic flux improves cardiac dysfunction following myocardial infarction by targeting the AMPK/mTOR signalling pathway. Br J Pharmacol 2019; 176:3126-3142. [PMID: 31077347 PMCID: PMC6692641 DOI: 10.1111/bph.14706] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Spermidine, a natural polyamine, is abundant in mammalian cells and is involved in cell growth, proliferation, and regeneration. Recently, oral spermidine supplements were cardioprotective in age-related cardiac dysfunction, through enhancing autophagic flux. However, the effect of spermidine on myocardial injury and cardiac dysfunction following myocardial infarction (MI) remains unknown. EXPERIMENTAL APPROACH We determined the effects of spermidine in a model of MI, Sprague-Dawley rats with permanent ligation of the left anterior descending artery, and in cultured neonatal rat cardiomyocytes (NRCs) exposed to angiotensin II (Ang II). Cardiac function in vivo was assessed with echocardiography. In vivo and in vitro studies used histological and immunohistochemical techniques, along with western blots. KEY RESULTS Spermidine improved cardiomyocyte viability and decreased cell necrosis in NRCs treated with angiotensin II. In rats post-MI, spermidine reduced infarct size, improved cardiac function, and attenuated myocardial hypertrophy. Spermidine also suppressed the oxidative damage and inflammatory cytokines induced by MI. Moreover, spermidine enhanced autophagic flux and decreased apoptosis both in vitro and in vivo. The protective effects of spermidine on cardiomyocyte apoptosis and cardiac dysfunction were abolished by the autophagy inhibitor chloroquine, indicating that spermidine exerted cardioprotective effects at least partly through promoting autophagic flux, by activating the AMPK/mTOR signalling pathway. CONCLUSIONS AND IMPLICATIONS Our findings suggest that spermidine improved MI-induced cardiac dysfunction by promoting AMPK/mTOR-mediated autophagic flux.
Collapse
|
135
|
Tanaka H, Takeda K, Imai A. Polyamines alleviate the inhibitory effect of the DNA cross-linking agent mitomycin C on root growth. PLANT SIGNALING & BEHAVIOR 2019; 14:1659687. [PMID: 31446839 PMCID: PMC6804717 DOI: 10.1080/15592324.2019.1659687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Polyamines (putrescine, spermidine and spermine) are ubiquitously present in various types of cells of living organisms. They are involved in a variety of cellular processes, including cell proliferation and cell differentiation, and are required for abiotic stress tolerances in plants. However, it is still not understood whether polyamines are involved in the plant growth inhibition caused by DNA-damaging agents. In this study, we examined the effects of polyamines on the inhibition of plant root growth and gene expression in Arabidopsis thaliana treated with mitomycin C (MMC), a genotoxic agent that induces DNA interstrand crosslinks. We found that polyamines alleviated the inhibitory effect caused by MMC on root growth. In addition, we also found that polyamines alleviated the increased expression of AtBRCA1 and AtRAD51 genes induced by MMC treatment. Our study provides the first evidence that polyamines contribute to tolerance against plant-growth inhibition caused by a DNA-damaging chemical.
Collapse
|
136
|
Taie HAA, Seif El-Yazal MA, Ahmed SMA, Rady MM. Polyamines modulate growth, antioxidant activity, and genomic DNA in heavy metal-stressed wheat plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22338-22350. [PMID: 31154641 DOI: 10.1007/s11356-019-05555-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 05/25/2023]
Abstract
A pot experiment was performed to assess the useful effects of seed soaking or seedling foliar spray using 0.25 mM spermine (Spm), 0.50 mM spermidine (Spd), or 1 mM putrescine (Put) on heavy metal tolerance in wheat plants irrigated with water contaminated by cadmium (2 mM Cd2+ in CdCl2) or lead (2 mM Pb2+ in PbCl2). Cd2+ or Pb2+ presence in the growth medium resulted in significant reductions in growth and yield characteristics and activities of leaf peroxidase (POD), glutathione reductase (GR), ascorbic acid oxidase (AAO), and polyphenol oxidase (PPO) of wheat plants. In contrast, significant increases were observed for Cd2+ content in roots, leaves and grains, superoxide dismutase (SOD) and catalase (CAT) activities, radical scavenging activity (DPPH), reducing power capacity, and fragmentation in DNA in comparison to controls (without Cd2+ or Pb2+ addition). However, treating the Cd2+- or Pb2+-stressed wheat plants with Spm, Spd, or Put, either by seed soaking or foliar spray, significantly improved growth and yield characteristics and activities of POD, GR, AAO, PPO, SOD, and CAT, DPPH, and reducing power capacity in wheat plants. In contrast, Cd2+ levels in roots, leaves, and yielded grains, and fragmentation in DNA were significantly reduced compared with the stressed (with Cd2+ or Pb2+) controls. Generally, seed soaking treatments were more effective than foliar spray treatments. More specifically, seed priming in Put was the best treatment under heavy metal stress. Results of this study recommend using polyamines, especially Put, as seed soaking to relieve the adverse effects of heavy metals in wheat plants.
