1
|
Du W, Tang Z, Du A, Yang Q, Xu R. Bidirectional crosstalk between the epithelial-mesenchymal transition and immunotherapy: A bibliometric study. Hum Vaccin Immunother 2024; 20:2328403. [PMID: 38502119 PMCID: PMC10956627 DOI: 10.1080/21645515.2024.2328403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapy has recently attracted considerable attention. However, currently, a thorough analysis of the trends associated with the epithelial-mesenchymal transition (EMT) and immunotherapy is lacking. In this study, we used bibliometric tools to provide a comprehensive overview of the progress in EMT-immunotherapy research. A total of 1,302 articles related to EMT and immunotherapy were retrieved from the Web of Science Core Collection (WOSCC). The analysis indicated that in terms of the volume of research, China was the most productive country (49.07%, 639), followed by the United States (16.89%, 220) and Italy (3.6%, 47). The United States was the most influential country according to the frequency of citations and citation burstiness. The results also suggested that Frontiers in Immunotherapy can be considered as the most influential journal with respect to the number of articles and impact factors. "Immune infiltration," "bioinformatics analysis," "traditional Chinese medicine," "gene signature," and "ferroptosis" were found to be emerging keywords in EMT-immunotherapy research. These findings point to potential new directions that can deepen our understanding of the mechanisms underlying the combined effects of immunotherapy and EMT and help develop strategies for improving immunotherapy.
Collapse
Affiliation(s)
- Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| | - Zemin Tang
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| | - Ashuai Du
- Department of Infectious Diseases, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qinglong Yang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of General Surgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Rong Xu
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People’s Hospital of Changde City), Changde, Hunan, China
| |
Collapse
|
2
|
Li J, Ma X, Xu F, Yan Y, Chen W. Babaodan overcomes cisplatin resistance in cholangiocarcinoma via inhibiting YAP1. PHARMACEUTICAL BIOLOGY 2024; 62:314-325. [PMID: 38571483 PMCID: PMC10997361 DOI: 10.1080/13880209.2024.2331060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
CONTEXT Cholangiocarcinoma with highly heterogeneous, aggressive, and multidrug resistance has a poor prognosis. Although babaodan (BBD) combined with cisplatin improved non-small cell lung cancer efficacy, its impact on overcoming resistance in cholangiocarcinoma remains unexplored. OBJECTIVE This study explored the role and mechanism of BBD on cisplatin resistance in cholangiocarcinoma cells (CCAs). MATERIALS AND METHODS Cisplatin-resistant CCAs were exposed to varying concentrations of cisplatin (25-400 μg/mL) or BBD (0.25-1.00 mg/mL) for 48 h. IC50 values, inhibition ratios, apoptosis levels, DNA damage, glutathione (GSH) levels, oxidized forms of GSH, total GSH content, and glutaminase relative activity were evaluated using the cell counting kit 8, flow cytometry, comet assay, and relevant assay kits. RESULTS BBD-reduced the cisplatin IC50 in CCAs from 118.8 to 61.83 μg/mL, leading to increased inhibition rate, apoptosis, and DNA damage, and decreased expression of B-cell lymphoma-2, p-Yes-associated protein 1/Yes-associated protein 1, solute carrier family 1 member 5, activating transcription factor 4, and ERCC excision repair 1 in a dose-dependent manner with maximum reductions of 78.97%, 51.98%, 54.03%, 56.59%, and 63.22%, respectively; bcl2-associated X and gamma histone levels were increased by 0.43-115.77% and 22.15-53.39%. The impact of YAP1 knockdown on cisplatin-resistant CCAs resembled BBD. GSH, oxidized GSH species, total GSH content, and glutaminase activity in cisplatin-resistant CCAs with BBD treatment also decreased, while YAP1 overexpression countered BBD's effects. DISCUSSION AND CONCLUSION This study provides a scientific basis for BBD clinical application and provides a new direction for BBD biological mechanism research.
Collapse
Affiliation(s)
- Jiong Li
- Department of Traditional Chinese Medicine, The First People’s Hospital of Lin’an District, Hangzhou, China
| | - Xiangjun Ma
- Department of Traditional Chinese Medicine, The First People’s Hospital of Lin’an District, Hangzhou, China
| | - Faying Xu
- College of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqing Chen
- Department of General Surgery, The First People’s Hospital of Lin’an District, Hangzhou, China
| |
Collapse
|
3
|
Wu Y, Lin Y, Liu B, Ma J, Xiang Y, Wang Y, Meng S. Shexiang Tongxin dropping pill ameliorates microvascular obstruction via downregulating ALOX12 after myocardial ischemia-reperfusion. Int J Cardiol 2024; 416:132481. [PMID: 39179033 DOI: 10.1016/j.ijcard.2024.132481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Microvascular dysfunction (MVD) is common in patients with myocardial infarction receiving reperfusion therapy and is associated with adverse cardiac prognosis. Accumulating evidence suggests a protective role of Shexiang Tongxin dropping pill (STDP) in MVD. However, the specific effects and the underlying mechanisms of STDP in the context of MVD after myocardial ischemia-reperfusion (IR) remains unclear. AIMS We aimed to elucidate the role of STDP in MVD induced by IR and the potential mechanisms involved. METHODS Mice were orally administered with STDP or normal saline for 5 days before receiving myocardial IR. Cardiac function and microvascular obstruction was measured. Proteomics and single-cell RNA sequencing was performed on mouse hearts. In vitro hyoxia/reoxygenation model was established on mouse cardiac microvascular endothelial cells (MCMECs). RESULTS STDP improved cardiac function and decreased microvascular obstruction (MVO) in mice after myocardial IR. Proteomics identified ALOX12 as an important target of STDP. Single-cell RNA sequencing further revealed that downregulation of ALOX12 by STDP mainly occurred in endothelial cells. The involvement of ALOX12 in the effect of STDP on MVO was validated by manipulating ALOX12 via endothelial-specific adeno-associated virus transfection in vivo and in vitro. In vivo, overexpression of ALOX12 increased whereas knockdown of ALOX12 decreased MVO and thrombus formation. STDP treatment alleviated the detrimental effects of overexpression of ALOX12. In vitro, overexpression of ALOX12 increased endothelial cell inflammation and platelet adhesion to endothelial cells, which was abolished by STDP treatment. CONCLUSION Our findings suggest that STDP alleviates MVO after IR, with ALOX12 playing a crucial role.
Collapse
Affiliation(s)
- Yuanhao Wu
- Medical School Of Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yanjun Lin
- Medical School Of Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China; Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Bo Liu
- Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jingqing Ma
- Medical School Of Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yin Xiang
- Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yuepeng Wang
- Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China.
| | - Shu Meng
- Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zeng Y, Wang Z, Zhang J, Jian W, Fu Q. Antitumour activity of oleanolic acid: A systematic review and meta‑analysis. Oncol Lett 2024; 28:582. [PMID: 39421313 PMCID: PMC11484195 DOI: 10.3892/ol.2024.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Oleanolic acid (OA), a compound known for its potent antitumour properties, has been the subject of investigations in both cell and animal models. Although OA has good biological activity, its low water solubility and bioavailability limit its therapeutic use, and therefore translating the potential of OA into the clinical oncology setting remains challenging. The present systematic review and meta-analysis utilized evidence from animal model studies to gain insights into the antitumour mechanisms of OA to address the gap in understanding, and to provide guidance for future research directions and potential clinical applications. The guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses were applied in the present study and a comprehensive search was conducted across the PubMed/MEDLINE, Web of Science, Cochrane Library and Embase databases, with a cut-off date of June 30, 2023. The primary focus was on randomized controlled trials that used animal models to assess the antitumour effects of OA. The methodological quality appraisal was conducted using the Systematic Review Centre for Laboratory Animal Experimentation risk of bias tool, and tumour volume and weight served as the principal outcome measures. Data were analysed using the RevMan (version 5.3) and Stata SE11 software packages, with an assessment of heterogeneity conducted using the I2 statistical test, sensitivity analysis conducted using the leave-one-out approach, and evaluation of publication bias performed using Egger's test and funnel plot analysis. The present study demonstrated a significant inhibitory effect of OA intervention on tumour growth and a decrease in tumour weight in animal models. Despite the broad spectrum of antitumour effects exhibited by OA, further investigations are warranted to optimize the dosage and administration routes of OA to maximize its efficacy in clinical cancer treatment.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Radiation Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhonglian Wang
- Department of Radiation Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jing Zhang
- Department of Radiation Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Wei Jian
- Department of Radiation Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiaofen Fu
- Department of Radiation Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
5
|
Han MM, Fan YK, Zhang Y, Dong ZQ. Advances in herbal polysaccharides-based nano-drug delivery systems for cancer immunotherapy. J Drug Target 2024; 32:311-324. [PMID: 38269853 DOI: 10.1080/1061186x.2024.2309661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The boom in cancer immunotherapy has provided many patients with a better chance of survival, but opportunities often come with challenges. Single immunotherapy is not good enough to eradicate tumours, and often fails to achieve the desired therapeutic effect because of the low targeting of immunotherapy drugs, and causes more side effects. As a solution to this problem, researchers have developed several nano Drug Delivery Systems (NDDS) to deliver immunotherapeutic agents to achieve good therapeutic outcomes. However, traditional drug delivery systems (DDS) have disadvantages such as poor bioavailability, high cytotoxicity, and difficulty in synthesis, etc. Herbal Polysaccharides (HPS), derived from natural Chinese herbs, inherently possess low toxicity. Furthermore, the biocompatibility, biodegradability, hydrophilicity, ease of modification, and immunomodulatory activities of HPS offer unique advantages in substituting traditional DDS. This review initially addresses the current developments and challenges in immunotherapy. Subsequently, it focuses on the immunomodulatory mechanisms of HPS and their design as nanomedicines for targeted drug delivery in tumour immunotherapy. Our findings reveal that HPS-based nanomedicines exhibit significant potential in enhancing the efficacy of cancer immunotherapy, providing crucial theoretical foundations and practical guidelines for future clinical applications.
Collapse
Affiliation(s)
- Miao-Miao Han
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, Department of Pharmaceutics, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yi-Kai Fan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, Department of Pharmaceutics, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, Department of Pharmaceutics, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Joint Research Center for Chinese Medicinal Herbs, IMPLAD, ABRC & ACCL, Beijing, China
| | - Zheng-Qi Dong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine from Ministry of Education, Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription from Chinese Academy of Medical Sciences, Department of Pharmaceutics, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Joint Research Center for Chinese Medicinal Herbs, IMPLAD, ABRC & ACCL, Beijing, China
| |
Collapse
|
6
|
Shen LS, Chen JW, Gong RH, Lin Z, Lin YS, Qiao XF, Hu QM, Yang Y, Chen S, Chen GQ. β,β-Dimethylacrylalkannin, a key component of Zicao, induces cell cycle arrest and necrosis in hepatocellular carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155959. [PMID: 39178682 DOI: 10.1016/j.phymed.2024.155959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND β,β-Dimethylacrylalkannin (DMAKN), a natural naphthoquinone found in Zicao, a traditional Chinese medicine (TCM), serves as the designated quantitative marker in the Chinese Pharmacopoeia. Despite its established role in assessing Zicao quality, DMAKN's biological potential remains underexplored in research. METHODS We investigated DMAKN's involvement in Zicao's anti-hepatocellular carcinoma (HCC) properties using a combination of HPLC content analysis and comprehensive bioinformatics. Subsequently, both in vitro and in vivo experiments were conducted to evaluate DMAKN's efficacy against HCC. Mechanistic investigations focused on elucidating DMAKN's impact on cell cycle regulation and induction of cell death. RESULTS Integrated HPLC analysis and bioinformatics identified DMAKN as the primary active compound responsible for Zicao's anti-HCC activity. In vitro and in vivo studies confirmed DMAKN's potent efficacy against HCC. Notably, DMAKN demonstrated dual effects on HCC cells: inhibiting proliferation at lower doses and inducing rapid cell death at higher doses. Mechanistic insights revealed that low-dose DMAKN induced G2/M phase cell cycle arrest through modulation of CDK1 and Cdc25C phosphorylation, while high-dose DMAKN triggered necrosis. Importantly, high-dose DMAKN caused a sharp increase in intracellular ROS levels in a short time, while low-dose DMAKN gradually increased ROS levels over a long period. Additionally, low-dose DMAKN-induced ROS activated the JNK pathway, crucial for cell cycle arrest, whereas high-dose DMAKN-induced necrosis was ROS-dependent but JNK-independent. CONCLUSION This study underscores DMAKN's pivotal role as the principal anti-HCC compound in Zicao, delineating its differential effects and underlying mechanisms. These results demonstrate the potential of DMAKN as a therapeutic agent for the treatment of HCC, providing important information for further study and advancement in cancer therapy.
