1
|
Wang J, Zhao M, Fu D, Wang M, Han C, Lv Z, Wang L, Liu J. Human neural stem cell-derived extracellular vesicles protect against ischemic stroke by activating the PI3K/AKT/mTOR pathway. Neural Regen Res 2025; 20:3245-3258. [PMID: 39248158 PMCID: PMC11881723 DOI: 10.4103/nrr.nrr-d-23-01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/11/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00028/figure1/v/2024-12-20T164640Z/r/image-tiff Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells, and can thus be used as substitutes for stem cells in stem cell therapy, thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments. This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke. However, the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear, presenting challenges for clinical translation. To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside, we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke. We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis. The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase, mammalian target of rapamycin, and protein kinase B, and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor. These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Finally, we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile. Therefore, human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Dong Fu
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Meina Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Chao Han
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Zhongyue Lv
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
2
|
Chen CY, Zhang Y. Berberine: An isoquinoline alkaloid targeting the oxidative stress and gut-brain axis in the models of depression. Eur J Med Chem 2025; 290:117475. [PMID: 40107207 DOI: 10.1016/j.ejmech.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Depression seriously affects people's quality of life, and there is an urgent need to find novel drugs to cure treatment-resistant depression. Berberine (BBR), extracted from Coptis chinensis Franch., Phellodendron bark, Berberis vulgaris, and Berberis petiolaris, could be a potential multi-target drug for depression. To summarize the effects of BBR on depression in terms of in vitro or in vivo experiments, we searched electronic databases, such as PubMed, Web of Science, Google Scholar, Wanfang Database, and China National Knowledge Infrastructure, from inception until May 2024. Then, we summarize that BBR has indirect antidepressant properties to improve depressive symptoms, manifesting in modulating the gut microbial community, strengthening the intestinal barrier, increasing the abundance of short-chain fatty acid-producing bacteria, and regulating tryptophan metabolism. BBR also exerts antidepressant-like effects via remodulating nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway, hypothalamic-pituitary-adrenal axis, and peroxisome proliferators-activated receptor-delta. Nevertheless, further clinical trials and more high-quality animal studies are needed to show the actual clinical value of BBR for depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
3
|
Aksu M, Kaschke K, Podojil JR, Chiang M, Steckler I, Bruce K, Cogswell AC, Schulz G, Kelly JW, Wiseman RL, Miller SD, Popko B, Chen Y. AA147 Alleviates Symptoms in a Mouse Model of Multiple Sclerosis by Reducing Oligodendrocyte Loss. Glia 2025; 73:1241-1257. [PMID: 39928347 DOI: 10.1002/glia.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/05/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Inflammation-induced oligodendrocyte death and CNS demyelination are key features of multiple sclerosis (MS). Inflammation-triggered endoplasmic reticulum (ER) stress and oxidative stress promote tissue damage in MS and in its preclinical animal model, experimental autoimmune encephalitis (EAE). Compound AA147 is a potent activator of the ATF6 signaling arm of the unfolded protein response (UPR) that can also induce antioxidant signaling through activation of the NRF2 pathway in neuronal cells. Previous work showed that AA147 protects multiple tissues against ischemia/reperfusion damage through ATF6 and/or NRF2 activation; however, its therapeutic potential in neuroinflammatory disorders remains unexplored. Here, we demonstrate that AA147 ameliorated the clinical symptoms of EAE and reduced ER stress, oligodendrocyte loss, and demyelination. Additionally, AA147 suppressed T cells in the CNS without altering the peripheral immune response. Importantly, AA147 significantly increased the expressions of Grp78, an ATF6 target gene, in oligodendrocytes, while enhancing levels of Grp78 as well as Ho-1, an NRF2 target gene, in microglia. In cultured oligodendrocytes, AA147 promoted nuclear translocation of ATF6, but not NRF2. Intriguingly, AA147 altered the microglia activation profile, possibly by triggering the NRF2 pathway. AA147 was not therapeutically beneficial during the acute EAE stage in mice lacking ATF6 in oligodendrocytes, indicating that protection primarily involves ATF6 activation in these cells. Overall, our results suggest AA147 as a potential therapeutic opportunity for MS by promoting oligodendrocyte survival and regulating microglia status through distinct mechanisms.
Collapse
Affiliation(s)
- Metin Aksu
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Kevin Kaschke
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - MingYi Chiang
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Ian Steckler
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Kody Bruce
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Andrew C Cogswell
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Gwen Schulz
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Brian Popko
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Yanan Chen
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Goldstein JM, Konishi K, Aroner S, Lee H, Remington A, Chitnis T, Buka SL, Hornig M, Tobet SA. Prenatal immune origins of brain aging differ by sex. Mol Psychiatry 2025; 30:1887-1896. [PMID: 39567743 DOI: 10.1038/s41380-024-02798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
With an increasing aging population and Alzheimer's disease tsunami, it is critical to identify early antecedents of brain aging to target for intervention and prevention. Women and men develop and age differently, thus using a sex differences lens can contribute to identification of early risk biomarkers and resilience. There is growing evidence for fetal antecedents to adult memory impairments, potentially through disruption of maternal prenatal immune pathways. Here, we hypothesized that in utero exposure to maternal pro-inflammatory cytokines will have sex-dependent effects on specific brain circuitry regulating offspring's memory and immune function that will be retained across the lifespan. Using a unique prenatal cohort, we tested this in 204 adult offspring, equally divided by sex, who were exposed/unexposed to an adverse in utero maternal immune environment and followed into early midlife (~age 50). Functional magnetic resonance imaging results showed exposure to pro-inflammatory cytokines in utero (i.e., higher maternal IL-6 and TNF-α levels) was significantly associated with sex differences in brain activity and connectivity underlying memory circuitry and performance and with a hyperimmune state, 50 years later. In contrast, the anti-inflammatory cytokine, IL-10 alone, was not significantly associated with memory circuitry in midlife. Predictive validity of prenatal exposure was underscored by significant associations with age 7 academic achievement, also associated with age 50 memory performance. Results uniquely demonstrated that adverse levels of maternal in utero pro-inflammatory cytokines during a critical period of the sexual differentiation of the brain produced long-lasting effects on immune function and memory circuitry/function from childhood to midlife that were sex-dependent, brain region-specific, and, within women, reproductive stage-dependent.
Collapse
Affiliation(s)
- Jill M Goldstein
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Kyoko Konishi
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah Aroner
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hang Lee
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Biostatistics, Massachusetts General Hospital, Boston, MA, USA
| | - Anne Remington
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tanuja Chitnis
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and MGH, Harvard Medical School, Boston, MA, USA
| | - Stephen L Buka
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology and Population Health, Brown University, Providence, RI, USA
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Stuart A Tobet
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Biomedical Sciences and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Lu G, Huang R, Zeng S, Xing Y, Xie H, Du L. [ 1H- 13C]-NMR-Based Metabolic Kinetics Reveals Brain Neurochemical Alterations in Mice After Retinal Ischemia-Reperfusion Injury. Mol Neurobiol 2025; 62:5758-5773. [PMID: 39621232 DOI: 10.1007/s12035-024-04641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/22/2024] [Indexed: 03/29/2025]
Abstract
Retinal ischemia-reperfusion injury (RIRI) is a pathological process that occurs in various blinding eye diseases and is often accompanied by anxiety and depression. However, the underlying metabolic mechanism of mood disorders remains unclear. This study aimed to investigate the metabolic dynamics of the brain after RIRI. C57BL/6 J mice were used to establish the RIRI model and assessed after 1 and 7 days. Mood-related behaviors were examined using open-field, elevated plus-maze, and forced swimming tests. Retinal injury histology was assessed using retinal hematoxylin and eosin staining. Retinal apoptosis was measured via the TdT-mediated dUTP nick-end labeling staining. The 13C-labeled metabolite information for six brain regions of interest was obtained using the [1H-13C]-NMR technique. Retinal tissue damage and cell apoptosis in the retina were observed 1 and 7 days after RIRI. One day after RIRI, mice displayed anxiety- and depression-like behaviors, and multiple metabolites involved in the glutamine (Gln)/glutamate (Glu)-γ-aminobutyric acid (GABA) and tricarboxylic acid (TCA) cycles exhibited reductions in all studied brain regions, with frontal cortex (FC) and temporal cortex (TC) being the most markedly altered. Metabolites and behavioral indicators nearly returned to normal after 7 days. Significant positive correlations between Gln/Glu-GABA and TCA cycle metabolites were observed in the RIRI brain. The results revealed that within a short period after RIRI, there was a reduction in brain metabolites and a disruption of the Gln/Glu-GABA and TCA cycles, which may contribute to mood disorders in mice.
Collapse
Affiliation(s)
- Guojing Lu
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Rong Huang
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Siyu Zeng
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Hang Xie
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Lei Du
- Eye Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
6
|
de Camargo RW, Joaquim L, Machado RS, de Souza Ramos S, da Rosa LR, de Novais Junior LR, Mathias K, Maximiano L, Strickert YR, Nord R, Gava ML, Scarpari E, Martins HM, Lins EMF, Chaves JS, da Silva LE, de Oliveira MP, da Silva MR, Fernandes BB, Tiscoski ADB, Piacentini N, Santos FP, Inserra A, Bobinski F, Rezin GT, Yonamine M, Petronilho F, de Bitencourt RM. Ayahuasca Pretreatment Prevents Sepsis-Induced Anxiety-Like Behavior, Neuroinflammation, and Oxidative Stress, and Increases Brain-Derived Neurotrophic Factor. Mol Neurobiol 2025; 62:5695-5719. [PMID: 39613951 DOI: 10.1007/s12035-024-04597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 12/01/2024]
Abstract
The psychoactive decoction Ayahuasca (AYA) used for therapeutic and religious purposes by indigenous groups and peoples from Amazonian regions produces anti-inflammatory and neuroprotective effects. Thus, it may be useful to attenuate the neuroinflammation and related anxiety- and depressive-like symptoms elicited by inflammatory insults such as sepsis. Rats were pretreated for 3 days with different doses of AYA. Twenty-four hours after, cecal ligation and puncture (CLP) was performed. On days 1-4, post-CLP behavioral tests to assess anxiety-like behavior were performed. After 24-h, neuroinflammation, oxidative stress, myeloperoxidase activity, and mitochondrial metabolism were assessed in the prefrontal cortex (PFC), hippocampus (HP), and cortex. AYA pretreatment increased the time spent in the open arms of the elevated plus maze and prevented the sepsis-induced hyper-grooming and -rearing behavior, suggesting an anxiolytic effect. AYA pretreatment increased the levels of the anti-inflammatory interleukin 4, in the PFC and the cortex, and brain-derived neurotrophic factor in the cortex. Moreover, AYA pretreatment increased myeloperoxidase activity in the PFC and the HP and decreased nitrite/nitrate concentration in the PFC, HP, and cortex of septic rats, suggesting enhanced neutrophil activation and decreased nitric oxide signaling. Furthermore, AYA pretreatment prevented lipid peroxidation in the PFC, HP, and cortex of septic rats as measured by decreased levels of thiobarbituric acid reactive substances. Levels of protein carbonyls and activity of superoxide dismutase, citrate synthase, succinate dehydrogenase, and mitochondrial respiratory chain were not affected. Together, AYA represents a promising approach to prevent sepsis-induced neuroinflammatory and oxidative stress and associated anxiety-like symptoms.
Collapse
Affiliation(s)
- Rick Wilhiam de Camargo
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Larissa Joaquim
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Suelen de Souza Ramos
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Lara Rodrigues da Rosa
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Linério Ribeiro de Novais Junior
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Lara Maximiano
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Yasmin Ribeiro Strickert
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Rafael Nord
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Maria Laura Gava
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Eduarda Scarpari
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Helena Mafra Martins
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Elisa Mitkus Flores Lins
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Jéssica Schaefer Chaves
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Bruna Barros Fernandes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Natália Piacentini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Fabiana Pereira Santos
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Antonio Inserra
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
- Previous Affiliation: Department of Psychiatry, McGill University, Montreal, Canada
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fabrícia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Rafael Mariano de Bitencourt
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil.
| |
Collapse
|
7
|
Li HD, Zheng JY, Tan KW, Su JX, Chen W, Pang RK, Wu GL, Qiu YH, Li XX, Cai YF, Zhang SJ. Salvianolic acid B (SalB) improves high-fat diet (HFD)-caused cognitive impairment in mice by modulating the Trem2/Dap12 pathway in vivo and in vitro. Int Immunopharmacol 2025; 153:114461. [PMID: 40101423 DOI: 10.1016/j.intimp.2025.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/23/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Salvianolic acid B (SalB), which extracted from Salvia miltiorrhiza Bunge (Labiatae), is a traditional Chinese medicine. SalB is widely used in nervous system diseases. This study evaluated the protective effect of SalB on high-fat diet (HFD)-induced cognitive impairment and its mechanisms in vivo and in vitro. The behavior tests demonstrated that SalB alleviated motor skills and learning capacity in HFD mice. Animal experiments have confirmed that SalB reduced the mRNA expression of inflammatory markers and the Trem2/Dap12 pathway in HIP. Furthermore, SalB inhibited the microglia Trem2/Dap12 pathway in HIP. In vivo, palmitic acid (PA) was used to intervene in BV2 cells to construct an inflammatory. SalB reduced the mRNA expression of inflammatory markers and inhibited the Trem2/Dap12 pathway in BV2 cells. In conclusion, SalB treatment may serve as a possible therapy for cognitive impairment induced by HFD.
