1
|
Muñoz-Jurado A, Escribano BM. Presence of melatonin in foods of daily consumption: The benefit of this hormone for health. Food Chem 2024; 458:140172. [PMID: 38943958 DOI: 10.1016/j.foodchem.2024.140172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Melatonin (MLT) is a hormone that exists in all living organisms, including bacteria, yeast, fungi, animals, and plants, many of which are ingested daily in the diet. However, the exact concentrations of melatonin in each of the foods and the effect on health of the intake of foods rich in MLT are not known. Therefore, the aim of this review was to gather the available information on the melatonin content of different foods and to evaluate the effect that this hormone has on different pathologies. The amount of MLT may vary depending on the variety, origin, heat treatment, processing, and analysis technique, among other factors. Dietary interventions with foods rich in MLT report health benefits, but there is no evidence that hormone is partially responsible for the clinical improvement. Therefore, it is necessary to evaluate the MLT content in more foods, as well as the effect that cooking/processing has on the amount of MLT, to estimate its total intake in a typical diet and better explore its potential impact on the health.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| |
Collapse
|
2
|
Reiter RJ, Sharma RN, Manucha W, Rosales-Corral S, Almieda Chuffa LGD, Loh D, Luchetti F, Balduini W, Govitrapong P. Dysfunctional mitochondria in age-related neurodegeneration: Utility of melatonin as an antioxidant treatment. Ageing Res Rev 2024; 101:102480. [PMID: 39236857 DOI: 10.1016/j.arr.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Mitochondria functionally degrade as neurons age. Degenerative changes cause inefficient oxidative phosphorylation (OXPHOS) and elevated electron leakage from the electron transport chain (ETC) promoting increased intramitochondrial generation of damaging reactive oxygen and reactive nitrogen species (ROS and RNS). The associated progressive accumulation of molecular damage causes an increasingly rapid decline in mitochondrial physiology contributing to aging. Melatonin, a multifunctional free radical scavenger and indirect antioxidant, is synthesized in the mitochondrial matrix of neurons. Melatonin reduces electron leakage from the ETC and elevates ATP production; it also detoxifies ROS/RNS and via the SIRT3/FOXO pathway it upregulates activities of superoxide dismutase 2 and glutathione peroxidase. Melatonin also influences glucose processing by neurons. In neurogenerative diseases, neurons often adopt Warburg-type metabolism which excludes pyruvate from the mitochondria causing reduced intramitochondrial acetyl coenzyme A production. Acetyl coenzyme A supports the citric acid cycle and OXPHOS. Additionally, acetyl coenzyme A is a required co-substrate for arylalkylamine-N-acetyl transferase, which rate limits melatonin synthesis; therefore, melatonin production is diminished in cells that experience Warburg-type metabolism making mitochondria more vulnerable to oxidative stress. Moreover, endogenously produced melatonin diminishes during aging, further increasing oxidative damage to mitochondrial components. More normal mitochondrial physiology is preserved in aging neurons with melatonin supplementation.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA.
| | - Ramaswamy N Sharma
- Applied Biomedical Sciences, University of the Incarnate Word, School of Osteopathic Medicine, San Antonio, TX, USA.
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico.
| | - Luiz Gustavo de Almieda Chuffa
- Departamento de Biologia Estrutural e Funcional, Setor de Anatomia - Instituto de Biociências, IBB/UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil.
| | - Doris Loh
- Independent Researcher, Marble Falls, TX, USA.
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok, Thailand.
| |
Collapse
|
3
|
Yang M, Zheng E, Lin Z, Miao Z, Li Y, Hu S, Gao Y, Jiang Y, Pang L, Li X. Melatonin Rinsing Treatment Associated with Storage in a Controlled Atmosphere Improves the Antioxidant Capacity and Overall Quality of Lemons. Foods 2024; 13:3298. [PMID: 39456360 PMCID: PMC11506858 DOI: 10.3390/foods13203298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Antioxidant capacity is one of the most important biological activities in fruits and vegetables and is closely related to human health. In this study, 'Eureka' lemons were used as experimental materials and stored at 7-8 °C MT (melatonin, 200 μmol, soaked for 15 min) and CA (controlled atmosphere, 2-3% O2 + 15-16% CO2) individually or in combination for 30 d. The changes in lemon fruits' basic physicochemical properties, enzyme activities, and antioxidant capacities were studied. Comparing the combined treatment to the control, the outcomes demonstrated a significant reduction in weight loss, firmness, stomatal opening, and inhibition of polyphenol oxidase (PPO) and peroxidase (POD) activities. Additionally, the combined treatment maintained high levels of titratable acidity (TA), vitamin C (VC), total phenolic content (TPC), and antioxidant capacity and preserved the lemon aroma. Meanwhile, the correlation between fruit color, aroma compounds, and antioxidant capacity was revealed, providing valuable insights into the postharvest preservation of lemons. In conclusion, the combined treatment (MT + CA) was effective in maintaining the quality and antioxidant capacity of lemons.
Collapse
Affiliation(s)
- Mengjiao Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Enlan Zheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Ziqin Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Ze Miao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Yuhang Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Shiting Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Yanan Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| | - Lingling Pang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (M.Y.); (E.Z.); (Z.L.); (Z.M.); (Y.L.); (S.H.); (Y.G.); (Y.J.)
| |
Collapse
|
4
|
Wei RM, Zhang MY, Fang SK, Liu GX, Hu F, Li XY, Zhang KX, Zhang JY, Liu XC, Zhang YM, Chen GH. Melatonin attenuates intermittent hypoxia-induced cognitive impairment in aged mice: The role of inflammation and synaptic plasticity. Psychoneuroendocrinology 2024; 171:107210. [PMID: 39378690 DOI: 10.1016/j.psyneuen.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 09/08/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Intermittent hypoxia (IH), a major pathophysiologic alteration in obstructive sleep apnea syndrome (OSAS), is an important contributor to cognitive impairment. Increasing research suggests that melatonin has anti-inflammatory properties and improves functions related to synaptic plasticity. However, it is unclear whether melatonin has a protective effect against OSAS-induced cognitive dysfunction in aged individuals and the involved mechanisms are also unclear. Therefore, in the study, the effects of exposure to IH alone and IH in combination with daily melatonin treatment were investigated in C57BL/6 J mice aged 18 months. Assessment of the cognitive ability of mice in a Morris water maze showed that melatonin attenuated IH-induced impairment of learning and memory in aged mice. Enzyme-linked immunosorbent assay, polymerase chain reaction, and western blotting molecular techniques showed that melatonin treatment reduced the levels of the proinflammatory cytokines, interleukin-1β, interleukin-6, and tumor necrosis factor-α, decreased the levels of NOD-like receptor thermal protein domain associated protein 3 and nuclear factor kappa-B, lowered the levels of ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein, and increased the levels of the synaptic proteins, activity-regulated cytoskeleton-associated protein, growth-associated protein-43, postsynaptic density protein 95, and synaptophysin in IH-exposed mice. Moreover, electrophysiological results showed that melatonin ameliorated the decline in long-term potentiation induced by IH. The results suggest that melatonin can ameliorate IH-induced cognitive deficits by inhibiting neuroinflammation and improving synaptic plasticity in aged mice.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Meng-Ying Zhang
- Department of Anesthesiology, the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Shi-Kun Fang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Gao-Xia Liu
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Fei Hu
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Xue-Yan Li
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Kai-Xuan Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Jing-Ya Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Xue-Chun Liu
- Department of Neurology, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China.
| | - Yue-Ming Zhang
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| | - Gui-Hai Chen
- Department of Neurology (sleep disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui 238001, PR China.
| |
Collapse
|
5
|
Guo X, Ran L, Huang X, Wang X, Zhu J, Tan Y, Shu Q. Identification and functional analysis of two serotonin N-acetyltransferase genes in maize and their transcriptional response to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1478200. [PMID: 39416480 PMCID: PMC11481039 DOI: 10.3389/fpls.2024.1478200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Introduction Melatonin, a tryptophan-derived indoleamine metabolite with important roles in plant growth and defense, has recently been regarded as a new plant hormone. Maize is one of the most important cereal crops in the world. Although the melatonin receptor gene, ZmPMTR1, has already been identified, the genetic basis of melatonin biosynthesis in maize has still not been elucidated. Serotonin N-acetyltransferase (SNAT) is the enzyme that converts serotonin to N-acetylserotonin (NAS) or 5-methoxytryptamine (5MT) to melatonin in Arabidopsis and rice, but no SNAT encoding gene has been identified yet in maize. Methods The bioinformatics analysis was used to identify maize SNAT genes and the enzyme activity of the recombinant proteins was determined through in vitro assay. The expression levels of ZmSNAT1 and ZmSNAT3 under drought and heat stresses were revealed by public RNA-seq datasets and qRT-PCR analysis. Results We first identified three maize SNAT genes, ZmSNAT1, ZmSNAT2, and ZmSNAT3, through bioinformatics analysis, and demonstrated that ZmSNAT2 was present in only eight of the 26 cultivars analyzed. We then determined the enzyme activity of ZmSNAT1 and ZmSNAT3 using their recombinant proteins through in vitro assay. The results showed that both ZmSNAT1 and ZmSNAT3 could convert serotonin to NAS and 5-MT to melatonin. Recombinant ZmSNAT1 catalyzed serotonin into NAS with a higher catalytic activity (K m, 8.6 mM; V max, 4050 pmol/min/mg protein) than ZmSNAT3 (K m, 11.51 mM; V max, 142 pmol/min/mg protein). We further demonstrated that the 228th amino acid Tyr (Y228) was essential for the enzymatic activity of ZmSNAT1. Finally, we revealed that the expression of ZmSNAT1 and ZmSNAT3 varied among different maize cultivars and different tissues of a plant, and was responsive to drought and heat stresses. Discussion In summary, the present study identified and characterized the first two functional SNAT genes in maize, laying the foundation for further research on melatonin biosynthesis and its regulatory role in plant growth and response to abiotic stresses.
Collapse
Affiliation(s)
- Xiaohao Guo
- State Key Laboratory of Rice Biology and Breeding, and Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Exploitation, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Le Ran
- State Key Laboratory of Rice Biology and Breeding, and Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Exploitation, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Xinyu Huang
- State Key Laboratory of Rice Biology and Breeding, and Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Exploitation, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Xiuchen Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jiantang Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuanyuan Tan
- State Key Laboratory of Rice Biology and Breeding, and Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Exploitation, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
- Zhejiang University – Wuxi Xishan Joint Modern Agricultural Research Centre, Zhejiang University, Hangzhou, China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology and Breeding, and Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Exploitation, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
- Zhejiang University – Wuxi Xishan Joint Modern Agricultural Research Centre, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Georgakopoulou VE, Sklapani P, Trakas N, Reiter RJ, Spandidos DA. Exploring the association between melatonin and nicotine dependence (Review). Int J Mol Med 2024; 54:82. [PMID: 39092582 PMCID: PMC11315657 DOI: 10.3892/ijmm.2024.5406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Due to the addictive qualities of tobacco products and the compulsive craving and dependence associated with their use, nicotine dependence continues to be a serious public health concern on a global scale. Despite awareness of the associated health risks, nicotine addiction contributes to numerous acute and chronic medical conditions, including cardiovascular disease, respiratory disorders and cancer. The nocturnal secretion of pineal melatonin, known as the 'hormone of darkness', influences circadian rhythms and is implicated in addiction‑related behaviors. Melatonin receptors are found throughout the brain, influencing dopaminergic neurotransmission and potentially attenuating nicotine‑seeking behavior. Additionally, the antioxidant properties of melatonin may mitigate oxidative stress from chronic nicotine exposure, reducing cellular damage and lowering the risk of nicotine‑related health issues. In addition to its effects on circadian rhythmicity, melatonin acting via specific neural receptors influences sleep and mood, and provides neuroprotection. Disruptions in melatonin signaling may contribute to sleep disturbances and mood disorders, highlighting the potential therapeutic role of melatonin in addiction and psychiatric conditions. Melatonin may influence neurotransmitter systems involved in addiction, such as the dopaminergic, glutamatergic, serotonergic and endogenous opioid systems. Preclinical studies suggest the potential of melatonin in modulating reward processing, attenuating drug‑induced hyperactivity and reducing opioid withdrawal symptoms. Chronotherapeutic approaches targeting circadian rhythms and melatonin signaling show promise in smoking cessation interventions. Melatonin supplementation during periods of heightened nicotine cravings may alleviate withdrawal symptoms and reduce the reinforcing effects of nicotine. Further research is required however, to examine the molecular mechanisms underlying the melatonin‑nicotine association and the optimization of therapeutic interventions. Challenges include variability in individual responses to melatonin, optimal dosing regimens and identifying biomarkers of treatment response. Understanding these complexities could lead to personalized treatment strategies and improve smoking cessation outcomes.