Collapse
Affiliation(s)
- Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China; Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Jia-Wen Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Rui-Hong Gong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China
| | - Zesi Lin
- Southern Medical University Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Southern Medical University, Guangzhou 510315, PR China
| | - Yu-Shan Lin
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China
| | - Xing-Fang Qiao
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China; Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Qian-Mei Hu
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China; Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, PR China; Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chongqing 400065, PR China.
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China.
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., PR China.
| |
Collapse
|
7
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
8
|
Ning N, Li X, Nan Y, Chen G, Huang S, Du Y, Gu Q, Li W, Yuan L. Molecular mechanism of Saikosaponin-d in the treatment of gastric cancer based on network pharmacology and in vitro experimental verification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8943-8959. [PMID: 38864908 DOI: 10.1007/s00210-024-03214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The study aimed to utilize network pharmacology combined with cell experiments to research the mechanism of action of Saikosaponin-d in the treatment of gastric cancer. Drug target genes were obtained from the PubChem database and the Swiss Target Prediction database. Additionally, target genes for gastric cancer were obtained from the GEO database and the Gene Cards database. The core targets were then identified and further analyzed through gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GESA enrichment. The clinical relevance of the core targets was assessed using the GEPIA and HPA databases. Molecular docking of drug monomers and core target proteins was performed using Auto Duck Tools and Pymol software. Finally, in vitro cellular experiments including cell viability, apoptosis, cell scratch, transwell invasion, transwell migration, qRT-PCR, and Western blot were conducted to verify these findings of network pharmacology. The network pharmacology analysis predicted that the drug monomers interacted with 54 disease targets. Based on clinical relevance analysis, six core targets were selected: VEGFA, IL2, CASP3, BCL2L1, MMP2, and MMP1. Molecular docking results showed binding activity between the Saikosaponin-d monomer and these core targets. Saikosaponin-d could inhibit gastric cancer cell proliferation, induce apoptosis, and inhibit cell migration and invasion.
Collapse
Affiliation(s)
- Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi Nan
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, TCM Hospital of Ningxia Medical University, Wuzhong, 751100, China.
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
9
|
Lin Z, Nie F, Cao R, He W, Xu J, Guo Y. Lentinan-based pH-responsive nanoparticles achieve the combination therapy of tumors. Int J Biol Macromol 2024; 279:135300. [PMID: 39236942 DOI: 10.1016/j.ijbiomac.2024.135300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Cancer poses a significant threat to human health, and there is an urgent need for more effective treatments. Combining chemotherapy and immunotherapy is an effective strategy to enhance curative outcomes and holds great potential for widespread application. The natural phytochemical genistein (GEN) exhibits cytotoxicity against tumors and is a potential chemotherapeutic agent. Lentinan (LTN) is a natural polysaccharide with immune-enhancing properties that has been utilized in tumor treatment. This study constructed a pH-responsive nanoparticle GEN@LTN-BDBA with chemotherapy and immunotherapy functions using GEN and LTN. After characterizing the nanoparticles, the molecular mechanism of GEN@LTN-BDBA formation was explored using in silico simulation. GEN@LTN-BDBA can significantly inhibit the proliferation of A549 and HepG2 cells in vitro. The in vivo experiment results demonstrated that treatment with GEN@LTN-BDBA can significantly reduce tumor cell mass and prevent metastasis. In this nanoparticle, GEN induced oxidative stress and apoptosis of tumor cells. Meanwhile, the released LTN initiated an anti-tumor immune response by promoting dendritic cell (DC) maturation and upregulating the expression of costimulatory molecules and major histocompatibility complex. The construction method of GEN@LTN-BDBA can be extended to the preparation of other polysaccharides and hydrophobic chemotherapy molecules, offering a novel strategy to enhance the efficacy of monotherapy.
Collapse
Affiliation(s)
- Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenrui He
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
10
|
Wang T, Zhang H. Exploring the roles and molecular mechanisms of RNA binding proteins in the sorting of noncoding RNAs into exosomes during tumor progression. J Adv Res 2024; 65:105-123. [PMID: 38030125 PMCID: PMC11518959 DOI: 10.1016/j.jare.2023.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND RNA binding proteins (RBPs) play a role in sorting non-coding RNAs (ncRNAs) into exosomes. These ncRNAs, carried by exosomes, are involved in regulating various aspects of tumor progression, including metastasis, angiogenesis, control of the tumor microenvironment, and drug resistance. Recent studies have emphasized the importance of the RBP-ncRNA-exosome mechanism in tumor regulation. AIM OF REVIEW This comprehensive review aims to explore the RBP-ncRNA-exosome mechanism and its influence on tumor development. By understanding this intricate mechanism provides novel insights into tumor regulation and may lead to innovative treatment strategies in the future. KEY SCIENTIFIC CONCEPTS OF REVIEW The review discusses the formation of exosomes and the complex relationships among RBPs, ncRNAs, and exosomes. The RBP-ncRNA-exosome mechanism is shown to affect various aspects of tumor biology, including metastasis, multidrug resistance, angiogenesis, the immunosuppressive microenvironment, and tumor progression. Tumor development relies on the transmission of information between cells, with RBPs selectively mediating sorting of ncRNAs into exosomes through various mechanisms, which in turn carry ncRNAs to regulate RBPs. The review also provides an overview of potential therapeutic strategies, such as targeted drug discovery and genetic engineering for modifying therapeutic exosomes, which hold great promise for improving cancer treatment.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
11
|
Xu AX, Zhao ZF, Zhu L, Zhang YH, Li Y, Wei YF, Zhang BY, Jiang B, Gao TZ, Li MS, Liu JY. Promise and challenges of traditional Chinese medicine, specifically Calculus bovis, in liver cancer treatment. World J Gastroenterol 2024; 30:4380-4385. [DOI: 10.3748/wjg.v30.i40.4380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/16/2024] Open
Abstract
Liver cancer, one of the most common malignancies worldwide, ranks sixth in incidence and third in mortality. Liver cancer treatment options are diverse, including surgical resection, liver transplantation, percutaneous ablation, transarterial chemoembolization, radiotherapy, chemotherapy, targeted therapy, immunotherapy, and traditional Chinese medicine (TCM). A multidisciplinary team (MDT) is essential to customize treatment plans based on tumor staging, liver function, and performance status (PS), ensuring individualized patient care. Treatment decisions require a MDT to tailor strategies based on tumor staging, liver function, and PS, ensuring personalized care. The approval of new first-line and second-line drugs and the establishment of standard treatments based on immune checkpoint inhibitors have significantly expanded treatment options for advanced liver cancer, improving overall prognosis. However, many patients do not respond effectively to these treatments and ultimately succumb to the disease. Modern oncology treatments, while extending patient survival, often come with severe side effects, resistance, and damage to the body, negatively impacting quality of life. Huang et al's study published at World Journal of Gastroenterology rigorously validates the anticancer properties of Calculus bovis, enhancing our understanding of TCM and contributing to new liver cancer treatment strategies. For over 5000 years, TCM has been used in East Asian countries like China to treat various diseases, including liver conditions. Analysis of real-world clinical data suggests that for patients with advanced-stage tumors lacking effective treatments, integrated TCM therapies could provide significant breakthroughs.
Collapse
Affiliation(s)
- Ao-Xi Xu
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Zhi-Feng Zhao
- Medical School of Chinese People's Liberation Army, Medical School of Chinese People's Liberation Army, Beijing 100853, China
- Department of Hepatobiliary and Pancreative Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Li Zhu
- Department of General Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yi-Heng Zhang
- Department of General Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Yan Li
- Department of General Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yu-Fan Wei
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo-Ya Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bin Jiang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Tian-Ze Gao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Meng-Si Li
- Department of Surgery, Mancheng District People's Hospital, Baoding 072150, Hebei Province, China
| | - Jia-Yu Liu
- Department of Neurosurgery, First Medical Centre of Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Erdenebileg S, Kim M, Nam Y, Cha KH, Le TT, Jung SH, Nho CW. Artemisia argyi ethanol extract ameliorates nonalcoholic steatohepatitis-induced liver fibrosis by modulating gut microbiota and hepatic signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118415. [PMID: 38848971 DOI: 10.1016/j.jep.2024.118415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi (AA), a herbal medicine traditionally used in Asian countries, to treat inflammatory conditions such as eczema, dermatitis, arthritis, allergic asthma and colitis. However, the mechanism of action of this plant with regard to hepatitis and other liver-related diseases is still unclear. AIM This study aimed to investigate the effects of AA ethanol extract on NASH-related fibrosis and gut microbiota in a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-induced mouse model. METHODS Male C57BL/6J mice were fed CDAHFD, with or without AA ethanol extract treatment. Biochemical markers, lipid profiles, hepatic mRNA expression levels of key genes, and the fibrosis area were assessed. In vitro, TGF-β-stimulated human hepatic stellate LX-2 cells and mouse primary hepatic stellate cells (mHSCs) were used to elucidate the effects of AA ethanol extract on fibrosis and steatosis. 16S rRNA sequencing, QIIME2, and PICRUST2 were employed to analyze gut microbial diversity, composition, and functional pathways. RESULTS Treatment with the AA ethanol extract improved plasma and liver lipid profiles, modulated hepatic mRNA expression levels of antioxidant, lipolytic, and fibrosis-related genes, and significantly reduced CDAHFD-induced hepatic fibrosis. Gut microbiota analysis revealed a marked decrease in Acetivibrio ethanolgignens abundance upon treatment with the AA ethanol extract, and its functional pathways were significantly correlated with NASH/fibrosis markers. The AA ethanol extract and its active components (jaceosidin, eupatilin, and chlorogenic acid) inhibited fibrosis-related markers in LX-2 and mHSC. CONCLUSION The AA ethanol extract exerted therapeutic effects on CDAHFD-induced liver disease by modulating NASH/fibrosis-related factors and gut microbiota composition. Notably, AA treatment reduced the abundance of the potentially profibrotic bacterium (A. ethanolgignens). These findings suggest that AA is a promising candidate for treating NASH-induced fibrosis.
Collapse
Affiliation(s)
- Saruul Erdenebileg
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea
| | - Myungsuk Kim
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Natural Product Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, 26426, South Korea
| | - Yunseong Nam
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea
| | - Kwang Hyun Cha
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, 26426, South Korea; Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea
| | - Tam Thi Le
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Natural Product Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea
| | - Sang Hoon Jung
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea; Natural Product Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, South Korea; Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do, 25451, South Korea.
| |
Collapse
|
13
|
Zeng M, Wang Y, Tao X, Fan T, Yin X, Shen C, Wang X. Novel Perspectives in the Management of Colorectal Cancer: Mechanistic Investigations Into the Reversal of Drug Resistance via Active Constituents Derived From Herbal Medicine. Phytother Res 2024. [PMID: 39462152 DOI: 10.1002/ptr.8363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/03/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
The high incidence and mortality rate of colorectal cancer have become a significant global health burden. Chemotherapy has been the traditional treatment for colorectal cancer and has demonstrated promising antitumor effects, leading to significant improvements in patient survival. However, the development of chemoresistance poses a major challenge during chemotherapy in colorectal cancer, significantly impeding treatment efficacy and affecting patient prognosis. Despite the development of a variety of novel anticolorectal cancer chemotherapy agents, their effectiveness and side effects vary, possibly due to the complex mechanisms of resistance in colorectal cancer. Abnormal drug metabolism or protein targets are the most direct causes of resistance. Further studies have revealed that these resistance mechanisms involve biochemical processes such as altered protein expression, autophagy, and epithelial-mesenchymal transitions. Herbal active ingredients offer an alternative treatment option and have shown promise in reversing colorectal cancer drug resistance. This paper aims to summarize the role of various biochemical processes and key protein targets in the occurrence and maintenance of resistance mechanisms in colorectal cancer. Additionally, it elaborates on the mechanisms of action of herbal active ingredients in reversing colorectal cancer drug resistance. The article also discusses the limitations and opportunities in developing novel anticolorectal cancer drugs based on herbal medicine.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Tianfei Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Wang XR, Wu HN, Li MH, Guo XH, Cheng XL, Jing WG, Wei F. Comprehensive Analysis of Bile Medicines Based on UHPLC-QTOF-MS E and Machine Learning. ACS OMEGA 2024; 9:43264-43271. [PMID: 39464475 PMCID: PMC11500153 DOI: 10.1021/acsomega.4c08260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
Based on UHPLC-QTOF-MSE analysis and quantized processing, combined with machine learning algorithms, data modeling was carried out to realize digital identification of bear bile powder (BBP), chicken bile powder (CIBP), duck bile powder (DBP), cow bile powder (CBP), sheep bile powder (SBP), pig bile powder (PBP), snake bile powder (SNBP), rabbit bile powder (RBP), and goose bile powder (GBP). First, 173 batches of bile samples were analyzed by UHPLC-QTOF-MSE to obtain the retention time-exact mass (RTEM) data pair to identify bile acid-like chemical components. Then, the data were modeled by combining support vector machine (SVM), random forest (RF), artificial neural network (ANN), gradient boosting (GB), AdaBoost (AB), and Naive Bayes (NB), and the models were evaluated by the parameters of accuracy (Acc), precision (P), and area under the curve (AUC). Finally, the bile medicines were digitally identified based on the optimal model. The results showed that the RF model constructed based on the identified 12 bile acid-like chemical constituents and random forest algorithm is optimal with ACC, P, and AUC > 0.950. In addition, the accuracy of external identification verification of 42 batches of bile medicines detected at different times is 100.0%. So based on UHPLC-QTOF-MSE analysis and combined with the RF algorithm, it can efficiently and accurately realize the digital identification of bile medicines, which can provide reference and assistance for the quality control of bile medicines. In addition, hyodeoxycholic acid, glycohyodeoxycholic acid, and taurochenodeoxycholic acid, and so forth are the most important bile acid constituents for the identification of nine bile medicines.