Collapse
Affiliation(s)
- Hong-Dan Li
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Kai-Wen Tan
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Jin-Xun Su
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Wei Chen
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Rui-Kang Pang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Guang-Liang Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Yu-Hui Qiu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Xiao-Xiao Li
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China.
| |
Collapse
|
8
|
Al-Dhahi AS, Al-Kuraishy HM, Albuhadily AK, Al-Gareeb AI, Abdelaziz AM, Alexiou A, Papadakis M, Alruwaili M, El-Saber Batiha G. The possible role of neurogenesis activators in temporal lobe epilepsy: State of art and future perspective. Eur J Pharmacol 2025:177646. [PMID: 40258399 DOI: 10.1016/j.ejphar.2025.177646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Neurogenesis is a complex process by which the neurons and supporting cells of the central nervous system (CNS) are generated by neural stem cells. Adult hippocampal neurogenesis (AHN) in the human brain is an active process during life and plays a critical role in the regulation of memory, cognition, and mood. It has been shown that epilepsy is linked with dysregulation of AHN. Of note, AHN is very sensitive to the pathological electrical stimuli during epileptic seizures, which result in the induction of neurogenesis in acute epilepsy and inhibition of neurogenesis in chronic epilepsy. Epileptic seizure-induced neurodegeneration activates the mobilization of neural stem cells during neurogenesis to substitute for neural loss in temporal lobe epilepsy (TLE), which is the most refractory type of epilepsy. Moreover, recurrent epileptic seizures in TLE trigger neurogenesis in certain brain regions. However, AHN is a transient acute epileptic seizure that terminated with 1-4 weeks following status epilepticus (SE). Nevertheless, adult AHN is dramatically reduced in chronic epilepsy and associated with the development of cognitive impairment in TLE. These findings indicate that impairment of AHN is linked with the severity of epileptic seizures. Hence, neurogenesis activators may attenuate the pathogenesis of TLE. Therefore, this review aims to discuss and explain the beneficial role of AHN in TLE and how neurogenesis activators could be effective in the management of epilepsy.
Collapse
Affiliation(s)
- Ahmed Salem Al-Dhahi
- Consultant Neurology, Department of Neuroscience, King Fahad Specialist Hospital, Tabuk, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq; Jabir ibn Hayyan Medical University Al-Ameer Qu./ Najaf - Iraq Po. Box (13) Kufa, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Arish Branch, Arish 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur 22511, AlBeheira, Egypt.
| |
Collapse
|
9
|
Zhang H, Zhao Z, Liu P, Wang M, Liu YE, He H, Ge Y, Zhou T, Xiao C, You Z, Zhang J. Gastrodin enhances stress resilience through promoting Wnt/β-Catenin-dependent neurogenesis. J Adv Res 2025:S2090-1232(25)00261-9. [PMID: 40233892 DOI: 10.1016/j.jare.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/24/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Enhancing stress resilience constitutes a pivotal strategy in mitigating the risk of depression, making it a critical component of both prevention and treatment. In the current work, we identified a compound, gastrodin (GAS), as capable of enhancing stress resilience, as demonstrated by its ability to protect against depression following chronic stress exposure. OBJECTIVES To elucidate the potential of GAS to promote neurogenesis under chronic stress, along with the associated cellular and molecular processes involved. METHOD We evaluated the effect of GAS on NSPC proliferation and differentiation using both in vitro and in vivo investigations. Neurogenesis was inhibited using temozolomide to verify GAS's impact on stress resilience. Comprehensive methodologies, including hippocampal transcriptome analysis and western blotting, were utilized to identify the involvement of the Wnt/β-catenin pathway. Immunolocalization was conducted to confirm β-catenin's nuclear translocation in SOX2+ cells within the hippocampal dentate gyrus subgranular zone. RESULTS GAS demonstrated robust stimulation of NSPC proliferation and neuronal differentiation, enhancing adult hippocampal neurogenesis under conditions of chronic stress. Inhibition of neurogenesis negated GAS's protective effects on stress resilience. Integrated analysis pointed to the Wnt/β-catenin signaling pathway within NSPCs as a crucial mechanism facilitating GAS-promoted neurogenesis. Inhibiting Wnt expression or blocking β-catenin's nuclear translocation abolished GAS's neurogenic and stress-resilience enhancing effects. CONCLUSION These results suggested that GAS directly activates the Wnt/β-catenin signaling pathway, which promotes the proliferation and neuronal differentiation of NSPCs, thereby enhancing adult hippocampal neurogenesis and promoting stress resilience to mitigate the risk of depression.
Collapse
Affiliation(s)
- Haili Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Zhihuang Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Pei Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Meidan Wang
- Faculty of Biology, University of Freiburg, Freiburg 79104, Germany.
| | - Yu-E Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Hui He
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 6100544, China.
| | - Yangyan Ge
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Zili You
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 6100544, China.
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
10
|
Wang H, Lu X, Ye Y, Huang C, Fang Y, Yang R, Sun M, Ren J, Song R, Xu F, Su J, Hong H, Huang C. Stimulation of microglia leads to a rapid antidepressant effect by triggering astrocytic P2Y1Rs and promoting BDNF-mediated neurogenesis in the hippocampus. Brain Behav Immun 2025; 128:134-151. [PMID: 40194747 DOI: 10.1016/j.bbi.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025] Open
Abstract
Reversing the decline of microglia in the dentate gyrus of stressed animals has antidepressant effects, but the molecular mechanisms are unclear. Since microglia normally interact with astrocytes and astrocytic purinergic 2Y1 receptor (P2Y1R) signaling plays an important role in regulating cellular crosstalk, we hypothesize that astrocytic P2Y1R signaling may mediate the antidepressant effects of microglia stimulation. Our results showed that a single injection of low-dose lipopolysaccharide (LPS) (100 μg/kg) elicited rapid antidepressant effects and a significant increase in adenosine triphosphate (ATP) levels in the dentate gyrus in chronically stressed mice, and that these effects of LPS were abolished by chemogenetic inhibition of microglia. Depletion of endogenous ATP, non-specific antagonization of purinergic receptors, or specific inhibition of P2Y1Rs, but not other purinergic receptors, by MRS2179 in the hippocampus abolished the antidepressant effects of low-dose LPS. Conditional gene knockout data showed that the antidepressant effect of low-dose LPS could not be observed in mice lacking P2Y1Rs in astrocytes but not in forebrain neurons. Chemogenetic inhibition of microglia in the dentate gyrus, specific deletion of P2Y1Rs in astrocytes and the absence of ATP abolished the increase in doublecortin (DCX)+ cells and brain-derived neurotrophic factor (BDNF) induced by a low dose of LPS in the dentate gyrus of stressed mice, and infusion of BDNF antibodies into the hippocampus simultaneously abolished the pro-neurogenesis and antidepressant effects of microglia stimulation in stressed mice. Taken together, these results suggest that ATP signaling mobilized by microglia stimulation has an antidepressant effect by triggering astrocytic P2Y1R-dependent synthesis of BDNF.
Collapse
Affiliation(s)
- Hanxiao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Ying Ye
- Department of Ultrasound, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001 Jiangsu, China
| | - Chen Huang
- Department of Vascular Surgery, Affiliated Hospital of Nantong University, Jiangsu Province, #20 Xisi Road, Nantong 226001 Jiangsu, China
| | - Yunli Fang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001 Jiangsu, China
| | - Micona Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China
| | - Rongrong Song
- Department of Emergency and Critical Care Medicine, Tongzhou People's Hospital, #999 Jianshe Road, Nantong 226300 Jiangsu, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006 Jiangsu, China
| | - Jianbin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006 Jiangsu, China
| | - Hongxiang Hong
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, #666 Shengli Road, Nantong 226006 Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001 Jiangsu, China.
| |
Collapse
|
11
|
Li N, Fang X, Li H, Liu J, Chen N, Zhao X, Yang Q, Chen X. Ginsenoside CK modulates glucose metabolism via PPARγ to ameliorate SCOP-induced cognitive dysfunction. Metab Brain Dis 2025; 40:168. [PMID: 40178645 DOI: 10.1007/s11011-025-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Ginsenoside compound K (CK) exhibits neuroprotective properties; however, the underlying mechanisms behind these effects have not been investigated thoroughly. CK is the primary active compound derived from ginseng and is metabolized in the gut. It enhances neuronal function by modulating the gut microflora. Therefore, the present study aimed to elucidate the mechanism through which CK enhances cognitive function, employing gut microbiome and microarray analyses. The results revealed that CK upregulated the expression of peroxisome proliferator-activated receptor gamma (PPARγ), suppressed amyloid-β (Aβ) aggregation in hippocampal neurons, and influenced the expression of cyclin-dependent kinase-5 (CDK5), (including insulin receptor substrate 2) IRS2, insulin-degrading enzyme (IDE), glycogen synthase kinase-3 beta (GSK-3β), glucose transporter type 1 (GLUT1), and glucose transporter type 3 (GLUT3) proteins. These proteins play crucial roles in regulating brain glucose metabolism, increasing neuronal energy, and reducing neuronal apoptosis, thereby ameliorating cognitive impairment in mice.
Collapse
Affiliation(s)
- Na Li
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Xingyu Fang
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
| | - Hui Li
- Qian Wei Hospital of Jilin Province, Changchun, 130117, Jilin, P.R. China
| | - Jian Liu
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
| | - Nan Chen
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
| | - Xiaohui Zhao
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China
| | - Qing Yang
- Jinlin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, P.R. China.
| | - Xijun Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, P.R. China.
| |
Collapse
|
12
|
Orhan F, Malwade S, Khanlarkhani N, Gkogka A, Langeder A, Jungholm O, Koskuvi M, Lehtonen Š, Schwieler L, Jardemark K, Tiihonen J, Koistinaho J, Erhardt S, Engberg G, Samudyata S, Sellgren CM. Kynurenic Acid and Promotion of Activity-Dependent Synapse Elimination in Schizophrenia. Am J Psychiatry 2025; 182:389-400. [PMID: 40165559 DOI: 10.1176/appi.ajp.20240048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
OBJECTIVE Schizophrenia is a neurodevelopmental disorder characterized by an excessive loss of synapses. Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan along the kynurenine pathway, can induce schizophrenia-related phenotypes in rodents, and clinical studies have revealed elevated KYNA levels in the CNS of individuals with schizophrenia. However, the factors that cause elevated KYNA levels in schizophrenia, and the mechanisms by which KYNA contributes to pathophysiology, remain largely elusive. The authors used patient-derived cellular modeling to test the hypothesis that KYNA can induce microglia-mediated synapse engulfment by reducing neuronal activity. METHODS Patient-derived induced pluripotent stem cells were used to generate 2D cultures of neurons and microglia-like cells, as well as forebrain organoids with innately developing microglia, to study how KYNA influences synaptic activity and microglial uptake of synaptic structures. To verify the experimental data in a clinical context, large-scale developmental postmortem brain tissue and genetic datasets were used to study coexpression networks for the KYNA-producing kynurenine aminotransferases (KATs) regarding enrichment for common schizophrenia genetic risk variants and functional annotations. RESULTS In these patient-derived experimental models, KYNA induced uptake of synaptic structures in microglia, and inhibition of the endogenous KYNA production led to a decrease in the internalization of synapses in microglia. The integrated large-scale transcriptomic and genetic datasets showed that KYNA-producing KATs enriched for genes governing synaptic activity and genetic risk variants for schizophrenia. CONCLUSIONS Together, these results link genetic risk variants for schizophrenia to elevated production of KYNA and excessive and activity-dependent internalization of synaptic material in microglia, while implicating pharmacological inhibition of KATs as a strategy to avoid synapse loss in schizophrenia.