Collapse
Affiliation(s)
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health Science Center, San Antonio, TX 78229, USA
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
7
|
Mohammadpour Fard R, Rashno M, Bahreiny SS. Effects of melatonin supplementation on markers of inflammation and oxidative stress in patients with diabetes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2024; 63:530-539. [PMID: 39053698 DOI: 10.1016/j.clnesp.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND & AIMS Diabetes mellitus is a metabolic disorder, in which chronic systemic inflammation and oxidative stress contribute to the progression of this condition and its complications. Melatonin, a hormone known for its potent antioxidant and anti-inflammatory properties, has emerged as a potential therapeutic intervention in diabetes. This review aims to evaluate the effects of melatonin supplementation on markers of oxidative stress and inflammation in diabetic patients. METHODS A thorough literature search of databases, including PubMed, Embase, Web of Science, Cochrane Central, CNKI, and Scopus, was conducted through October 2023. We included randomized controlled trials investigating the effects of melatonin on markers of inflammation and oxidative stress, compared to placebo in patients with diabetes. The data was analyzed using the random-effects model and the summary effect size was determined using the standardized mean difference (SMD) with 95% confidence interval (CI). RESULTS Fourteen studies with 823 participants were included. Our analysis indicates that melatonin can lead to significant reductions in levels of C-reactive protein (CRP) [SMD = -0.75; 95% CI: -1.37, -0.12; P = 0.018], tumor necrosis factor-alpha (TNF-α) [SMD = -0.40; 95% CI: -0.64, -0.15; P = 0.001], interleukin (IL)-1 [SMD = -0.75; 95% CI: -1.03, -0.47; P < 0.0001], IL-6 [SMD = -0.79; 95% CI: -1.07, -0.51; P < 0.0001], and malondialdehyde (MDA) [SMD = -0.61; 95% CI: -0.80, -0.43; P < 0.0001]. Furthermore, we found a significant increase in levels of total antioxidant capacity (TAC) [SMD = 0.81; 95% CI: 0.12, 1.51; P = 0.021], glutathione (GSH) [SMD = 0.66; 95% CI: 0.28, 1.03; P = 0.001], and superoxide dismutase (SOD) [SMD = 1.69; 95% CI: 0.80, 2.58; P < 0.0001] following melatonin consumption in patients with diabetes. CONCLUSION Melatonin supplementation is a promising complementary strategy to attenuate oxidative stress and inflammation in diabetic patients.
Collapse
Affiliation(s)
- Reza Mohammadpour Fard
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Sobhan Bahreiny
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Imran M, Widemann E, Shafiq S, Bakhsh A, Chen X, Tang X. Salicylic Acid and Melatonin Synergy Enhances Boron Toxicity Tolerance via AsA-GSH Cycle and Glyoxalase System Regulation in Fragrant Rice. Metabolites 2024; 14:520. [PMID: 39452901 PMCID: PMC11509829 DOI: 10.3390/metabo14100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Boron is an essential micronutrient for plant growth and productivity, yet excessive boron leads to toxicity, posing significant challenges for agriculture. Fragrant rice is popular among consumers, but the impact of boron toxicity on qualitative traits of fragrant rice, especially aroma, remains largely unexplored. The individual potentials of melatonin and salicylic acid in reducing boron toxicity are less known, while their synergistic effects and mechanisms in fragrant rice remain unclear. Methods: Thus, this study investigates the combined application of melatonin and salicylic acid on fragrant rice affected by boron toxicity. One-week-old seedlings were subjected to boron (0 and 800 µM) and then treated with melatonin and salicylic acid (0 and 100 µM, for 3 weeks). Results: Boron toxicity significantly impaired photosynthetic pigments, plant growth, and chloroplast integrity while increasing oxidative stress markers such as hydrogen peroxide, malondialdehyde, methylglyoxal, and betaine aldehyde dehydrogenase. Likewise, boron toxicity abridged the precursors involved in the 2-acetyl-1-pyrroline (2-AP) biosynthesis pathway. However, individual as well as combined application of melatonin and salicylic acid ameliorated boron toxicity by strengthening the antioxidant defense mechanisms-including the enzymes involved during the ascorbate-glutathione (AsA-GSH) cycle and glyoxalase system-and substantially improved 2-AP precursors including proline, P5C, Δ1-pyrroline, and GABA levels, thereby restoring the 2-AP content and aroma. These findings deduce that melatonin and salicylic acid synergistically alleviate boron toxicity-induced disruptions on the 2-AP biosynthesis pathway by improving the 2-AP precursors and enzymatic activities, as well as modulating the physio-biochemical processes and antioxidant defense system of fragrant rice plants. Conclusions: The findings of this study have the potential to enhance rice productivity and stress tolerance, offering solutions to improve food security and sustainability in agricultural practices, particularly in regions affected by environmental stressors.
Collapse
Affiliation(s)
- Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, CNRS-Université de Strasbourg, 67084 Strasbourg, France;
| | - Sarfraz Shafiq
- Thompson Rivers University, Kamloops, BC V2C 0C8, Canada;
| | - Ali Bakhsh
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan;
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
9
|
Chen X, Ren Q, Wu F, Zhu K, Tao J, Zhang A. Exposure to four typical heavy metals induced telomere shortening of peripheral blood mononuclear cells in relevant with declined urinary aMT6s in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116791. [PMID: 39068742 DOI: 10.1016/j.ecoenv.2024.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Environmental heavy metals pollution have seriously threatened the health of human beings. An increasing number of researches have demonstrated that environmental heavy metals can influence the telomere length of Peripheral Blood Mononuclear Cells (PBMCs), which implicate biological aging as well as predicts diseases. Our previous study has shown that methylmercury (MeHg)-induced telomere shortening in rat brain tissue was associated with urinary melatonin metabolite 6-sulfatoxymelatonin (aMT6s) levels. Here, we aimed to further elucidate the impact of 4 typical heavy metals (As, Hg, Cd and Pb) on telomere length of PBMCs and their association with urinary aMT6s in rats. In this study, eighty-eight male Sprague-Dawley rats were randomized grouped into eleven groups. Among them, forty 3-month-old (young) and forty 12-month-old (middle-aged) rats were divided into young or middle-aged control groups as well as typical heavy metals exposed groups, respectively. Eight 24-month-old rats (old) was divided into aging control group. The results showed that MeHg exposure in young rats while sodium arsenite (iAs), MeHg, cadmium chloride (CdCl2), lead acetate (PbAc) exposure in middle-aged rats for 3 months significantly reduced the levels of and urinary aMT6s, as well as telomere length of PBMCs. In addition, they also induced abnormalities in serum oxidative stress (SOD, MDA and GPx) and inflammatory (IL-1β, IL-6 and TNF-α) indicators. Notably, there was a significant positive correlation between declined level of urinary aMT6s and the shortening of telomere length in PBMCs in rats exposed to 4 typical heavy metals. These results suggested that 4 typical heavy metals exposure could accelerate the reduction of telomere length of PBMCs partially by inducing oxidative stress and inflammatory in rats, while ageing may be an important synergistic factor. Urinary aMT6s detection may be a alternative method to reflect telomere toxic effects induced by heavy metal exposure.
Collapse
Affiliation(s)
- Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guian New Area, Guizhou 561113, China.
| | - Qian Ren
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guian New Area, Guizhou 561113, China
| | - Fan Wu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guian New Area, Guizhou 561113, China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guian New Area, Guizhou 561113, China
| | - Junyan Tao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guian New Area, Guizhou 561113, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guian New Area, Guizhou 561113, China.
| |
Collapse
|
10
|
Zhao R, Bai Y, Yang F. Melatonin in animal husbandry: functions and applications. Front Vet Sci 2024; 11:1444578. [PMID: 39286597 PMCID: PMC11402905 DOI: 10.3389/fvets.2024.1444578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an essential small molecule with diverse biological functions. It plays several key roles, including regulating the secretion of reproductive hormones and the reproductive cycle, enhancing the functionality of reproductive organs, improving the quality of sperm and eggs, and mitigating oxidative stress in the reproductive system. Melatonin effectively inhibits and scavenges excess free radicals while activating the antioxidant enzyme system and reduces the production of inflammatory factors and alleviates tissue damage caused by inflammation by regulating inflammatory pathways. Additionally, melatonin contributes to repairing the intestinal barrier and regulating the gut microbiota, thereby reducing bacterial and toxin permeation. The use of melatonin as an endogenous hormone in animal husbandry has garnered considerable attention because of its positive effects on animal production performance, reproductive outcomes, stress adaptation, disease treatment, and environmental sustainability. This review explores the characteristics and biological functions of melatonin, along with its current applications in animal production. Our findings may serve as a reference for the use of melatonin in animal farming and future developmental directions.
Collapse
Affiliation(s)
- Ruohan Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yicheng Bai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fangxiao Yang
- College of Animal Science and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| |
Collapse
|
11
|
DeHaven C, Wheeler S, Langerveld A, Johns CB. Regulation of dermal circadian pathways by a novel topical formulation. Int J Cosmet Sci 2024. [PMID: 39219101 DOI: 10.1111/ics.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Skin health is impacted by a wide range of intrinsic and extrinsic factors (J Dermatol Sci, 2017, 85, 152), including those that impact circadian rhythm, such as sleep disruption (Textbook of Aging Skin, 2016), UV (Biomed Aging Pathol, 2013, 3, 161) and blue light (Int J Cosmet Sci, 2019, 41, 558). Disruption of the skin's endogenous circadian balance, even by a consistently late bedtime, has deleterious effects on multiple measurements of skin health, including hydration, skin barrier protection, microbiome counts and skin regeneration, among others (Clin Cosmet Investig Dermatol, 2022, 15, 1051). Skin repair processes occur at night and help to maintain important aspects of skin health (FEBS Lett, 2021, 595, 2413). Interest is increasing in the development of topical products that help restore proper circadian function. This study demonstrates that a proprietary topical formulation regulates new and established gene and protein biomarkers of circadian entrainment and circadian rhythm, demonstrating the product's potential to maintain appropriate dermal diurnal balance.
Collapse
|
12
|
Rahmani S, Roohbakhsh A, Pourbarkhordar V, Hayes AW, Karimi G. Melatonin regulates mitochondrial dynamics and mitophagy: Cardiovascular protection. J Cell Mol Med 2024; 28:e70074. [PMID: 39333694 PMCID: PMC11436317 DOI: 10.1111/jcmm.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
Despite extensive progress in the knowledge and understanding of cardiovascular diseases and significant advances in pharmacological treatments and procedural interventions, cardiovascular diseases (CVD) remain the leading cause of death globally. Mitochondrial dynamics refers to the repetitive cycle of fission and fusion of the mitochondrial network. Fission and fusion balance regulate mitochondrial shape and influence physiology, quality and homeostasis. Mitophagy is a process that eliminates aberrant mitochondria. Melatonin (Mel) is a pineal-synthesized hormone with a range of pharmacological properties. Numerous nonclinical trials have demonstrated that Mel provides cardioprotection against ischemia/reperfusion, cardiomyopathies, atherosclerosis and cardiotoxicity. Recently, interest has grown in how mitochondrial dynamics contribute to melatonin cardioprotective effects. This review assesses the literature on the protective effects of Mel against CVD via the regulation of mitochondrial dynamics and mitophagy in both in-vivo and in-vitro studies. The signalling pathways underlying its cardioprotective effects were reviewed. Mel modulated mitochondrial dynamics and mitophagy proteins by upregulation of mitofusin, inhibition of DRP1 and regulation of mitophagy-related proteins. The evidence supports a significant role of Mel in mitochondrial dynamics and mitophagy quality control in CVD.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Pourbarkhordar
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Hao X, Long X, Fan L, Gou J, Liu Y, Fu Y, Zhao H, Xie X, Wang D, Liang G, Ye Y, Wang J, Li S, Zeng C. Prenatal LPS leads to increases in RAS expression within the PVN and overactivation of sympathetic outflow in offspring rats. Hypertens Res 2024; 47:2363-2376. [PMID: 38969805 PMCID: PMC11374713 DOI: 10.1038/s41440-024-01754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/07/2024]
Abstract
The renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) are two major blood pressure-regulating systems. The link between the renal and cerebral RAS axes was provided by reflex activation of renal afferents and efferent sympathetic nerves. There is a self-sustaining enhancement of the brain and the intrarenal RAS. In this study, prenatal exposure to lipopolysaccharide (LPS) led to increased RAS activity in the paraventricular nucleus (PVN) and overactivation of sympathetic outflow, accompanied by increased production of reactive oxygen species (ROS) and disturbances between inhibitory and excitatory neurons in PVN. The AT1 receptor blocker losartan and α2 adrenergic receptor agonist clonidine in the PVN significantly decreased renal sympathetic nerve activity (RSNA) and synchronously reduced systolic blood pressure. Prenatal LPS stimulation caused H3 acetylation at H3K9 and H3K14 in the PVN, which suggested that epigenetic changes are involved in transmitting the prenatal adverse stimulative information to the next generation. Additionally, melatonin treatment during pregnancy reduced RAS activity and ROS levels in the PVN; balanced the activity of inhibitory and excitatory neurons in the PVN; increased urine sodium secretion; reduced RSNA and blood pressure. In conclusion, prenatal LPS leads to increased RAS expression within the PVN and overactivation of the sympathetic outflow, thereby contributing to hypertension in offspring rats. Melatonin is expected to be a promising agent for preventing prenatal LPS exposure-induced hypertension.
