1
|
Nayan NM, Husin A, Siran R. The risk of prenatal bisphenol A exposure in early life neurodevelopment: Insights from epigenetic regulation. Early Hum Dev 2024; 198:106120. [PMID: 39293157 DOI: 10.1016/j.earlhumdev.2024.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Bisphenols are mainly used as protective coatings for plastics and resin-based materials in various consumer products. Industrial producers have a high demand for bisphenol A (BPA) among all bisphenol substitutes for various consumer products. However, according to reports, prolonged exposure to BPA can cause multiple health issues, including neurodevelopmental disorders in young children. BPA exposure during pregnancy has been considered as the primary cause of increasing the risk of neurological disorders in children as their neural systems are designed to respond to any environmental changes during prenatal life. Recently, there has been an increased focus on the effects of prenatal exposure to BPA, as it has been found to alter gene expression related to epigenetic mechanisms like DNA methylation, histone modification, and microRNA expression. Based on the evidence, frequent interactions can lead to inherited changes in an individual's neural profile. In this review, we delve into the current knowledge regarding the toxicity mechanism of BPA for expecting mothers. Next, we will discuss the possible action of BPA on the epigenetic mechanism during brain development. This is especially important to portray an overview on the role of epigenetic modification caused by prenatal BPA exposure and next, give future directions for improving human health risk assessment caused by BPA exposure.
Collapse
Affiliation(s)
- Norazirah Mat Nayan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Malaysia; Institute of Medical Molecular and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Andrean Husin
- Faculty of Dentistry, Universiti Teknologi MARA, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Malaysia
| | - Rosfaiizah Siran
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Malaysia.
| |
Collapse
|
2
|
Kanlayaprasit S, Saeliw T, Thongkorn S, Panjabud P, Kasitipradit K, Lertpeerapan P, Songsritaya K, Yuwattana W, Jantheang T, Jindatip D, Hu VW, Kikkawa T, Osumi N, Sarachana T. Sex-specific impacts of prenatal bisphenol A exposure on genes associated with cortical development, social behaviors, and autism in the offspring's prefrontal cortex. Biol Sex Differ 2024; 15:40. [PMID: 38750585 PMCID: PMC11094985 DOI: 10.1186/s13293-024-00614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Recent studies have shown that prenatal BPA exposure altered the transcriptome profiles of autism-related genes in the offspring's hippocampus, disrupting hippocampal neuritogenesis and causing male-specific deficits in learning. However, the sex differences in the effects of prenatal BPA exposure on the developing prefrontal cortex, which is another brain region highly implicated in autism spectrum disorder (ASD), have not been investigated. METHODS We obtained transcriptome data from RNA sequencing analysis of the prefrontal cortex of male and female rat pups prenatally exposed to BPA or control and reanalyzed. BPA-responsive genes associated with cortical development and social behaviors were selected for confirmation by qRT-PCR analysis. Neuritogenesis of primary cells from the prefrontal cortex of pups prenatally exposed to BPA or control was examined. The social behaviors of the pups were assessed using the two-trial and three-chamber tests. The male-specific impact of the downregulation of a selected BPA-responsive gene (i.e., Sema5a) on cortical development in vivo was interrogated using siRNA-mediated knockdown by an in utero electroporation technique. RESULTS Genes disrupted by prenatal BPA exposure were associated with ASD and showed sex-specific dysregulation. Sema5a and Slc9a9, which were involved in neuritogenesis and social behaviors, were downregulated only in males, while Anxa2 and Junb, which were also linked to neuritogenesis and social behaviors, were suppressed only in females. Neuritogenesis was increased in males and showed a strong inverse correlation with Sema5a and Slc9a9 expression levels, whereas, in the females, neuritogenesis was decreased and correlated with Anxa2 and Junb levels. The siRNA-mediated knockdown of Sema5a in males also impaired cortical development in utero. Consistent with Anxa2 and Junb downregulations, deficits in social novelty were observed only in female offspring but not in males. CONCLUSION This is the first study to show that prenatal BPA exposure dysregulated the expression of ASD-related genes and functions, including cortical neuritogenesis and development and social behaviors, in a sex-dependent manner. Our findings suggest that, besides the hippocampus, BPA could also exert its adverse effects through sex-specific molecular mechanisms in the offspring's prefrontal cortex, which in turn would lead to sex differences in ASD-related neuropathology and clinical manifestations, which deserves further investigation.