Collapse
Affiliation(s)
- Funda Orhan
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Susmita Malwade
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Neda Khanlarkhani
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Asimenia Gkogka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Angelika Langeder
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Oscar Jungholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Marja Koskuvi
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Šárka Lehtonen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Kent Jardemark
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Jari Tiihonen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Jari Koistinaho
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Samudyata Samudyata
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Orhan, Malwade, Khanlarkhani, Gkogka, Jungholm, Koskuvi, Schwieler, Jardemark, Erhardt, Engberg, Samudyata, Sellgren); Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Langeder); Neuroscience Center, HiLIFE, University of Helsinki, Helsinki (Koskuvi, Lehtonen, Tiihonen, Koistinaho); A.I. Virtanen Institute for Molecular Sciences (Lehtonen) and Department of Forensic Psychiatry (Tiihonen), University of Eastern Finland, Kuopio; Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Stockholm County Council, Stockholm (Tiihonen, Sellgren); Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania (Engberg)
| |
Collapse
|
13
|
Li Q, Xie Y, Lin J, Li M, Gu Z, Xin T, Zhang Y, Lu Q, Guo Y, Xing Y, Wang W. Microglia Sing the Prelude of Neuroinflammation-Associated Depression. Mol Neurobiol 2025; 62:5311-5332. [PMID: 39535682 DOI: 10.1007/s12035-024-04575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric condition characterized by sadness and anhedonia and is closely linked to chronic low-grade neuroinflammation, which is primarily induced by microglia. Nonetheless, the mechanisms by which microglia elicit depressive symptoms remain uncertain. This review focuses on the mechanism linking microglia and depression encompassing the breakdown of the blood-brain barrier, the hypothalamic-pituitary-adrenal axis, the gut-brain axis, the vagus and sympathetic nervous systems, and the susceptibility influenced by epigenetic modifications on microglia. These pathways may lead to the alterations of microglia in cytokine levels, as well as increased oxidative stress. Simultaneously, many antidepressant treatments can alter the immune phenotype of microglia, while anti-inflammatory treatments can also have antidepressant effects. This framework linking microglia, neuroinflammation, and depression could serve as a reference for targeting microglia to treat depression.
Collapse
Affiliation(s)
- Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ying Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Jinyi Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Miaomiao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ziyan Gu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yihui Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
14
|
Jiang H, Yang Z, Zeng Y, Xiong L, You S, Zhou H. Patchouli alcohol from Pogostemon cablin Benth inhibits H1N1 infection by repressing inflammasome and proptosis by targeting ubiquitin specific peptidase 18. Int J Biol Macromol 2025; 301:140670. [PMID: 39909257 DOI: 10.1016/j.ijbiomac.2025.140670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Influenza virus infection can cause lung inflammation and viral pneumonia in patients. Patchouli alcohol (PA), a tricyclic sesquiterpene derived from Pogostemonis Herba, has been shown to alleviate inflammation in various diseases. However, the molecular mechanism by which patchouli exerts its anti-inflammatory effects, particularly its role in mitigating influenza virus induced inflammation and pneumonia during H1N1 viral infection, remains largely unclear. Herein, we found that PA considerably reduced body weight loss, lung pathological index and attenuated lung histological damage in H1N1-infected mice. Mechanistically, PA reduced the production and secretion of inflammatory cytokines via inhibition of the NF-κB-signaling pathway and blocking inflammasome-mediated proptosis. Additionally, proteomic analysis identified several potential targets of PA, with ubiquitin-specific peptidase 18 (USP18) emerging as a key candidate. Further investigation revealed that PA binds to USP18, enhancing its stability and increasing its transcriptional and translational expression. Overall, our results emphasize the anti-inflammatory effects of PA during influenza virus infection. PA may alleviate lung inflammation and damage by targeting USP18, offering a potential therapeutic strategy for treating influenza-induced lung complications.
Collapse
Affiliation(s)
- Hui Jiang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zixuan Yang
- College of Medical Technology, Chengdu University of Traditional, Chengdu 611137, China
| | - Youqin Zeng
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- College of Medical Technology, Chengdu University of Traditional, Chengdu 611137, China
| | - Shengjie You
- Chongqing Taiji Industry (Group) Co., Ltd., 401123 Chongqing, China
| | - Hao Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional, Chengdu 611137, China.
| |
Collapse
|
15
|
Chen Y, Yao X, Wang C, Zhuang H, Xie B, Sun C, Wang Z, Zhou X, Luo Y, Zhang Y, Zhou S, Liu L. Minocycline treatment attenuates neurobehavioural abnormalities and neurostructural aberrations in the medial prefrontal cortex in mice fed a high-fat diet during adolescence. Brain Behav Immun 2025; 128:83-98. [PMID: 40180016 DOI: 10.1016/j.bbi.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025] Open
Abstract
A preference for and overconsumption of a high-fat diet (HFD) are common among adolescents and are recognized as risk factors for multiple mental disorders. The protracted maturation of the medial prefrontal cortex (mPFC), a key brain structure that plays a critical role in mental functions that are essential for both developing and mature individuals (including emotional processing, decision making, risk assessment, and creative thinking), during adolescence renders it more vulnerable to the environmental insults experienced during this critical developmental window. However, the effects of HFD consumption during adolescence on mPFC-related behaviours and the underlying mechanisms need to be further investigated. In this study, we observed that mice fed a HFD throughout adolescence developed depressive- and anxiety-like behaviours and distinctively increased risk-avoidance behaviour, accompanied by morphological aberrations of both pyramidal neuron and microglia in the mPFC. The systemic administration of minocycline, a well-known broad-spectrum antibiotic, effectively attenuated the adverse effects of HFD consumption during adolescence on neurobehaviours and the morphology of pyramidal neurons in the mPFC. This study provides new insights into the psychological effects of long-term HFD consumption during adolescence and indicates the existence of a window during which microglial stabilization may be a promising strategy to protect against the HFD consumption-induced increase in the risk of psychiatric disorders.
Collapse
Affiliation(s)
- Yuxi Chen
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiuting Yao
- Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Bingjie Xie
- Medical College, Southeast University, Nanjing 210009, China
| | - Congli Sun
- Medical College, Southeast University, Nanjing 210009, China
| | - Zixuan Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xinguo Zhou
- Medical College, Southeast University, Nanjing 210009, China
| | - Yu Luo
- Medical College, Southeast University, Nanjing 210009, China
| | - Yilin Zhang
- Medical College, Southeast University, Nanjing 210009, China
| | - Shihui Zhou
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
16
|
Hoyniak CP, Donohue MR, Luby JL, Barch DM, Zhao P, Smyser CD, Warner B, Rogers CE, Herzog ED, England SK. The association between maternal sleep and circadian rhythms during pregnancy and infant sleep and socioemotional outcomes. Eur Child Adolesc Psychiatry 2025; 34:1365-1377. [PMID: 39180688 PMCID: PMC11847952 DOI: 10.1007/s00787-024-02571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Studies have established that maternal sleep and circadian rhythm disturbances during pregnancy are associated with poor prenatal and perinatal outcomes for mothers and offspring. However, little work has explored its effects on infant sleep or socioemotional outcomes. The current study examined the relationship between maternal sleep and circadian rhythm disturbances during pregnancy and infant sleep and socioemotional outcomes in a diverse sample of N = 193 mothers and their infants (51% White; 52% Female; Mage = 11.95 months). Maternal sleep and circadian rhythms during pregnancy were assessed using self-reports and actigraphy. Mothers reported on infants' sleep and socioemotional outcomes when infants were one year old. When controlling for infant sex, age, gestational age at birth, family income-to-needs ratios, and maternal depression, mothers who reported more sleep problems during pregnancy had infants with more sleep disturbances when they were one year old. Moreover, mothers who had later sleep timing (i.e., went to bed and woke up later, measured via actigraphy) during pregnancy had infants with more dysregulation (e.g., increased feeding difficulties, sensory sensitivities) and externalizing problems, and mothers with increased intra-daily variability in rest-activity rhythms (as measured via actigraphy) had infants with more externalizing problems. Findings suggest that maternal sleep and circadian rhythm disturbances during pregnancy may be a risk factor for infant sleep problems and socioemotional difficulties.
Collapse
Affiliation(s)
- Caroline P Hoyniak
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave, Suite 2100, St. Louis, MO, 63108, USA.
| | - Meghan R Donohue
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave, Suite 2100, St. Louis, MO, 63108, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave, Suite 2100, St. Louis, MO, 63108, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave, Suite 2100, St. Louis, MO, 63108, USA
- The Program in Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Peinan Zhao
- Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christopher D Smyser
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Barbara Warner
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave, Suite 2100, St. Louis, MO, 63108, USA
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
17
|
Yu Q, Li H, Chen M, Pan Y, Zhou L, An L, Zhao J, Bai S, Liang Q, Zhang R, Deng D. GPR120 internalization: a key mechanism for EPA in antidepressant action. Food Funct 2025; 16:2893-2908. [PMID: 40125583 DOI: 10.1039/d5fo00252d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The incidence of depression is on the rise, and currently available antidepressants often exhibit limited efficacy in many patients. Additionally, the underlying mechanisms of depression remain poorly understood. Research has shown that neuroinflammation, driven by M1 microglial phenotypic polarization, contributes to neuronal abnormalities implicated in the development of depression. Eicosapentaenoic acid (EPA) has emerged as a promising therapeutic agent for depression. However, the specific target of EPA's anti-stress effects is yet to be identified. This study aimed to explore the pathogenesis of depression and elucidate the central regulatory mechanisms underlying EPA's antidepressant efficacy. In this study, mice were orally administered EPA for five consecutive weeks. During this period, they were subjected to daily chronic unpredictable mild stress (CUMS) and treated with lipopolysaccharide (LPS, 0.5 mg kg-1, intraperitoneally) every other week. The results demonstrated that EPA significantly alleviated neuronal degeneration in the medial prefrontal cortex. Furthermore, EPA improved synaptic plasticity impairments induced by CUMS combined with LPSs, as indicated by the increased protein levels of Nlgn1, PSD95, GAP43, and Syn. EPA also reduced neuroinflammation by inhibiting M1 microglial polarization and NLRP3 inflammasome activation. Notably, EPA exerted antidepressant-like effects by modulating GPR120. These findings suggest that EPA intake can mitigate abnormal mood and behavior induced by elevated immune-inflammatory signals. These findings suggest that EPA intake can attenuate abnormal moods and behaviors induced by elevated immune-inflammatory signals. Therefore, EPA may be a promising strategy for the clinical treatment of inflammatory depression.
Collapse
Affiliation(s)
- Qingying Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Huan Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Mengxue Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Yanan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, 518000, China
| | - Liuchang Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Lin An
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Jinlan Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Shasha Bai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Qi Liang
- The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, 518000, China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Di Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| |
Collapse
|
18
|
Chen Y, Kou Y, Ni Y, Yang H, Xu C, Fan H, Liu H. Microglia efferocytosis: an emerging mechanism for the resolution of neuroinflammation in Alzheimer's disease. J Neuroinflammation 2025; 22:96. [PMID: 40159486 PMCID: PMC11955113 DOI: 10.1186/s12974-025-03428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by significant neuroinflammatory responses. Microglia, the immune cells of the central nervous system, play a crucial role in the pathophysiology of AD. Recent studies have indicated that microglial efferocytosis is an important mechanism for clearing apoptotic cells and cellular debris, facilitating the resolution of neuroinflammation. This review summarizes the biological characteristics of microglia and the mechanisms underlying microglial efferocytosis, including the factors and signaling pathways that regulate efferocytosis, the interactions between microglia and other cells that influence this process, and the role of neuroinflammation in AD. Furthermore, we explore the role of microglial efferocytosis in AD from three perspectives: its impact on the clearance of amyloid plaques, its regulation of neuroinflammation, and its effects on neuroprotection. Finally, we summarize the current research status on enhancing microglial efferocytosis to alleviate neuroinflammation and improve AD, as well as the future challenges of this approach as a therapeutic strategy for AD.
Collapse
Affiliation(s)
- Yongping Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, P. R. China
| | - Yuhong Kou
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, P. R. China
| | - Yang Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haotian Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, P. R. China
| | - Cailin Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, P. R. China.
| | - Huanqi Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
19
|
Martinez MX, Mahler SV. Potential roles for microglia in drug addiction: Adolescent neurodevelopment and beyond. J Neuroimmunol 2025; 404:578600. [PMID: 40199197 DOI: 10.1016/j.jneuroim.2025.578600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/14/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Adolescence is a sensitive period for development of addiction-relevant brain circuits, and it is also when people typically start experimenting with drugs. Unfortunately, such substance use may cause lasting impacts on the brain, and might increase vulnerability to later-life addictions. Microglia are the brain's immune cells, but their roles in shaping neural connectivity and synaptic plasticity, especially in developmental sensitive periods like adolescence, may also contribute to addiction-related phenomena. Here, we overview how drugs of abuse impact microglia, and propose that they may play poorly-understood, but important roles in addiction vulnerability and progression.