Collapse
Affiliation(s)
- Xueqin Hao
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
- Department of Anesthesiology, the First affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xueting Long
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Lingling Fan
- Department of Physiology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jijia Gou
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuchao Liu
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yifan Fu
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Huijuan Zhao
- Department of human Anatomy and Histoembryology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaojuan Xie
- Department of Anesthesiology, the First affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Dongmei Wang
- Department of Microbiology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Gaofeng Liang
- Department of Pathology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yujia Ye
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Jing Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Sanqiang Li
- Department of Biochemistry, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Zhen L, Huang Y, Bi X, Gao A, Peng L, Chen Y. Melatonin feeding changed the microbial diversity and metabolism of the broiler cecum. Front Microbiol 2024; 15:1422272. [PMID: 39224220 PMCID: PMC11367786 DOI: 10.3389/fmicb.2024.1422272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
To study the effect of melatonin supplementation on the gut microbes of broilers, 160 healthy 3-week-old Ross 308 broilers with similar body weights were selected and randomly divided into four groups (M0, M20, M40, and M80) supplemented with 0, 20, 40, or 80 mg/kg melatonin. The results showed that the abundance-based coverage estimator (ACE) index of cecum microorganisms was significantly lower in the M80 group. The dominant phyla of intestinal contents in the M0, M20, M40, and M80 groups were Bacteroidetes and Firmicutes. The M40 group showed an increase in the relative abundance of Bacteroidetes spp. in the intestine, while the relative abundance of Ruminococcus spp. in the intestine of the M20, M40, and M80 groups was significantly greater than that of the M0 group. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses revealed that the supplementation of melatonin increases the expression of genes related to cellular processes (cell motility, cell growth and death, and cellular community-eukaryotes), environmental information processing (membrane transport and signal transduction), and genetic information processing (transport and transcription), and Cluster of Orthologous Groups (COG) of proteins functional analyses revealed that the supplementation of melatonin resulted in a significant increase in cellular processes and signaling (cell motility, signal transduction mechanisms, intracellular trafficking, secretion, and vesicular transport), information storage and processing (RNA processing and modification, chromatin structure and dynamics, translation, ribosomal structure, and biogenesis), metabolism (energy production and conversion, lipid transportation and metabolism, inorganic ion transport and metabolism, secondary metabolite biosynthesis, transport, and catabolism), and poorly characterized (general function prediction only). In summary, supplementation of feed with melatonin can increase the diversity of intestinal microorganisms and the relative abundance of Bacteroides and Firmicutes in the cecum, improve digestive ability and nutrient absorption ability, and positively regulate the metabolic ability of broilers.
Collapse
Affiliation(s)
- Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
| | - Yi Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xuewen Bi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Anyu Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Linlin Peng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yong Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
15
|
Liu Y, Xu J, Lu X, Huang M, Yu W, Li C. The role of melatonin in delaying senescence and maintaining quality in postharvest horticultural products. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39150996 DOI: 10.1111/plb.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/16/2024] [Indexed: 08/18/2024]
Abstract
The postharvest lifespan of horticultural products is closely related to loss of nutritional quality, accompanied by a rapid decline in shelf life, commercial value, and marketability. Melatonin (MT) application not only maintains quality but also delays senescence in horticultural products. This paper reviews biosynthesis and metabolism of endogenous MT, summarizes significant effects of exogenous MT application on postharvest horticultural products, examines regulatory mechanisms of MT-mediated effects, and provides an integrated review for understanding the positive role of MT in senescence delay and quality maintenance. As a multifunctional molecule, MT coordinates other signal molecules, such as ABA, ETH, JA, SA, NO, and Ca2+, to regulate postharvest ripening and senescence. Several metabolic pathways are involved in regulation of MT during postharvest senescence, including synthesis and signal transduction of plant hormones, redox homeostasis, energy metabolism, carbohydrate metabolism, and degradation of pigment and cell wall components. Moreover, MT regulates expression of genes related to plant hormones, antioxidant systems, energy generation, fruit firmness and colour, membrane integrity, and carbohydrate storage. Consequently, MT could become an emerging and eco-friendly preservative to extend shelf life and maintain postharvest quality of horticultural products.
Collapse
Affiliation(s)
- Y Liu
- College of Agriculture, Guangxi University, Nanning, China
| | - J Xu
- College of Agriculture, Guangxi University, Nanning, China
| | - X Lu
- College of Agriculture, Guangxi University, Nanning, China
| | - M Huang
- College of Agriculture, Guangxi University, Nanning, China
| | - W Yu
- College of Agriculture, Guangxi University, Nanning, China
| | - C Li
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
16
|
Arsyad A, Lembang GKR, Linda SL, Djabir YY, Dobson GP. Low Calcium-High Magnesium Krebs-Henseleit Solution Combined with Adenosine and Lidocaine Improved Rat Aortic Function and Structure Following Cold Preservation. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1284. [PMID: 39202566 PMCID: PMC11356418 DOI: 10.3390/medicina60081284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024]
Abstract
Background and objectives: The main problem of vascular preservation is the maintenance of vessel graft quality and function following extended storage. Conventional preservation solutions such as histidine-tryptophan-ketoglutarate (HTK) solution, Phosphate-Buffer Solution (PBS), or sodium chloride 0.9% has been shown to be inadequate in preserving vascular physiological function after 3 days of cold storage. This study aimed to evaluate whether adenosine and lidocaine (AL) in a modified Krebs-Henseleit (KH) solution can preserve the function and histological structure of rat aortic rings after 6 days. Materials and Methods: Thirty-five aortic rings from male Wistar rats (200-300 g) were harvested and immediately immersed in one of the assigned cold preservation solutions: standard KH, modified KH (mod KH) with lower calcium (Ca2+) and higher magnesium content (Mg2+) with or without adenosine and lidocaine (mod KH-AL), and modified KH with AL, insulin, and melatonin (Mod KH-ALMI). The contraction and relaxation function of the aortic rings were examined using an isometric force transducer after 6 days of cold preservation. Hematoxylin and eosin staining were used to analyze the rings' histological structure. Results: Vascular contraction and relaxation functions were severely affected after a 6-day cold storage period in standard KH. Modifying the KH solution by reducing the Ca2+ and increasing the Mg2+ levels greatly recovered the vessel functions. The addition of AL or ALMI to the modified KH did not further recover vascular contractility. However, only the addition of AL to the modified KH increased the ACh-induced relaxation at 6 days when compared to the conventional KH, suggesting that endothelium preservation is improved. From histological analysis, it was found that the addition of AL but not ALMI further improved the endothelial lining and the structure of the elastic membrane layers of the preserved vessels after 6 days of cold preservation. Conclusions: The addition of AL to low calcium-high magnesium KH solution significantly enhanced endothelial preservation and improved endothelial-induced relaxation of preserved vessels after 6 days of cold storage.
Collapse
Affiliation(s)
- Aryadi Arsyad
- Department of Physiology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Geni K. R. Lembang
- Clinical Pharmacy Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (G.K.R.L.); (S.L.L.); (Y.Y.D.)
| | - Sesilia L. Linda
- Clinical Pharmacy Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (G.K.R.L.); (S.L.L.); (Y.Y.D.)
| | - Yulia Y. Djabir
- Clinical Pharmacy Laboratory, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (G.K.R.L.); (S.L.L.); (Y.Y.D.)
| | - Geoffrey P. Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| |
Collapse
|
17
|
Ates G, Tamer S, Ozkok E, Yorulmaz H, Gundogan GI, Aksu A, Balkis N. Utility of melatonin on brain injury, synaptic transmission, and energy metabolism in rats with sepsis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03337-8. [PMID: 39105798 DOI: 10.1007/s00210-024-03337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Melatonin is a powerful endogenous antioxidant hormone. Its healing effects on energy balance and neuronal damage associated with oxidative metabolism disorders have been reported in pathologic conditions. We aimed to determinate the utility of melatonin on neuronal damage, synaptic transmission, and energy balance in the brain tissue of rats with sepsis induced with LPS. Rats was divided into four groups such as control, LPS (20 mg/kg i.p.), melatonin (10 mg/kg i.p. × 3), and LPS + Melatonin (LPS + Mel). After 6 h from the first injection, rats were decapitated, and also tissue and serum samples were taken. Lipid peroxidation and neuron-specific enolase (NSE) levels were determined from the serum in all group. High energy compounds, creatine, and creatine phosphate are measured by HPLC methods from the homogenized tissue. Counts of living neurons are marked with NeuN (neuronal nuclei), degenerated neurons are marked with S100-ß and synaptic vesicles transmission is analyzed with synaptophysin antibodies immunoreactivities. One-way ANOVA and post hoc Tukey tests were used to statistical analysis. In LPS group, AMP, ATP, creatine, and creatine phosphate levels were significantly decreased (p < 0.05), and also ADP levels were significantly increased compared with the other groups (p < 0.01). Living neurons counts were significantly decreased in LPS (p < 0.01), melatonin, and LPS + Melatonin (p < 0.05) groups compared with control. Degenerated neurons counts were increased in LPS group compared with control (p < 0.01) and also decreased in both of melatonin and LPS + Melatonin groups (p < 0.01). Synaptophysin immunoreactivity was decreased in LPS group compared with the other groups (p < 0.05). We observed that melatonin administration prevents neuronal damage, regulates energy metabolism, and protects synaptic vesicle proteins from sepsis-induced reduction.
Collapse
Affiliation(s)
- Gulten Ates
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Yilanlı Ayazma St, Cevizlibag, Istanbul, 34010, Turkey.
| | - Sule Tamer
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Elif Ozkok
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hatice Yorulmaz
- Faculty of Health Science, Halic University, Istanbul, Turkey
| | - Gul Ipek Gundogan
- Department of Histology and Embryology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Abdullah Aksu
- Department of Chemical Oceanography, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| | - Nuray Balkis
- Department of Chemical Oceanography, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| |
Collapse
|
18
|
Sánchez-Borja C, Cristóbal-Cañadas D, Rodríguez-Lucenilla MI, Muñoz-Hoyos A, Agil A, Vázquez-López MÁ, Parrón-Carreño T, Nievas-Soriano BJ, Bonillo-Perales A, Bonillo-Perales JC. Lower plasma melatonin levels in non-hypoxic premature newborns associated with neonatal pain. Eur J Pediatr 2024; 183:3607-3615. [PMID: 38842550 PMCID: PMC11263426 DOI: 10.1007/s00431-024-05632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
We analyzed plasma melatonin levels in different groups of preterm newborns without hypoxia and their relationship with several perinatal variables like gestational age or neonatal pain. Prospective cohort study of preterm newborns (PTNB) without perinatal hypoxia, Apgar > 6 at 5 min, and oxygen needs on the third day of life. We compared melatonin levels at day 3 of life in different groups of non-hypoxic preterm infants (Student's t-tests, Mann-Whitney U, and chi2) and analyzed the relationship of melatonin with GA, birth weight, neonatal pain (Premature Infant Pain Profile (PIPP) scale), caffeine treatment, parenteral nutrition, or the development of free radical diseases (correlation study, linear regression) and factors associated with moderate/intense pain and free radical diseases (logistic regression analysis). Sixty-one preterm infants with gestational age (GA) of 30.7 ± 2.0 weeks with no oxygen requirements at day 3 of life were studied with plasma melatonin levels of 33.8 ± 12.01 pg/ml. Preterm infants weighing < 1250 g at birth had lower plasma melatonin levels (p = 0.05). Preterm infants with moderate or severe pain (PPIPP > 5) have lower melatonin levels (p = 0.01), and being preterm with PIPP > 5 is associated with lower plasma melatonin levels (p = 0.03). Being very preterm (GA < 32 GS), having low weight for gestational age (LWGA), receiving caffeine treatment, or requiring parenteral nutrition did not modify melatonin levels in non-hypoxic preterm infants (p = NS). Melatonin on day 3 of life in non-hypoxic preterm infants is not associated with later development of free radical diseases (BPD, sepsis, ROP, HIV, NEC). CONCLUSION We observed that preterm infants with moderate to severe pain have lower melatonin levels. These findings are relevant because they reinforce the findings of other authors that melatonin supplementation decreases pain and oxidative stress in painful procedures in premature infants. Further studies are needed to evaluate whether melatonin could be used as an analgesic in painful procedures in preterm infants. TRIAL REGISTRATION Trial registration was not required since this was an observational study. WHAT IS KNOWN • Melatonin is a potent antioxidant and free radical scavenger in newborns under stress conditions: hypoxia, acidosis, hypotension, painful procedures, or parenteral nutrition. • Pain stimulates the production of melatonin. • Various studies conclude that melatonin administration decreases pain during the neonatal period. WHAT IS NEW • Non-hypoxic preterm infants with moderate to severe pain (PIPP>5) have lower levels of melatonin. • Administration of caffeine and treatment with parenteral nutrition do not modify melatonin levels in non-hypoxic preterm infants.