Collapse
Affiliation(s)
- Xian rui Wang
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Hao nan Wu
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
- Faculty
of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ming hua Li
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xiao han Guo
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xian long Cheng
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Wen guang Jing
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Feng Wei
- Institute
for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
15
|
Teng X, Wu B, Liang Z, Zhang L, Yang M, Liu Z, Liang Q, Wang C. Three bioactive compounds from Huangqin decoction ameliorate Irinotecan-induced diarrhea via dual-targeting of Escherichia coli and bacterial β-glucuronidase. Cell Biol Toxicol 2024; 40:88. [PMID: 39422738 PMCID: PMC11489186 DOI: 10.1007/s10565-024-09922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Irinotecan (CPT-11) is a commonly prescribed chemotherapeutic for the treatment of colon cancer. Unfortunately, acute and delayed diarrhea are prominent side effects of CPT-11 use, and this limits its therapeutic potential. The curative effect of Huangqin decoction (HQD) on chemotherapy-induced diarrhea has been proven. This study investigated the efficacy of the components of HQD (baicalein, baicalin, and paeoniflorin) on CPT-11-induced diarrhea and their underlying mechanisms. Baicalein was found to be the most effective component in improving CPT-11-induced enterotoxicity by intestinal permeability test, ELISA, fluorescence co-localization, and IHC. The combination of baicalin, baicalin and paeoniflorin can obtain similar therapeutic effect to that of HQD. Mendelian randomization analysis, 16 s rRNA sequencing, and fluorescence imaging revealed that baicalein and baicalin significantly inhibited β-glucuronidase (β-GUS) activity. Bacterial abundance analysis and scanning electron microscopy showed that baicalein inhibited the proliferation of Escherichia coli by destroying its cell wall. The molecular dynamics and site-directed mutagenesis results revealed the structural basis for the inhibition of β-GUS by baicalein and baicalin. The results above provide a new idea for the development of drug therapy for adjuvant chemotherapy and theoretical guidance for the optimization of molecular structure targeting β-GUS.
Collapse
Affiliation(s)
- Xiaojun Teng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bingxin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuhui Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lisheng Zhang
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Maolin Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Acupuncture Building, Guangdong Province, Guangzhou University of Chinese Medicine, Xiaoguwei Street, Panyu District, Guangzhou City, 510006, China.
| | - Qi Liang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 51800, People's Republic of China.
- Acupuncture Building, Guangdong Province, Guangzhou University of Chinese Medicine, Xiaoguwei Street, Panyu District, Guangzhou City, 510006, China.
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Acupuncture Building, Guangdong Province, Guangzhou University of Chinese Medicine, Xiaoguwei Street, Panyu District, Guangzhou City, 510006, China.
| |
Collapse
|
16
|
Fang Y, Wu Y, Zhang X, Wei L, Liu L, Chen Y, Chen D, Xu N, Cao L, Zhu J, Chen M, Cheng Y, Sferra TJ, Yao M, Shen A, Peng J. miR-326 overexpression inhibits colorectal cancer cell growth and proteasome activity by targeting PNO1: unveiling a novel therapeutic intervention strategy. Sci Rep 2024; 14:24284. [PMID: 39414903 PMCID: PMC11484865 DOI: 10.1038/s41598-024-75746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Proteasome inhibition emerges as a promising strategy for cancer prevention. PNO1, pivotal for colorectal cancer (CRC) progression, is involved in proteasome assembly in Saccharomyces cerevisiae. Hence, we aimed to explore the role of PNO1 in proteasome assembly and its up- and down-streams in CRC. Here, we demonstrated that PNO1 knockdown suppressed CRC cells growth, proteasome activities and assembly, as well as CDKN1B/p27Kip1 (p27) degradation. Moreover, p27 knockdown partially attenuated the inhibition of HCT116 cells growth by PNO1 knockdown. The up-stream studies of PNO1 identified miR-326 as a candidate miRNA directly targeting to CDS-region of PNO1 and its overexpression significantly down-regulated PNO1 protein expression, resulting in suppression of cell growth, decrease of proteasome activities and assembly, as well as increasing the stability of p27 in CRC cells. These findings indicated that miR-326 overexpression can suppress CRC cell growth, acting as an endogenous proteasome inhibitor by targeting PNO1.
Collapse
Affiliation(s)
- Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Yulun Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Xinran Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Daxin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Nanhui Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Liujin Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Jie Zhu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Mian Chen
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Thomas J Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Mengying Yao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
17
|
Wang Y, Qin Y, Kang Q, Wang H, Zhou S, Wu Y, Liu Y, Su Y, Guo Y, Xiu M, He J. Therapeutic potential of Astragalus membranaceus-Pueraria lobata decoction for the treatment of chemotherapy bowel injury. FASEB J 2024; 38:e70102. [PMID: 39382026 DOI: 10.1096/fj.202401677r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Intestinal mucositis (IM) is one of the most serious side effects of the chemotherapeutic agent irinotecan (CPT-11). Astragalus membranaceus-Pueraria lobata decoction is from the ancient medical book Zhengzhihuibu, has been reported to be used for the treatment of diabetes and hypertension. However, the beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) remain largely unknown. This study aimed to investigate the efficacy and mechanism of Astragalus membranaceus-Pueraria lobata decoction (AP) in treating CIM. The beneficial effect and mechanism of AP on chemotherapy intestinal mucositis (CIM) were detected using Drosophila model, and combination with RT qPCR, transcriptomics. AP supplementation could significantly alleviate the CPT-11-induced body injury in Drosophila, such as increasing the survival rate, recovering the impaired digestion, improving the movement, and repairing the reproduction and developmental processes. Administration of AP remarkably alleviated the IM caused by CPT-11, including inhibiting the excretion, repairing the intestinal atrophy, improving the acid-base homeostasis imbalance, and inhibiting the disruption of intestinal structure. Mechanistic studies revealed that the protective role of AP against CPT-11 induced intestinal injury was regulated mainly by inhibiting immune-related Toll and Imd pathways, and enhancing the antioxidant capacity. Taken together, these results suggest that AP may be a novel agent to relieve CIM.
Collapse
Affiliation(s)
- Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yujie Qin
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qian Kang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Huinan Wang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shihong Zhou
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yifan Wu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yun Su
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yaqiong Guo
- Second Provincial People's Hospital of Gansu, Lanzhou, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Jianzheng He
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
- Second Provincial People's Hospital of Gansu, Lanzhou, China
- Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
18
|
Wang L, Chen H, Deng L, Hu M, Wang Z, Zhang K, Lian C, Wang X, Zhang J. Roburic acid inhibits lung cancer metastasis and triggers autophagy as verified by network pharmacology, molecular docking techniques and experiments. Front Oncol 2024; 14:1449143. [PMID: 39450260 PMCID: PMC11499198 DOI: 10.3389/fonc.2024.1449143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background Roburic acid (ROB) is a newly discovered tetracyclic triterpene acid extracted from oak galls, which has anti-inflammatory effects, but the mechanism of its anticancer effect is not clear. Our study focuses on exploring the potential mechanism of action of ROB in the treatment of lung cancer using a combination of network pharmacological prediction, molecular docking technique and experimental validation. Methods A network pharmacology approach was used to screen the protein targets of ROB and lung cancer, and PPI network analysis and enrichment analysis were performed on the intersecting genes. The tissue and organ distribution of the targets was also evaluated based on the BioGPS database. To ensure the reliability of the network pharmacology prediction results, we proceeded to use molecular docking technique to determine the relationship between drugs and targets. Finally, in vitro experiments with cell lines were performed to further reveal the potential mechanism of ROB for the treatment of lung cancer. Results A total of 83 potential targets of ROB in lung cancer were collected and further screened by using Cytoscape software, and 7 targets of PTGS2, CYP19A1, PTGS1, AR, CYP17A1, PTGES and SRD5A1 were obtained as hub genes and 7 hub targets had good binding energy with ROB. GO and KEGG analysis showed that ROB treatment of lung cancer mainly involves Arachidonic acid metabolism, Notch signaling pathway, cancer pathway and PPAR signaling pathway. The results of in vitro experiments indicated that ROB may inhibit the proliferation and metastasis of lung cancer cells and activate the PPARγ signaling pathway, as well as induce cellular autophagy. Conclusions The results of this study comprehensively elucidated the potential targets and molecular mechanisms of ROB for the treatment of lung cancer, providing new ideas for further lung cancer therapy.
Collapse
Affiliation(s)
- Luyao Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Huili Chen
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Lili Deng
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Mengling Hu
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Kai Zhang
- Research Center of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Chaoqun Lian
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Joint Research Center for Regional Diseases of Institute of Healthcare Management (IHM), The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| |
Collapse
|
19
|
García-Beltrán A, Lozano Melero A, Martínez Martínez R, Porres Foulquie JM, López Jurado Romero de la Cruz M, Kapravelou G. A Systematic Review of the Beneficial Effects of Berry Extracts on Non-Alcoholic Fatty Liver Disease in Animal Models. Nutr Rev 2024:nuae132. [PMID: 39365946 DOI: 10.1093/nutrit/nuae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in Western countries and is strongly associated with several metabolic disorders. Plant-derived bioactive extracts, such as berry extracts, with high antioxidant capacity have been used for the treatment and prevention of this pathology. Moreover, they promote circular economy and sustainability. OBJECTIVE To study the beneficial effects of extracts from different parts of berry plants in animal models of NAFLD. DATA SOURCES A systematic research of the MEDLINE (via PubMed), Cochrane, and Scopus databases was conducted to identify relevant studies published after January 2011. In vivo animal studies of NAFLD were included in which berry extracts of different parts of the plant were administered and significantly improved altered biomarkers related to the pathology, such as lipid metabolism and hepatic steatosis, glucose and glycogen metabolism, and antioxidant and anti-inflammatory biomarkers. DATA EXTRACTION Of a total of 203 articles identified, 31 studies were included after implementation of the inclusion and exclusion criteria. DATA ANALYSIS Most of the studies showed a decrease in steatosis and a stimulation of genes related to β-oxidation and downregulation of lipogenic genes, with administration of berry extracts. Berry extracts also attenuated inflammation and oxidative stress. CONCLUSIONS Administration of berry extracts seems to have promising potential in the design of enriched foodstuffs or nutraceuticals for the treatment of NAFLD.
Collapse
Affiliation(s)
- Alejandro García-Beltrán
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | - Aida Lozano Melero
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | - Rosario Martínez Martínez
- Department of Physiology, Biomedical Research Center, Instituto mixto de Deporte y Salud, University of Granada, 18007 Granada, Spain
| | | | | | - Garyfallia Kapravelou
- Department of Physiology, Faculty of Health Sciences, Campus of Melilla, University of Granada, 52005 Granada, Spain
| |
Collapse
|
20
|
Inoue TT, Viana Pereira V, Faria de Sousa G, Nunes Dourado LF, da Silva Cunha-Junior A. Anti-angiogenic activity of polymeric nanoparticles loaded with ursolic acid. J Drug Target 2024:1-10. [PMID: 39325639 DOI: 10.1080/1061186x.2024.2409881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Ursolic acid (UA) is an abundant natural product and has shown great promise for treating diseases related to the appearance of new blood vessels. However, its clinical use is limited due to its low solubility in aqueous media, resulting in reduced bioavailability. The present study aimed to synthetize poly(lactic-co-glycolic acid) nanoparticles loaded with UA by nanoprecipitation method and to evaluate the toxicity and anti-angiogenic activity using the in vivo chorioallantoic model. The nanoparticles were obtained in the size range that varied from 103.0 to 169.3 nm, they presented a uniform distribution (polydispersity index <0.2), and a negatively charged surface, with an encapsulation efficiency close to 50%. The release profile of the developed nanoformulation showed an initial burst in the first 2 h and demonstrated no acute toxicity (irritation index <0.9). Moreover, the chorioallantoic assay showed a significant reduction in both geometrical and topological parameters compared to saline control (p < .05). In conclusion, the study revealed a quick and simple way to obtain poly(lactic-co-glycolic) acid nanoparticles, a drug delivery system to UA, which showed potential antiangiogenic action and can be used to treat diseases involving neovascularisation.