Collapse
Affiliation(s)
- Maricela X Martinez
- Department of Neurobiology and Behavior, University of California, 2221 McGaugh Hall, Irvine, CA 92697, USA.
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, 2221 McGaugh Hall, Irvine, CA 92697, USA
| |
Collapse
|
20
|
Shokr MM, Eladawy RM. HMGB1: Different secretion pathways with pivotal role in epilepsy and major depressive disorder. Neuroscience 2025; 570:55-67. [PMID: 39970982 DOI: 10.1016/j.neuroscience.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
High-mobility group box 1 (HMGB1) protein is a highly prevalent protein that, once it is translocated to an extracellular site, can contribute to the pathogenesis of autoimmune and inflammatory responses, including epilepsy and depression. The conditions needed for release are associated with the production of multiple isoforms, and this translocation may occur in response to both immune cell activation and cell death. HMGB1 has been shown to interact with different mediators, including exportin 1, notch receptors, mitogen-activated protein kinase, STAT, tumor protein 53, and inflammasomes. Furthermore, as a crucial inflammatory mediator, HMGB1 has demonstrated upregulated expression and a higher percentage of translocation from the nucleus to the cytoplasm, acting on downstream receptors such as toll-like receptor 4 and receptor for advanced glycation end products, thereby activating interleukin-1 beta and nuclear factor kappa-B, intensifying inflammatory responses. In this review, we aim to discuss the different molecular interactions for the secretion of HMGB1 along with its pivotal role in epilepsy and major depressive disorder.
Collapse
Affiliation(s)
- Mustafa M Shokr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Arish Branch, 45511 Arish, Egypt.
| | - Reem M Eladawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Arish Branch, 45511 Arish, Egypt
| |
Collapse
|
21
|
Wang Q, Hu Y, Li F, Hu L, Zhang Y, Qiao Y, Tang C, Wang R. MgSO 4 alleviates hippocampal neuroinflammation and BBB damage to resist CMS-induced depression. Front Nutr 2025; 12:1470505. [PMID: 40206943 PMCID: PMC11979798 DOI: 10.3389/fnut.2025.1470505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Purpose Magnesium sulfate (MgSO4) possesses the advantages of being readily accessible, cost-effective, and having low toxicity. It has potential applications as a neuroprotective agent. The mechanisms underlying the effects of Mg2+ treatment on depression and its neuroprotective properties remain poorly elucidated. Methods In this study, we employed chronic mild unpredictable stress (CMS)-induced mice were orally administered with MgSO4 or pioglitazone. The CMS-induced depressive-like behaviors of mice were monitored. After sacrifice, the levels of Mg2+ and inflammatory cytokines were observed. Blood-brain barrier (BBB) permeability and the M1-to-M2 shift of microglia in mouse hippocampus were detected. The expression of proteins in IKK/NF-κB and NLRP3 inflammasome signal pathway were analyzed. Results We found that CMS induced depressive-like behaviors as well as hypomagnesemia in mice, which were accompanied with hypersecretion of inflammatory cytokines in hippocampus of mice. These animals induced by CMS exhibited hippocampal neuroinflammation characterized by an elevated number of Iba+ microglia with enlarged cell bodies and increased branching structures. In CMS-induced mice, MgSO4 alleviated CMS-induced depressive-like behaviors and hypomagnesemia, reduced the levels of inflammatory cytokines in both serum and hippocampus, decreased the number of Iba+ microglia, modulated microglia polarization and repaired the BBB damage. MgSO4 also significantly facilitates the M1-to-M2 shift in CMS-induced mouse hippocampus and lipopolysaccharide (LPS)-induced BV2 microglia. Mechanically, we found that MgSO4 inhibited microglia activation and BBB damage, possibly by suppressing IKK/NF-κB and NLRP3 inflammasome signaling pathways. Conclusion Our findings showed that MgSO4 supplementation played an active role in the prevention and treatment of depression.
Collapse
Affiliation(s)
- Qiaona Wang
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
- Biology Department, Jiangsu Second Normal University, Nanjing, China
| | - Yuefeng Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Fan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Liyun Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yizhu Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunfa Qiao
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Chuanfeng Tang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renlei Wang
- School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
- Biology Department, Jiangsu Second Normal University, Nanjing, China
| |
Collapse
|
22
|
Zhang W, Jiang G, Kang H, Wang J, Liu Z, Wang Z, Huang D, Gao A. Environmental Enrichment Exposure Alleviates Geriatric Depressive-Like Symptoms through Regulating Neurogenesis and Neuroinflammation. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:259-270. [PMID: 40144319 PMCID: PMC11934201 DOI: 10.1021/envhealth.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 03/28/2025]
Abstract
Environmental enrichment (EE) is a significant approach to influencing brain function by altering the environment and changing living conditions and has been shown to modulate mood-related diseases, including depression. Among the elderly, depression is particularly prevalent and is often linked to social isolation. However, the specific role of EE in social isolation-related geriatric depression remains imprecise. This study was intended to explore the status of EE exposure in geriatric depression and to uncover its underlying mechanisms. We utilized 19-month-old male C57BL/6J mice, which are equivalent to humans aged 50-60 years, and induced depression through social isolation. After 2 weeks of social isolation, mice were identified as depressive by using the sugar preference test and then classified into either standard or enrichment environment groups for 4 weeks. Subsequently, conventional indices associated with depression, including neurogenesis, neurotrophic factors, and neuroinflammation, were measured. Results display that EE alleviated the depressive-like symptoms in elderly mice and enriched their social activities. Concurrently, EE regulated levels of certain neurotransmitters in the hippocampus, including the systems of glutamate, tyrosine, and histamine. Moreover, the ability of neurogenesis also increased in the hippocampus of EE mice. At the neuroinflammation level, the activation of Natural Killer (NK) cells and ARG1+ microglia is considered a major contributor to mediating the effects of EE-regulated geriatric depression. Collectively, these results underline the importance of EE in the treatment of geriatric depression and partially elucidate its underlying mechanism, offering valuable suggestions for treating social isolation--related depression via environmental modulation.
Collapse
Affiliation(s)
- Wei Zhang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Guangyu Jiang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Huiwen Kang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Jingyu Wang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Wang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Danyang Huang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
23
|
Fan R, Jia Y, Chen Z, Li S, Qi B, Ma A. Foods for Sleep Improvement: A Review of the Potential and Mechanisms Involved. Foods 2025; 14:1080. [PMID: 40238208 PMCID: PMC11988850 DOI: 10.3390/foods14071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Insomnia affects one-third of the world's population; the negative effects of insomnia are significant, and traditional insomnia medications have numerous side effects and cause considerable suffering. This has aroused interest in obtaining sleep-improving substances from foods. This study conducted a comprehensive literature review using Web of Science and PubMed with keywords like "sleep", "insomnia", and "food". A subsequent summary of the literature revealed that certain foods, including milk, Ziziphus jujuba, Lactuca sativa, ginseng, Schisandra chinensis, and Juglans regia, etc., are purported to enhance sleep quality by prolonging sleep duration, reducing sleep latency, and alleviating anxiety. The mechanisms of these foods' effects mainly occur via the central nervous system, particularly the gamma-aminobutyric acid (GABA)ergic and 5-hydroxytryptamine (5-HT)ergic systems. Although this review supports the fact that they have potential, further research is needed. There are also issues such as more limited foods, fewer mechanisms, fewer pharmacokinetic studies, and more traditional research models being involved. These need to be addressed in the future to adequately address the problem of insomnia. It is hoped that this study will contribute to research into foods with sleep-improving properties and, in the future, provide an effective natural alternative for those seeking medication.
Collapse
Affiliation(s)
- Rui Fan
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| | - Bing Qi
- Hebei Key Laboratory of Walnut Nutritional Function and Processing Technology, Hengshui 053000, China;
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (R.F.); (Y.J.); (Z.C.); (S.L.)
| |
Collapse
|
24
|
Zhao Z, Liu P, Zhang H, Wang M, Liu Y, Wang L, He H, Ge Y, Zhou T, Xiao C, You Z, Zhang J. Gastrodin prevents stress-induced synaptic plasticity impairment and behavioral dysfunction via cAMP/PKA/CREB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156661. [PMID: 40138775 DOI: 10.1016/j.phymed.2025.156661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Chronic stress is widely recognized as a critical factor that impairs synaptic plasticity dependent brain function and behavior, contributing to the onset of depression and anxiety disorders, which subsequently undermine learning and memory processes. Gastrodin (GAS), a prominent bioactive constituent of Gastrodiae Rhizoma exhibiting notable neuroprotective properties, holds significant potential for the prevention and treatment of stress-induced neurological dysfunction. However, the protective effects of GAS on stress-induced synaptic plasticity impairment and the underlying mechanisms have yet to be fully elucidated. OBJECTIVES To investigate the potential of GAS in protecting synaptic plasticity from chronic stress and its underlying cellular and molecular mechanisms. METHOD A chronic stress model was constructed in C57BL/6J mice, and the effects of GAS on synaptic plasticity were examined using Golgi staining and immunohistochemistry. Systematic behavioral analysis was employed to assess the impact of GAS on depressive- and anxiety-like behaviors and cognitive function of mice. Metabolomics, transcriptomics, Western blotting, immunolocalization, enzyme-linked immunosorbent assay, and the administration of signal blockers were utilized to investigate the cellular and molecular pathways via which GAS safeguards synaptic plasticity. RESULTS The results showed that chronic stress exposure reduces the dendritic arbor complexity, density of dendritic spines, proportion of mushroom spines of hippocampal neurons, as well as disrupts synaptic function, impairs cognitive function and induces depressive-like behaviors. Importantly, impairment of hippocampal synaptic plasticity, anxiety- and depressive-like behaviors, and cognitive decline induced by chronic stress were significantly ameliorated following GAS treatment. Moreover, we identified the cAMP/PKA/CREB signaling in hippocampal neurons as a potential mechanism through which GAS prevents synaptic plasticity impairment from chronic stress exposure. Blockade of cAMP/PKA/CREB signaling abolished the protective effects of GAS on synaptic plasticity of hippocampal neurons and behaviors in stress-exposed mice. CONCLUSION This study is the first to identify GAS as a potential natural compound for alleviating stress-induced synaptic plasticity impairment and behavioral dysfunction by activating the cAMP/PKA/CREB signaling pathway in hippocampal neurons, offering a promising strategy for stress-induced neurological disorders.
Collapse
Affiliation(s)
- Zhihuang Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Pei Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Haili Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Meidan Wang
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany.
| | - Yue Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Lulu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Hui He
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yangyan Ge
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Zili You
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
25
|
Hao Z, Guan W, Wei W, Li M, Xiao Z, Sun Q, Pan Y, Xin W. Unlocking the therapeutic potential of tumor-derived EVs in ischemia-reperfusion: a breakthrough perspective from glioma and stroke. J Neuroinflammation 2025; 22:84. [PMID: 40089793 PMCID: PMC11909855 DOI: 10.1186/s12974-025-03405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Clinical studies have revealed a bidirectional relationship between glioma and ischemic stroke, with evidence of spatial overlap between the two conditions. This connection arises from significant similarities in their pathological processes, including the regulation of cellular metabolism, inflammation, coagulation, hypoxia, angiogenesis, and neural repair, all of which involve common biological factors. A significant shared feature of both diseases is the crucial role of extracellular vesicles (EVs) in mediating intercellular communication. Extracellular vesicles, with their characteristic bilayer structure, encapsulate proteins, lipids, and nucleic acids, shielding them from enzymatic degradation by ribonucleases, deoxyribonucleases, and proteases. This structural protection facilitates long-distance intercellular communication in multicellular organisms. In gliomas, EVs are pivotal in intracranial signaling and shaping the tumor microenvironment. Importantly, the cargos carried by glioma-derived EVs closely align with the biological factors involved in ischemic stroke, underscoring the substantial impact of glioma on stroke pathology, particularly through the crucial roles of EVs as key mediators in this interaction. This review explores the pathological interplay between glioma and ischemic stroke, addressing clinical manifestations and pathophysiological processes across the stages of hypoxia, stroke onset, progression, and recovery, with a particular focus on the crucial role of EVs and their cargos in these interactions.