Collapse
Affiliation(s)
| | | | | | | | - Ahmad Agil
- Department of Pharmacology, Institute Biohelath & Institute of Neuroscience, University of Granada, Granada, Spain
| | | | - Tesifón Parrón-Carreño
- Nursing, Physiotherapy, and Medicine Department, University of Almería, Ctra. de Sacramento, s/n, La Cañada, Almería, 01410, Spain
| | - Bruno José Nievas-Soriano
- Nursing, Physiotherapy, and Medicine Department, University of Almería, Ctra. de Sacramento, s/n, La Cañada, Almería, 01410, Spain.
| | | | | |
Collapse
|
19
|
Inoue N, Shibata T, Tanaka Y, Taguchi H, Sawada R, Goto K, Momokita S, Aoyagi M, Hirao T, Yamanishi Y. Revealing Comprehensive Food Functionalities and Mechanisms of Action through Machine Learning. J Chem Inf Model 2024; 64:5712-5724. [PMID: 38950938 DOI: 10.1021/acs.jcim.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Foods possess a range of unexplored functionalities; however, fully identifying these functions through empirical means presents significant challenges. In this study, we have proposed an in silico approach to comprehensively predict the functionalities of foods, encompassing even processed foods. This prediction is accomplished through the utilization of machine learning on biomedical big data. Our focus revolves around disease-related protein pathways, wherein we statistically evaluate how the constituent compounds collaboratively regulate these pathways. The proposed method has been employed across 876 foods and 83 diseases, leading to an extensive revelation of both food functionalities and their underlying operational mechanisms. Additionally, this approach identifies food combinations that potentially affect molecular pathways based on interrelationships between food functions within disease-related pathways. Our proposed method holds potential for advancing preventive healthcare.
Collapse
Affiliation(s)
- Nanako Inoue
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Tomokazu Shibata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Yusuke Tanaka
- Research & Development Headquarters, House Foods Group Inc., 1-4 Takanodai, Yotsukaido, Chiba 284-0033, Japan
| | - Hiromu Taguchi
- Research & Development Headquarters, House Foods Group Inc., 1-4 Takanodai, Yotsukaido, Chiba 284-0033, Japan
| | - Ryusuke Sawada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kenshin Goto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Shogo Momokita
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Morihiro Aoyagi
- Research & Development Headquarters, House Foods Group Inc., 1-4 Takanodai, Yotsukaido, Chiba 284-0033, Japan
| | - Takashi Hirao
- Research & Development Headquarters, House Foods Group Inc., 1-4 Takanodai, Yotsukaido, Chiba 284-0033, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
20
|
Cai Y, Zhang X, Yang C, Jiang Y, Chen Y. Melatonin alleviates high-fat-diet-induced dry eye by regulating macrophage polarization via IFT27 and lowering ERK/JNK phosphorylation. iScience 2024; 27:110367. [PMID: 39100927 PMCID: PMC11294704 DOI: 10.1016/j.isci.2024.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024] Open
Abstract
Dry eye disease is the most common ocular surface disease globally, requiring a more effective treatment. We observed that a high-fat diet induced macrophage polarization to M1 and further induced inflammation in the meibomian and lacrimal glands. A four-week treatment with melatonin (MLT) eye drops can regulate macrophage polarization and alleviate dry eye signs. To investigate the therapeutic effects and mechanisms of action of MLT on high-fat-diet-induced dry eye disease in mice, RAW 264.7 cells pretreated with LPS and/or MLT underwent digital RNA with the perturbation of genes sequencing (DRUG-seq). Results showed that IFT27 was up-regulated, and MAPK pathways were suppressed after MLT pre-treatment. ERK/JNK phosphorylation was reduced in meibomian glands of MLT-treated dry eye mice and increased in IFT27 knockdown RAW 264.7 cells. In summary, MLT regulated macrophage polarization via IFT27 and reduced ERK/JNK phosphorylation. These results support that MLT is a promising medication for dry eye disease.
Collapse
Affiliation(s)
- Yuying Cai
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Cinar D, Altinoz E, Elbe H, Bicer Y, Cetinavci D, Ozturk I, Colak T. Therapeutic Effect of Melatonin on CCl 4-Induced Fibrotic Liver Model by Modulating Oxidative Stress, Inflammation, and TGF-β1 Signaling Pathway in Pinealectomized Rats. Inflammation 2024:10.1007/s10753-024-02101-7. [PMID: 39007940 DOI: 10.1007/s10753-024-02101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The study aimed to determine the CCl4-induced liver fibrosis model in pinealectomized rats and biochemically, immunohistochemically, and histopathologically investigate the therapeutic effect of melatonin on liver fibrosis. The surgical procedure for pinealectomy was performed at the beginning of the study, and the sham and pinealectomized rats were administered CCl4 dissolved in corn oil (1:1) alone every other day to induce liver fibrosis or together with melatonin (10 mg/kg) therapy for 15 days. Melatonin is an essential therapeutic agent and offers an alternative therapeutic strategy in CCl4-induced liver fibrosis by suppressing inflammation, oxidative stress, and the TGF-β1 signaling pathway. Treatment with melatonin ameliorated CCl4-induced liver fibrosis by restoring hepatocellular damage and reducing plasma AST, ALT, and ALP values. Melatonin increases the activity of SOD and CAT, which are important enzymes for antioxidant defence, and raises GSH levels, which further enhances antioxidant function. Also, melatonin reduced hepatic inflammation (IL-6 and IL-1β) and oxidative stress indices. Moreover, histopathological changes and immunohistochemical expression of TGF-β1 were restored following melatonin supplementation in the CCl4-induced liver fibrosis model in pinealectomized rats. Our study shows that melatonin supplementation has a beneficial effect in protecting the liver fibrosis induced by CCl4 in pinealectomized rats.
Collapse
Affiliation(s)
- Derya Cinar
- Department of Anatomy, School of Health Science, Karabuk University, Karabuk, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Dilan Cetinavci
- Department of Histology and Embryology, Mugla Training and Research Hospital, Mugla, Turkey
| | - Ipek Ozturk
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Tuncay Colak
- Department of Anatomy, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
| |
Collapse
|
22
|
Chen C, Deng Z, Yu Z, Chen Y, Yu T, Liang C, Ye Y, Huang Y, Lyu FJ, Liang G, Chang Y. The role of melatonergic system in intervertebral disc degeneration and its association with low back pain: a clinical study. PeerJ 2024; 12:e17464. [PMID: 39006038 PMCID: PMC11243980 DOI: 10.7717/peerj.17464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/05/2024] [Indexed: 07/16/2024] Open
Abstract
Objective The mechanisms of intervertebral disc degeneration (IVDD) in low back pain (LBP) patients are multiples. In this study, we attempt to investigate whether melatonergic system plays a potential role in IVDD patients with LBP by analyzing their clinical specimens. The fucus will be given to the correlation between the melatonin receptor expression and intervertebral disc tissue apoptosis. Methods In this clinical study, 107 lumbar intervertebral disc nucleus pulposus (NP) specimens from patients with LBP were collected with patients' consents. The disc height (DH) discrepancy ratio, range of motion and sagittal parameters of the pathological plane were measured and Pfirrmann grade was used to classified the grades of IVDD level. Discs at grades 1-3 were served as normal control and grades 4-5 were considered as IVDD. The expression levels of melatonin receptor 1A (MT1) and 1B (MT2) were measured by immunohistochemistry. The apoptosis of NP was assessed using TUNEL staining. Their potential associations among MT1/2, DH, apoptosis, sagittal parameters with IVDD and LBP were evaluated with statistical analysis. Results The incidence of IVDD was positively associated with age and negatively related to VAS scores for LBP (p < 0.001). Patients with higher degree of IVDD also have higher DH discrepancy ratio (p < 0.001), higher prevalence of lumbar instability (p = 0.003) and higher cell apoptosis compared to the control. Nevertheless, no statistically significant correlation was identified between Pfirrmann grade and lumbar sagittal parameters. MT1 and MT2 both were highly expressed in the NP tissues. Importantly, MT1 expression but not MT2 was significantly increased in the intervertebral disc tissue of patients with IVDD and its level correlated well with cell apoptosis level and the severity of IVDD as well as lower VAS scores for LBP. Conclusion The highly elevated MT1 expression was found in NP tissues of patients with IVDD and LBP compared to the control. This phenomenon probably reflects the compensating response of the body to the pathological alteration of the IVDD and LBP. Therefore, these findings provide the novel information to use selective agonists of MT1 to target IVDD and LBP clinically.
Collapse
Affiliation(s)
- Chong Chen
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zongyuan Deng
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengran Yu
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yifan Chen
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Yu
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Changxiang Liang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yongyu Ye
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yongxiong Huang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Feng-Juan Lyu
- Joint Center for Regenerative Medicine Research of South China University of Technology and The University of Western Australia, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Guoyan Liang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yunbing Chang
- Department of Spine Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Ziaei S, Hasani M, Malekahmadi M, Daneshzad E, Kadkhodazadeh K, Heshmati J. Effect of melatonin supplementation on cardiometabolic risk factors, oxidative stress and hormonal profile in PCOS patients: a systematic review and meta-analysis of randomized clinical trials. J Ovarian Res 2024; 17:138. [PMID: 38965577 PMCID: PMC11225253 DOI: 10.1186/s13048-024-01450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/08/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND To investigate whether melatonin supplementation can enhance cardiometabolic risk factors, reduce oxidative stress, and improve hormonal and pregnancy-related factors in patients with PCOS. METHODS We conducted a systematic search of PubMed/Medline, Scopus, and the Cochrane Library for articles published in English from inception to March 2023. We included randomized controlled trials (RCTs) on the use of melatonin for patients with polycystic ovary syndrome (PCOS). We performed a meta-analysis using a random-effects model and calculated the standardized mean differences (SMDs) and 95% confidence intervals (CIs). RESULTS Six studies met the inclusion criteria. The result of meta-analysis indicated that melatonin intake significantly increase TAC levels (SMD: 0.87, 95% CI: 0.46, 1.28, I2 = 00.00%) and has no effect on FBS, insulin, HOMA-IR, TC, TG, HDL, LDL, MDA, hs-CRP, mFG, SHBG, total testosterone, and pregnancy rate in patients with PCOS compare to controls. The included trials did not report any adverse events. CONCLUSION Melatonin is a potential antioxidant that may prevent damage from oxidative stress in patients with PCOS. However, the clear effect of melatonin supplementation on cardiometabolic risk factors, hormonal outcomes, and pregnancy-related outcomes needs to be evaluated further in large populations and long-term RCTs.
Collapse
Affiliation(s)
- Somayeh Ziaei
- ICU Department, Emam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Motahareh Hasani
- Department of Nutritional Sciences, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medicinal Sciences, Tehran, Iran
| | - Elnaz Daneshzad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Katayoun Kadkhodazadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
24
|
Zeng T, Teng FY, Wei H, Lu YY, Xu YJ, Qi YX. AANAT1 regulates insect midgut detoxification through the ROS/CncC pathway. Commun Biol 2024; 7:808. [PMID: 38961219 PMCID: PMC11222512 DOI: 10.1038/s42003-024-06505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Insecticide resistance has been a problem in both the agricultural pests and vectors. Revealing the detoxification mechanisms may help to better manage insect pests. Here, we showed that arylalkylamine N-acetyltransferase 1 (AANAT1) regulates intestinal detoxification process through modulation of reactive oxygen species (ROS)-activated transcription factors cap"n"collar isoform-C (CncC): muscle aponeurosis fibromatosis (Maf) pathway in both the oriental fruit fly, Bactrocera dorsalis, and the arbovirus vector, Aedes aegypti. Knockout/knockdown of AANAT1 led to accumulation of biogenic amines, which induced a decreased in the gut ROS level. The reduced midgut ROS levels resulted in decreased expression of CncC and Maf, leading to lower expression level of detoxification genes. AANAT1 knockout/knockdown insects were more susceptible to insecticide treatments. Our study reveals that normal functionality of AANAT1 is important for the regulation of gut detoxification pathways, providing insights into the mechanism underlying the gut defense against xenobiotics in metazoans.