Collapse
Grants
- NRU59-031-HR National Research University Project, Office of Higher Education Commission
- HEA663700091 Thailand Science Research and Innovation Fund Chulalongkorn University
- GRU 6300437001-1 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- GRU_64_033_37_004 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- GRU 6506537004-1 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand
- the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand
- the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand
- the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand
- PHD/0029/2561 a Royal Golden Jubilee Ph.D. Programme Scholarship, the Thailand Research Fund and National Research Council of Thailand
- N41A650065 a Royal Golden Jubilee Ph.D. Programme Scholarship, the Thailand Research Fund and National Research Council of Thailand
- NRCT5-RGJ63001-018 a Royal Golden Jubilee Ph.D. Programme Scholarship, the Thailand Research Fund and National Research Council of Thailand
- GCUGR1125632108D-108 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125632109D-109 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125651062D-062 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125651060D-060 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- Scholarship from the Graduate School Chulalongkorn University to commemorate the 72nd anniversary of His Majesty King Bhumibala Aduladeja Scholarship from the Graduate School Chulalongkorn University to commemorate the 72nd anniversary of His Majesty King Bhumibala Aduladeja
- Chulalongkorn University Laboratory Animal Center (CULAC) Grant Chulalongkorn University Laboratory Animal Center (CULAC) Grant
- PMU-B; B36G660008 Program Management Unit for Human Resources and Institutional Development, Research and Innovation
- CE66_046_3700_003 Ratchadapisek Somphot Fund for Supporting Center of Excellence, Chulalongkorn University
- The National Research Council of Thailand (NRCT) fund for research and innovation activity
Collapse
Affiliation(s)
- Songphon Kanlayaprasit
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand
| | - Thanit Saeliw
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand
| | - Surangrat Thongkorn
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pawinee Panjabud
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kasidit Kasitipradit
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kwanjira Songsritaya
- The M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wasana Yuwattana
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanawin Jantheang
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Depicha Jindatip
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Centers for Advanced Research and Translational Medicine (ART), Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Centers for Advanced Research and Translational Medicine (ART), Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Tewarit Sarachana
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand.
| |
Collapse
|
3
|
Sendra M, Cavia-Saiz M, Múñiz P. Are the BPA analogues an alternative to classical BPA? Comparison between 2D and alternative 3D in vitro neuron model to assess cytotoxic and genotoxic effects. Toxicology 2024; 502:153715. [PMID: 38211720 DOI: 10.1016/j.tox.2023.153715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
BPA is used in a wide range of consumer products with very concern toxicological properties. The European Union has restricted its use to protect human health. Industry has substituted BPA by BPA analogues. However, there is a lack of knowledge about their impacts. In this work, BPA and 5 BPA analogues (BPS, BPAP, BPAF, BPFL and BPC) have been studied in classical SH-SY5Y and the alternative 3D in vitro models after 24 and 96 h of exposure. Cell viability, percentage of ROS, cell cycle phases as well as the morphology of the spheroids were measured. The 2D model was more sensitive than the 3D models with differences in cell viability higher than 60% after 24 h of exposure, and different mechanisms of ROS production. After chronic exposure, both models were more affected in comparison to the 24 h exposure. After a recovery time (96 h), the spheroids exposed to 2.5-40 µM were able to recover cell viability and the morphology. Among the BPs tested, BPFL>BPAF>BPAP and >BPC revealed higher toxicological effects, while BPS was the only one with lower effects than BPA. To conclude, the SH-SY5Y 3D model is a suitable candidate to perform more reliable in vitro neurotoxicity tests.
Collapse
Affiliation(s)
- Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain; International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), R&D Center, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Mónica Cavia-Saiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain
| | - Pilar Múñiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain
| |
Collapse
|
4
|
Li D, Ai S, Huang C, Liu ZH, Wang HL. Icariin rescues developmental BPA exposure induced spatial memory deficits in rats. Toxicol Appl Pharmacol 2024; 482:116776. [PMID: 38043803 DOI: 10.1016/j.taap.2023.116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Bisphenol A (BPA) has been implicated in cognitive impairment. Icariin is the main active ingredient extracted from Epimedium Herb with protective function of nervous system. However, the potential therapeutic effects of Icariin on spatial memory deficits induced by developmental BPA exposure in Sprague-Dawley rats have not been investigated. This study investigated the therapeutic effect of Icariin (10 mg/kg/day, from postnatal day (PND) 21 to PND 60 by gavage) on spatial memory deficits in rat induced by developmental BPA exposure (1 mg/kg/day, from embryonic to PND 60), demonstrating that Icariin can markedly improve spatial memory in BPA-exposed rat. Furthermore, intra-gastric administration of Icariin could attenuate abnormal hippocampal cell dispersion and loss, improved the dendritic spine density and Nissl bodies. Moreover, Icariin reversed BPA induced reduction of frequency of miniature excitatory postsynaptic currents(mEPSC) and decrease of Vesicular glutamate transporter 1(VGlut1). Collectively, Icariin could effectively rescue BPA-induced spatial memory impairment in male rats by preventing cell loss and reduction of dendritic spines in the hippocampus. In addition, we also found that VGlut1 is a critical target in the repair of BPA-induced spatial memory by Icariin. Thus, Icariin may be a promising therapeutic agent to attenuate BPA-induced spatial memory deficits.