Collapse
|
137
|
Williams DL, Epperson RT, Ashton NN, Taylor NB, Kawaguchi B, Olsen RE, Haussener TJ, Sebahar PR, Allyn G, Looper RE. In vivo analysis of a first-in-class tri-alkyl norspermidine-biaryl antibiotic in an active release coating to reduce the risk of implant-related infection. Acta Biomater 2019; 93:36-49. [PMID: 30710710 DOI: 10.1016/j.actbio.2019.01.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
Abstract
Prosthetic joint infection (PJI) is a well-known and persisting problem. Active release coatings have promise to provide early protection to an implant by eradicating small colony biofilm contaminants or planktonic bacteria that can form biofilm. Traditional antibiotics can be limited as active release agents in that they have limited effect against biofilms and develop resistance at sub-lethal concentrations. A unique first-in-class compound (CZ-01127) was assessed as the active release agent in a silicone (Si)-based coating to prevent PJI in a sheep model of joint space infection. Titanium (Ti) plugs contained a porous coated Ti (PCTi) region and polymer-coated region. Plugs were implanted into a femoral condyle of sheep to assess the effect of the Si polymer on cancellous bone ingrowth, the effect of CZ-01127 on bone ingrowth, and the ability of CZ-01127 to prevent PJI. Microbiological results showed that CZ-01127 was able to eradicate bacteria in the local region of the implanted plugs. Data further showed that Si did not adversely affect bone ingrowth. However, bacteria that reached the joint space (synovium) were not fully eradicated. Outcomes suggested that the CZ-01127 coating provided local protection to the implant system in a challenging model, the design of which could be beneficial for testing future antimicrobial therapies for PJI. STATEMENT OF SIGNIFICANCE: Periprosthetic joint infection (PJI) is now commonplace, and constitutes an underlying problem that patients and physicians face. Active release antibiotic coatings have potential to prevent these infections. Traditional antibiotics are limited in their ability to eradicate bacteria that reside in biofilms, and are more susceptible to resistance development. This study addressed these limitations by testing the efficacy of a unique antimicrobial compound in a coating that was tested in a challenging sheep model of PJI. The unique coating was able to eradicate bacteria and prevent infection in the environment adjacent to the implant. Bacteria that escaped into the joint space still caused infection, yet benchmark data can be used to optimize the coating and translate it toward clinical use.
Collapse
|
138
|
Liu P, de la Vega MR, Dodson M, Yue F, Shi B, Fang D, Chapman E, Liu L, Zhang DD. Spermidine Confers Liver Protection by Enhancing NRF2 Signaling Through a MAP1S-Mediated Noncanonical Mechanism. Hepatology 2019; 70:372-388. [PMID: 30873635 PMCID: PMC6597327 DOI: 10.1002/hep.30616] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Spermidine (SPD), a naturally occurring polyamine, has been recognized as a caloric restriction mimetic that confers health benefits, presumably by inducing autophagy. Recent studies have reported that oral administration of SPD protects against liver fibrosis and hepatocarcinogenesis through activation of microtubule associated protein 1S (MAP1S)-mediated autophagy. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a transcription factor that mediates cellular protection by maintaining the cell's redox, metabolic, and proteostatic balance. In this study, we demonstrate that SPD is a noncanonical NRF2 inducer, and that MAP1S is a component of this noncanonical pathway of NRF2 activation. Mechanistically, MAP1S induces NRF2 signaling through two parallel mechanisms, both resulting in NRF2 stabilization: (1) MAP1S competes with Kelch-like ECH-associated protein 1 (KEAP1) for NRF2 binding through an ETGE motif, and (2) MAP1S accelerates p62-dependent degradation of KEAP1 by the autophagy pathway. We further demonstrate that SPD confers liver protection by enhancing NRF2 signaling. The importance of both NRF2 and p62-dependent autophagy in SPD-mediated liver protection was confirmed using a carbon tetrachloride-induced liver fibrosis model in wild-type, Nrf2-/- , p62-/- and Nrf2-/- ;p62-/- mice, as the protective effect of SPD was significantly reduced in NRF2 or p62 single knockout mice, and completely abolished in the double knockout mice. Conclusion: Our results demonstrate the pivotal role of NRF2 in mediating the health benefit of SPD, particularly in the context of liver pathologies.