Collapse
Affiliation(s)
- Tian Zeng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Fei-Yue Teng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Hui Wei
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yi-Juan Xu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China.
| | - Yi-Xiang Qi
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
25
|
Wang Z, Zhang W, Huang D, Kang H, Wang J, Liu Z, Jiang G, Gao A. Cuproptosis is involved in decabromodiphenyl ether-induced ovarian dysfunction and the protective effect of melatonin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124100. [PMID: 38714232 DOI: 10.1016/j.envpol.2024.124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Decabromodiphenyl ether (BDE-209) has been universally detected in environmental media and animals, but its damage to ovarian function and mechanism is still unclear, and melatonin has been shown to improve mammalian ovarian function. This study aimed to investigate the toxic effects of BDE-209 on the ovary and tried to improve ovarian function with melatonin. Herein, BDE-209 was administered orally to female SD rats for 60 days. Enzyme-linked immunosorbent assay, HE staining, transcriptome analysis, qPCR and immunohistochemical staining were used to explore and verify the potential mechanism. We found that BDE-209 exposure had effects on the ovary, as shown by abnormal changes in the estrous cycle, hormone levels and ovarian reserve function in rats, while increasing the proportion of collagen fibres in ovarian tissue. In terms of mechanism, cuproptosis, a form of cell death, was identified to play a crucial role in BDE-209-induced ovarian dysfunction, with the phenotype manifested as copper salt accumulation in ovary, downregulation of glutathione pathway metabolism and copper transfer molecule (ATP7A/B), and upregulation of FDX1, lipoic acid pathway (LIAS, LIPT1), pyruvate dehydrogenase complex components (DLAT, PDHB, PDHA1), and copper transfer molecule (SLC31A1). Furthermore, possible interventions were explored. Notably, a supplement with melatonin has a repair effect on the damage to ovarian function by reversing the gene expression of cuproptosis-involved molecules. Overall, this study revealed that cuproptosis is involved in BDE-209-induced ovarian damage and the beneficial effect of melatonin on ovarian copper damage, providing evidence for the prevention and control of female reproductive damage induced by BDE-209.
Collapse
Affiliation(s)
- Ziyan Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Danyang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Guangyu Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
26
|
Mendes L, Queiroz M, Sena CM. Melatonin and Vascular Function. Antioxidants (Basel) 2024; 13:747. [PMID: 38929187 PMCID: PMC11200504 DOI: 10.3390/antiox13060747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The indolamine hormone melatonin, also known as N-acetyl-5-methoxytrypamine, is frequently associated with circadian rhythm regulation. Light can suppress melatonin secretion, and photoperiod regulates melatonin levels by promoting its production and secretion at night in response to darkness. This hormone is becoming more and more understood for its functions as an immune-modulatory, anti-inflammatory, and antioxidant hormone. Melatonin may have a major effect on several diabetes-related disturbances, such as hormonal imbalances, oxidative stress, sleep disturbances, and mood disorders, according to recent research. This has raised interest in investigating the possible therapeutic advantages of melatonin in the treatment of diabetic complications. In addition, several studies have described that melatonin has been linked to the development of diabetes, cancer, Alzheimer's disease, immune system disorders, and heart diseases. In this review, we will highlight some of the functions of melatonin regarding vascular biology.
Collapse
Affiliation(s)
| | | | - Cristina M. Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
27
|
Ma C, Li H, Lu S, Li X. The Role and Therapeutic Potential of Melatonin in Degenerative Fundus Diseases: Diabetes Retinopathy and Age-Related Macular Degeneration. Drug Des Devel Ther 2024; 18:2329-2346. [PMID: 38911030 PMCID: PMC11193467 DOI: 10.2147/dddt.s471525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024] Open
Abstract
Degenerative fundus disease encompasses a spectrum of ocular diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), which are major contributors to visual impairment and blindness worldwide. The development and implementation of effective strategies for managing and preventing the onset and progression of these diseases are crucial for preserving patients' visual acuity. Melatonin, a neurohormone primarily produced by the pineal gland, exhibits properties such as circadian rhythm modulation, antioxidant activity, anti-inflammatory effects, and neuroprotection within the ocular environment. Furthermore, melatonin has been shown to suppress neovascularization and reduce vascular leakage, both of which are critical in the pathogenesis of degenerative fundus lesions. Consequently, melatonin emerges as a promising therapeutic candidate for degenerative ocular diseases. This review provides a comprehensive overview of melatonin synthesis, its localization within ocular tissues, and its mechanisms of action, particularly in regulating melatonin production, thereby underscoring its potential as a therapeutic agent for degenerative fundus diseases.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, People’s Republic of China
| | - Shuwen Lu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Casper E, El Wakeel L, Sabri N, Khorshid R, Fahmy SF. Melatonin: A potential protective multifaceted force for sepsis-induced cardiomyopathy. Life Sci 2024; 346:122611. [PMID: 38580195 DOI: 10.1016/j.lfs.2024.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Sepsis is a life-threatening condition manifested by organ dysfunction caused by a dysregulated host response to infection. Lung, brain, liver, kidney, and heart are among the affected organs. Sepsis-induced cardiomyopathy is a common cause of death among septic patients. Sepsis-induced cardiomyopathy is characterized by an acute and reversible significant decline in biventricular both systolic and diastolic function. This is accompanied by left ventricular dilatation. The pathogenesis underlying sepsis-induced cardiomyopathy is multifactorial. Hence, targeting an individual pathway may not be effective in halting the extensive dysregulated immune response. Despite major advances in sepsis management strategies, no effective pharmacological strategies have been shown to treat or even reverse sepsis-induced cardiomyopathy. Melatonin, namely, N-acetyl-5-methoxytryptamine, is synthesized in the pineal gland of mammals and can also be produced in many cells and tissues. Melatonin has cardioprotective, neuroprotective, and anti-tumor activity. Several literature reviews have explored the role of melatonin in preventing sepsis-induced organ failure. Melatonin was found to act on different pathways that are involved in the pathogenesis of sepsis-induced cardiomyopathy. Through its antimicrobial, anti-inflammatory, and antioxidant activity, it offers a potential role in sepsis-induced cardiomyopathy. Its antioxidant activity is through free radical scavenging against reactive oxygen and nitrogen species and modulating the expression and activity of antioxidant enzymes. Melatonin anti-inflammatory activities control the overactive immune system and mitigate cytokine storm. Also, it mitigates mitochondrial dysfunction, a major mechanism involved in sepsis-induced cardiomyopathy, and thus controls apoptosis. Therefore, this review discusses melatonin as a promising drug for the management of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Eman Casper
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Lamia El Wakeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Nagwa Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ramy Khorshid
- Department of Cardiovascular and Thoracic Surgery, Ain Shams University Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Sarah F Fahmy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
29
|
Kulsoom K, Ali W, Saba Z, Hussain S, Zahra S, Irshad M, Ramzan MS. Revealing Melatonin's Mysteries: Receptors, Signaling Pathways, and Therapeutics Applications. Horm Metab Res 2024; 56:405-418. [PMID: 38081221 DOI: 10.1055/a-2226-3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Melatonin (5-methoxy-acetyl tryptamine) is a sleep-inducing hormone, and the pineal gland produces it in response to the circadian clock of darkness. In the body, MT1 and MT2 receptors are mostly found, having an orthosteric pocket and ligand binding determinants. Melatonin acts by binding on melatonin receptors, intracellular proteins, and orphan nuclear receptors. It inhibits adenyl cyclase and activates phospholipase C, resulting in gene expression and an intracellular alteration environment. Melatonin signaling pathways are also associated with other intracellular signaling pathways, i. e., cAMP/PKA and MAPK/ERK pathways. Relative expression of different proteins depends on the coupling profile of G protein, accounting pharmacology of the melatonin receptor bias system, and mediates action in a Gi-dependent manner. It shows antioxidant, antitumor, antiproliferative, and neuroprotective activity. Different types of melatonin agonists have been synthesized for the treatment of sleeping disorders. Researchers have developed therapeutics that target melatonin signaling, which could benefit a wide range of medical conditions. This review focuses on melatonin receptors, pharmacology, and signaling cascades; it aims to provide basic mechanical aspects of the receptor's pharmacology, melatonin's functions in cancer and neurodegenerative diseases, and any treatments and drugs designed for these diseases. This will allow a basic comparison between the receptors in question, highlighting any parallels and differences that may exist and providing fundamental knowledge about these receptors to future researchers.
Collapse
Affiliation(s)
- Kulsoom Kulsoom
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Wajahat Ali
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xian, China
| | - Zainab Saba
- Department of Optometry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Shabab Hussain
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Universita degli studi di Messina, Messina, Italy
| | - Samra Zahra
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Maria Irshad
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Muhammad Saeed Ramzan
- Department of Pharmacology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
30
|
Cinar F, Yalcin CE, Ayas G, Celik U, Okyay MF, Demiröz A, Bağhaki S, Cetinkale O. Increased Total Antioxidant Capacity Value Improves Survival of Fat Grafts in Rat Model. Plast Reconstr Surg 2024; 153:1307-1316. [PMID: 37389602 DOI: 10.1097/prs.0000000000010873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
BACKGROUND Although studies aiming to increase fat graft survival continue, in this study, the authors aimed to investigate the effects of different antioxidants on total antioxidant capacity (TAC) and their effect on graft survival. METHODS Thirty-two male Wistar rats were divided into four equally sized groups, including a control group and three antioxidant groups receiving either melatonin (10 mg/kg), zinc (2 mg/kg), or vitamins E and C (100 mg/kg). Autologous fat grafts (1.7 ± 0.4 g) were transferred to the dorsal subcutaneous region, and total antioxidant capacity was measured on days 0 and 1, week 1, and monthly until the third month. Transferred graft volume and mass (1.3 ± 0.4 g) were measured using the liquid overflow method and precision scales at the end of the study. Routine hematoxylin and eosin staining and immunohistochemistry against perilipin were performed for semiqualitative analysis and H-score for viable adipose cells, respectively. RESULTS Collected fat grafts measured significantly less in weight and volume and the survival rate was lower in the control group ( P < 0.01). The control group exhibited a reduction in TAC, whereas all groups receiving antioxidants had an increase in TAC during the first week ( P = 0.02, P = 0.008, and P = 0.004 for melatonin, zinc, and vitamins, respectively). Immunohistochemistry of the antioxidant group demonstrated a statistically significant excess and reactivity of cells staining with perilipin antibodies. CONCLUSION In this animal study, the beneficial effect of antioxidants on fat graft survival can be related to the significant increase in TAC following the first week of their administration. CLINICAL RELEVANCE STATEMENT Antioxidants improve fat graft survival and quality in this rat model, by increasing total antioxidant capacity in the first week of administration.
Collapse
Affiliation(s)
- Fatih Cinar
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty
| | - Can Ege Yalcin
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty
| | | | - Ugur Celik
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty
| | | | - Anil Demiröz
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty
| | - Semih Bağhaki
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty
| | - Oguz Cetinkale
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty
| |
Collapse
|
31
|
Vongnhay V, Shukla MR, Ayyanath MM, Sriskantharajah K, Saxena PK. Enhanced In Vitro Plant Morphogenesis of Tobacco: Unveiling Indoleamine-Modulated Adaptogenic Properties of Tulsi ( Ocimum sanctum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1370. [PMID: 38794439 PMCID: PMC11125241 DOI: 10.3390/plants13101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
The medicinal plant tulsi (Ocimum sanctum L.) is acknowledged for its invigorating and healing properties that enhance resilience to stress in various human and animal models by modulating antioxidant compounds. While extensive research has documented these effects in humans, the adaptogenic potential of tulsi in stressful in vitro plant systems has not been explored. This study aimed to elucidate the adaptogenic properties of tulsi leaf extract on the in vitro regeneration of tobacco leaf explants through an investigation of the indoleamines at different developmental stages. Shoot regeneration from leaf explants on the medium supplemented with tulsi extract (20%) was compared to the control, and the differences in indoleamine compounds were analyzed using ultra-performance liquid chromatography. Treatment of the explants with the extract resulted in an almost two-fold increase in the number of regenerants after four weeks of culture, and 9% of the regenerants resembled somatic embryo-like structures. The occurrence of browning in the extract-treated explants stopped on day 10, shoots began to develop, and a significant concentration of tryptamine and N-acetyl-serotonin accumulated. A comparative analysis of indoleamine compounds in intact and cut tobacco leaves also revealed the pivotal role of melatonin and 2-hydroxymelatonin functioning as antioxidants during stress adaptation. This study demonstrates that tulsi is a potent adaptogen that is capable of modulating plant morphogenesis in vitro, paving the way for further investigations into the role of adaptogens in plant stress biology.