Collapse
Affiliation(s)
- Danyang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Shu Ai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Chengqing Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| |
Collapse
|
5
|
Park JE, Lee SG, Lee SJ, Yu WJ, Kim JM. Downregulation of the Expression of Steroidogenic Acute Regulatory Protein and Aromatase in Steroidogenic KGN Human Granulosa Cells after Exposure to Bisphenol A. Dev Reprod 2023; 27:185-193. [PMID: 38292236 PMCID: PMC10824569 DOI: 10.12717/dr.2023.27.4.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 11/24/2023] [Indexed: 02/01/2024]
Abstract
Although increasing evidence of cause-and-effect relationship between BPA exposure and female reproductive disorders have been suggested through many studies, the precise biochemical and molecular mechanism(s) by which BPA interferes with steroidogenesis in the ovarian cells still remain unclear. Therefore, the purpose of this study was to discover the steroidogenic biomarker(s) associated with BPA treatment in human granulosa cell line, KGN. In this study, our results obtained via the analysis of steroidogenesis-related protein expression in KGN cells using quantitative polymerase chain reaction (qPCR) and western blot analyses revealed that the expression levels of steroidogenic acute regulatory (StAR) and aromatase decreased considerably and gradually after BPA treatment in a dose-dependent manner under BPA treatment. Further, remarkable decreases in their expression levels at the cellular levels were also confirmed via immunocytochemistry, and subsequent StAR and aromatase mRNA expression levels showed profiles similar to those observed for their proteins, i.e., both StAR and aromatase mRNA expression levels were significantly decreased under BPA treatment at concentrations ≥0.1 μM. We observed that follicle stimulating hormone upregulated StAR and aromatase protein expression levels; however, this effect was suppressed in the presence of BPA. Regarding the steroidogenic effects of BPA on KGN cells, controversies remain regarding the ultimate outcomes. Nevertheless, we believe that the results here presented imply that KGN cells have a good cellular and steroidogenic machinery for evaluating endocrine disruption. Therefore, StAR and aromatase could be stable and sensitive biomarkers in KGN cells for the cellular screening of the potential risk posed by exogenous and environmental chemicals to female reproductive (endocrine) function.
Collapse
Affiliation(s)
- Ji-Eun Park
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea
| | - Seung Gee Lee
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology
Research Group, Korea Institute of Toxicology,
Daejeon 34114, Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology
Research Group, Korea Institute of Toxicology,
Daejeon 34114, Korea
| | - Jong-Min Kim
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea
| |
Collapse
|
6
|
Lee SG, Park JE, Cheon YP, Kim JM. Gestational Exposure to Bisphenol A Causes DNA Hypomethylation and the Upregulation of Progesterone Receptor Expression in the Uterus in Adult Female Offspring Rats. Dev Reprod 2023; 27:195-203. [PMID: 38292232 PMCID: PMC10824565 DOI: 10.12717/dr.2023.27.4.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2024]
Abstract
Exposure to environmental chemicals, including endocrine-disrupting chemicals, during the gestational period can have profound adverse effects on several organs in offspring. Bisphenol A (BPA) can infiltrate the human body through food and drinks, and its metabolites can cross both the placental and the blood-brain barriers. In this study, we investigate the effect of gestational exposure to BPA on epigenetic, biochemical, and histological modifications in the uterine tissues of F1 adult offspring rats. Pregnant rats were exposed to BPA from gestational day 8-15, and changes in global DNA methylation in uterine tissues obtained from adult offspring born to the exposed mothers were analyzed. Global DNA methylation analysis revealed that gestational exposure to BPA resulted in DNA hypomethylation in the uterus. Progesterone receptor (PR) protein expression in uterine tissues was monitored using western blot analysis, which revealed that the PR protein content was considerably higher in all BPA-exposed groups than in the control. Immunohistochemical examination for the PR revealed that intense PR-positive cells were more frequently observed in the BPA-exposed group than in the control group. To date, the evidence that the upregulation of PRs observed in the present study was caused by the non-methylation of specific PR promoter regions is lacking. Conclusively, these results indicate that exposure to BPA during gestation induces epigenetic alterations in the uteri of adult female offspring. We speculate that the global DNA hypomethylation and upregulation of the PR observed simultaneously in this study might be associated with the uterus.