Collapse
Affiliation(s)
- Thomas Toshio Inoue
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
21
|
Yuan J, Zhang W, Qie B, Xie Y, Zhu B, Chen C, Qiu W, Sun H, Zhao B, Long Y. Utilizing press needle acupuncture to treat mild-to-moderate COVID-19: A single-blind, randomized controlled trial. Medicine (Baltimore) 2024; 103:e39810. [PMID: 39465704 PMCID: PMC11460845 DOI: 10.1097/md.0000000000039810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND In China, acupuncture has been employed as an adjunctive therapy for coronavirus disease 2019 (COVID-19). Press needle acupuncture is a special type of acupuncture that provides prolonged stimulation to acupuncture points and simultaneously reduces the pain associated with traditional acupuncture. This study assessed the effectiveness of integrating press needles alongside pharmacologic treatment in patients with mild-to-moderate COVID-19. METHODS Patients hospitalized with mild-to-moderate COVID-19 symptoms between December 2022 and January 2023 were included in the study. The enrolled patients were randomly assigned to receive pharmacologic treatment alone (control group) or both pharmacologic treatment and press needle acupuncture (intervention group). Patients were evaluated for clinical outcomes, including symptom scores, deterioration rates, fever durations, and nucleic acid test results. The patients' complete blood count and C-reactive protein levels were also analyzed using venous blood samples both before and after treatment. RESULTS Both groups exhibited a reduction in clinical symptom scores, but symptoms regressed faster in the intervention group. Nucleic acid test negativity was achieved faster in the intervention group than in the control group. The intervention group also had a lower deterioration rate. Furthermore, the increase in the lymphocyte count and decrease in C-reactive protein levels following treatment were more pronounced in the intervention group than in the control group. CONCLUSION This study suggests that utilizing press needle acupuncture as an adjunct to pharmacologic treatment can be effective in patients with mild-to-moderate COVID-19 symptoms.
Collapse
Affiliation(s)
- Jiawei Yuan
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weizhen Zhang
- NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Beibei Qie
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhua Xie
- Taihe Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Binbin Zhu
- Guangdong Work Injury Rehabilitation Hospital, Guangzhou, Guangdong, China
| | - Cheng Chen
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenwei Qiu
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huanwen Sun
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Zhao
- Southern Medical University, Guangzhou, Guangdong, China
| | - Yaqiu Long
- Baiyun Branch, NanFang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Sharma R, Mehan S, Khan Z, Das Gupta G, Narula AS. Therapeutic potential of oleanolic acid in modulation of PI3K/Akt/mTOR/STAT-3/GSK-3β signaling pathways and neuroprotection against methylmercury-induced neurodegeneration. Neurochem Int 2024; 180:105876. [PMID: 39368746 DOI: 10.1016/j.neuint.2024.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that gradually deteriorates motor neurons, leading to demyelination, muscle weakness, and eventually respiratory failure. The disease involves several pathological processes, such as increased glutamate levels, mitochondrial dysfunction, and persistent neuroinflammation, often exacerbated by environmental toxins like mercury. This study explores the therapeutic potential of Olea europaea active phytoconstituents oleanolic acid (OLA) against ALS by targeting the overactivated PI3K/Akt/mTOR/STAT-3/GSK-3β signalling pathways. Methods involved in-silico studies, in vitro and in vivo experiments in which varying doses of methylmercury 5 mg/kg, p.o. and OLA (100 and 200 mg/kg, i.p.) were administered to rats for 42 days. Behavioural assessments, gross morphological, histopathological, and neurochemical parameters were measured in cerebrospinal fluid (CSF), blood plasma, and brain homogenates (cerebral cortex, hippocampus, striatum, midbrain, cerebellum) along with complete blood count (CBC) analysis. Results revealed OLA's significant neuroprotective properties. OLA effectively modulated targeted pathways, reducing pro-inflammatory cytokines, restoring normal levels of myelin basic protein (MBP) and neurofilament light chain (NEFL), and reducing histopathological changes. Gross pathological studies indicated less tissue damage, while CBC analysis showed improved hematology parameters. Additionally, the combination of OLA and edaravone (10 mg/kg, i.p.) demonstrated enhanced efficacy, improving motor functions and extending survival in ALS model rats. In conclusion, OLA exhibits significant therapeutic potential for ALS, acting as a potent modulator of key pathological signaling pathways. The findings suggest the feasibility of integrating OLA into existing treatment regimens, potentially improving clinical outcomes for ALS patients. However, further research must validate these findings in human clinical trials.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
23
|
Li Y, Duan Q, Wang C, Du L, Jiang Z, Li S, Ruan X, Huang L, He Z, Wen C, Zhang Y. Jieduquyuziyin prescription alleviates lupus development via inhibiting neddylation pathway to promote Bim-induced apoptosis of double negative T cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118884. [PMID: 39362327 DOI: 10.1016/j.jep.2024.118884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jieduquyuziyin prescription (JP) is an empirical prescription approved for application to treat systemic lupus erythematosus (SLE) in hospital within China. Despite the prominent treatment effect of JP clinically, further investigation is imperative to explore its underlying mechanisms. AIM OF THE STUDY We aim to investigate the impact of JP on DN T cell apoptosis in the treatment of SLE and the specific regulation mechanisms. MATERIALS AND METHODS Firstly, female MRL/lpr mice were treated with JP and the therapeutic efficacy of JP was evaluated via skin lesions, lymphoid organ enlargement, accumulation of autoantibodies and renal function. Then, flow cytometer analysis was performed to evaluate the proportions and the apoptosis of T cell subpopulations. Based on the above results, double-negative (DN) T cells were subjected to proteomic with subsequent differential screening. The expression of Ube2m and Bim was further validated using real-time PCR and Western blot. Subsequently, DN T cells were incubated with JP-contained serum in vitro, and cell apoptosis was quantified using flow cytometry. Additionally, the expression levels of Ube2m, Bim and other associated proteins were also assessed through western blotting. To further clarify whether Ube2m serves as the key target of JP in regulating DN T cell apoptosis, the mice that Ube2m was specific deleted in T cells with spontaneous lupus (Ube2m-/-lpr) were utilized. JP was administered to WTlpr or Ube2m-/-lpr mice, followed by assessment of the lupus condition and DN T cell apoptosis. RESULTS JP administration effectively ameliorated the lupus phenotype. Then flow cytometry assay showed that JP treatment enhanced DN T cell apoptosis to reduce their accumulation and restored the immune homeostasis. Proteomic analysis revealed a significant inhibition of Ube2m for JP treatment, which is essential for maintaining homeostasis of DN T cells. Further experiments confirmed that JP treatment effectively downregulated the expression of Ube2m and subsequently upregulated the level of pro-apoptotic protein Bim with decreased Bim degradation. In vitro experiments also confirmed that JP-contained serum significantly facilitated DN T cell apoptosis and reduced DN T cell accumulation by inhibiting Ube2m expression. Furthermore, Ube2m-/-lpr mice were utilized and the impact of JP treatment on the apoptosis of DN T cells was found to be minimal in the absence of Ube2m. Mechanistic investigation reveals that JP exerts its effects by suppressing the expression of Ube2m, subsequently inhibiting CRL-dependent degradation of Bim, and ultimately promoting Bim-induced apoptosis in DN T cells. Furthermore, the blockade of Ube2m in T cells effectively prevents JP-induced apoptosis in DN T cells, underscoring Ube2m as one crucial therapeutic target of JP in mediating DN T cell apoptosis and managing SLE. CONCLUSIONS Our findings indicate that JP treatment effectively restores the homeostasis of DN T cells in SLE by inhibiting Ube2m expression, thereby reducing Bim ubiquitination degradation. This ultimately enhanced DN T cell apoptosis and alleviated lupus phenotype.
Collapse
Affiliation(s)
- Yiping Li
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Qingchi Duan
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Chenxi Wang
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lijun Du
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Zhangsheng Jiang
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Suling Li
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xinyi Ruan
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lin Huang
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhixing He
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Chengping Wen
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yun Zhang
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
24
|
Lin M, Xu CL, Pan HY, Song YB, Ma YW, Liu XY, Yao JB, Wang RW. Quality Evaluation of Shexiang Tongxin Dropping Pill Based on HPLC Fingerprints Combined with HPLC-Q-TOF-MS/MS Method. J Chromatogr Sci 2024; 62:732-741. [PMID: 38553778 DOI: 10.1093/chromsci/bmae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 11/10/2023] [Accepted: 03/14/2024] [Indexed: 10/03/2024]
Abstract
Shexiang Tongxin Dropping Pill (STP) is a composite formula of traditional Chinese medicine that is widely used for the treatment of cardiovascular diseases. It consists of seven medicinal extracts thereof or materials, including Bufonis venenum, synthetic Moschus, Panax ginseng, Bovis calculus artifactus, Bear bile powder, Salvia miltiorrhiza Bge and synthetic borneol. However, it is considerably difficult to evaluate the quality of STP due to its complex chemical compositions. This paper was designed to explore a comprehensive and systematic method combining fingerprints and chemical identification for quality assessment of STP samples. Twenty batches of STP samples were analyzed by high-performance liquid chromatography (HPLC) and high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. Ten common peaks were detected by HPLC fingerprint similarity evaluation system. Meanwhile, 100 compounds belonging to 4 structural characteristics, including 23 bufadienolides, 36 organic acids, 34 saponins and 7 other types, were systematically identified as the basic components in STP. This study could be used for clarifying the multiple bioactive substances and developing a comprehensive quality evaluation method of STP.
Collapse
Affiliation(s)
- Ming Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang District, Hangzhou 310053, People's Republic of China
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
| | - Chun-Ling Xu
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
| | - Hong-Ye Pan
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road, Xihu District, Hangzhou 310058, People's Republic of China
| | - Yong-Biao Song
- Inner Mongolia Conba Pharmaceutical Co., Ltd, Sini Town, Hangjin Banner, Erdos City, Inner Mongolia Autonomous Region, 017418, People's Republic of China
| | - Yi-Wen Ma
- Inner Mongolia Conba Pharmaceutical Co., Ltd, Sini Town, Hangjin Banner, Erdos City, Inner Mongolia Autonomous Region, 017418, People's Republic of China
| | - Xing-Yu Liu
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
| | - Jian-Biao Yao
- Zhejiang Conba Pharmaceutical Co., Ltd, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Binkang Road, Binjiang District, Hangzhou 310051, People's Republic of China
| | - Ru-Wei Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang District, Hangzhou 310053, People's Republic of China
| |
Collapse
|
25
|
Zhang J, Wu Y, Tian Y, Xu H, Lin ZX, Xian YF. Chinese herbal medicine for the treatment of intestinal cancer: preclinical studies and potential clinical applications. Mol Cancer 2024; 23:217. [PMID: 39354520 PMCID: PMC11443726 DOI: 10.1186/s12943-024-02135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Intestinal cancer (IC) poses a significant global health challenge that drives continuous efforts to explore effective treatment modalities. Conventional treatments for IC are effective, but are associated with several limitations and drawbacks. Chinese herbal medicine (CHM) plays an important role in the overall cancer prevention and therapeutic strategies. Recent years have seen a growing body of research focus on the potential of CHM in IC treatment, showing promising results in managing IC and mitigating the adverse effects of radiotherapy and chemotherapy. This review provides updated information from preclinical research and clinical observation on CHM's role in treatment of IC, offering insights into its comprehensive management and guiding future prevention strategies and clinical practice.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Yulin Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Yuanyang Tian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China.