Collapse
Affiliation(s)
- Zhongnan Hao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, Medical School of Qingdao University, Qingdao, 266100, Shandong Province, China
| | - Wenxin Guan
- Queen Mary School, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi, China
| | - Wei Wei
- Department of Neurology, the Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, PR China
| | - Meihua Li
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhipeng Xiao
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qinjian Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Yongli Pan
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China.
| | - Wenqiang Xin
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
26
|
Guo X, Wei R, Yin X, Yang G. Crosstalk between neuroinflammation and ferroptosis: Implications for Parkinson's disease progression. Front Pharmacol 2025; 16:1528538. [PMID: 40183096 PMCID: PMC11966490 DOI: 10.3389/fphar.2025.1528538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and the aggregation of α-synuclein. Neuroinflammation is triggered by the activation of microglia and astrocytes, which release pro-inflammatory factors that exacerbate neuronal damage. This inflammatory state also disrupts iron homeostasis, leading to the occurrence of ferroptosis. Ferroptosis is characterized by lipid peroxidation of cell membranes and iron overload. Abnormal accumulation of iron in the brain increases oxidative stress and lipid peroxidation, further aggravating neuroinflammation and damage to dopaminergic neurons. Natural products have garnered attention for their antioxidant, anti-inflammatory, and neuroprotective properties, with many plant extracts showing promising therapeutic potential in PD research. This study further investigates the potential therapeutic roles of various natural products in regulating neuroinflammation and ferroptosis. The results suggest that natural products have significant therapeutic potential in modulating the interaction between neuroinflammation and ferroptosis, making them potential treatments for PD. Future research should further validate the safety and efficacy of these natural compounds in clinical applications to develop novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Xiangyu Guo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ran Wei
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, China
| | - Xunzhe Yin
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Ge Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
27
|
Chen D, Bi X, Feng Q, Sun Y. Supplementation with Lentil ( Lens culinaris) Hull Soluble Dietary Fiber Ameliorates Sodium Dextran Sulfate-Induced Colitis and Behavioral Deficits via the Gut-Brain Axis. Foods 2025; 14:870. [PMID: 40077572 PMCID: PMC11898428 DOI: 10.3390/foods14050870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
In this study, the impact of lentil hull soluble dietary fibers (SDFs) on colitis and behavioral deficits in mice was assessed. Structural characterizations of SDFs confirmed that cellulase-modified soluble dietary fiber exhibited better physicochemical properties: more porous microstructure; similar polysaccharide structure; more stable particle size distribution; higher crystallinity; better adsorption capacity; and lower viscosity. Additionally, we explored its potential cognitive benefits via the gut-brain axis by behavioral tests, histopathology, 16S rRNA sequencing, gas chromatography and metabolomics analysis. The results showed that SDFs significantly improved inflammatory symptoms in colon and brain and cognitive behaviors. LSDF had better efficacy than HSDF. LSDF intervention decreased the harmful bacteria abundance (Bacteroides, Flexispira and Escherichia, etc.) and increased beneficial bacteria abundance (Aggregatibacter and Helicobacter, etc.). LSDF also affected brain metabolites through the sphingolipid metabolism. Spearman correlation analysis showed that there was a positive correlation between harmful bacteria with inflammatory factors (LPS, IL-1β, IL-6, and TNF-α, etc.) and sphingolipid metabolites, while beneficial bacteria were positively correlated with brain-derived neurotrophic factor (BDNF), IL-10, and cognitive behavior. This study highlights the value of SDFs in future diet-based therapeutic strategies targeting gut-brain interactions.
Collapse
Affiliation(s)
- Dongying Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China;
| | - Xin Bi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China;
| | - Qian Feng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China;
| |
Collapse
|
28
|
Egebjerg C, Kolmos MG, Ojeda AV, Breum AW, Frokjaer V, Kornum BR. Disturbing sleep in female adolescent mice does not increase vulnerability to depression triggers later in life. Brain Behav Immun 2025; 125:9-20. [PMID: 39675644 DOI: 10.1016/j.bbi.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/03/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024] Open
Abstract
Poor sleep quality is a major issue for many adolescents and is associated with fatigue, poor academic performance, and depression. Adolescence is a crucial neurodevelopmental stage where multiple neuropsychiatric illnesses often emerge, suggesting increased central nervous system vulnerability, specifically at this age, which could be exacerbated by poor sleep. Studies on adolescent mice show that sleep deprivation or sleep disturbance (SD) induces structural and functional brain changes, indicating that SD affects the adolescent brain. The long-term consequences of such changes are poorly understood. We hypothesize that SD during adolescence increases vulnerability to future depression triggers in adulthood, such as social isolation or inflammation. To test this, female adolescent mice (post-natal day (P)36) were subjected to SD for seven days, 4 h per day during the light phase (zeitgeber time 2-6). We demonstrate that this SD protocol acutely leads to changes in the expression of Cx3Cr1, and Dnmt3b in the hippocampus and of Htr1a in the prefrontal cortex. To examine the long-term consequences of the SD protocol during adulthood (P77-84), the mice were then either exposed to single housing or received a single injection of lipopolysaccharide (LPS) to mimic known triggers of depression. Behavioral changes were examined using digital ventilated cages to track home-cage activity and the open field and tail suspension tests to assess anxiety- and despair-like behavior, respectively. In contrast to our hypothesis, we did not observe any changes in home-cage activity, anxiety- or despair-like behavior as a result of combining SD in adolescent female mice with a depression trigger in adulthood. We conclude that the adolescent brain is sensitive to SD, but SD during adolescence in mice does not lead to an exacerbated depression-like response to social isolation or inflammation during adulthood.
Collapse
Affiliation(s)
- Christine Egebjerg
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Building 24-6, Denmark
| | - Mie Gunni Kolmos
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Building 24-6, Denmark
| | - Ariel Vasques Ojeda
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Building 24-6, Denmark
| | - Alberte Wollesen Breum
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Building 24-6, Denmark
| | - Vibe Frokjaer
- Psychiatric Center Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Building 24-6, Denmark.
| |
Collapse
|
29
|
Yuan NJ, Zhu WJ, Ma QY, Huang MY, Huo RR, She KJ, Pan JP, Wang JG, Chen JX. Luteolin ameliorates chronic stress-induced depressive-like behaviors in mice by promoting the Arginase-1 + microglial phenotype via a PPARγ-dependent mechanism. Acta Pharmacol Sin 2025; 46:575-591. [PMID: 39496862 PMCID: PMC11845711 DOI: 10.1038/s41401-024-01402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 11/06/2024]
Abstract
Accumulating evidence shows that neuroinflammation substantially contributes to the pathology of depression, a severe psychiatric disease with an increasing prevalence worldwide. Although modulating microglial phenotypes is recognized as a promising therapeutic strategy, effective treatments are still lacking. Previous studies have shown that luteolin (LUT) has anti-inflammatory effects and confers benefits on chronic stress-induced depression. In this study, we investigated the molecular mechanisms by which LUT regulates the functional phenotypes of microglia in mice with depressive-like behaviors. Mice were exposed to chronic restraint stress (CRS) for 7 weeks, and were administered LUT (10, 30, 40 mg· kg-1 ·day-1, i.g.) in the last 4 weeks. We showed that LUT administration significantly ameliorated depressive-like behaviors and decreased hippocampal inflammation. LUT administration induced pro-inflammatory microglia to undergo anti-inflammatory arginase (Arg)-1+ phenotypic polarization, which was associated with its antidepressant effects. Furthermore, we showed that LUT concentration-dependently increased the expression of PPARγ in LPS + ATP-treated microglia and the hippocampus of CRS-exposed mice, promoting the subsequent inhibition of the NLRP3 inflammasome. Molecular dynamics (MD) simulation and microscale thermophoresis (MST) analysis confirmed a direct interaction between LUT and peroxisome proliferator-activated receptor gamma (PPARγ). By using the PPARγ antagonist GW9662, we demonstrated that LUT-driven protection, both in vivo and in vitro, resulted from targeting PPARγ. First, LUT-induced Arg-1+ microglia were no longer detected when PPARγ was blocked. Next, LUT-mediated inhibition of the NLRP3 inflammasome and downregulation of pro-inflammatory cytokine production were reversed by the inhibition of PPARγ. Finally, the protective effects of LUT, which attenuated the microglial engulfment of synapses and prevented apparent synapse loss in the hippocampus of CRS-exposed mice, were eliminated by blocking PPARγ. In conclusion, this study showed that LUT ameliorates CRS-induced depressive-like behaviors by promoting the Arg-1+ microglial phenotype through a PPARγ-dependent mechanism, thereby alleviating microglial pro-inflammatory responses and reversing microglial phagocytosis-mediated synapse loss.
Collapse
Affiliation(s)
- Nai-Jun Yuan
- Department of Critical Care Medicine, Shenzhen Clinical Research Center for Geriatric, and Guangdong Provincial Clinical Research Center for Geriatrics, Integrated Chinese and Western Medicine Postdoctoral Research Station, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Wen-Jun Zhu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Qing-Yu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Min-Yi Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Rou-Rou Huo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Kai-Jie She
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun-Ping Pan
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, Jinan University, Guangzhou, 510632, China
| | - Ji-Gang Wang
- Department of Critical Care Medicine, Shenzhen Clinical Research Center for Geriatric, and Guangdong Provincial Clinical Research Center for Geriatrics, Integrated Chinese and Western Medicine Postdoctoral Research Station, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University), Shenzhen, 518020, China.
- State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
30
|
Chen W, Yan X, Song X, Yang Y, Wang X, Xu G, Wang T, Liu Y, Fan Z, Song G. Effects of Fzd6 on intestinal flora and neuroinflammation in lipopolysaccharide-induced depression-like mice. J Affect Disord 2025; 372:160-172. [PMID: 39643213 DOI: 10.1016/j.jad.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The gut microbiome is critical for the pathophysiology of depression, and inflammation is one of the factors contributing to depression. Fzd6 has been implicated in depression. This study aimed to elucidate the effects of the Fzd6 mutation on gut microbiota structure and the possible regulatory mechanisms involved in depression-associated neuroinflammation. METHODS Wild-type (Fzd6WT) and Fzd6 mutant (Fzd6Q152E) male mice were treated with lipopolysaccharide (LPS) for 7 days. Behavioral experiments were used to detect the behavioral changes of mice in each group, and the composition of intestinal flora and systemic inflammation levels of mice were further detected. RESULTS In LPS mice, the Fzd6 mutation enhanced depression-like behavior symptoms, increased the release of pro-inflammatory cytokines, decreased the release of anti-inflammatory cytokines, and caused intestinal flora disturbance. Subsequently, 16SrRNA sequencing revealed significant changes in the relative abundance of the inflammation-associated bacterial groups Ruminococcaceae and Lachnospiraceae in Fzd6Q152E mice. In mice with depression, the levels of G protein-coupled receptors, GPR41 and GPR43, and glucagon-like peptide-1 (GLP-1) in the small intestine were down-regulated, and the expression of GLP-1 receptor (GLP-1R), peroxisome proliferators activated receptors gamma (PPAR-γ), and nuclear factor kappa-B inhibitor alpha (IκBα) in the hippocampus was also down-regulated, while the expression of nuclear factor kappa-B p65 (NF-κB p65) was up-regulated. LIMITATIONS The size of the spleen was not studied in this model, and the Fzd6 mutation itself does not cause systemic inflammation such as IL-6. CONCLUSION These results demonstrate that mutations in Fzd6 regulate the composition of the gut flora, which contributes to depression-associated inflammation.
Collapse
Affiliation(s)
- Wenlu Chen
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Xiaoru Yan
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Xiaona Song
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Yiyan Yang
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Xiaotang Wang
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Guoqiang Xu
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Tian Wang
- School and Hospital of Stomatology, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Yaqi Liu
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Zhao Fan
- Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China
| | - Guohua Song
- The Laboratory Animal Center, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China; Department of Basic Medical Sciences, Shanxi Medical University, No. 56, Xinjian South Rd., Taiyuan 030001, China.
| |
Collapse
|
31
|
Zou H, Pu W, Zhou J, Li J, Ma L, Wang S, Liu C, Mou J, Liu X, Yu T, Wei Y, Xie H, Cao S. Noradrenergic Locus Coeruleus-CA3 Activation Alleviates Neuropathic Pain and Anxiety- and Depression-Like Behaviors by Suppressing Microglial Neuroinflammation in SNI Mice. CNS Neurosci Ther 2025; 31:e70360. [PMID: 40130433 PMCID: PMC11933858 DOI: 10.1111/cns.70360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVE Neuropathic pain (NP) arises from neuroimmune interactions following nerve injury and is often accompanied by anxiety and depression. The aim of the study is to evaluate the effects of the noradrenergic locus coeruleus (LC), a key regulator of pain and emotional states, projects extensively to the hippocampus. METHOD We investigated the effects of chronic NP on LC integrity and its projections to the hippocampal CA3 region in spared nerve injury (SNI) mice with behavioral tests, immunohistochemistry, neurochemical analyses, and Gq-DREADD. RESULTS Chronic NP induced LC neuronal loss, reduced hippocampal norepinephrine (NE) release, and triggered microglial activation and neuroinflammation in CA3. Selective activation of LC-CA3 noradrenergic neurons using Gq-DREADD chemogenetics alleviated NP and comorbid anxiety- and depression-like behaviors. This intervention suppressed microglial activation, decreased proinflammatory cytokines (TNF-α and IL-1β), and restored NE levels in CA3. CONCLUSION Our findings highlighted the therapeutic potential of targeting LC-CA3 projections to mitigate chronic NP and its neuropsychiatric comorbidities via modulation of hippocampal neuroinflammation.