Collapse
|
139
|
Ohkubo S, Mancinelli R, Miglietta S, Cona A, Angelini R, Canettieri G, Spandidos DA, Gaudio E, Agostinelli E. Maize polyamine oxidase in the presence of spermine/spermidine induces the apoptosis of LoVo human colon adenocarcinoma cells. Int J Oncol 2019; 54:2080-2094. [PMID: 31081059 PMCID: PMC6521933 DOI: 10.3892/ijo.2019.4780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Amine oxidases, which contribute to the regulation of polyamine levels, catalyze the oxidative deamination of polyamines to generate H2O2 and aldehyde(s). In this study, and at least to the best of our knowledge, maize polyamine oxidase (ZmPAO) was used for the first time with the aim of identifying a novel strategy for cancer therapy. The cytotoxicity and the mechanisms of cell death induced by the enzymatic oxidation products of polyamine generated by ZmPAO were investigated. Exogenous spermine and ZmPAO treatment decreased cell viability in a spermine dose‑ and time‑dependent manner, particularly, the viability of the multidrug‑resistant (MDR) colon adenocarcinoma cells, LoVo DX, when compared with drug‑sensitive ones (LoVo WT). Further analyses revealed that H2O2 derived from spermine was mainly responsible for the cytotoxicity. Flow cytometric analysis revealed that treatment with ZmPAO and spermine increased the apoptotic population of LoVo WT and LoVo DX cells. In addition, we found that treatment with ZmPAO and spermine markedly reduced mitochondrial membrane potential in the LoVo DX cells, in agreement with the results of cell viability and apoptosis assays. Transmission electron microscopic observations supported the involvement of mitochondrial depolarization in the apoptotic process. Therefore, the dysregulation of polyamine metabolism in tumor cells may be a potential therapeutic target. In addition, the development of MDR tumor cells is recognized as a major obstacle in cancer therapy. Therefore, the design of a novel therapeutic strategy based on the use of this combination may be taken into account, making this approach attractive mainly in treating MDR cancer patients.
Collapse
|
140
|
Fu Y, Gu Q, Dong Q, Zhang Z, Lin C, Hu W, Pan R, Guan Y, Hu J. Spermidine Enhances Heat Tolerance of Rice Seeds by Modulating Endogenous Starch and Polyamine Metabolism. Molecules 2019; 24:E1395. [PMID: 30970602 PMCID: PMC6480098 DOI: 10.3390/molecules24071395] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 02/02/2023] Open
Abstract
Polyamines have been reported to be involved in grain filling and they might contribute to the construction of heat resistance of some cereals. In this study, the hybrid rice 'YLY 689' was used to explore the possible effects of exogenous spermidine (Spd) on seed quality under high temperature during the filling stage. Rice spikes were treated with Spd or its synthesis inhibitor cyclohexylamine (CHA) after pollination, and then the rice plants were transferred to 40 °C for 5-day heat treatment. The results showed that, compared with the control under high temperature, Spd pretreatment significantly improved the germination percentage, germination index, vigor index, seedling shoot height, and dry weight of seeds harvested at 35 days after pollination, while the CHA significantly decreased the seed germination and seedling growth. Meanwhile, Spd significantly increased the peroxidase (POD) activity and decreased the malondialdehyde (MDA) content in seeds. In addition, after spraying with Spd, the endogenous content of spermidine and spermine and the expression of their synthetic genes, spermidine synthase (SPDSYN) and spermine synthase (SPMS1 and SPMS2), significantly increased, whereas the accumulation of amylose and total starch and the expression of their related synthase genes, soluble starch synthase II-3 (SS II-3) and granules bound starch synthase I (GBSSI), also increased to some extent. The data suggests that exogenous Spd pretreatment could alleviate the negative impacts of high temperature stress on rice seed grain filling and improve the rice seed quality to some extent, which might be partly caused by up-regulating endogenous polyamines and starch metabolism.