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China.
| |
Collapse
|
26
|
Wang Y, Wu S, Song Z, Yang Y, Li Y, Li J. Unveiling the pathological functions of SOCS in colorectal cancer: Current concepts and future perspectives. Pathol Res Pract 2024; 262:155564. [PMID: 39216322 DOI: 10.1016/j.prp.2024.155564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, marked by increasing incidence and mortality rates in recent years. The pathogenesis of CRC is complex, involving chronic inflammation of the intestinal mucosa, heightened immunoinflammatory responses, and resistance to apoptosis. The suppressor of cytokine signaling (SOCS) family, comprised of key negative regulators within cytokine signaling pathways, plays a crucial role in cell proliferation, growth, and metabolic regulation. Deficiencies in various SOCS proteins can trigger the activation of the Janus kinase (JAK) and signal transducers and activators of transcription (STAT) pathways, following the binding of cytokines and growth factors to their receptors. Mounting evidence indicates that SOCS proteins are integral to the development and progression of CRC, positioning them as promising targets for novel anticancer therapies. This review delves into the structure, function, and molecular mechanisms of SOCS family members, examining their roles in cell proliferation, apoptosis, migration, epithelial-mesenchymal transition (EMT), and immune modulation. Additionally, it explores their potential impact on the regulation of CRC immunotherapy, offering new insights and perspectives that may inform the development of innovative therapeutic strategies for CRC.
Collapse
Affiliation(s)
- YuHan Wang
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Anorectal, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Sha Wu
- Department of Anorectal, Nanchuan Hospital of Traditional Chinese Medicine, Nanchuan, Chongqing, 408400, China
| | - ZhiHui Song
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yu Yang
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - YaLing Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Jun Li
- Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Anorectal, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
27
|
Attique S, Ibrahim M, Khan C, Ali A, Qadir R, Khan A, Al-Salahi R, Abuelizz HA, da Silva Medeiros P, Moreira Sampaio O, Campos Curcino Vieira L. Evaluation of Antimicrobial and Antioxidant Potential of Oxalis corymbosa Extracts. Chem Biodivers 2024; 21:e202400883. [PMID: 38985537 DOI: 10.1002/cbdv.202400883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
This work aimed to assess the antioxidant and antimicrobial properties of Oxalis corymbosa extracts. Biochemical analyses were conducted on various plant parts, utilizing enzymatic and non-enzymatic assays. Parameters such as total soluble protein, chlorophyll, and carotenoid contents were also evaluated to elucidate the role of bioactive chemical compounds. The antimicrobial screening of extracts was performed against the bacterial and fungal strains Escherichia coli, Staphylococcus aureus, and Candida albicans, respectively. Results indicated that chlorophyll a, chlorophyll b, total chlorophyll, carotenoid content, anthocyanin content, catalase, peroxidase, and superoxide dismutase were most abundant in the O. corymbosa leaves. Moreover, total ascorbate peroxidase content, total phenolic content, and total flavonoid content were found to be higher in the roots compared to other parts. High-performance liquid chromatography analysis identified chlorogenic acid as the major component, followed by gallic acid, caffeic acid, quercetin, and salicylic acid. Regarding antibacterial potential, each extract exhibited significant activity, with methanolic and ethyl acetate extracts demonstrating the maximum inhibition zone against S. aureus and E. coli, respectively. These findings highlight the substantial antioxidant and antibacterial potential of different parts of O. corymbosa, suggesting their promising applications as ingredients in various nutraceutical products.
Collapse
Affiliation(s)
- Sana Attique
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University Faisalabad, Pakistan
| | - Changeez Khan
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| | - Akbar Ali
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Rahman Qadir
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Ajmir Khan
- School of Packaging, Michigan State University, East Lansing, MI-48824, United State
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Olívia Moreira Sampaio
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá-MT, 78060-900, Brazil
| | | |
Collapse
|
28
|
Ho YL, Au TTD, Wu HY, Wu KC, Chang YS. Comparative study of Scleromitrion diffusum and Oldenlandia corymbosa: Microscopy, TLC, HPLC, and antioxidant activity. Microsc Res Tech 2024; 87:2371-2384. [PMID: 38808861 DOI: 10.1002/jemt.24611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Quality control of herbal medicines is crucial, especially the role of herbal drug identification. This is essential for preventing the misuse of herbs, which can affect efficacy or cause toxicity. Scleromitrion diffusum is a common herb, yet it is often mistaken for Oldenlandia corymbosa. This study analyzed the morphology, microscopy, thin-layer chromatography (TLC), and high-pressure liquid chromatography (HPLC) using two markers, asperuloside and scandoside methyl ester, to distinguish between S. diffusum and O. corymbosa with the analysis included 10 samples of S. diffusum and 10 samples of O. corymbosa collected from the Taiwan market. By quantifying the total polyphenols and flavonoids, we investigated the antioxidant activity, including the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging effect, 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) scavenging effect, and reducing power to further elucidate the biological effects of the two herbs. The results of this study revealed notable differences in microscopy and suggested a TLC method for distinguishing between the two herbs in the market. In HPLC, the ratios of asperuloside and scandoside methyl ester differed between the two herbs. S. diffusum contained a higher asperuloside content. In contrast, O. corymbosa contained higher concentrations of scandoside methyl esters. With more total polyphenols and flavonoids in S. diffusum than those in O. corymbosa, the antioxidant activity of S. diffusum was superior to that of O. corymbosa. This study provides a comprehensive understanding for the identification and quality evaluation of S. diffusum in the market. RESEARCH HIGHLIGHTS: The study consolidates and clarifies the morphological and microscopic differences between Scleromitrion diffusum and Oldenlandia corymbosa - a common adulterant species of S. diffusum on the Taiwan markets. Using Asperuloside and Scandoside methyl ester as two chemical markers, the study proposes a TLC method for rapidly testing S. diffusum and O. corymbosa on the market. Through HPLC analysis, our results showed that S. diffusum and O. corymbosa had a clear difference in the ratio of two markers, Asperuloside and Scandoside methyl ester: Asperuloside/Scandoside methyl ester in S. diffusum is higher than that in O. corymbosa. Through phytochemicals contents, including total phenols content, flavonoids content, and antioxidant activity, including DPPH, ABTS•+ scavenging activity, and reducing power, S. diffusum showed slightly higher levels of phenols and flavonoids as well as a better antioxidant activity than O. corymbosa.
Collapse
Affiliation(s)
- Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung, Taiwan
| | - Thanh-Thuy-Dung Au
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hung-Yi Wu
- Department of Quality Control, Min Tong Pharmaceutical Company, Taichung, Taiwan
| | - Kun-Chang Wu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
29
|
Chen YY, Zeng XT, Gong ZC, Zhang MM, Wang KQ, Tang YP, Huang ZH. Euphorbia Pekinensis Rupr. sensitizes colorectal cancer to PD-1 blockade by remodeling the tumor microenvironment and enhancing peripheral immunity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156107. [PMID: 39368338 DOI: 10.1016/j.phymed.2024.156107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/28/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Immune checkpoint blockade, such as monoclonal antibodies targeting programmed cell death protein 1 (PD-1), has been a major breakthrough in the treatment of several cancers, but has limited effect in colorectal cancer (CRC), which is a highly prevalent cancer worldwide. Current chemotherapy-based strategies to boost PD-1 response have many limitations. And the role of peripheral immunity in boosting PD-1 response continues to attract attention. Therefore, candidate combinations of PD-1 blockade need to be drugs with multi-targets and multi-modulatory functions. However, it is still unknown whether traditional Chinese medicines with such property can enhance the applicability and efficacy of PD-1 blockade in colorectal cancer. METHODS Euphorbia Pekinensis extract (EP) was prepared and the constituents were analyzed by HPLC. CRC cells were used for in vitro experiments, including cell viability assay, colony formation assay, flow cytometry for 7-AAD staining, western blotting for caspase 3 and caspase 7, HMGB1 and ATP detection. An orthotopic CT26 mouse model was subsequently used to investigate the combination of EP and PD-1 blockade therapy. Tumor volume and tumor weight were assessed, tumor tissues were subjected to histopathological HE staining and TUNEL staining, and tumor-infiltrating immune cells were evaluated by immunofluorescence staining. RNA-sequencing, target prediction and pathway analysis were further employed to explore the mechanism. Molecular docking and cellular thermal shift assay (CETSA) were utilized to verify the direct target of the core component of EP. And, loss-of-function analysis was carried to confirm the upstream-downstream relationship. Flow cytometry was employed to analyze CD8+ T cells in the peripheral blood and spleen. RESULTS The main constituents of EP are diterpenoids and flavonoids. EP dramatically suppresses CRC cell growth and exerts its cytotoxic effect by triggering immunogenic cell death in vitro. Moreover, EP synergizes with PD-1 blockade to inhibit tumorigenesis in tumor-bearing mice. Disruption of ISX nuclear localization by helioscopinolide E is a central mechanism of EP-induced apoptosis in CRC cell. Meanwhile, EP activates immune response by upregulating Phox2b to reshape the immune microenvironment. In addition, EP regulates peripheral immunity by regulating the T cell activation and proliferation, and the ratio of CD8+ T cells in peripheral blood is drastically increased, thereby enhancing the therapeutic efficacy of anti-PD1 immunotherapy. CONCLUSION EP triggers intra-tumor immunogenic cell death and modulates the immunoregulatory signaling to elicit the tumor immunogenicity. Moreover, EP participates in transcriptional activation of immune response-related pathways. Consequently, multiple stimulating functions of EP on macro- and micro-immune potentiates the anti-tumor effect of PD-1 blockade in CRC.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Wuxi Cancer Institute, Wuxi Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Tao Zeng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, China
| | - Zhi-Cheng Gong
- Wuxi Cancer Institute, Wuxi Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mei-Mei Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, China
| | - Kai-Qing Wang
- Wuxi Cancer Institute, Wuxi Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, China.
| | - Zhao-Hui Huang
- Wuxi Cancer Institute, Wuxi Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
30
|
Guo KC, Wang ZZ, Su XQ. Chinese Medicine in Colorectal Cancer Treatment: From Potential Targets and Mechanisms to Clinical Application. Chin J Integr Med 2024:10.1007/s11655-024-4115-8. [PMID: 39331211 DOI: 10.1007/s11655-024-4115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 09/28/2024]
Abstract
Colorectal cancer (CRC) is a global health challenge necessitating innovative therapeutic strategies. There is an increasing trend toward the clinical application of integrative Chinese medicine (CM) and Western medicine approaches. Chinese herbal monomers and formulations exert enhanced antitumor effects by modulating multiple signaling pathways in tumor cells, including inhibiting cell proliferation, inducing apoptosis, suppressing angiogenesis, reversing multidrug resistance, inhibiting metastasis, and regulating immunity. The synergistic effects of CM with chemotherapy, targeted therapy, immunotherapy, and nanovectors provide a comprehensive framework for CRC treatment. CM can mitigate drug toxicity, improve immune function, control tumor progression, alleviate clinical symptoms, and improve patients' survival and quality of life. This review summarizes the key mechanisms and therapeutic strategies of CM in CRC, highlighting its clinical significance. The potential for CM and combination with conventional treatment modalities is emphasized, providing valuable insights for future research and clinical practice.
Collapse
Affiliation(s)
- Ke-Chen Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zao-Zao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiang-Qian Su
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
31
|
Wang Y, Yang R, Xie Y, Zhou XQ, Yang JF, Shi YY, Liu S. Comprehensive review of drug-mediated ICD inhibition of breast cancer: mechanism, status, and prospects. Clin Exp Med 2024; 24:230. [PMID: 39325106 PMCID: PMC11427550 DOI: 10.1007/s10238-024-01482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
The escalating incidence of breast cancer (BC) in women underscores its grave health threat. Current molecular insights into BC's post-adjuvant therapy cure remain elusive, necessitating active treatment explorations. Immunotherapy, notably chemotherapy-induced immunogenic cell death (ICD), has emerged as a promising BC therapy. ICD harnesses chemotherapeutics to activate anti-tumor immunity via DAMPs, fostering long-term T-cell memory and primary BC cure. Besides chemotherapy drugs, Nanodrugs, traditional Chinese medicine (TCM) and ICIs also induce ICD, boosting immune response. ICIs, like PD-1/PD-L1 inhibitors, revolutionize cancer treatment but face limited success in cold tumors. Thus, ICD induction combined with ICIs is studied extensively for BC immunotherapy. This article reviews the mechanism of ICD related drugs in BC and provides reference for the research and development of BC treatment, in order to explore more effective clinical treatment of BC, we hope to explore more ICD inducers and make ICIs more effective vaccines.