Collapse
Affiliation(s)
| | | | | | | | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (M.R.S.); (M.-M.A.); (K.S.)
| |
Collapse
|
32
|
Bocheva G, Bakalov D, Iliev P, Tafradjiiska-Hadjiolova R. The Vital Role of Melatonin and Its Metabolites in the Neuroprotection and Retardation of Brain Aging. Int J Mol Sci 2024; 25:5122. [PMID: 38791160 PMCID: PMC11121732 DOI: 10.3390/ijms25105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
While primarily produced in the pineal gland, melatonin's influence goes beyond its well-known role in regulating sleep, nighttime metabolism, and circadian rhythms, in the field of chronobiology. A plethora of new data demonstrates melatonin to be a very powerful molecule, being a potent ROS/RNS scavenger with anti-inflammatory, immunoregulatory, and oncostatic properties. Melatonin and its metabolites exert multiple beneficial effects in cutaneous and systemic aging. This review is focused on the neuroprotective role of melatonin during aging. Melatonin has an anti-aging capacity, retarding the rate of healthy brain aging and the development of age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. Melatonin, as well as its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), can reduce oxidative brain damage by shielding mitochondria from dysfunction during the aging process. Melatonin could also be implicated in the treatment of neurodegenerative conditions, by modifying their characteristic low-grade neuroinflammation. It can either prevent the initiation of inflammatory responses or attenuate the ongoing inflammation. Drawing on the current knowledge, this review discusses the potential benefits of melatonin supplementation in preventing and managing cognitive impairment and neurodegenerative diseases.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Dimitar Bakalov
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Petar Iliev
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | |
Collapse
|
33
|
Häusler S, Lanzinger E, Sams E, Fazelnia C, Allmer K, Binder C, Reiter RJ, Felder TK. Melatonin in Human Breast Milk and Its Potential Role in Circadian Entrainment: A Nod towards Chrononutrition? Nutrients 2024; 16:1422. [PMID: 38794660 PMCID: PMC11124029 DOI: 10.3390/nu16101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Breastfeeding is the most appropriate source of a newborn's nutrition; among the plethora of its benefits, its modulation of circadian rhythmicity with melatonin as a potential neuroendocrine transducer has gained increasing interest. Transplacental transfer assures melatonin provision for the fetus, who is devoid of melatonin secretion. Even after birth, the neonatal pineal gland is not able to produce melatonin rhythmically for several months (with an even more prolonged deficiency following preterm birth). In this context, human breast milk constitutes the main natural source of melatonin: diurnal dynamic changes, an acrophase early after midnight, and changes in melatonin concentrations according to gestational age and during the different stages of lactation have been reported. Understudied thus far are the factors impacting on (changes in) melatonin content in human breast milk and their clinical significance in chronobiological adherence in the neonate: maternal as well as environmental aspects have to be investigated in more detail to guide nursing mothers in optimal feeding schedules which probably means a synchronized instead of mistimed feeding practice. This review aims to be thought-provoking regarding the critical role of melatonin in chrononutrition during breastfeeding, highlighting its potential in circadian entrainment and therefore optimizing (neuro)developmental outcomes in the neonatal setting.
Collapse
Affiliation(s)
- Silke Häusler
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria; (E.L.); (E.S.)
| | - Emma Lanzinger
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria; (E.L.); (E.S.)
| | - Elke Sams
- Division of Neonatology, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria; (E.L.); (E.S.)
| | - Claudius Fazelnia
- Department of Obstetrics and Gynecology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Kevin Allmer
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (K.A.); (T.K.F.)
| | - Christoph Binder
- Division of Neonatology, Pediatric Intensive Care Medicine and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Russel J. Reiter
- Department of Cell Systems & Anatomy, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA;
| | - Thomas K. Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (K.A.); (T.K.F.)
- Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
34
|
Zemniaçak ÂB, Ribeiro RT, Pinheiro CV, de Azevedo Cunha S, Tavares TQ, Castro ET, Leipnitz G, Wajner M, Amaral AU. In Vivo Intracerebral Administration of α-Ketoisocaproic Acid to Neonate Rats Disrupts Brain Redox Homeostasis and Promotes Neuronal Death, Glial Reactivity, and Myelination Injury. Mol Neurobiol 2024; 61:2496-2513. [PMID: 37910283 DOI: 10.1007/s12035-023-03718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Maple syrup urine disease (MSUD) is caused by severe deficiency of branched-chain α-keto acid dehydrogenase complex activity, resulting in tissue accumulation of branched-chain α-keto acids and amino acids, particularly α-ketoisocaproic acid (KIC) and leucine. Affected patients regularly manifest with acute episodes of encephalopathy including seizures, coma, and potentially fatal brain edema during the newborn period. The present work investigated the ex vivo effects of a single intracerebroventricular injection of KIC to neonate rats on redox homeostasis and neurochemical markers of neuronal viability (neuronal nuclear protein (NeuN)), astrogliosis (glial fibrillary acidic protein (GFAP)), and myelination (myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase)) in the cerebral cortex and striatum. KIC significantly disturbed redox homeostasis in these brain structures 6 h after injection, as observed by increased 2',7'-dichlorofluorescein oxidation (reactive oxygen species generation), malondialdehyde levels (lipid oxidative damage), and carbonyl formation (protein oxidative damage), besides impairing the antioxidant defenses (diminished levels of reduced glutathione and altered glutathione peroxidase, glutathione reductase, and superoxide dismutase activities) in both cerebral structures. Noteworthy, the antioxidants N-acetylcysteine and melatonin attenuated or normalized most of the KIC-induced effects on redox homeostasis. Furthermore, a reduction of NeuN, MBP, and CNPase, and an increase of GFAP levels were observed at postnatal day 15, suggesting neuronal loss, myelination injury, and astrocyte reactivity, respectively. Our data indicate that disruption of redox homeostasis, associated with neural damage caused by acute intracerebral accumulation of KIC in the neonatal period may contribute to the neuropathology characteristic of MSUD patients.
Collapse
Affiliation(s)
- Ângela Beatris Zemniaçak
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Vieira Pinheiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sâmela de Azevedo Cunha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tailine Quevedo Tavares
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ediandra Tissot Castro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Atenção Integral à Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Avenida Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil.
| |
Collapse
|
35
|
Jurjus A, El Masri J, Ghazi M, El Ayoubi LM, Soueid L, Gerges Geagea A, Jurjus R. Mechanism of Action of Melatonin as a Potential Adjuvant Therapy in Inflammatory Bowel Disease and Colorectal Cancer. Nutrients 2024; 16:1236. [PMID: 38674926 PMCID: PMC11054672 DOI: 10.3390/nu16081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), a continuum of chronic inflammatory diseases, is tightly associated with immune system dysregulation and dysbiosis, leading to inflammation in the gastrointestinal tract (GIT) and multiple extraintestinal manifestations. The pathogenesis of IBD is not completely elucidated. However, it is associated with an increased risk of colorectal cancer (CRC), which is one of the most common gastrointestinal malignancies. In both IBD and CRC, a complex interplay occurs between the immune system and gut microbiota (GM), leading to the alteration in GM composition. Melatonin, a neuroendocrine hormone, was found to be involved with this interplay, especially since it is present in high amounts in the gut, leading to some protective effects. Actually, melatonin enhances the integrity of the intestinal mucosal barrier, regulates the immune response, alleviates inflammation, and attenuates oxidative stress. Thereby, the authors summarize the multifactorial interaction of melatonin with IBD and with CRC, focusing on new findings related to the mechanisms of action of this hormone, in addition to its documented positive outcomes on the treatment of these two pathologies and possible future perspectives to use melatonin as an adjuvant therapy.
Collapse
Affiliation(s)
- Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | - Maya Ghazi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | | | - Lara Soueid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| |
Collapse
|
36
|
Soto ME, Pérez-Torres I, Manzano-Pech L, Palacios-Chavarría A, Valdez-Vázquez RR, Guarner-Lans V, Soria-Castro E, Díaz-Díaz E, Castrejón-Tellez V. Redox Homeostasis Alteration Is Restored through Melatonin Treatment in COVID-19 Patients: A Preliminary Study. Int J Mol Sci 2024; 25:4543. [PMID: 38674128 PMCID: PMC11050031 DOI: 10.3390/ijms25084543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Type II pneumocytes are the target of the SARS-CoV-2 virus, which alters their redox homeostasis to increase reactive oxygen species (ROS). Melatonin (MT) has antioxidant proprieties and protects mitochondrial function. In this study, we evaluated whether treatment with MT compensated for the redox homeostasis alteration in serum from COVID-19 patients. We determined oxidative stress (OS) markers such as carbonyls, glutathione (GSH), total antioxidant capacity (TAC), thiols, nitrites (NO2-), lipid peroxidation (LPO), and thiol groups in serum. We also studied the enzymatic activities of glutathione peroxidase (GPx), glutathione-S-transferase (GST), reductase (GR), thioredoxin reductase (TrxR), extracellular superoxide dismutase (ecSOD) and peroxidases. There were significant increases in LPO and carbonyl quantities (p ≤ 0.03) and decreases in TAC and the quantities of NO2-, thiols, and GSH (p < 0.001) in COVID-19 patients. The activities of the antioxidant enzymes such as ecSOD, TrxR, GPx, GST, GR, and peroxidases were decreased (p ≤ 0.04) after the MT treatment. The treatment with MT favored the activity of the antioxidant enzymes that contributed to an increase in TAC and restored the lost redox homeostasis. MT also modulated glucose homeostasis, functioning as a glycolytic agent, and inhibited the Warburg effect. Thus, MT restores the redox homeostasis that is altered in COVID-19 patients and can be used as adjuvant therapy in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- María Elena Soto
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (E.S.-C.)
| | - Linaloe Manzano-Pech
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (E.S.-C.)
| | - Adrían Palacios-Chavarría
- Critical Care Units, Temporal COVID-19 Unit, Citibanamex Center, Mexico City 11200, Mexico; (A.P.-C.); (R.R.V.-V.)
| | | | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.)
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (E.S.-C.)
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Sección XVI, Tlalpan, Mexico City 14000, Mexico;
| | - Vicente Castrejón-Tellez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.)
| |
Collapse
|
37
|
Zhu L, Wang XC, Xu YY, Wang N, Zhu BX, Li ZW. [Expression and significance of hypoxia-inducible factor 1α and Bcl-2/adenovirus E1B19kDa-interacting protein 3 in children with traumatic brain injury]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:378-384. [PMID: 38660902 PMCID: PMC11057301 DOI: 10.7499/j.issn.1008-8830.2310067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVES To dynamically observe the changes in hypoxia-inducible factor 1α (HIF-1α) and Bcl-2/adenovirus E1B19kDa-interacting protein 3 (BNIP3) in children with traumatic brain injury (TBI) and evaluate their clinical value in predicting the severity and prognosis of pediatric TBI. METHODS A prospective study included 47 children with moderate to severe TBI from January 2021 to July 2023, categorized into moderate (scores 9-12) and severe (scores 3-8) subgroups based on the Glasgow Coma Scale. A control group consisted of 30 children diagnosed and treated for inguinal hernia during the same period, with no underlying diseases. The levels of HIF-1α, BNIP3, autophagy-related protein Beclin-1, and S100B were compared among groups. The predictive value of HIF-1α, BNIP3, Beclin-1, and S100B for the severity and prognosis of TBI was assessed using receiver operating characteristic (ROC) curves. RESULTS Serum levels of HIF-1α, BNIP3, Beclin-1, and S100B in the TBI group were higher than those in the control group (P<0.05). Among the TBI patients, the severe subgroup had higher levels of HIF-1α, BNIP3, Beclin-1, and S100B than the moderate subgroup (P<0.05). Correlation analysis showed that the serum levels of HIF-1α, BNIP3, Beclin-1, and S100B were negatively correlated with the Glasgow Coma Scale scores (P<0.05). After 7 days of treatment, serum levels of HIF-1α, BNIP3, Beclin-1, and S100B in both non-surgical and surgical TBI patients decreased compared to before treatment (P<0.05). ROC curve analysis indicated that the areas under the curve for predicting severe TBI based on serum levels of HIF-1α, BNIP3, Beclin-1, and S100B were 0.782, 0.835, 0.872, and 0.880, respectively (P<0.05), and for predicting poor prognosis of TBI were 0.749, 0.775, 0.814, and 0.751, respectively (P<0.05). CONCLUSIONS Serum levels of HIF-1α, BNIP3, and Beclin-1 are significantly elevated in children with TBI, and their measurement can aid in the clinical assessment of the severity and prognosis of pediatric TBI.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Intensive Care Unit, Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Xue-Cheng Wang
- Department of Intensive Care Unit, Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Yan-Yan Xu
- Department of Intensive Care Unit, Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Nan Wang
- Department of Intensive Care Unit, Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | | | | |
Collapse
|
38
|
Maeso L, Antezana PE, Hvozda Arana AG, Evelson PA, Orive G, Desimone MF. Progress in the Use of Hydrogels for Antioxidant Delivery in Skin Wounds. Pharmaceutics 2024; 16:524. [PMID: 38675185 PMCID: PMC11053627 DOI: 10.3390/pharmaceutics16040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The skin is the largest organ of the body, and it acts as a protective barrier against external factors. Chronic wounds affect millions of people worldwide and are associated with significant morbidity and reduced quality of life. One of the main factors involved in delayed wound healing is oxidative injury, which is triggered by the overproduction of reactive oxygen species. Oxidative stress has been implicated in the pathogenesis of chronic wounds, where it is known to impair wound healing by causing damage to cellular components, delaying the inflammatory phase of healing, and inhibiting the formation of new blood vessels. Thereby, the treatment of chronic wounds requires a multidisciplinary approach that addresses the underlying causes of the wound, provides optimal wound care, and promotes wound healing. Among the promising approaches to taking care of chronic wounds, antioxidants are gaining interest since they offer multiple benefits related to skin health. Therefore, in this review, we will highlight the latest advances in the use of natural polymers with antioxidants to generate tissue regeneration microenvironments for skin wound healing.