Collapse
Affiliation(s)
- Seung Gee Lee
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea
| | - Ji-Eun Park
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and
Physiology, Department of Biotechnology, Sungshin University,
Seoul 02844, Korea
| | - Jong-Min Kim
- Department of Anatomy and Cell Biology,
College of Medicine, Dong-A University, Busan
49201, Korea
| |
Collapse
|
7
|
Li D, Huang C, Liu Z, Ai S, Wang HL. Decreased expression of Chrna4 by METTL3-mediated m6A modification participates in BPA-induced spatial memory deficit. ENVIRONMENTAL RESEARCH 2023; 236:116717. [PMID: 37495067 DOI: 10.1016/j.envres.2023.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Bisphenol A (BPA), a widely used endocrine disruptor, has been implicated in cognitive impairment via epigenetic machinery. N6-methyl adenosine (m6A) has recently emerged as a new epigenetic factor that influences cognition, but the role of m6A in BPA induced cognitive deficits has not been explored yet. In this study, we found increased global m6A abundance accompanied with elevated expression of methyltransferase-like 3 (METTL3) in hippocampal neurons following BPA exposure. Inhibition of METTL3 activity by selective METTL3 inhibitor 2457 (STM) in cultured neurons abolished BPA induced m6A upregulation and abnormal synaptic transmission. Additionally, knockdown of METTL3 in hippocampus abrogated BPA induced learning and memory deficit in rats. Further study showed that m6A modification was enriched in mRNA of cholinergic receptor nicotinic alpha 4 subunit (Chrna4). Inhibition of METTL3 either by STM or shRNA restored BPA induced downregulation of Chrna4, suggesting that Chrna4 may be a potential target involved in BPA induced neurotoxicity that modified by m6A. Collectively, our findings demonstrated that METTL3 mediated m6A modification was involved in BPA induced cognitive deficit with Chrna4 as a potential target, which enriched our understanding of the role of epigenetics (RNA modifications) in BPA induced neurotoxicity and provided new insights into BPA or its substitutes induced damages in other organs.
Collapse
Affiliation(s)
- Danyang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chengqing Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhihua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shu Ai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
8
|
Meng L, Gui S, Ouyang Z, Wu Y, Zhuang Y, Pang Q, Fan R. Low-dose bisphenols exposure sex-specifically induces neurodevelopmental toxicity in juvenile rats and the antagonism of EGCG. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132074. [PMID: 37473573 DOI: 10.1016/j.jhazmat.2023.132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Bisphenols (BPs) can negatively affect neurobehaviors in rats, whereas the mechanism remains unclear. Here, the mechanism of BPs-induced neurodevelopmental toxicity and its effective detoxification measures were investigated in vitro and in vivo. In in vitro experiments, primary hippocampal neurons from neonatal rats of different genders were treated with bisphenol A (BPA), bisphenol S (BPS) and bisphenol B (BPB) at 1 nM-100 μM, epigallocatechin gallate (EGCG) and G15, an antagonist of G protein-coupled estrogen receptor (GPER) for 7 d. Results indicated that BPs affected neuronal morphogenesis, impaired GABA synthesis and Glu/GABA homeostasis. Neuronal morphogenetic damage induced by low-doses BPA may be mediated by GPER. Neurotoxicity of BPS is weaker than BPA and BPB. In in vivo studies, exposure to BPA (0.5 μg/kg·bw/day) on PND 10-40 caused oxidative stress and inflammation in rat hippocampus, disrupted neuronal morphogenesis and neurotransmitter homeostasis, ultimately impaired spatial memory of rats. Males are more sensitive to BPA exposure than females. Both in vivo and in vitro studies indicated that EGCG, a phytoestrogen, can alleviate BPA-induced neurotoxicity. Taken together, low-doses BPA exposure sex-specifically disrupted neurodevelopment and further impaired learning and memory ability in rats, which may be mediated by GPER. Promisingly, EGCG effectively mitigated the BPA-induced neurodevelopmental toxicity.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiheng Gui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yajuan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Youling Zhuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
9
|