Collapse
Affiliation(s)
- Yang Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Rui Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- Shanxi Province Cancer Hospital/Shanxi Hospital Afiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital, Afiliated to Shanxi Medical University, 030013, Shanxi, China
| | - Ying Xie
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Xi-Qiu Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Jian-Feng Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - You-Yang Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| | - Sheng Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
- Graduate School, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
32
|
Song Z, Chen G, Chen CYC. AI empowering traditional Chinese medicine? Chem Sci 2024; 15:d4sc04107k. [PMID: 39355231 PMCID: PMC11440359 DOI: 10.1039/d4sc04107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
For centuries, Traditional Chinese Medicine (TCM) has been a prominent treatment method in China, incorporating acupuncture, herbal remedies, massage, and dietary therapy to promote holistic health and healing. TCM has played a major role in drug discovery, with over 60% of small-molecule drugs approved by the FDA from 1981 to 2019 being derived from natural products. However, TCM modernization faces challenges such as data standardization and the complexity of TCM formulations. The establishment of comprehensive TCM databases has significantly improved the efficiency and accuracy of TCM research, enabling easier access to information on TCM ingredients and encouraging interdisciplinary collaborations. These databases have revolutionized TCM research, facilitating advancements in TCM modernization and patient care. In addition, advancements in AI algorithms and database data quality have accelerated progress in AI for TCM. The application of AI in TCM encompasses a wide range of areas, including herbal screening and new drug discovery, diagnostic and treatment principles, pharmacological mechanisms, network pharmacology, and the incorporation of innovative AI technologies. AI also has the potential to enable personalized medicine by identifying patterns and correlations in patient data, leading to more accurate diagnoses and tailored treatments. The potential benefits of AI for TCM are vast and diverse, promising continued progress and innovation in the field.
Collapse
Affiliation(s)
- Zhilin Song
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University Shenzhen Guangdong 518107 China
| | - Calvin Yu-Chian Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- AI for Science (AI4S)-Preferred Program, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 China
- Department of Medical Research, China Medical University Hospital Taichung 40447 Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University Taichung 41354 Taiwan
- Guangdong L-Med Biotechnology Co., Ltd Meizhou Guangdong 514699 China
| |
Collapse
|
33
|
Bai SR, Zhao BX, Zhao Q, Ge YC, Li M, Zhao CG, Wu XJ, Wang XB. Oleanolic acid improves 5-fluorouracil-induced intestinal damage and inflammation by alleviating intestinal senescence. Sci Rep 2024; 14:21852. [PMID: 39300121 DOI: 10.1038/s41598-024-72536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
5-Fluorouracil (5-FU) is used as a standard first-line drug for colorectal cancer malignancy (CRC), but it brings a series of side effects such as severe diarrhea and intestinal damage. Our previous study found that a large number of senescent cells increased while 5-Fu induced intestinal damage, and anti-senescence drugs can alleviate its side effects of inflammatory damage. Oleanolic acid (OA) is a common pentacyclic triterpenoid mainly derived from food fungi and medicinal plants, and studies have shown that it mainly possesses hepatoprotective, enzyme-lowering, anti-inflammatory, and anti-tumor effects. But its role in senescence is still unclear. In the present study, we demonstrated for the first time that OA ameliorated 5-Fu-induced human umbilical vein endothelial cells (HUVECs) and human normal intestinal epithelial cells (NCM460) in a 5-Fu-induced cellular senescence model by decreasing the activity of SA-β-gal-positive cells, and the expression of senescence-associated proteins (p16), senescence-associated genes (p53 and p21), and senescence-associated secretory phenotypes (SASPs: IL-1β, IL-6, IL-8, IFN-γ and TNF-α). Meanwhile, in this study, in a BALB/c mouse model, we demonstrated that 5-FU induced intestinal inflammatory response and injury, which was also found to be closely related to the increase of senescent cells, and that OA treatment was effective in ameliorating these adverse phenomena. Furthermore, our in vivo and in vitro studies showed that OA could alleviate senescence by inhibiting mTOR. In colon cancer cell models, OA also enhanced the ability of 5-FU to kill HCT116 cells and SW480 cells. Overall, this study demonstrates for the first time the potential role of OA in counteracting the side effects of 5-FU chemotherapy, providing a new option for the treatment of colorectal cancer to progressively achieve the goal of high efficacy and low toxicity of chemotherapy.
Collapse
Affiliation(s)
- Shi-Rui Bai
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Bing-Xiang Zhao
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Qi Zhao
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Yu-Chen Ge
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Man Li
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China
| | - Cheng-Gang Zhao
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, 530007, Guangxi Province, China
| | - Xiao-Jian Wu
- Microbiology Research Institute, Guangxi Academy of Agricultural Science, Nanning, 530007, Guangxi Province, China.
| | - Xiao-Bo Wang
- School of Basic Medicine, Dali University, Dali, 671000, Yunnan, China.
| |
Collapse
|
34
|
Lee PK, Co VA, Yang Y, Wan MLY, El-Nezami H, Zhao D. Bioavailability and interactions of schisandrin B with 5-fluorouracil in a xenograft mouse model of colorectal cancer. Food Chem 2024; 463:141371. [PMID: 39332376 DOI: 10.1016/j.foodchem.2024.141371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Schisandrin B (Sch B) is a predominant bioactive lignan from the fruit of a Chinese medicine food homology plant, Schisandra chinensis. Previously, we observed potent anti-tumor effect of Sch-B in colorectal cancer (CRC) and enhanced chemotherapy efficacy with fluorouracil (5-FU). However, their bioavailability and reciprocal interactions under CRC conditions are unclear. In this study, we first compared the bioavailability, metabolism and tissue distribution of Sch-B between non-tumor-bearing and xenograft CRC tumor-bearing mice. Next, we examined SchB-5-FU interactions via investigating alterations in drug metabolism and multidrug resistance. Using a validated targeted metabolomics approach, five active metabolites, including Sch-B and fluorodeoxyuridine triphosphate, were found tumor-accumulative. Co-treatment resulted in higher levels of Sch-B and 5-FU metabolites, showing improved phytochemical and drug bioavailability. Multidrug resistance gene (MDR1) was significantly downregulated upon co-treatment. Overall, we demonstrated the potential of Sch-B to serve as a promising chemotherapy adjuvant via improving drug bioavailability and metabolism, and attenuating MDR.
Collapse
Affiliation(s)
- Pui-Kei Lee
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| | - Vanessa Anna Co
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China; Department of Microbiology, The University of Hong Kong, and Centre for Virology, Vaccinology and Therapeutics, Hong Kong, SAR, China.
| | - Yang Yang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| | - Murphy Lam Yim Wan
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom; Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund 221 84, Sweden.
| | - Hani El-Nezami
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio FI-70211, Finland.
| | - Danyue Zhao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| |
Collapse
|
35
|
Qin Y, Li Z, Zhang X, Li J, Teng Y, Zhang N, Zhao S, Kong L, Niu W. Pan-cancer exploration of PNO1: A prospective prognostic biomarker with ties to immune infiltration. Heliyon 2024; 10:e36819. [PMID: 39263087 PMCID: PMC11387552 DOI: 10.1016/j.heliyon.2024.e36819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
The partner of NOB1 homolog (PNO1) is an RNA-binding protein that participates in ribosome biogenesis and protein modification. The functions of this molecule are largely unknown in cancers, particularly breast cancer. We employed bioinformatics methods to probe the putative oncogenic functions of PNO1 based on expression profiles and clinical data from the cancer genome atlas (TCGA), genotype-tissue expression project (GTEx), human protein atlas (HPA), cancer cell line encyclopedia (CCLE), UALCAN, drug sensitivity in cancer (GDSC) and UCSC XENA databases. Our analyses revealed that PNO1 was overexpressed in 31 malignancies, which excluded kidney chromophobe (KICH) and acute myeloid leukemia (LAML). Prognostic assessments have demonstrated that high PNO1 expression was significantly correlated with poor overall and disease-specific survival in various cancers. The promoter methylation level of PNO1 is significantly decreased in breast invasive carcinoma (BRCA), head and neck squamous cell carcinoma (HNSC), kidney renal papillary cell carcinoma (KIRP), prostate adenocarcinoma (PRAD), thyroid carcinoma (THCA) and uterine corpus endometrial carcinoma (UCEC). Furthermore, inhibition of PNO1 decreased the viability, migration and invasion of breast cancer cells, and these results were confirmed by mouse xenograft models of breast cancer. In addition, we discovered that tumor microenvironment (TME), immune infiltration, and chemotherapy sensitivity were influenced by PNO1 expression. Concordantly, our analyses revealed a significant positive correlation between PNO1 and programmed cell death ligand 1 (PD-L1) expression across breast carcinoma samples. In conclusion, these findings indicate that PNO1 could act as a promising prognostic biomarker and adjunct diagnostic indicator, because it affects tumor growth and invasion. Our study offers valuable new perspectives on the oncogenic role of PNO1 in various types of cancers.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhen Li
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xianwei Zhang
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Junjun Li
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1 Shangcheng Avenue, Hangzhou, 310058, Zhejiang, China
| | - Yuetai Teng
- Department of Pharmacy, Jinan Vocational College of Nursing, Jinan, 250102, China
| | - Na Zhang
- Shandong Academy of Chinese Medicine, Jinan, 250014, China
| | - Shengyu Zhao
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lingfei Kong
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Weihong Niu
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| |
Collapse
|
36
|
Chen F, Peng S, Li C, Yang F, Yi Y, Chen X, Xu H, Cheng B, Xu Y, Xie X. Nitidine chloride inhibits mTORC1 signaling through ATF4-mediated Sestrin2 induction and targets IGF2R for lysosomal degradation. Life Sci 2024; 353:122918. [PMID: 39034027 DOI: 10.1016/j.lfs.2024.122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIMS Nitidine chloride (NC), a natural phytochemical alkaloid derived from Zanthoxylum nitidum (Roxb.) DC, exhibits multiple bioactivities, including antitumor, anti-inflammatory, and other therapeutic effects. However, the primary targets of NC and the mechanism of action (MOA) have not been explicitly defined. METHODS We explored the effects of NC on mTORC1 signaling by immunoblotting and fluorescence microscopy in wild-type and gene knockout cell lines generated by the CRISPR/Cas9 gene editing technique. We identified IGF2R as a direct target of NC via the drug affinity-responsive target stability (DARTS) method. We investigated the antitumor effects of NC using a mouse melanoma B16 tumor xenograft model. KEY FINDINGS NC inhibits mTORC1 activity by targeting amino acid-sensing signaling through activating transcription factor 4 (ATF4)-mediated Sestrin2 induction. NC directly binds to IGF2R and promotes its lysosomal degradation. Moreover, NC displayed potent cytotoxicity against various cancer cells and inhibited B16 tumor xenografts. SIGNIFICANCE NC inhibits mTORC1 signaling through nutrient sensing and directly targets IGF2R for lysosomal degradation, providing mechanistic insights into the MOA of NC.
Collapse
Affiliation(s)
- Fengzhi Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shujun Peng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Canrong Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fan Yang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yuguo Yi
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xinyu Chen
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Haolun Xu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Baicheng Cheng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yumin Xu
- Department of Infectious Diseases & Department of Hospital Infection Management, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoduo Xie
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
37
|
Li W, Jiang Z, Yan Z, Chen Z, Li L, Wang D, Wang J, Li L, Yang H, Deng J, Lin J. Hydrogel based on M1 macrophage lysate and alginate loading with oxaliplatin for effective immunomodulation to inhibit melanoma progression, recurrence and metastasis. Int J Biol Macromol 2024; 280:135542. [PMID: 39276890 DOI: 10.1016/j.ijbiomac.2024.135542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Despite the monumental success of immunotherapy in treating melanoma clinically, it still confronts significant challenges, chiefly that singular immunomodulatory tactics are insufficient to suppress the recurrence and metastasis of melanoma. Herein, these challenges are addressed by a hydrogel based on M1 macrophage lysate and alginate (M1LMHA) loaded with oxaliplatin (OXA), named M1LMHA@OXA.The results obtained from scanning electron microscopy and confocal microscopy indicate that the structure and morphology of M1LMHA@OXA remain unchanged. Flow cytometry results reveal that M1LMHA@OXA significantly promotes the maturation of dendritic cells (DCs) and enhances the proliferation of T lymphocytes. In a subcutaneous melanoma transplant model, M1LMHA@OXA effectively suppressed tumor growth in comparison to OXA alone and M1LMHA alone. Flow cytometry demonstrated that M1LMHA@OXA markedly increased the number of mature DCs and CD8+ T cells at the tumor site, while significantly reducing the quantity of M2-like tumor-associated macrophages (TAM) and enhancing the presence of M1 macrophages. Enzyme-linked immunosorbent assay (ELISA) results indicated that following treatment with M1LMHA@OXA, the levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in the bloodstream of mice were significantly elevated, whereas interleukin-10 (IL-10) exhibited no significant difference. This outcome further corroborates the ability of M1LMHA@OXA to substantially bolster the immune capability of mice. Similar results have also been observed in a melanoma subcutaneous transplantation recurrence model, and optical imaging of the lungs of mice revealed that M1LMHA@OXA inhibited tumor metastasis to the lungs. Notably, M1LMHA@OXA exhibits an exceptional therapeutic effect on the growth, post-surgical recurrence, and metastasis of the B16F10 melanoma. Therefore, this study provides a straightforward strategy that leverages the cooperative regulation of multiple immune cells to thwart the proliferation, recurrence, and spread of melanoma.