Collapse
Affiliation(s)
- Helin Zou
- Department of Anesthesiology, the Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
- Dongguan Key Laboratory of Anesthesia and Organ ProtectionDongguanGuangdongChina
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
- Department of AnesthesiologyMianyang Hospital of Traditional Chinese MedicineMianyangSichuanChina
| | - Weiyu Pu
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Junli Zhou
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Juan Li
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Lulin Ma
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Shuxian Wang
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Chengxi Liu
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Jing Mou
- Department of Anesthesiology, the Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
- Dongguan Key Laboratory of Anesthesia and Organ ProtectionDongguanGuangdongChina
- Department of Pain Medicine, the Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
| | - Xingfeng Liu
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Tian Yu
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
| | - Yiyong Wei
- Affiliated Shenzhen Women and Children's Hospital (Longgang) of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City)ShenzhenGuangdongChina
| | - Haihui Xie
- Department of Anesthesiology, the Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
- Dongguan Key Laboratory of Anesthesia and Organ ProtectionDongguanGuangdongChina
| | - Song Cao
- Department of Anesthesiology, the Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
- Dongguan Key Laboratory of Anesthesia and Organ ProtectionDongguanGuangdongChina
- Key Laboratory of Anesthesia and Organ Protection of Ministry of Education (In Cultivation)Zunyi Medical UniversityZunyiGuizhouChina
- Department of Pain Medicine, the Tenth Affiliated HospitalSouthern Medical University (Dongguan People's Hospital)DongguanGuangdongChina
| |
Collapse
|
32
|
Wang D, Fukuda T, Wu T, Xu X, Isaji T, Gu J. Exogenous L-fucose attenuates depression induced by chronic unpredictable stress: Implicating core fucosylation has an antidepressant potential. J Biol Chem 2025; 301:108230. [PMID: 39864626 PMCID: PMC11879694 DOI: 10.1016/j.jbc.2025.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Core fucosylation is one of the most essential modifications of the N-glycans, catalyzed by α1,6-fucosyltransferase (Fut8), which transfers fucose from guanosine 5'-diphosphate (GDP)-fucose to the innermost N-acetylglucosamine residue of N-glycans in an α1-6 linkage. Our previous studies demonstrated that lipopolysaccharide (LPS) can induce a more robust neuroinflammatory response in Fut8 homozygous knockout (KO) (Fut8-/-) and heterozygous KO (Fut8+/-) mice contrasted to the wild-type (Fut8+/+) mice. Exogenous administration of L-fucose suppressed LPS-induced neuroinflammation. Numerous studies indicate that neuroinflammation plays a vital role in the development of depression. Here, we investigated whether core fucosylation regulates depression induced by chronic unpredictable stress (CUS), a well-established model for depression. Our results showed that Fut8+/- mice exhibited depressive-like behaviors and increased neuroinflammation earlier than Fut8+/+ mice. Administration of L-fucose significantly reduced CUS-induced depressive-like behaviors and pro-inflammatory cytokine levels in Fut8+/- mice. The L-fucose treatment produced antidepressant effects by attenuating the complex formation between gp130 and the interleukin-6 (IL-6) receptor and the JAK2/STAT3 signaling pathway. Notably, L-fucose treatment increased dendritic spine density and postsynaptic density protein 95 (PSD-95) expression, which were suppressed in CUS-induced depression. Furthermore, the effects of L-fucose on the CUS-induced depression were also observed in Fut8+/+ mice. Our results clearly demonstrate that L-fucose ameliorates neuroinflammation and synaptic defects in CUS-induced depression, implicating that core fucosylation has significant anti-neuroinflammatory activity and an antidepressant potential.
Collapse
Affiliation(s)
- Dan Wang
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Graduate School of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan; Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
33
|
Zhang G, Shang R, Zhong X, Lv S, Yi Y, Lu Y, Xu Z, Wang Y, Teng J. Natural products target pyroptosis for ameliorating neuroinflammation: A novel antidepressant strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156394. [PMID: 39826285 DOI: 10.1016/j.phymed.2025.156394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Depression is a common mental disorder characterized by prolonged loss of interest and low mood, accompanied by symptoms such as sleep disturbances and cognitive impairments. In severe cases, there may be a tendency toward suicide. Depression can be caused by a series of highly complex pathological mechanisms; However, its key pathogenic mechanism remains unclear. As a novel programmed cell death (PCD) pathway and inflammatory cell death mode, pyroptosis involves a series of tightly regulated gene expression events. It may play a significant role in the pathogenesis and management of depression by modulating neuroinflammatory processes. In addition, a large number of studies have shown that various pharmacologically active natural products can regulate pyroptosis through multiple targets and pathways, demonstrating significant potential in the treatment of depression. These natural products offer advantages such as low costs and minimal side effects, making them a viable supplement or alternative to traditional antidepressants. In this review, we summarized recent research on natural products that regulate pyroptosis and neuroinflammation to improve depression. The aim of this review was to contribute to a scientific basis for the discovery and development of more natural antidepressants in the future. METHODS To review the antidepressant effects of natural products targeting pyroptosis-mediated neuroinflammation, data were collected from the Web of Science, ScienceDirect databases, and PubMed to classify and summarize the relationship between pyroptosis and neuroinflammation in depression, as well as the pharmacological mechanisms of natural products. RESULTS Multiple researches have revealed that pyroptosis-mediated neuroinflammation serves as a pivotal contributory factor in the pathological process of depression. Natural products, such as terpenoids, terpenes, phenylethanol glycosides, and alkaloids, have antidepressant effects by regulating pyroptosis to alleviate neuroinflammation. CONCLUSION We comprehensively reviewed the regulatory effects of natural products in depression-related pyroptosis pathways, providing a uniquely insightful perspective for the research, development, and application of natural antidepressants. However, future research should further explore the modulatory mechanisms of natural products in regulating pyroptosis, which is of great importance for the genration of effective antidepressants.
Collapse
Affiliation(s)
- Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yunhao Yi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yitong Lu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Zhiwei Xu
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yilin Wang
- Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Jing Teng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China.
| |
Collapse
|
34
|
Wen J, Li Y, Deng W, Li Z. Central nervous system and immune cells interactions in cancer: unveiling new therapeutic avenues. Front Immunol 2025; 16:1528363. [PMID: 40092993 PMCID: PMC11907007 DOI: 10.3389/fimmu.2025.1528363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer remains a leading cause of mortality worldwide. Despite significant advancements in cancer research, our understanding of its complex developmental pathways remains inadequate. Recent research has clarified the intricate relationship between the central nervous system (CNS) and cancer, particularly how the CNS influences tumor growth and metastasis via regulating immune cell activity. The interactions between the central nervous system and immune cells regulate the tumor microenvironment via various signaling pathways, cytokines, neuropeptides, and neurotransmitters, while also incorporating processes that alter the tumor immunological landscape. Furthermore, therapeutic strategies targeting neuro-immune cell interactions, such as immune checkpoint inhibitors, alongside advanced technologies like brain-computer interfaces and nanodelivery systems, exhibit promise in improving treatment efficacy. This complex bidirectional regulatory network significantly affects tumor development, metastasis, patient immune status, and therapy responses. Therefore, understanding the mechanisms regulating CNS-immune cell interactions is crucial for developing innovative therapeutic strategies. This work consolidates advancements in CNS-immune cell interactions, evaluates their potential in cancer treatment strategies, and provides innovative insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Junkai Wen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanli Deng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of General Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
35
|
Shi XY, He YX, Ge MY, Liu P, Zheng P, Li ZH. Gastrodin promotes CNS myelinogenesis and alleviates demyelinating injury by activating the PI3K/AKT/mTOR signaling. Acta Pharmacol Sin 2025:10.1038/s41401-025-01492-z. [PMID: 40011630 DOI: 10.1038/s41401-025-01492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025]
Abstract
Demyelination is a common feature of numerous neurological disorders including multiple sclerosis and leukodystrophies. Although myelin can be regenerated spontaneously following injury, this process is often inadequate, potentially resulting in neurodegeneration and exacerbating neurological dysfunction. Several drugs aimed at promoting the differentiation of oligodendrocyte precursor cells (OPCs) have yielded unsatisfactory clinical effects. A recent study has shifted the strategy of pro-OPC differentiation towards enhancing myelinogenesis. In this study we identified the pro-myelinating drug using a zebrafish model. Five traditional Chinese medicine monomers including gastrodin, paeoniflorin, puerarin, salidroside and scutellarin were assessed by bath-application in Tg (MBP:eGFP-CAAX) transgenic line at 1-5 dpf. Among the 5 monomers, only gastrodin exhibited significant pro-myelination activity. We showed that gastrodin (10 µM) enhanced myelin sheath formation and oligodendrocyte (OL) maturation without affecting the number of OLs. Gastrodin markedly increased the phosphorylation levels of PI3K, AKT, and mTOR in primary cultured OLs via direct interaction with PI3K. Co-treatment with the PI3K inhibitor LY294002 (5 µM) mitigated gastrodin-induced OL maturation. Furthermore, injection of gastrodin (100 mg·kg-1·d-1, i.p.) effectively facilitated remyelination in a lysophosphatidylcholine-induced demyelinating mouse model and alleviated demyelination in the experimental autoimmune encephalomyelitis mice. These results identify gastrodin as a promising therapeutic agent for demyelinating diseases and highlight the potential of the zebrafish model for screening pro-myelinogenic pharmacotherapy.
Collapse
Affiliation(s)
- Xiao-Yu Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
| | - Yi-Xi He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China
| | - Man-Yue Ge
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, Naval Medical University, Shanghai, 200433, China
| | - Peng Liu
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, Naval Medical University, Shanghai, 200433, China.
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China.
| | - Zheng-Hao Li
- Institute of Neuroscience, MOE Key Laboratory of Molecular Neurobiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
36
|
Zhang SQ, Deng Q, Tian C, Zhao HH, Yang LY, Cheng XW, Wang GP, Liu D. Costunolide normalizes neuroinflammation and improves neurogenesis deficits in a mouse model of depression through inhibiting microglial Akt/mTOR/NF-κB pathway. Acta Pharmacol Sin 2025:10.1038/s41401-025-01506-w. [PMID: 40011631 DOI: 10.1038/s41401-025-01506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
Neuroinflammation is crucial for the pathogenesis of major depression. Preclinical studies have shown the potential of anti-inflammatory agents, specifically costunolide (COS), correlate with antidepressant effects. In this study, we investigated the molecular mechanisms underlying the antidepressant actions of COS. Chronic restraint stress (CRS) was induced in male mice. The mice were treated with either intra-DG injection of COS (5 μM, 1 μL per side) or COS (20 mg/kg, i.p.) for 1 week. We showed that administration of COS through the both routes significantly ameliorated the depressive-like behavior in CRS-exposed mice. Furthermore, administration of COS significantly improved chronic stress-induced adult hippocampal neurogenesis deficits in the mice through attenuating microglia-derived neuroinflammation. We demonstrated that COS (5 μM) exerted anti-neuroinflammatory effects in LPS-treated BV2 cells via inhibiting microglial Akt/mTOR/NF-κB pathway; inactivation of mTOR/NF-κB/IL-1β pathway was required for the pro-neurogenic action of COS in CRS-exposed mice. Our results reveal the antidepressant mechanism of COS that is normalizing neuroinflammation to improve neurogenesis deficits, supporting anti-inflammatory agents as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Shao-Qi Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiao Deng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng Tian
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan-Huan Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, China
| | - Li-Ying Yang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin-Wei Cheng
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guo-Ping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
37
|
Zhuang S, Shi F, Cannella N, Ubaldi M, Ciccocioppo R, Li H, Qin D. Pharmacological Mechanism and Drug Research Prospects of Ginsenoside Rb1 as an Antidepressant. Antioxidants (Basel) 2025; 14:238. [PMID: 40002422 PMCID: PMC11851604 DOI: 10.3390/antiox14020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This review explores the antidepressant effects of ginsenoside Rb1, a natural compound in traditional Chinese medicine, and its potential for treating major depressive disorder (MDD). The aetiology of depression was reviewed up to 2024, focusing on the pathways and mechanisms through which ginsenoside Rb1 may exert its effects. Notably, ginsenoside Rb1 regulates oxidative stress and inflammatory processes while enhancing neural plasticity by downregulating miR-134 expression and alleviating depressive symptoms. Unlike traditional antidepressants that act on a single target, ginsenoside Rb1 interacts with multiple pathways, reflecting its potential for broader therapeutic application. To compensate for the current deficiency in animal experiments, clinical data, and research on the side effects of ginsenoside Rb1 in the treatment of depression, we reviewed some clinical data on the use of this component in the treatment of other diseases to explore its relevance to depression. Ginsenoside Rb1 is expected to serve as a novel antidepressant or as a complementary component in combination with other antidepressant compounds. However, further clinical trials and molecular studies are necessary to confirm its efficacy and potential side effects.