Collapse
|
141
|
Pál M, Ivanovska B, Oláh T, Tajti J, Hamow KÁ, Szalai G, Khalil R, Vanková R, Dobrev P, Misheva SP, Janda T. Role of polyamines in plant growth regulation of Rht wheat mutants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:189-202. [PMID: 30798173 DOI: 10.1016/j.plaphy.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 05/27/2023]
Abstract
Besides their protective role, polyamines also serve as signalling molecules. However, further studies are needed to elucidate the polyamine signalling pathways, especially to identify polyamine-regulated mechanisms and their connections with other regulatory molecules. Reduced height (Rht) genes in wheat are often used in breeding programs to increase harvest index. Some of these genes are encoding DELLA proteins playing role in gibberellic acid signalling. The aim of the present paper was to reveal how the mutations in Rht gene modify the polyamine-regulated processes in wheat. Wild type and two Rht mutant genotypes (Rht 1: semi-dwarf; Rht 3: dwarf mutants) were treated with polyamines. Polyamine treatments differently influenced the polyamine metabolism, the plant growth parameters and certain hormone levels (salicylic acid and abscisic acid) in these genotypes. The observed distinct metabolism of Rht 3 may more likely reflect more intensive polyamine exodus from putrescine to spermidine and spermine, and the catabolism of the higher polyamines. The lower root to shoot translocation of putrescine can contribute to the regulation of polyamine pool, which in turn may be responsible for the observed lack of growth inhibition in Rht 3 after spermidine and spermine treatments. Lower accumulation of salicylic acid and abscisic acid, plant hormones usually linked with growth inhibition, in leaves may also be responsible for the diminished negative effect of higher polyamines on the shoot growth parameters observed in Rht 3. These results provide an insight into the role of polyamines in plant growth regulation based on the investigation of gibberellin-insensitive Rht mutants.
Collapse
|
142
|
Ao Y, Zhang J, Liu Z, Qian M, Li Y, Wu Z, Sun P, Wu J, Bei W, Wen J, Wu X, Li F, Zhou Z, Zhu WG, Liu B, Wang Z. Lamin A buffers CK2 kinase activity to modulate aging in a progeria mouse model. SCIENCE ADVANCES 2019; 5:eaav5078. [PMID: 30906869 PMCID: PMC6426468 DOI: 10.1126/sciadv.aav5078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/31/2019] [Indexed: 05/15/2023]
Abstract
Defective nuclear lamina protein lamin A is associated with premature aging. Casein kinase 2 (CK2) binds the nuclear lamina, and inhibiting CK2 activity induces cellular senescence in cancer cells. Thus, it is feasible that lamin A and CK2 may cooperate in the aging process. Nuclear CK2 localization relies on lamin A and the lamin A carboxyl terminus physically interacts with the CK2α catalytic core and inhibits its kinase activity. Loss of lamin A in Lmna-knockout mouse embryonic fibroblasts (MEFs) confers increased CK2 activity. Conversely, prelamin A that accumulates in Zmpste24-deficent MEFs exhibits a high CK2α binding affinity and concomitantly reduces CK2 kinase activity. Permidine treatment activates CK2 by releasing the interaction between lamin A and CK2, promoting DNA damage repair and ameliorating progeroid features. These data reveal a previously unidentified function for nuclear lamin A and highlight an essential role for CK2 in regulating senescence and aging.
Collapse
|
143
|
Li L, Gu W, Li J, Li C, Xie T, Qu D, Meng Y, Li C, Wei S. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:35-55. [PMID: 29793181 DOI: 10.1016/j.plaphy.2018.05.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments. Exogenous Spd alleviated the stress-induced reduction in growth, photosynthetic pigment content, photosynthesis rate (Pn) and photochemical quenching (qP) parameters, including the maximum photochemistry efficiency of photosystem II (PSII) (Fv/Fm), PSII operating efficiency (ФPSII), and qP coefficient. Exogenous Spd further enhanced stress-induced elevation in non-photochemical quenching (NPQ) and the de-epoxidation state of the xanthophyll cycle (DEPS). Microscopic analysis revealed that seedlings displayed a more ordered arrangement of chloroplast ultrastructure upon Spd application during DS. Exogenous Spd increased the endogenous PA concentrations in the stressed plants. Additionally, exogenous Spd increased indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin A3 (GA3) and decreased salicylic acid (SA) and jasmonate (JA) concentrations under DS. These results indicate that exogenous Spd can alleviate the growth inhibition and damage to the structure and function of the photosynthetic apparatus caused by DS and that this alleviation may be associated with changes in endogenous PAs and phytohormones. This study contributes to advances in the knowledge of Spd-induced drought tolerance.