Collapse
Affiliation(s)
- Wanyu Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zhonghao Jiang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zhuo Yan
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Zhihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Lianhai Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Dan Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Huiling Yang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
38
|
Lin H, Zhang X, Zheng Y, Tang C, Wang J. Research on the soothing Liver - Qi stagnation method in the treatment of postoperative papillary thyroid carcinoma patients' concomitant depression: A randomized controlled clinical trial. Medicine (Baltimore) 2024; 103:e39325. [PMID: 39287310 PMCID: PMC11404975 DOI: 10.1097/md.0000000000039325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Postoperative papillary thyroid carcinoma (P-PTC) patients often grapple with depression fueled by the looming threat of recurrence. While the Liver-Qi stagnation method is frequently employed for depression management, a notable scarcity of clinical trials exists regarding its application in patients with P-PTC and concurrent depression. This study presents a randomized controlled clinical trial, aiming to establish the efficacy of the Liver-Qi stagnation method in alleviating depression in patients with P-PTC. METHODS In this randomized controlled clinical trial, P-PTC patients diagnosed with concomitant depression were systematically enrolled. Subjects were randomly assigned to either the control or test group, both receiving standard treatment comprising Levothyroxine sodium tablets and decoction of benefiting Qi and nourishing Yin. Additionally, the test group received supplementation with bupleuri radix-paeoniae alba radix (CH-BS) alongside the baseline therapy. The intervention spanned 12 weeks. Pre- and post-treatment evaluations were conducted using the Hamilton Depression Scale (HAMD), European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) and Traditional Chinese Medicine (TCM) syndrome score scale. Concurrently, blood inflammatory factors and serum 5-hydroxytryptamine (5-HT) levels were measured to comprehensively assess treatment outcomes. RESULTS During the 12-week intervention, the test group demonstrated a significant reduction in HAMD scores compared to the control group (P < .05). Moreover, post-treatment serum 5-HT levels were significantly elevated in the test group compared to the control group (P < .05). Findings gleaned from the EORTC QLQ - C30 revealed a noteworthy improvement in social function and overall quality of life scores within both groups post-treatment in comparison to baseline (P < .05). Concurrently, post-treatment scores for fatigue and insomnia symptoms witnessed a significant decrease compared to baseline (P < .05). Notably, the test group exhibited superior scores in the emotional domain in contrast to the control group (P < .05). Both groups exhibited a substantial decrease in TCM syndrome scores from baseline (P < .05). Noteworthy increases were found in IFN-γ < 2.44 rate (62.86%) and IL-6 < 2.44 rate (74.29%) in the test group compared to pretreatment levels (P < .05). CONCLUSION The soothing Liver-Qi stagnation method induces a rise in serum 5-HT levels, reducing depression-related inflammatory factors, culminating in the alleviation of depression for P-PTC.
Collapse
Affiliation(s)
- Huiyue Lin
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang Province, China
| | - Xueting Zhang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqian Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenchen Tang
- Department of Experimental Management, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juyong Wang
- Oncology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Etti IC, Unoh EE, Akpan MR, Umanah UU, Agbonika RE, Kadir AA, Nwafor C. Attenuation of testosterone-induced benign prostatic hyperplasia with Andrographis paniculata (burm.f.) leaf extract in Wistar rats. Nat Prod Res 2024:1-9. [PMID: 39267300 DOI: 10.1080/14786419.2024.2401494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Andrographis paniculata (Burm.f.) Nees has been used traditionally in treating many diseases. This study investigated its potential to attenuate benign prostatic hyperplasia (BPH) in male rats. Rats were castrated, divided into five groups and orally treated for 14 days with: normal saline,10 mg/kg testosterone propionate sc, finasteride (0.5 mg/kg), 500 mg, and 1500 mg/kg of Andrographis paniculata. Relative prostate weights, the correlation between prostatic index and volume and the prostates' histopathology as well as Prostate Specific Antigen (PSA) were evaluated. Following treatment with Andrographis paniculata, the prostate weights were significantly reduced (p < 0.05) and the lost correlation observed in the untreated group was restored. Histopathological assessment showed reduced epithelial hyperplasia following treatment with a resultant thin layer of epithelial cells, similar to the healthy normal control group. The level of PSA was also reduced. Andrographis paniculata, thus, has the potential to inhibit the proliferation observed in testosterone-induced BPH.
Collapse
Affiliation(s)
| | - Erimimoh Eba Unoh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Nigeria
| | - Mary Richard Akpan
- Department of Clinical Pharmacy and Biopharmacy, University of Uyo, Nigeria
| | - Ubong Uduak Umanah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Nigeria
| | | | - Arifah Abdul Kadir
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Malaysia
| | | |
Collapse
|
40
|
Min L, Li X, Liang L, Ruan Z, Yu S. Targeting HSP90 in Gynecologic Cancer: Molecular Mechanisms and Therapeutic Approaches. Cell Biochem Biophys 2024:10.1007/s12013-024-01502-7. [PMID: 39249180 DOI: 10.1007/s12013-024-01502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
One of the leading causes of mortality for women is gynecologic cancer (GC). Numerous molecules (tumor suppressor genes or oncogenes) are involved in this form of cancer's invasion, metastasis, tumorigenic process, and therapy resistance. Currently, there is a shortage of efficient methods to eliminate these diseases, hence it is crucial to carry out more extensive studies on GCs. Novel pharmaceuticals are required to surmount this predicament. Highly conserved molecular chaperon, heat shock protein (HSP) 90, is essential for the maturation of recently produced polypeptides and offers a refuge for misfolding or denatured proteins to be turned around. In cancer, the client proteins of HSP90 play a role in the entire process of oncogenesis, which is linked to all the characteristic features of cancer. In this study, we explore the various functions of HSPs in GC progression. We also discuss their potential as promising targets for pharmacological therapy.
Collapse
Affiliation(s)
- Lu Min
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Xuewei Li
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Lily Liang
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China
| | - Zheng Ruan
- Department of Traditional Chinese Medicine, 964th Hospital, Changchun, 130000, China
| | - Shaohui Yu
- Changchun University of Chinese Medicine Hospital, Changchun, 130000, China.
| |
Collapse
|
41
|
Rosales P, Vitale D, Icardi A, Sevic I, Alaniz L. Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration. Semin Immunopathol 2024; 46:15. [PMID: 39240397 DOI: 10.1007/s00281-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Over the last few decades, scientists have recognized the critical role that various components of the extracellular matrix (ECM) play in maintaining homeostatic immunity. Besides, dysregulation in the synthesis or degradation levels of these components directly impacts the mechanisms of immune response during tissue injury caused by tumor processes or the regeneration of the tissue itself in the event of damage. ECM is a complex network of protein compounds, proteoglycans and glycosaminoglycans (GAGs). Hyaluronic acid (HA) is one of the major GAGs of this network, whose metabolism is strictly physiologically regulated and quickly altered in injury processes, affecting the behavior of different cells, from stem cells to differentiated immune cells. In this revision we discuss how the native or chemically modified HA interacts with its specific receptors and modulates intra and intercellular communication of immune cells, focusing on cancer and tissue regeneration conditions.
Collapse
Affiliation(s)
- Paolo Rosales
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Daiana Vitale
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina.
| |
Collapse
|
42
|
Guan Y, Liu X, Tian J, Yang G, Xu F, Guo N, Guo L, Wan Z, Huang Z, Gao M, Chong T. CCL5 promotes the epithelial-mesenchymal transition of circulating tumor cells in renal cancer. J Transl Med 2024; 22:817. [PMID: 39227943 PMCID: PMC11370314 DOI: 10.1186/s12967-024-05297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/12/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are pivotal in tumor metastasis across cancers, yet their specific role in renal cancer remains unclear. METHODS This study investigated C-C motif chemokine ligand 5 (CCL5)'s tumorigenic impact on renal cancer cells and CTCs using bioinformatics, in vivo, and in vitro experiments. It also assessed renal cancer patients' CTCs prognostic value through Lasso regression and Kaplan-Meier survival curves. RESULTS Bioinformatics analysis revealed differential genes focusing on cellular adhesion and migration between CTCs and tumor cells. CCL5 exhibited high expression in various CTCs, correlating with poor prognosis in renal cancer. In 786-O-CTCs, CCL5 enhanced malignancy, while in renal cell carcinoma cell line CAKI-2 and 786-O, it promoted epithelial-mesenchymal transition (EMT) via smad2/3, influencing cellular characteristics. The nude mouse model suggested CCL5 increased CTCs and intensified EMT, enhancing lung metastasis. Clinical results shown varying prognostic values for different EMT-typed CTCs, with mesenchymal CTCs having the highest value. CONCLUSIONS In summary, CCL5 promoted EMT in renal cancer cells and CTCs through smad2/3, enhancing the malignant phenotype and facilitating lung metastasis. Mesenchymal-type CTC-related factors can construct a risk model for renal cancer patients, allowing personalized treatment based on metastatic risk prediction.
Collapse
Affiliation(s)
- Yibing Guan
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
- Department of Urology, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Road, Zhengzhou, 450052, He Nan, China
| | - Xueyi Liu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Juanhua Tian
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Guang Yang
- Henan Key Lab Reprod & Genet, The First Affiliated Hospital, Zhengzhou University, No 1 Jianshe East Road, Zhengzhou, 450052, He Nan, China
| | - Fangshi Xu
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Ni Guo
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Lingyu Guo
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Ziyan Wan
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Zhixin Huang
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Mei Gao
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China
| | - Tie Chong
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, No 157 Xiwu Road, Xi'an, 710004, Shaan Xi, China.
| |
Collapse
|
43
|
Wang Z, Ren M, Liu W, Wu J, Tang P. Role of cell division cycle-associated proteins in regulating cell cycle and promoting tumor progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189147. [PMID: 38955314 DOI: 10.1016/j.bbcan.2024.189147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
The cell division cycle-associated protein (CDCA) family is important in regulating cell division. High CDCA expression is significantly linked to tumor development. This review summarizes clinical and basic studies on CDCAs conducted in recent decades. Furthermore, it systematically introduces the molecular expression and function, key mechanisms, cell cycle regulation, and roles of CDCAs in tumor development, cell proliferation, drug resistance, invasion, and metastasis. Additionally, it presents the latest research on tumor diagnosis, prognosis, and treatment targeting CDCAs. These findings are pivotal for further in-depth studies on the role of CDCAs in promoting tumor development and provide theoretical support for their application as new anti-tumor targets.
Collapse
Affiliation(s)
- Zhaoyu Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Minshijing Ren
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Wei Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China
| | - Jin Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China; Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Peng Tang
- Department of Breast and Thyroid Surgery, Southwest Hospital, the First Affiliated Hospital of the Army Military Medical University, Chongqing 400038, China.