Collapse
Affiliation(s)
- Shuhui Zhuang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; (S.Z.); (F.S.)
| | - Fuqiang Shi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; (S.Z.); (F.S.)
| | - Nazzareno Cannella
- Pharmacology Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (N.C.); (M.U.); (R.C.)
| | - Massimo Ubaldi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (N.C.); (M.U.); (R.C.)
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (N.C.); (M.U.); (R.C.)
| | - Hongwu Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; (S.Z.); (F.S.)
| | - Di Qin
- Department of Geriatrics and General Practice, The Third Bethune Hospital of Jilin University, Changchun 130021, China;
| |
Collapse
|
38
|
Kim HS, Jee SA, Einisadr A, Seo Y, Seo HG, Jang BS, Park HH, Chung WS, Kim BG. Detrimental influence of Arginase-1 in infiltrating macrophages on poststroke functional recovery and inflammatory milieu. Proc Natl Acad Sci U S A 2025; 122:e2413484122. [PMID: 39951507 PMCID: PMC11848331 DOI: 10.1073/pnas.2413484122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Poststroke inflammation critically influences functional outcomes following ischemic stroke. Arginase-1 (Arg1) is considered a marker for anti-inflammatory macrophages, associated with the resolution of inflammation and promotion of tissue repair in various pathological conditions. However, its specific role in poststroke recovery remains to be elucidated. This study investigates the functional impact of Arg1 expressed in macrophages on poststroke recovery and inflammatory milieu. We observed a time-dependent increase in Arg1 expression, peaking at 7 d after photothrombotic stroke in mice. Cellular mapping analysis revealed that Arg1 was predominantly expressed in LysM-positive infiltrating macrophages. Using a conditional knockout (cKO) mouse model, we examined the role of Arg1 expressed in infiltrating macrophages. Contrary to its presumed beneficial effects, Arg1 cKO in LysM-positive macrophages significantly improved skilled forelimb motor function recovery after stroke. Mechanistically, Arg1 cKO attenuated fibrotic scar formation, enhanced peri-infarct remyelination, and increased synaptic density while reducing microglial synaptic elimination in the peri-infarct cortex. Gene expression analysis of fluorescence-activated single cell sorting (FACS)-sorted CD45low microglia revealed decreased transforming growth factor-β (TGF-β) signaling and proinflammatory cytokine activity in peri-infarct microglia from Arg1 cKO animals. In vitro coculture experiments demonstrated that Arg1 activity in macrophages modulates microglial synaptic phagocytosis, providing evidence for macrophage-microglia interaction. These findings present unique insights into the function of Arg1 in central nervous system injury and highlight an interaction between infiltrating macrophages and resident microglia in shaping the poststroke inflammatory milieu. Our study identifies Arg1 in macrophages as a potential therapeutic target for modulating poststroke inflammation and improving functional recovery.
Collapse
Affiliation(s)
- Hyung Soon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Seung Ah Jee
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Ariandokht Einisadr
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Yeojin Seo
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Hyo Gyeong Seo
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Byeong Seong Jang
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Hee Hwan Park
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon34141, Republic of Korea
- Center for Vascular Biology, Institute for Basic Science, Daejeon34126, Republic of Korea
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon16499, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon16499, Republic of Korea
- Department of Neurology, Ajou University School of Medicine, Suwon16499, Republic of Korea
| |
Collapse
|
39
|
Rajabian A, Kioumarsi Darbandi Z, Aliyari M, Saberi R, Amirahmadi S, Amini H, Salmani H, Youseflee P, Hosseini M. Pioglitazone improves learning and memory in a rat model of cholinergic dysfunction induced by scopolamine, the roles of oxidative stress and neuroinflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025. [DOI: 10.1007/s00210-025-03895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
|
40
|
Cao ZL, Zhu LX, Wang HM, Zhu LJ. Microglial Regulation of Neural Networks in Neuropsychiatric Disorders. Neuroscientist 2025:10738584251316558. [PMID: 39932233 DOI: 10.1177/10738584251316558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Microglia serve as vital innate immune cells in the central nervous system, playing crucial roles in the generation and development of brain neurons, as well as mediating a series of immune and inflammatory responses. The morphologic transitions of microglia are closely linked to their function. With the advent of single-cell sequencing technology, the diversity of microglial subtypes is increasingly recognized. The intricate interactions between microglia and neuronal networks have significant implications for psychiatric disorders and neurodegenerative diseases. A deeper investigation of microglia in neurologic diseases such as Alzheimer disease, depression, and epilepsy can provide valuable insights in understanding the pathogenesis of diseases and exploring novel therapeutic strategies, thereby addressing issues related to central nervous system disorders.
Collapse
Affiliation(s)
- Zi-Lin Cao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| | - Li-Xia Zhu
- Patent Examination Cooperation (JIANGSU) Center of the Patent Office, China National Intellectual Property Administration (CNIPA), Suzhou, China
| | - Hong-Mei Wang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
41
|
Zhu Z, Guan Y, Gao S, Guo F, Liu D, Zhang H. Impact of natural compounds on peroxisome proliferator-activated receptor: Molecular effects and its importance as a novel therapeutic target for neurological disorders. Eur J Med Chem 2025; 283:117170. [PMID: 39700874 DOI: 10.1016/j.ejmech.2024.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Neurological disorders refer to the pathological changes of the nervous system involving multiple pathological mechanisms characterized by complex pathogenesis and poor prognosis. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor that is a member of the nuclear receptor superfamily. PPAR has attracted considerable attention in the past decades as one of the potential targets for the treatment of neurological disorders. Several in vivo and in vitro studies have confirmed that PPARs play a neuroprotective role by regulating multiple pathological mechanisms. Several selective PPAR ligands, such as thiazolidinediones and fibrates, have been approved as pharmacological agonists. Nevertheless, PPAR agonists cause a variety of adverse effects. Some natural PPAR agonists, including wogonin, bergenin, jujuboside A, asperosaponin VI, monascin, and magnolol, have been introduced as safe agonists, as evidenced by clinical or preclinical experiments. This review summarizes the effects of phytochemicals on PPAR receptors in treating various neurological disorders. Further, it summarizes recent advances in phytochemicals as potential, safe, and promising PPAR agonists to provide insights into understanding the PPAR-dependent and independent cascades mediated by phytochemicals. The phytochemicals exhibited potential for treating neurological disorders by inhibiting neuroinflammation, exerting anti-oxidative stress and anti-apoptotic activities, promoting autophagy, preventing demyelination, and reducing brain edema and neurotoxicity. This review presents data that will help clarify the potential mechanisms by which phytochemicals act as pharmacological agonists of PPARs in the treatment of neurological disorders. It also provides insights into developing new drugs, highlighting phytochemicals as potential, safe, and promising PPAR agonists. Additionally, this review aims to enhance understanding of both PPAR-dependent and independent pathways mediated by phytochemicals.
Collapse
Affiliation(s)
- Zhe Zhu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Songlan Gao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Feng Guo
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Dong Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Honglei Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
42
|
Chen P, Lin WL, Liu XY, Li SJ, Chen RF, Hu ZH, Lin PT, Lin MH, Shi MY, Wu W, Wang Y, Lin QS, Ye ZC. D30 Alleviates β2-Microglobulin-Facilitated Neurotoxic Microglial Responses in Isoflurane/Surgery-Induced Cognitive Dysfunction in Aged Mice. J Transl Med 2025; 105:102190. [PMID: 39581349 DOI: 10.1016/j.labinv.2024.102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication with no effective treatment in elderly patients. POCD, Alzheimer disease (AD), and many other cognitive diseases mostly involve neurotoxic microglia response, and recently, β2-microglobulin (B2M) has been suggested to play a pivotal role. A novel pyromeconic acid-styrene hybrid compound D30 was synthesized by our team and shown to be safe and effective in some neurodegenerative mouse models. In this study, we evaluated D30 on POCD and its potential mechanism. Fourteen- to 18-month-old male C57BL/6 mice were used to establish POCD through isoflurane anesthesia and surgery. The plasma of elderly patients was collected pre- and postoperatively. Primary mouse microglia were subjected to various stimulations in multiple experimental designs to imitate in vivo POCD-like conditions. Morris water maze, fear conditioning, western blot, immunofluorescent staining, and blood-brain barrier (BBB) permeability tests were conducted in this study. D30 administration significantly improved learning and memory in aged mice following POCD. Neurotoxic M1 microglia cells were dramatically increased following POCD, manifested as morphologically changing into fewer and shorter branches, enlarged somatic areas, and upregulated expression of iNOS and C1q. Notably, following POCD, B2M was significantly upregulated in the plasma and the brain. D30 treatment significantly suppressed these pathologic changes, by inhibiting the POCD-induced BBB breakdown while suppressing the surge of plasma B2M levels. D30 treatment suppressed POCD-induced surge of B2M and Aβ plaques in the brain and preserved adult hippocampal neurogenesis vulnerable to POCD. Furthermore, postoperative levels of B2M were significantly elevated over the preoperative levels in patients aged 80 years and over. In parallel with mouse plasma after POCD, the postoperative patient plasma was also much more effective at activating M1 microglia. Of note, this POCD plasma-induced activation of M1 microglia was largely prevented by D30 treatment. Taken together, by inhibiting the surge of plasma B2M, protecting BBB integrity, and reducing inflammatory response, D30 protected aged mice from B2M-facilitated POCD.
Collapse
Affiliation(s)
- Ping Chen
- Department of Anesthesiology, Anesthesiology research institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Wan-Lan Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xue-Yan Liu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China; Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Si-Jun Li
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruo-Fan Chen
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhi-Hui Hu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Peng-Tao Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Mou-Hui Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Meng-Yu Shi
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Wei Wu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Wang
- Department of Anesthesiology, Anesthesiology research institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qing-Song Lin
- Department of Neurosurgery, Neurosurgery Research Institute, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Zu-Cheng Ye
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
43
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2025; 21:67-85. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Xu T, Gan L, Chen W, Zheng D, Li H, Deng S, Qian D, Gu T, Lian Q, Shen G, An Q, Li W, Zhang Z, Yang GY, Ruan H, Cui W, Tang Y. Bridging immune-neurovascular crosstalk via the immunomodulatory microspheres for promoting neural repair. Bioact Mater 2025; 44:558-571. [PMID: 39584066 PMCID: PMC11583666 DOI: 10.1016/j.bioactmat.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
The crosstalk between immune cells and the neurovascular unit plays a pivotal role in neural regeneration following central nervous system (CNS) injury. Maintaining brain immune homeostasis is crucial for restoring neurovascular function. In this study, an interactive bridge was developed via an immunomodulatory hydrogel microsphere to link the interaction network between microglia and the neurovascular unit, thereby precisely regulating immune-neurovascular crosstalk and achieving neural function recovery. This immunomodulatory crosstalk microsphere (MP/RIL4) was composed of microglia-targeted RAP12 peptide-modified interleukin-4 (IL-4) nanoparticles and boronic ester-functionalized hydrogel using biotin-avidin reaction and air-microfluidic techniques. We confirmed that the immunomodulatory microspheres reduced the expression of pro-inflammatory factors including IL-1β, iNOS, and CD86, while upregulating levels of anti-inflammatory factors such as IL-10, Arg-1, and CD206 in microglia. In addition, injection of the MP/RIL4 significantly mitigated brain atrophy volume in a mouse model of ischemic stroke, promoted neurobehavioral recovery, and enhanced the crosstalk between immune cells and the neurovascular unit, thus increasing angiogenesis and neurogenesis of stroke mice. In summary, the immunomodulatory microspheres, capable of orchestrating the interaction between immune cells and neurovascular unit, hold considerable therapeutic potential for ischemic stroke and other CNS diseases.