Collapse
|
144
|
Zhou T, Wang P, Yang R, Gu Z. Polyamines regulating phytic acid degradation in mung bean sprouts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3299-3308. [PMID: 29239473 DOI: 10.1002/jsfa.8833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Polyamines are essentially involved in cell division and differentiation. Transport of polyamines is adenosine triphosphate (ATP)-dependent, while phytic acid is the major reserve of phosphate essential to the energy-producing machinery of cells. Thus polyamines might enhance phytic acid degradation during mung bean germination. In this study, different polyamines (putrescine (Put), spermidine (Spd) and spermine (Spm)) and dicyclohexylamine (DCHA, an inhibitor of Spd synthesis) were applied to investigate the function of polyamines on phytic acid degradation. RESULTS Spd exhibited the best effect at the same concentration. Simultaneously, exogenous Spd improved sprout growth and enhanced the accumulation of gibberellin acid 3 (GA3 ), indole-3-acetic acid (IAA), abscisic acid (ABA) and cytokinin (CTK). This must be due to the increased endogenous polyamine contents. Apart from dramatically reducing phytic acid content, Spd resulted in the up-regulation of PA, PAP, MIPP and ALP transcript levels and the enhancement of phytase and acid phosphatase activities. However, DCHA application caused the opposite results, because it decreased endogenous polyamine contents. Furthermore, Spd alleviated the DCHA-induced inhibitory effect to some extent. CONCLUSION Overall, polyamines, especially Spd, could accelerate phytic acid degradation in mung bean sprouts by inducing the synthesis of endogenous polyamines and phytohormones and enhancing the growth of sprouts. © 2017 Society of Chemical Industry.
Collapse
|
145
|
Gobert AP, Al-Greene NT, Singh K, Coburn LA, Sierra JC, Verriere TG, Luis PB, Schneider C, Asim M, Allaman MM, Barry DP, Cleveland JL, Destefano Shields CE, Casero RA, Washington MK, Piazuelo MB, Wilson KT. Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection. Front Immunol 2018; 9:1242. [PMID: 29922289 PMCID: PMC5996034 DOI: 10.3389/fimmu.2018.01242] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
Polyamines have been implicated in numerous biological processes, including inflammation and carcinogenesis. Homeostatic regulation leads to interconversion of the polyamines putrescine and the downstream metabolites spermidine and spermine. The enzyme spermine oxidase (SMOX), which back-converts spermine to spermidine, contributes to regulation of polyamine levels, but can also have other effects. We have implicated SMOX in gastric inflammation and carcinogenesis due to infection by the pathogen Helicobacter pylori. In addition, we reported that SMOX can be upregulated in humans with inflammatory bowel disease. Herein, we utilized Smox-deficient mice to examine the role of SMOX in two murine colitis models, Citrobacter rodentium infection and dextran sulfate sodium (DSS)-induced epithelial injury. In C. rodentium-infected wild-type (WT) mice, there were marked increases in colon weight/length and histologic injury, with mucosal hyperplasia and inflammatory cell infiltration; these changes were ameliorated in Smox-/- mice. In contrast, with DSS, Smox-/- mice exhibited substantial mortality, and increased body weight loss, colon weight/length, and histologic damage. In C. rodentium-infected WT mice, there were increased colonic levels of the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL2, and CXCL10, and the cytokines IL-6, TNF-α, CSF3, IFN-γ, and IL-17; each were downregulated in Smox-/- mice. In DSS colitis, increased levels of IL-6, CSF3, and IL-17 were further increased in Smox-/- mice. In both models, putrescine and spermidine were increased in WT mice; in Smox-/- mice, the main effect was decreased spermidine and spermidine/spermine ratio. With C. rodentium, polyamine levels correlated with histologic injury, while with DSS, spermidine was inversely correlated with injury. Our studies indicate that SMOX has immunomodulatory effects in experimental colitis via polyamine flux. Thus, SMOX contributes to the immunopathogenesis of C. rodentium infection, but is protective in DSS colitis, indicating the divergent effects of spermidine.