| |
Collapse
|
44
|
Kafle A, Suttiprapa S, Muhammad M, Tenorio JCB, Mahato RK, Sahimin N, Loong SK. Epigenetic Biomarkers and the Wnt/β-Catenin Pathway in Opisthorchis viverrini-associated Cholangiocarcinoma: A Scoping Review on Therapeutic Opportunities. PLoS Negl Trop Dis 2024; 18:e0012477. [PMID: 39236081 PMCID: PMC11407677 DOI: 10.1371/journal.pntd.0012477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, such as DNA methylation and histone modifications, are pivotal in regulating gene expression pathways related to inflammation and cancer. While there is substantial research on epigenetic markers in cholangiocarcinoma (CCA), Opisthorchis viverrini-induced cholangiocarcinoma (Ov-CCA) is overlooked as a neglected tropical disease (NTD) with limited representation in the literature. Considering the distinct etiological agent, pathogenic mechanisms, and pathological manifestations, epigenetic research plays a pivotal role in uncovering markers and potential targets related to the cancer-promoting and morbidity-inducing liver fluke parasite prevalent in the Great Mekong Subregion (GMS). Emerging studies highlight a predominant hypermethylation phenotype in Opisthorchis viverrini (O. viverrini) tumor tissues, underscoring the significance of abnormal DNA methylation and histone modifications in genes and their promoters as reliable targets for Ov-CCA. PRINCIPAL FINDINGS Relevant published literature was identified by searching major electronic databases using targeted search queries. This process retrieved a total of 81 peer-reviewed research articles deemed eligible for inclusion, as they partially or fully met the pre-defined selection criteria. These eligible articles underwent a qualitative synthesis and were included in the scoping review. Within these, 11 studies specifically explored Ov-CCA tissues to investigate potential epigenetic biomarkers and therapeutic targets. This subset of 11 articles provided a foundation for exploring the applications of epigenetics-based therapies and biomarkers for Ov-CCA. These articles delved into various epigenetic modifications, including DNA methylation and histone modifications, and examined genes with aberrant epigenetic changes linked to deregulated signalling pathways in Ov-CCA progression. CONCLUSIONS This review identified epigenetic changes and Wnt/β-catenin pathway deregulation as key drivers in Ov-CCA pathogenesis. Promoter hypermethylation of specific genes suggests potential diagnostic biomarkers and dysregulation of Wnt/β-catenin-modulating genes contributes to pathway activation in Ov-CCA progression. Reversible epigenetic changes offer opportunities for dynamic disease monitoring and targeted interventions. Therefore, this study underscores the importance of these epigenetic modifications in Ov-CCA development, suggesting novel therapeutic targets within disrupted signalling networks. However, additional validation is crucial for translating these novel insights into clinically applicable strategies, enhancing personalised Ov-CCA management approaches.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | - Mubarak Muhammad
- Department of Physiology and Graduate School, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jan Clyden B Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis, Khon Kaen University, Khon Kaen, Thailand
| | | | - Norhidayu Sahimin
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Jiahong C, Junfeng D, Shuxian L, Tao W, Liyun W, Hongfu W. The role of immune cell death in spermatogenesis and male fertility. J Reprod Immunol 2024; 165:104291. [PMID: 38986230 DOI: 10.1016/j.jri.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
The male reproductive system provides a distinctive shield to the immune system, safeguarding germ cells (GCs) from autoimmune harm. The testis in mammals creates a unique immunological setting due to its exceptional immune privilege and potent local innate immunity. which can result from a number of different circumstances, including disorders of the pituitary gland, GC aplasia, and immunological elements. Apoptosis, or programmed cell death (PCD), is essential for mammalian spermatogenesis to maintain and ensure an appropriate number of GCs that correspond with the supporting capability of the Sertoli cells. Apoptosis is substantial in controlling the number of GCs in the testis throughout spermatogenesis, and any dysregulation of this process has been linked to male infertility. There is a number of evidence about the potential of PCD in designing novel therapeutic approaches in the treatment of infertility. A detailed understanding of PCD and the processes that underlie immunological infertility can contribute to the progress in designing strategies to prevent and treat male infertility. This review will provide a summary of the role of immune cell death in male reproduction and infertility and describe the therapeutic strategies and agents for treatment based on immune cell death.
Collapse
Affiliation(s)
- Chen Jiahong
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Department of Venereal Diseases and Integrated Chinese and Western Medicine and Bone Paralysis, Longjiang Hospital of Shunde District, Foshan, China
| | - Dong Junfeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Liu Shuxian
- Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China
| | - Wang Tao
- Department of Venereal Diseases and Integrated Chinese and Western Medicine and Bone Paralysis, Longjiang Hospital of Shunde District, Foshan, China.
| | - Wang Liyun
- Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China.
| | - Wu Hongfu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
46
|
Sun J, Cao Y, Liu Q, Zhou Z, Xu Y, Liu C. Chemical Constituents, Anti-Tumor Mechanisms, and Clinical Application: A Comprehensive Review on Scutellaria barbata. Molecules 2024; 29:4134. [PMID: 39274982 PMCID: PMC11397148 DOI: 10.3390/molecules29174134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
With the increasing global incidence and mortality rates of cancer, the development of novel anti-tumor drugs has become particularly urgent. Scutellaria barbata D. Don, a perennial herb belonging to the genus Scutellaria in the family Lamiaceae, has aroused extensive attention for its medicinal value in recent years. This article presents an exhaustive review of the flavonoid, diterpene, and other chemical constituents harbored within Scutellaria barbata, delving into the intricate mechanisms by which these compounds orchestrate their anti-tumor effects via diverse biological pathways. Remarkably, these compounds distinguish themselves through their capability to regulate cellular signaling, inhibit cancer cell proliferation, trigger apoptosis, disrupt angiogenesis, and bolster immune responses. These anti-tumor effects are achieved through strategic modulation of pivotal signaling cascades, particularly the PI3K/Akt/mTOR, MAPK, and NFκB pathways. In addition, this article also summarizes the clinical applications of Scutellaria barbata in tumor treatment, especially its potential in alleviating the side effects of radiotherapy and chemotherapy and improving patients' quality of life. In conclusion, this review comprehensively summarizes and analyzes the chemical constituents, anti-tumor mechanisms, and clinical applications of Scutellaria barbata, with the aim of systematically reviewing the existing research results and exploring potential future research directions.
Collapse
Affiliation(s)
- Jiagui Sun
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Yuqi Cao
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Qiqi Liu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Zhengshu Zhou
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Yanan Xu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Chenggang Liu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| |
Collapse
|
47
|
Shen M, Zhang L, Li C, Ma Y, Gao S, Ma Y. Meta-analysis with trial sequential analysis investigating the impact of adjunctive electroacupuncture therapy on vascular mild cognitive impairment. Transl Psychiatry 2024; 14:349. [PMID: 39214960 PMCID: PMC11364872 DOI: 10.1038/s41398-024-03052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND To systematically collect, evaluate, and synthesize evidence from randomized controlled trials (RCTs) supporting the use of electroacupuncture (EA) as an additional treatment option for Vascular mild cognitive impairment (VaMCI), a meta-analysis was carried out. METHODS Electronic searches of eight databases were used to locate RCTs that evaluated EA as a VaMCI adjuvant therapy. The Cochrane Risk of bias was used to assess the included trials' methodological quality. Review Manager 5.4 was used to analyze the data. Trial sequential analysis (TSA) was conducted with the trial sequential analysis program. RESULTS There were 15 RCTs with 1033 subjects in them. Compared to conventional therapy (CT) alone, the Montreal Cognitive Assessment (SMD 0.72, 95 percent CI [0.55, 0.88]), Mini-mental State Examination (SMD 0.73, 95 percent CI [0.60, 0.87]), and activities of daily living (SMD 0.83, 95 percent CI [0.54, 1.12]) were significantly improved while EA was used in conjunction with CT. The current studies exceeded the required information size, according to trial sequential analysis (TSA), demonstrating the reliability of EA adjuvant therapy VaMCI. CONCLUSIONS According to the pooled data, EA as an adjunct therapy for the treatment of VaMCI increases clinical efficacy. Although the TSA confirms a stable conclusion, it is encouraged to conduct studies of the highest quality standards.
Collapse
Affiliation(s)
- Min Shen
- Department of Acupuncture and Massage, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Zhang
- Key Laboratory of New Material Research, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjing Li
- Department of Acupuncture and Massage, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuzhong Gao
- Department of Acupuncture and Massage, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxia Ma
- Department of Acupuncture and Massage, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
48
|
Jiang S, Tang Y, Wang X, Guo H, Chen L, Hu G, Cui Y, Liang S, Zuo J, Luo Z, Chen X, Wang X. ARHGAP4 promotes colon cancer metastasis through the TGF-β signaling pathway and may be associated with T cell exhaustion. Biochem Biophys Res Commun 2024; 722:150172. [PMID: 38805788 DOI: 10.1016/j.bbrc.2024.150172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Colon cancer is a prevalent invasive neoplasm in the gastrointestinal system with a high degree of malignancy. Despite extensive research, the underlying mechanisms of its recurrence and metastasis remain elusive.Rho GTPase activating protein 4 (ARHGAP4), a member of the small GTPases protein family, may be closely related to tumor metastasis, and its expression is increased in colon cancer. However, the role of ARHGAP4 in colon cancer metastasis is uncertain. This study investigates the impact of ARHGAP4 on the metastasis of colon cancer cells. Our objective is to determine the role of ARHGAP4 in regulating the invasive behavior of colon cancer cells. METHODS We downloaded colon adenocarcinoma (COAD) data from the Cancer Genome Atlas (TCGA), and performed differential analysis and survival analysis. By using the CIBERSORT algorithm, we evaluated the proportion of infiltrating immune cells in colon cancer. We further analyzed whether ARHGAP4 is associated with T cell exhaustion. Finally, we investigated the impact of ARHGAP4 knockdown on the migration and invasion of colon cancer cells through in vitro cell experiments. Additionally, we utilized western blotting to assess the expression of protein related to the TGF-β signaling pathway and epithelial-mesenchymal transition (EMT). RESULTS We found that ARHGAP4 is upregulated in colon cancer. Subsequent survival analysis revealed that the high-expression group had significantly lower survival rates compared to the low-expression group. Immune infiltration analysis showed that ARHGAP4 was not only positively correlated with CD8+ T cells, but also positively correlated with T cell exhaustion markers programmed cell death 1 (PDCD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and lymphocyte activating 3 (LAG-3). In vitro cell experiments, the knockdown of ARHGAP4 inhibited the migration and invasion of colon cancer cells. Among EMT-related proteins, when ARHGAP4 was knocked down, the expression of E-cadherin was increased, while the expression of N-cadherin and Vimentin was decreased. Meanwhile, the expression of TGF-β1, p-Smad2, and p-Smad3, which are associated with the TGF-β/Smad pathway, all decreased. CONCLUSION ARHGAP4 promotes colon cancer metastasis through the TGF-β/Smad signaling pathway and may be associated with T cell exhaustion. It plays an important role in the progression of colon cancer and may serve as a potential target for diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Shuanghong Jiang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China; Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Yong Tang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xiaobo Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Haiyang Guo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Lin Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Guangbing Hu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Yutong Cui
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Shiqi Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Ji Zuo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Zichen Luo
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xinrui Chen
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China
| | - Xianfei Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China; Digestive Endoscopy Center, Affiliated Hospital of North Sichuan Medical College, No.1 South Maoyuan Road, Shunqing District, Nanchong City, 637000, Sichuan, China.
| |
Collapse
|
49
|
Zou D, Xin X, Xu Y, Xu H, Huang L, Xu T. Improving the efficacy of immunotherapy for colorectal cancer: Targeting tumor microenvironment-associated immunosuppressive cells. Heliyon 2024; 10:e36446. [PMID: 39262952 PMCID: PMC11388603 DOI: 10.1016/j.heliyon.2024.e36446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Currently, immune checkpoint inhibitors (ICIs) have changed the treatment paradigm for many malignant tumors. As the most common digestive tract malignancy, colorectal cancer (CRC) shows a good response to ICIs only in a small subset of patients with MSI-H/dMMR CRC. In contrast, patients with MSS/pMMR CRC show minimal response to ICIs. The results of the REGONIVO study suggest that targeting the tumor microenvironment (TME) to improve immunotherapy outcomes in MSS/pMMR CRC patients is a feasible strategy. Therefore, this article focuses on exploring the feasibility of targeting the TME to enhance immunotherapy outcomes in CRC, collecting recent basic research on targeting the TME to enhance immunotherapy outcomes in CRC and analyzing ongoing clinical trials to provide a theoretical basis and future research directions for improving immunotherapy outcomes in MSS/pMMR CRC.
Collapse
Affiliation(s)
- Daoyang Zou
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xi Xin
- Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Yunxian Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Huangzhen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Linyan Huang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Tianwen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| |
Collapse
|
50
|
Li C, Yin X, Xie C, Zeng J, Song C, Yang G, Zhang J, Chen S, Wei P, Wang Z, Gu M, Li W, An J, Pan Y. Berberine attenuates TNBS-induced colitis in mice by improving the intestinal microbiota. Front Microbiol 2024; 15:1463005. [PMID: 39268532 PMCID: PMC11392431 DOI: 10.3389/fmicb.2024.1463005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Objective To investigate the effects of berberine (BBR) as a treatment on intestinal microecological alterations and enteritis in mice produced by TNBS. Methods There were seven mice per group: seven in the healthy group (Ctrl), seven in the TNBS-induced enteritis group (TNBS), and seven in the berberine treatment group (BBR). The mice were weighed, slaughtered after 7 days, and subjected to high-throughput intestinal microecological analysis by Illumina, as well as haematological detection and imaging evaluation of colon pathology. Results The alterations in colon length, immune cell subpopulations, inflammatory factors, and intestinal microecology of mice induced by BBR were refined using a battery of experiments and observations. According to intestinal microecological studies, BBR can increase the number of bacteria, including Lactobacillus, Verrucomicrobia, Bacteroides, and Akkermansia muciniphila. Conclusion BBR has a therapeutic effect on TNBS-induced colitis in mice, which is associated with modifications in immune cell subpopulations and intestinal microecology. It also offers a viable approach as a prospective probiotic (like Akkermansia muciniphila) to IBD therapy in clinical settings.
Collapse
Affiliation(s)
- Chao Li
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinxin Yin
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Changpeng Xie
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Jin Zeng
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Chuan Song
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Guibin Yang
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jinglei Zhang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Siai Chen
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziyu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei Li
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Juan An
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|