Collapse
Affiliation(s)
- Tongtong Xu
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lin Gan
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Wei Chen
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Dandan Zheng
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Hanlai Li
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Shiyu Deng
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Dongliang Qian
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Tingting Gu
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Qianyuan Lian
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Gracie Shen
- Loomis Chaffee School, 4 Batchelder Road, Windsor, CT, 06095, USA
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Wanlu Li
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Zhijun Zhang
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Guo-Yuan Yang
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Huitong Ruan
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Wenguo Cui
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Yaohui Tang
- Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| |
Collapse
|
45
|
Zhao FY, Xu P, Kennedy GA, Jin X, Wang YM, Zhang WJ, Yue LP, Ho YS, Fu QQ, Conduit R. Insufficient Evidence to Recommend Shu Mian Capsule in Managing Depression With or Without Comorbid Insomnia: A Systematic Review With Meta-Analysis and Trial Sequential Analysis. Neuropsychiatr Dis Treat 2025; 21:167-183. [PMID: 39912100 PMCID: PMC11794040 DOI: 10.2147/ndt.s499574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Aim This systematic review with trial sequential analysis (TSA) aims to evaluate the efficacy and safety of Shu Mian Capsule (SMC), a commercial Chinese polyherbal preparation, for managing depression with or without comorbid insomnia. Methods Controlled clinical trials assessing SMC against waitlist control, placebo or active controls, or as an adjunct treatment were searched across seven databases. Risk of bias and evidence quality were assessed using Cochrane criteria and GRADE framework, respectively. Results Fourteen studies were analyzed, involving 1207 participants. Trials comparing SMC with placebo or standard antidepressive treatments were limited. In depressed patients without comorbid insomnia, combining SMC with antidepressants reduced the incidence of antidepressants-induced sleep disorders (from 12.2% to 3.8%) but did not significantly lower Hamilton Rating Scale for Depression (HAM-D) scores compared to antidepressants alone [SMD = -0.09, 95% CI (-0.32, 0.14), p = 0.45]. In depressed patients with comorbid insomnia, the combination of SMC and psychotropic drugs significantly reduced HAM-D [SMD = -1.29, 95% CI (-1.96, -0.62), p < 0.01] and Pittsburgh Sleep Quality Index scores [SMD = -1.53, 95% CI (-1.95, -1.11), p < 0.01], and exhibited a lower incidence of various drug-related adverse effects compared to psychotropic drugs alone. TSA validated the sample size adequacy; nevertheless, the methodological quality of supporting studies varied from very low to low due to substantial bias risk. Additionally, 92.9% of trials lacked follow-ups. Conclusion The effectiveness of SMC as an alternative to conventional antidepressive treatment is unclear. For depressed patients with comorbid insomnia, adding SMC to standard care demonstrates augmented efficacy and improved safety, though the supporting evidence is methodologically limited. Further rigorous trials are warranted to confirm SMC's short-term efficacy and explore its medium- to long-term effects as either an alternative or complementary therapy. Current evidence precludes recommendations for the administration of SMC in depression.
Collapse
Affiliation(s)
- Fei-Yi Zhao
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, People’s Republic of China
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Peijie Xu
- School of Computing Technologies, RMIT University, Melbourne, VIC, 3000, Australia
| | - Gerard A Kennedy
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Xiaochao Jin
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Jiaotong University School of Nursing, Shanghai, People’s Republic of China
| | - Yan-Mei Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Wen-Jing Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Li-Ping Yue
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, People’s Republic of China
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
| | - Qiang-Qiang Fu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, People’s Republic of China
| | - Russell Conduit
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| |
Collapse
|
46
|
Meng K, Liu Z, Yu Y, Zhang E, Yu X, Meng P, Xiu J. The RNA Demethyltransferase FTO Regulates Ferroptosis in Major Depressive Disorder. Int J Mol Sci 2025; 26:1075. [PMID: 39940841 PMCID: PMC11817352 DOI: 10.3390/ijms26031075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Major depressive disorder (MDD) is a widespread and severe mental health condition characterized by persistent low mood and loss of interest. Emerging evidence suggests that ferroptosis, an iron-dependent form of cell death, and epigenetic dysregulation contribute to the pathogenesis of MDD. This study investigates the role of RNA demethylase FTO and autophagy regulator BECN1 in ferroptosis and their regulation by the active compound ginsenoside Rb1 (GRb1) as a potential antidepressant strategy. Hippocampal tissues from postmortem MDD patient brains and mice with chronic restraint stress (CRS)-induced depression were analyzed. Ferroptosis was evaluated by analyzing the levels of markers such as glutathione (GSH) and malondialdehyde (MDA). GRb1 was administered to CRS model mice by gavage to explore its effects on ferroptosis-related pathways. The results showed that FTO and BECN1 expression was reduced in the hippocampal tissues of MDD patients and CRS model mice, promoting ferroptosis via disruption of the antioxidant system. Moreover, GRb1 treatment increased FTO and BECN1 expression, modulated m6A methylation, restored the antioxidant balance, and inhibited ferroptosis in CRS model mice. These findings reveal a novel epigenetic mechanism of ferroptosis in MDD and highlight GRb1 as a promising agent for treating depression through the targeting of ferroptosis pathways.
Collapse
Affiliation(s)
- Kexin Meng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; (K.M.); (Z.L.); (Y.Y.); (E.Z.); (X.Y.); (P.M.)
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Zijing Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; (K.M.); (Z.L.); (Y.Y.); (E.Z.); (X.Y.); (P.M.)
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuesong Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; (K.M.); (Z.L.); (Y.Y.); (E.Z.); (X.Y.); (P.M.)
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Erning Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; (K.M.); (Z.L.); (Y.Y.); (E.Z.); (X.Y.); (P.M.)
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaolin Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; (K.M.); (Z.L.); (Y.Y.); (E.Z.); (X.Y.); (P.M.)
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Peixin Meng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; (K.M.); (Z.L.); (Y.Y.); (E.Z.); (X.Y.); (P.M.)
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jianbo Xiu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; (K.M.); (Z.L.); (Y.Y.); (E.Z.); (X.Y.); (P.M.)
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Beijing 100005, China
| |
Collapse
|
47
|
Jiao W, Lin J, Deng Y, Ji Y, Liang C, Wei S, Jing X, Yan F. The immunological perspective of major depressive disorder: unveiling the interactions between central and peripheral immune mechanisms. J Neuroinflammation 2025; 22:10. [PMID: 39828676 PMCID: PMC11743025 DOI: 10.1186/s12974-024-03312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Major depressive disorder is a prevalent mental disorder, yet its pathogenesis remains poorly understood. Accumulating evidence implicates dysregulated immune mechanisms as key contributors to depressive disorders. This review elucidates the complex interplay between peripheral and central immune components underlying depressive disorder pathology. Peripherally, systemic inflammation, gut immune dysregulation, and immune dysfunction in organs including gut, liver, spleen and adipose tissue influence brain function through neural and molecular pathways. Within the central nervous system, aberrant microglial and astrocytes activation, cytokine imbalances, and compromised blood-brain barrier integrity propagate neuroinflammation, disrupting neurotransmission, impairing neuroplasticity, and promoting neuronal injury. The crosstalk between peripheral and central immunity creates a vicious cycle exacerbating depressive neuropathology. Unraveling these multifaceted immune-mediated mechanisms provides insights into major depressive disorder's pathogenic basis and potential biomarkers and targets. Modulating both peripheral and central immune responses represent a promising multidimensional therapeutic strategy.
Collapse
Affiliation(s)
- Wenli Jiao
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Jiayi Lin
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Yanfang Deng
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yelin Ji
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Chuoyi Liang
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Sijia Wei
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Xi Jing
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Fengxia Yan
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
48
|
Kolesnikova TO, Prokhorenko NO, Amikishiev SV, Nikitin VS, Shevlyakov AD, Ikrin AN, Mukhamadeev RR, Buglinina AD, Apukhtin KV, Moskalenko AM, Ilyin NP, de Abreu MS, Demin KA, Kalueff AV. Differential effects of chronic unpredictable stress on behavioral and molecular (cortisol and microglia-related neurotranscriptomic) responses in adult leopard (leo) zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:30. [PMID: 39812898 DOI: 10.1007/s10695-024-01446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Stress plays a key role in mental, neurological, endocrine, and immune disorders. The zebrafish (Danio rerio) is rapidly gaining popularity as s model organism in stress physiology and neuroscience research. Although the leopard (leo) fish are a common outbred zebrafish strain, their behavioral phenotypes and stress responses remain poorly characterized. Here, we examined the effects of a 5-week chronic unpredictable stress (CUS) exposure on adult leo zebrafish behavior, cortisol levels, and brain gene expression. Compared to their unstressed control leo counterparts, CUS-exposed fish showed paradoxically lower anxiety-like, but higher whole-body cortisol levels and altered expression of multiple pro- and anti-inflammatory brain genes. Taken together, these findings suggest that behavioral and physiological (endocrine and genomic) responses to CUS do differ across zebrafish strains. These findings add further complexity to systemic effects of chronic stress in vivo and also underscore the importance of considering the genetic background of zebrafish in stress research.
Collapse
Affiliation(s)
| | - Nikita O Prokhorenko
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Sahil V Amikishiev
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Vadim S Nikitin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Anton D Shevlyakov
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Aleksey N Ikrin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - Radmir R Mukhamadeev
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | | | - Kirill V Apukhtin
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | | | - Nikita P Ilyin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Western Caspian University, Baku, Azerbaijan.
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
49
|
Zeeshan HM, Sultana A, Bin Heyat MB, Akhtar F, Parveen S, Bin Hayat MA, Sayeed E, Sayed Abdelgeliel A, Muaad AY. A machine learning-based analysis for the effectiveness of online teaching and learning in Pakistan during COVID-19 lockdown. Work 2025:10519815241308161. [PMID: 39973628 DOI: 10.1177/10519815241308161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has significantly disrupted daily life and education, prompting institutions to adopt online teaching. OBJECTIVE This study delves into the effectiveness of these methods during the lockdown in Pakistan, employing machine learning techniques for data analysis. METHODS A cross-sectional online survey was conducted with 300 respondents using a semi-structured questionnaire to assess perceptions of online education. Artificial intelligence methods analyzed the specificity, sensitivity, accuracy, and precision of the collected data. RESULTS Among participants, 42.3% expressed satisfaction with online learning, while 49.3% preferred using Zoom. Convenience was noted with 72% favoring classes between 8 AM and 12 PM. The survey revealed 87.33% felt placement activities were negatively impacted, and 85% reported effects on individual growth. Additionally, 90.33% stated that online learning disrupted their routines, with 84.66% citing adverse effects on physical health. The Decision Tree classifier achieved the highest accuracy at 86%. Overall, preferences leaned toward traditional in-person teaching despite satisfaction with online methods. CONCLUSIONS The study highlights the significant challenges in transitioning to online education, emphasizing disruptions to daily routines and overall well-being. Notably, age and gender did not significantly influence perceptions of growth or health. Finally, collaborative efforts among educators, policymakers, and stakeholders are crucial for ensuring equitable access to quality education in future crises.
Collapse
Affiliation(s)
- Hafiz Muhammad Zeeshan
- Department of Computer Science, National College of Business Administration & Economics, Lahore, Pakistan
- Department of Computer Science, Superior University, Lahore, Pakistan
| | - Arshiya Sultana
- Department of Ilmul Qabalat wa Amraze Niswan, National Institute of Unani Medicine, Bengaluru, India
| | - Md Belal Bin Heyat
- CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Hangzhou, China
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Saba Parveen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Mohd Ammar Bin Hayat
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Eram Sayeed
- Triveni Rai Kisan Mahila Mahavidyalaya, D.D.U. Gorakhpur University, Kushinagar, India
| | | | | |
Collapse
|
50
|
Kishi T, Kobayashi K, Sasagawa K, Sakimura K, Minato T, Kida M, Hata T, Kitagawa Y, Okuma C, Murata T. Automated analysis of a novel object recognition test in mice using image processing and machine learning. Behav Brain Res 2025; 476:115278. [PMID: 39357746 DOI: 10.1016/j.bbr.2024.115278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The novel object recognition test (NORT) is one of the most commonly employed behavioral tests in experimental animals designed to evaluate an animal's interest in and recognition of novelty. However, manual procedures, which rely on researchers' observations, prevent high throughput analysis. In this study, we developed an automated analysis method for NORT utilizing machine learning-assisted exploratory behavior detection. We recorded the exploratory behavior of the mice using a video camera. The coordinates of the mouse nose and tail base in recorded video files were detected using a pre-trained machine learning model, DeepLabCut. Each video was then segmented into frame images, which were categorized into "exploratory," or "non-exploratory" frames based on manual observation. Mouse feature vectors were calculated as vectors from the nose to the vertices of the object and were utilized for SVM training. The trained SVM effectively detected exploratory behaviors, showing a strong correlation with human observer assessments. Upon application to NORT, the duration of mouse exploratory behavior towards objects predicted by the SVM exhibited a significant correlation with the assessments made by human observers. The novelty discrimination index derived from the SVM predictions also aligned well with that from human observations.
Collapse
Affiliation(s)
- Takuya Kishi
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Kobayashi
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Sasagawa
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Katsuya Sakimura
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Takashi Minato
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Misato Kida
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Hata
- Innovation to implementation Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Yoshihiro Kitagawa
- Research Planning, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Chihiro Okuma
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Takahisa Murata
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|