Collapse
|
146
|
Wang Y, Guo S, Wang L, Wang L, He X, Shu S, Sun J, Lu N. Identification of microRNAs associated with the exogenous spermidine-mediated improvement of high-temperature tolerance in cucumber seedlings (Cucumis sativus L.). BMC Genomics 2018; 19:285. [PMID: 29690862 PMCID: PMC5937831 DOI: 10.1186/s12864-018-4678-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 04/16/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND High-temperature stress inhibited the growth of cucumber seedlings. Foliar spraying of 1.0 mmol·L- 1 exogenous spermidine (Spd) to the sensitive cucumber cultivar 'Jinchun No. 2' grown at high-temperature (42 °C/32 °C) in an artificial climate box improved the high-temperature tolerance. Although there have been many reports on the response of microRNAs (miRNAs) to high-temperature stress, the mechanism by which exogenous Spd may mitigate the damage of high-temperature stress through miRNA-mediated regulation has not been studied. RESULTS To elucidate the regulation of miRNAs in response to exogenous Spd-mediated improvement of high-temperature tolerance, four small RNA libraries were constructed from cucumber leaves and sequenced: untreated-control (CW), Spd-treated (CS), high-temperature stress (HW), and Spd-treated and high-temperature stress (HS). As a result, 107 known miRNAs and 79 novel miRNAs were identified. Eight common differentially expressed miRNAs (miR156d-3p, miR170-5p, miR2275-5p, miR394a, miR479b, miR5077, miR5222 and miR6475) were observed in CS/CW, HW/CW, HS/CW and HS/HW comparison pairs, which were the first set of miRNAs that responded to not only high-temperature stress but also exogenous Spd in cucumber seedlings. Five of the eight miRNAs were predicted to target 107 potential genes. Gene function and pathway analyses highlighted the integral role that these miRNAs and target genes probably play in the improvement of the high-temperature tolerance of cucumber seedlings through exogenous Spd application. CONCLUSIONS Our study identified the first set of miRNAs associated with the exogenous Spd-mediated improvement of high-temperature tolerance in cucumber seedlings. The results could help to promote further studies on the complex molecular mechanisms underlying high-temperature tolerance in cucumber and provide a theoretical basis for the high-quality and efficient cultivation of cucumber with high-temperature resistance.
Collapse
|
147
|
Kanemura A, Yoshikawa Y, Fukuda W, Tsumoto K, Kenmotsu T, Yoshikawa K. Opposite effect of polyamines on In vitro gene expression: Enhancement at low concentrations but inhibition at high concentrations. PLoS One 2018; 13:e0193595. [PMID: 29494707 PMCID: PMC5832264 DOI: 10.1371/journal.pone.0193595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/14/2018] [Indexed: 11/18/2022] Open
Abstract
Background Polyamines have various biological functions including marked effects on the structure and function of genomic DNA molecules. Changes in the higher-order structure of DNA caused by polyamines are expected to be closely related to genetic activity. To clarify this issue, we examined the relationship between gene expression and the higher-order structure of DNA under different polyamine concentrations. Principal findings We studied the effects of polyamines, spermidine SPD(3+) and spermine SP(4+), on gene expression by a luciferase assay. The results showed that gene expression is increased by ca. 5-fold by the addition of SPD(3+) at 0.3 mM, whereas it is completely inhibited above 2 mM. Similarly, with SP(4+), gene expression is maximized at 0.08 mM and completely inhibited above 0.6 mM. We also performed atomic force microscopy (AFM) observations on DNA under different polyamine concentrations. AFM revealed that a flower-like conformation is generated at polyamine concentrations associated with maximum expression as measured by the luciferase assay. On the other hand, DNA molecules exhibit a folded compact conformation at polyamine concentrations associated with the complete inhibition of expression. Based on these results, we discuss the plausible mechanism of the opposite effect, i.e., enhancement and inhibition, of polyamines on gene expression. Conclusion and significance It was found that polyamines exert opposite effect, enhancement and inhibition, on gene expression depending on their concentrations. Such an opposite effect is argued in relation to the conformational change of DNA: enhancement is due to the parallel ordering of DNA segments that is accompanied by a decrease in the negative charge of double-stranded DNA, and inhibition is caused by the compaction of DNA into a tightly packed state with almost perfect charge-neutralization.