Collapse
Affiliation(s)
- Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (L.M.); (G.O.)
| | - Pablo Edmundo Antezana
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina
| | - Ailen Gala Hvozda Arana
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| | - Pablo Andrés Evelson
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (P.E.A.); (A.G.H.A.); (P.A.E.)
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química General e Inorgánica, Buenos Aires 1113, Argentina
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (L.M.); (G.O.)
- NanoBioCel Research Group, Bioaraba, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martín Federico Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| |
Collapse
|
39
|
Monteiro KKAC, Shiroma ME, Damous LL, Simões MDJ, Simões RDS, Cipolla-Neto J, Baracat EC, Soares-Jr. JM. Antioxidant Actions of Melatonin: A Systematic Review of Animal Studies. Antioxidants (Basel) 2024; 13:439. [PMID: 38671887 PMCID: PMC11047453 DOI: 10.3390/antiox13040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is an indoleamine with crucial antioxidant properties that are used to combat inflammatory and neoplastic processes, as well as control transplants. However, the clinical applications of melatonin have not yet been fully consolidated in the literature and require in-depth analysis. OBJECTIVES This study reviewed the literature on the antioxidant properties of melatonin in rat models. METHODS We followed the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses and used the PubMed, LILACS, and Cochrane databases, Google Scholar, and article references, irrespective of publication time. RESULTS Ten articles involving 485 rats were selected, and the effects of melatonin on antioxidant markers were investigated. Melatonin increased superoxide dismutase in nine studies, glutathione peroxidase in seven studies, and catalase in five studies. In contrast, melatonin reduced glutathione in three studies and malonaldehyde in seven of eight studies. CONCLUSION Our findings suggest that melatonin effectively reduces oxidative stress.
Collapse
Affiliation(s)
- Karla Krislane Alves Costa Monteiro
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| | - Marcos Eiji Shiroma
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| | - Luciana Lamarão Damous
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| | - Manuel de Jesus Simões
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| | - Ricardo dos Santos Simões
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| | - José Cipolla-Neto
- Laboratório de Neurobiologia, Departamento de Fisiologia, Instituto de Ciências Médicas (ICB-I), Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| | - Jose Maria Soares-Jr.
- Laboratório de Ginecologia Estrutural e Molecular (LIM-58), Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas HC-FMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil (L.L.D.); (M.d.J.S.); (R.d.S.S.); (E.C.B.); (J.M.S.-J.)
| |
Collapse
|
40
|
Smorodin E, Chuzmarov V, Veidebaum T. The Potential of Integrative Cancer Treatment Using Melatonin and the Challenge of Heterogeneity in Population-Based Studies: A Case Report of Colon Cancer and a Literature Review. Curr Oncol 2024; 31:1994-2023. [PMID: 38668052 PMCID: PMC11049198 DOI: 10.3390/curroncol31040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a multifunctional hormone regulator that maintains homeostasis through circadian rhythms, and desynchronization of these rhythms can lead to gastrointestinal disorders and increase the risk of cancer. Preliminary clinical studies have shown that exogenous melatonin alleviates the harmful effects of anticancer therapy and improves quality of life, but the results are still inconclusive due to the heterogeneity of the studies. A personalized approach to testing clinical parameters and response to integrative treatment with nontoxic and bioavailable melatonin in patient-centered N-of-1 studies deserves greater attention. This clinical case of colon cancer analyzes and discusses the tumor pathology, the adverse effects of chemotherapy, and the dynamics of markers of inflammation (NLR, LMR, and PLR ratios), tumors (CEA, CA 19-9, and PSA), and hemostasis (D-dimer and activated partial thromboplastin time). The patient took melatonin during and after chemotherapy, nutrients (zinc, selenium, vitamin D, green tea, and taxifolin), and aspirin after chemotherapy. The patient's PSA levels decreased during CT combined with melatonin (19 mg/day), and melatonin normalized inflammatory markers and alleviated symptoms of polyneuropathy but did not help with thrombocytopenia. The results are analyzed and discussed in the context of the literature on oncostatic and systemic effects, alleviating therapy-mediated adverse effects, association with survival, and N-of-1 studies.
Collapse
Affiliation(s)
- Eugeniy Smorodin
- Department of Chronic Diseases, National Institute for Health Development, Paldiski mnt 80, 10617 Tallinn, Estonia;
| | - Valentin Chuzmarov
- 2nd Surgery Department, General Surgery and Oncology Surgery Centre, North Estonia Medical Centre, J. Sütiste Str. 19, 13419 Tallinn, Estonia
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Paldiski mnt 80, 10617 Tallinn, Estonia;
| |
Collapse
|
41
|
Rong Y, Ma R, Zhang Y, Guo Z. Melatonin's effect on hair follicles in a goat ( Capra hircus) animal model. Front Endocrinol (Lausanne) 2024; 15:1361100. [PMID: 38628581 PMCID: PMC11018883 DOI: 10.3389/fendo.2024.1361100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Melatonin can treat androgenetic alopecia in males. Goats can be used as animal models to study melatonin treatment for human alopecia. In this study, a meta-analysis of melatonin's effects on goat hair follicles was pursued. Methods Literature from the last 20 years was searched in Scopus, Science Direct, Web of Science and PubMed. Melatonin's effect on goat hair follicles and litter size were performed through a traditional meta-analysis and trial sequential analysis. A network meta-analysis used data from oocyte development to blastocyst. The hair follicle genes regulated by melatonin performed KEGG and PPI. We hypothesized that there are differences in melatonin receptors between different goats, and therefore completed melatonin receptor 1A homology modelling and molecular docking. Results The results showed that melatonin did not affect goat primary follicle or litter size. However, there was a positive correlation with secondary follicle growth. The goat melatonin receptor 1A SNPs influence melatonin's functioning. The wild type gene defect MR1 is a very valuable animal model. Discussion Future studies should focus on the relationship between goat SNPs and the effect of embedded melatonin. This study will provide theoretical guidance for the cashmere industry and will be informative for human alopecia research.
Collapse
Affiliation(s)
- Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Northern Agriculture and Livestock Husbandry Technical Innovation Center, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhenhua Guo
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
42
|
Siddiqui MH, Singh VP, Jośko IN, Fraceto LF, Peralta-Videa JR. Emerging pollutants and their effects on plants: Present and future challenges, and their solutions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123553. [PMID: 38369094 DOI: 10.1016/j.envpol.2024.123553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh-11451, Saudi Arabia.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Izabela Natalia Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Leonardo F Fraceto
- Department of Environmental Engineering, Institute of Science and Technology of Sorocaba, São Paulo State University, Av. Três de Março, 18087-180 Sorocaba, SP, Brazil
| | - Jose R Peralta-Videa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| |
Collapse
|
43
|
Celorrio San Miguel AM, Roche E, Herranz-López M, Celorrio San Miguel M, Mielgo-Ayuso J, Fernández-Lázaro D. Impact of Melatonin Supplementation on Sports Performance and Circulating Biomarkers in Highly Trained Athletes: A Systematic Review of Randomized Controlled Trials. Nutrients 2024; 16:1011. [PMID: 38613044 PMCID: PMC11013451 DOI: 10.3390/nu16071011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Melatonin (N-acetyl-5 methoxytryptamine) is an indolic neurohormone that modulates a variety of physiological functions due to its antioxidant, anti-inflammatory, and immunoregulatory properties. Therefore, the purpose of this study was to critically review the effects of melatonin supplementation in sports performance and circulating biomarkers related to the health status of highly trained athletes. Data were obtained by performing searches in the following three bibliography databases: Web of Science, PubMed, and Scopus. The terms used were "Highly Trained Athletes", "Melatonin", and "Sports Performance", "Health Biomarkers" using "Humans" as a filter. The search update was carried out in February 2024 from original articles published with a controlled trial design. The PRISMA rules, the modified McMaster critical review form for quantitative studies, the PEDro scale, and the Cochrane risk of bias were applied. According to the inclusion and exclusion criteria, 21 articles were selected out of 294 references. The dose of melatonin supplemented in the trials ranged between 5 mg to 100 mg administered before or after exercise. The outcomes showed improvements in antioxidant status and inflammatory response and reversed liver damage and muscle damage. Moderate effects on modulating glycemia, total cholesterol, triglycerides, and creatinine were reported. Promising data were found regarding the potential benefits of melatonin in hematological biomarkers, hormonal responses, and sports performance. Therefore, the true efficiency of melatonin to directly improve sports performance remains to be assessed. Nevertheless, an indirect effect of melatonin supplementation in sports performance could be evaluated through improvements in health biomarkers.
Collapse
Affiliation(s)
- Ana M. Celorrio San Miguel
- Department of Chemistry, Polytechnic Secondary Education High School, 42004 Soria, Spain;
- Doctoral School, University of León, Campus de Vegazana, 24071 Leon, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernandez, 03202 Elche, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Research Group “Nutrition and Physical Activity”, Spanish Nutrition Society “SEÑ”, 28010 Madrid, Spain;
| | - María Herranz-López
- Institute of Research, Development, and Innovation in Healthcare Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain;
| | - Marta Celorrio San Miguel
- Emergency Department, Línea de la Concepción Hospital, C. Gabriel Miró, 108, 11300 La Línea de la Concepción, Spain;
| | - Juan Mielgo-Ayuso
- Research Group “Nutrition and Physical Activity”, Spanish Nutrition Society “SEÑ”, 28010 Madrid, Spain;
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Diego Fernández-Lázaro
- Research Group “Nutrition and Physical Activity”, Spanish Nutrition Society “SEÑ”, 28010 Madrid, Spain;
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
44
|
Rusciano D, Russo C. The Therapeutic Trip of Melatonin Eye Drops: From the Ocular Surface to the Retina. Pharmaceuticals (Basel) 2024; 17:441. [PMID: 38675402 PMCID: PMC11054783 DOI: 10.3390/ph17040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a ubiquitous molecule found in living organisms, ranging from bacteria to plants and mammals. It possesses various properties, partly due to its robust antioxidant nature and partly owed to its specific interaction with melatonin receptors present in almost all tissues. Melatonin regulates different physiological functions and contributes to the homeostasis of the entire organism. In the human eye, a small amount of melatonin is also present, produced by cells in the anterior segment and the posterior pole, including the retina. In the eye, melatonin may provide antioxidant protection along with regulating physiological functions of ocular tissues, including intraocular pressure (IOP). Therefore, it is conceivable that the exogenous topical administration of sufficiently high amounts of melatonin to the eye could be beneficial in several instances: for the treatment of eye pathologies like glaucoma, due to the IOP-lowering and neuroprotection effects of melatonin; for the prevention of other dysfunctions, such as dry eye and refractive defects (cataract and myopia) mainly due to its antioxidant properties; for diabetic retinopathy due to its metabolic influence and neuroprotective effects; for macular degeneration due to the antioxidant and neuroprotective properties; and for uveitis, mostly owing to anti-inflammatory and immunomodulatory properties. This paper reviews the scientific evidence supporting the use of melatonin in different ocular districts. Moreover, it provides data suggesting that the topical administration of melatonin as eye drops is a real possibility, utilizing nanotechnological formulations that could improve its solubility and permeation through the eye. This way, its distribution and concentration in different ocular tissues may support its pleiotropic therapeutic effects.
Collapse
Affiliation(s)
- Dario Rusciano
- Fidia Research Centre, c/o University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| |
Collapse
|
45
|
Zhang Q, Gao R, Wu D, Wang X, Liu Y, Gao Y, Guan L. Metabolome and Transcriptome Analysis Revealed the Pivotal Role of Exogenous Melatonin in Enhancing Salt Tolerance in Vitis vinifera L. Int J Mol Sci 2024; 25:3651. [PMID: 38612463 PMCID: PMC11011403 DOI: 10.3390/ijms25073651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 04/14/2024] Open
Abstract
Vitis vinifera L. possesses high economic value, but its growth and yield are seriously affected by salt stress. Though melatonin (MT) has been widely reported to enhance tolerance towards abiotic stresses in plants, the regulatory role melatonin plays in resisting salt tolerance in grapevines has scarcely been studied. Here, we observed the phenotypes under the treatment of different melatonin concentrations, and then transcriptome and metabolome analyses were performed. A total of 457 metabolites were detected in CK- and MT-treated cell cultures at 1 WAT (week after treatment) and 4 WATs. Exogenous melatonin treatment significantly increased the endogenous melatonin content while down-regulating the flavonoid content. To be specific, the melatonin content was obviously up-regulated, while the contents of more than a dozen flavonoids were down-regulated. Auxin response genes and melatonin synthesis-related genes were regulated by the exogenous melatonin treatment. WGCNA (weighted gene coexpression network analysis) identified key salt-responsive genes; they were directly or indirectly involved in melatonin synthesis and auxin response. The synergistic effect of salt and melatonin treatment was investigated by transcriptome analysis, providing additional evidence for the stress-alleviating properties of melatonin through auxin-related pathways. The present study explored the impact of exogenous melatonin on grapevines' ability to adapt to salt stress and provided novel insights into enhancing their tolerance to salt stress.
Collapse
Affiliation(s)
- Qiunan Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Gao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Di Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiao Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanqiang Gao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Le Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (Q.Z.); (D.W.); (X.W.); (Y.L.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
46
|
Ning C, Xiao W, Liang Z, Wu Y, Fan H, Wang S, Kong X, Wang Y, Wu A, Li Y, Yuan Z, Wu J, Yang C. Melatonin alleviates T-2 toxin-induced oxidative damage, inflammatory response, and apoptosis in piglet spleen and thymus. Int Immunopharmacol 2024; 129:111653. [PMID: 38354511 DOI: 10.1016/j.intimp.2024.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
T-2 toxin, an unavoidable contaminant in animal feeds, can induce oxidative stress and damage immune organs. Melatonin (MT), a natural and potent antioxidant, has shown promise as a detoxifier for various mycotoxins. However, the detoxifying effect of MT on T-2 toxin has not been previously reported. In order to investigate the protective effect of MT added to diets on the immune system of T-2 toxin-exposed piglets, twenty piglets weaned at 28d of age were randomly divided into control, T-2 toxin (1 mg/kg), MT (5 mg/kg), and T-2 toxin (1 mg/kg) + MT (5 mg/kg) groups(n = 5 per group). Our results demonstrated that MT mitigated T-2 toxin-induced histoarchitectural alterations in the spleen and thymus, such as hemorrhage, decreased white pulp size in the spleen, and medullary cell sparing in the thymus. Further research revealed that MT promoted the expression of Nrf2 and increased the activities of antioxidant enzymes CAT and SOD, while reducing the production of the lipid peroxidation product MDA. Moreover, MT inhibited the NF-κB signaling pathway, regulated the expression of downstream cytokines IL-1β, IL-6, TNF-α, and TGF-β1. MT also suppressed the activation of caspase-3 while down-regulating the ratio of Bax/Bcl-2 to reduce apoptosis. Additionally, MT ameliorated the T-2 toxin-induced disorders of immune cells and immune molecules in the blood. In conclusion, our findings suggest that MT may effectively protect the immune system of piglets against T-2 toxin-induced damage by inhibiting oxidative stress, inflammatory response, and apoptosis in the spleen and thymus. Therefore, MT holds the potential as an antidote for T-2 toxin poisoning.
Collapse
Affiliation(s)
- Can Ning
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zengenni Liang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch Graduate School, Hunan University, Changsha 410125, China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Hui Fan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Siqi Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xiangyi Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yongkang Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuanyuan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
47
|
Duhan J, Kumar H, Obrai S. Recent Advances in Nanomaterials Based Optical Sensors for the Detection of Melatonin and Serotonin. J Fluoresc 2024:10.1007/s10895-024-03647-3. [PMID: 38436821 DOI: 10.1007/s10895-024-03647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
In this review paper we discussed the detection of melatonin and serotonin by using various optical methods. Melatonin and serotonin are very necessary body hormones these are also called neuroregulatory hormones secreted by pineal gland in brain by pinealocytes and shape of pineal gland is cone like. Sensitive detection of melatonin and serotonin in pharmacological samples and human serum is crucial for human beings, lots of research publications available in literature for melatonin and serotonin and we overviewed these papers. We have deeply reviewed many research papers where sensitively sensing of melatonin and serotonin occurs, by using of various interfering agents and nanomaterials. This review aims presenting colorimetry, fluorometry and spectrophotometric detection of melatonin (MEL) and serotonin (SER) by using different metal oxides, carbon nanomaterials (nanosheets, nanorods, nanofibers) and many other agents. Nanomaterials typically possess favourable optical, electrical and mechanical characteristics, they provide up new avenues for enhancing the efficacy of sensors. It is crucial to provide an optical sensors platform that is dependable, sensitive and low price. The development of sensors and biosensors to use nanomaterials for neurotransmitters has advanced significantly in recent years. There are currently many developing biomarkers in biological fluids, and bionanomaterial-based biosensor systems, as well as clinical and pharmacological settings, have garnered significant interest. Biomarkers have been found using optical devices in a quick, selective and sensitive manner. Our aim is to compile all the data that already published on MEL, SER sensing and comparison of each method, we mainly focused on principle, observations, sensitivity, selectivity, limit of detection, mechanism behind the reaction, effect of temperature, pH and concentration. In the last of this paper, we discuss some challenges of these methods and future projects.
Collapse
Affiliation(s)
- Jyoti Duhan
- Dr BR Ambedkar national institute of technology, Jalandhar, Punjab, India
| | - Himanshu Kumar
- Dr BR Ambedkar national institute of technology, Jalandhar, Punjab, India
| | - Sangeeta Obrai
- Dr BR Ambedkar national institute of technology, Jalandhar, Punjab, India.
| |
Collapse
|
48
|
Pavlyshyn H, Sarapuk I, Kozak K. Peculiarities of melatonin levels in preterm infants. Wien Klin Wochenschr 2024; 136:146-153. [PMID: 36434409 DOI: 10.1007/s00508-022-02109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Melatonin plays an important role in organism functioning, child growth, and development. Of particular importance is melatonin for preterm infants. The aim of our research was to study the peculiarities of melatonin levels depending on various factors in preterm infants with gestational age (GA) of less than 34 weeks. METHODS The study involved 104 preterm infants with GA less than 34 weeks who were treated in the neonatal intensive care unit (NICU). The level of melatonin in urine samples was determined by an enzyme-linked immunosorbent assay. RESULTS Melatonin concentration was significantly lower in extremely and very preterm infants compared to moderate preterm (3.57 [2.10; 5.06] ng/ml vs. 4.96 [3.20; 8.42] ng/ml, p = 0.007) and was positively correlated with GA (Spearman r = 0.32; p < 0.001). Positive correlations were revealed between melatonin levels and Apgar scores at the 1st (Spearman r = 0.31; p = 0.001) and 5th minutes after birth (Spearman r = 0.35; p < 0.001). Melatonin levels were lower in newborns with respiratory distress syndrome (p = 0.011). No significant correlations were found between melatonin concentration and birth weight (Spearman r = 0.15; p = 0.130). There were no associations of melatonin concentrations and mode of delivery (p = 0.914), the incidence of early-onset sepsis (p = 0.370) and intraventricular hemorrhages (p = 0.501), and mechanical ventilation (p = 0.090). The results of multiple regression showed that gestational age at birth was the most significant predictor of melatonin level in preterm infants (B = 0.507; p = 0.001). CONCLUSION Gestational age and the Apgar score were associated with decreased melatonin levels in preterm infants. The level of melatonin in extremely and very preterm infants was lower compared to moderate preterm infants.
Collapse
Affiliation(s)
- Halyna Pavlyshyn
- I. Horbachevsky Ternopil National Medical University, 1 Maydan Voli, 46001, Ternopil, Ukraine
| | - Iryna Sarapuk
- I. Horbachevsky Ternopil National Medical University, 1 Maydan Voli, 46001, Ternopil, Ukraine.
| | - Kateryna Kozak
- I. Horbachevsky Ternopil National Medical University, 1 Maydan Voli, 46001, Ternopil, Ukraine
| |
Collapse
|
49
|
Mansoori R, Kazemi S, Almasi D, Hosseini SM, Karim B, Nabipour M, Moghadamnia AA. Therapeutic benefit of melatonin in 5-fluorouracil-induced renal and hepatic injury. Basic Clin Pharmacol Toxicol 2024; 134:397-411. [PMID: 38129993 DOI: 10.1111/bcpt.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Nephrotoxicity and hepatotoxicity include increased oxidative stress and apoptosis; as a result, liver and kidney damage are related to its pathogenesis. These are significant side effects caused in cancer patients treated with 5-FU. In the research, 25 rats were divided into five groups, including control, 5-FU and 5-FU + 2.5, 5 and 10 mg/kg melatonin (MEL), and the protective impact of MEL against 5-FU-induced hepatorenal damage in rats was investigated. 5-FU caused significant harm, resulting in severe renal failure and histopathological changes. It also increased BUN, creatinine and hepatic function markers levels while decreasing superoxide dismutase and glutathione peroxidase activity. Additionally, 5-FU led to a notable increase in malondialdehyde content. However, MEL co-administration to rats reversed most biochemical and histologic effects. In the control and MEL + 5-FU groups, the values were comparable. The doses of MEL treatment had a significant positive impact on 5-FU-induced oxidative stress, apoptosis, lipid peroxidation and kidney damage. Our data concluded that MEL has an ameliorative effect on hepatorenal damage caused by 5-FU.
Collapse
Affiliation(s)
- Razieh Mansoori
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Darya Almasi
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Bardia Karim
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Majid Nabipour
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
50
|
Reiter RJ, Sharma R, DA Chuffa LG, Zuccari DA, Amaral FG, Cipolla-Neto J. Melatonin-mediated actions and circadian functions that improve implantation, fetal health and pregnancy outcome. Reprod Toxicol 2024; 124:108534. [PMID: 38185312 DOI: 10.1016/j.reprotox.2024.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
This review summarizes data related to the potential importance of the ubiquitously functioning antioxidant, melatonin, in resisting oxidative stress and protecting against common pathophysiological disorders that accompany implantation, gestation and fetal development. Melatonin from the maternal pineal gland, but also trophoblasts in the placenta, perhaps in the mitochondria, produce this molecule as a hedge against impairment of the uteroplacental unit. We also discuss the role of circadian disruption on reproductive disorders of pregnancy. The common disorders of pregnancy, i.e., stillborn fetus, recurrent fetal loss, preeclampsia, fetal growth retardation, premature delivery, and fetal teratology are all conditions in which elevated oxidative stress plays a role and experimental supplementation with melatonin has been shown to reduce the frequency or severity of these conditions. Moreover, circadian disruption often occurs during pregnancy and has a negative impact on fetal health; conversely, melatonin has circadian rhythm synchronizing actions to overcome the consequences of chronodisruption which often appear postnatally. In view of the extensive findings supporting the ability of melatonin, an endogenously-produced and non-toxic molecule, to protect against experimental placental, fetal, and maternal pathologies, it should be given serious consideration as a supplement to forestall the disorders of pregnancy. Until recently, the collective idea was that melatonin supplements should be avoided during pregnancy. The data summarized herein suggests otherwise. The current findings coupled with the evidence, published elsewhere, showing that melatonin is highly protective of the fertilized oocyte from oxidative damage argues in favor of its use for improving pregnancy outcome generally.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA.
| | - Ramaswamy Sharma
- Applied Biomedical Sciences, School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX, USA.
| | - Luiz Gustavo DA Chuffa
- Department of Structural and Functional Biology, Institute of Bioscience of Botucatu, Botucatu, São Paulo, Brazil
| | - Debora Apc Zuccari
- Laboratorio de Investigacao Molecular do Cancer, Faculdade de Medicina de Sao Jose do Rio Preto, Sao Jose do Rio Preto, Brazil
| | - Fernanda G Amaral
- Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jose Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|