Collapse
|
148
|
Tajti J, Janda T, Majláth I, Szalai G, Pál M. Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:546-554. [PMID: 29127816 DOI: 10.1016/j.ecoenv.2017.10.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/23/2023]
Abstract
In several cases a correlation was found between polyamines and abiotic stress tolerance. However, the individual polyamines may have different effects, which also vary depending on the type of treatment. When applied as seed soaking or added hydroponically 0.5mM putrescine and spermidine, different changes were induced during 50µM cadmium stress in wheat plants. Seed-soaked plants were exposed to cadmium immediately after germination for 5 days, while plants pre-treated with polyamines hydroponically were stressed at age of 14 days for 7 days. Putrescine pre-treatment was beneficial both as seed soaking and applied hydroponically, while spermidine only had a protective effect in the case of seed soaking, enhancing the Cd-induced oxidative stress when were pre-treated hydroponically. The differences observed were related to the polyamine metabolism. The accumulation of endogenous putrescine beyond a certain amount may be in relation with the negative effect of hydroponic spermidine pre-treatment during Cd stress. The increased putrescine content was also correlated with the highest accumulation of Cd, salicylic acid and proline contents in plants treated with a combination of spermidine and Cd. However, the expression level of the gene encoding phytochelatin synthase was only influenced by hydroponically applied spermidine, which decreased it under cadmium stress. Changes in the activities of antioxidant enzymes, diamine and polyamine oxidases were also discussed.
Collapse
|
149
|
Zhang L, Gong H, Sun Q, Zhao R, Jia Y. Spermidine-Activated Satellite Cells Are Associated with Hypoacetylation in ACVR2B and Smad3 Binding to Myogenic Genes in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:540-550. [PMID: 29224337 DOI: 10.1021/acs.jafc.7b04482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spermidine is an acetyltransferase inhibitor and a specific inducer of autophagy. Recently, spermidine is identified as a potential therapeutic agent for age-related muscle atrophy and inherited myopathies. However, the effect of spermidine on nonpathological skeletal muscle remains unclear. In this study, long-term spermidine administration in mice lowered the mean cross-sectional area of the gastrocnemius muscle and reduced the expression of myosin heavy chain isoforms in the muscle, which was associated with ubiquitination. Moreover, spermidine supplementation induced autophagy in satellite cells and enhanced satellite cell proliferation. ChIP assay revealed that spermidine repressed H3K56ac in the promoter of ACVR2B and lowered the binding affinity of Smad3 to the promoters of Myf5 and MyoD. Altogether, our results indicate that long-term administration of spermidine can activate satellite cells, as well as enhance autophagy, eventually resulting in muscle atrophy. In addition, H3K56ac and Smad3 emerged as key determinants of satellite cell activation.
Collapse
|
150
|
Schwarz C, Stekovic S, Wirth M, Benson G, Royer P, Sigrist SJ, Pieber T, Dammbrueck C, Magnes C, Eisenberg T, Pendl T, Bohlken J, Köbe T, Madeo F, Flöel A. Safety and tolerability of spermidine supplementation in mice and older adults with subjective cognitive decline. Aging (Albany NY) 2018; 10:19-33. [PMID: 29315079 PMCID: PMC5807086 DOI: 10.18632/aging.101354] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/23/2017] [Indexed: 04/14/2023]
Abstract
Supplementation of spermidine, an autophagy-inducing agent, has been shown to protect against neurodegeneration and cognitive decline in aged animal models. The present translational study aimed to determine safety and tolerability of a wheat germ extract containing enhanced spermidine concentrations. In a preclinical toxicity study, supplementation of spermidine using this extract did not result in morbidities or changes in behavior in BALBc/Rj mice during the 28-days repeated-dose tolerance study. Post mortem examination of the mice organs showed no increase in tumorigenic and fibrotic events. In the human cohort (participants with subjective cognitive decline, n=30, 60 to 80 years of age), a 3-month randomized, placebo-controlled, double-blind Phase II trial was conducted with supplementation of the spermidine-rich plant extract (dosage: 1.2 mg/day). No differences were observed between spermidine and placebo-treated groups in vital signs, weight, clinical chemistry and hematological parameters of safety, as well as in self-reported health status at the end of intervention. Compliance rates above 85% indicated excellent tolerability. The data demonstrate that spermidine supplementation using a spermidine-rich plant extract is safe and well-tolerated in mice and older adults. These findings allow for longer-term intervention studies in humans to investigate the impact of spermidine treatment on cognition and brain integrity.
Collapse
|