Shi Y, Wang H, Zhu Z, Ye Q, Lin F, Cai G. Association between exposure to phenols and parabens and cognitive function in older adults in the United States: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160129. [PMID: 36370798 DOI: 10.1016/j.scitotenv.2022.160129] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND People are commonly exposed to mixtures of parabens and phenols. Most studies investigating such exposure and cognitive performance tend to assess only single chemicals, and the tools used to assess cognitive function are not uniform. OBJECTIVE This study aimed to examine the association between multiple parabens and phenols and cognitive function in older Americans. METHODS The study included data of older Americans from two cycles of the NHANES survey. Participants were divided into normal cognitive performance and low cognitive performance groups based on the scores of four cognitive tests: the Immediate Recall test (IRT), the Delayed Recall test (DRT), the Animal Fluency test (AFT) and the Digit Symbol Substitution test (DSST). Generalized linear regression models (GLMs), restricted cubic spline (RCS), weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) were used to assess relationships between chemical exposure and cognitive performance. RESULTS In this cross-sectional study, a total of 961 participants, 470 males and 491 females, were included. GLMs revealed positive association between high levels of bisphenol A (BPA) and low cognitive performance on DRT, especially in male (OR (95%CI): 2.25 (1.10-4.61)), and this association was consistent with WQS and BKMR. In female participants, the third quartile of BPA exposure showed a positive association with low cognition on IRT and global cognition. GLMs also showed that high levels of propylparaben were positively associated with cognitive performance on the IRT in male participants (OR (95%CI): 0.37 (0.18-0.76)). In BKMR, an overall positive correlation between the mixture and low cognition as measured with DRT was observed in male subjects when the mixture was at the 65th percentile or higher. CONCLUSION Exposure to a mixture of parabens and phenols was positively associated with low cognitive performance on DRT in older male subjects, while BPA was the main driver of this outcome.
Collapse
Affiliation(s)
- Yisen Shi
- Fujian Medical University, Fuzhou 35001, China; Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 35001, China
| | | | - Zhibao Zhu
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350005, Fujian, China
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 35001, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 35001, China.
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 35001, China.
| |
Collapse
|
10
|
Barra NG, Kwon YH, Morrison KM, Steinberg GR, Wade MG, Khan WI, Vijayan MM, Schertzer JD, Holloway AC. Increased gut serotonin production in response to bisphenol A structural analogs may contribute to their obesogenic effects. Am J Physiol Endocrinol Metab 2022; 323:E80-E091. [PMID: 35575233 DOI: 10.1152/ajpendo.00049.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesogens are synthetic, environmental chemicals that can disrupt endocrine control of metabolism and contribute to the risk of obesity and metabolic disease. Bisphenol A (BPA) is one of the most studied obesogens. There is considerable evidence that BPA exposure is associated with weight gain, increased adiposity, poor blood glucose control, and nonalcoholic fatty liver disease in animal models and human populations. Increased usage of structural analogs of BPA has occurred in response to legislation banning their use in some commercial products. However, BPA analogs may also cause some of the same metabolic impairments because of common mechanisms of action. One key effector that is altered by BPA and its analogs is serotonin, however, it is unknown if BPA-induced changes in peripheral serotonin pathways underlie metabolic perturbations seen with BPA exposure. Upon ingestion, BPA and its analogs act as endocrine-disrupting chemicals in the gastrointestinal tract to influence serotonin production by the gut, where over 95% of serotonin is produced. The purpose of this review is to evaluate how BPA and its analogs alter gut serotonin regulation and then discuss how disruption of serotonergic networks influences host metabolism. We also provide evidence that BPA and its analogs enhance serotonin production in gut enterochromaffin cells. Taken together, we propose that BPA and many BPA analogs represent endocrine-disrupting chemicals that can influence host metabolism through the endogenous production of gut-derived factors, such as serotonin.
Collapse
Affiliation(s)
- Nicole G Barra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Alison C Holloway
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Seiner A, Burla GKR, Shrestha D, Bowen M, Horvath JD, Martin BA. Investigation of Human Intrathecal Solute Transport Dynamics Using a Novel in vitro Cerebrospinal Fluid System Analog. FRONTIERS IN NEUROIMAGING 2022; 1:879098. [PMID: 37555174 PMCID: PMC10406265 DOI: 10.3389/fnimg.2022.879098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/24/2022] [Indexed: 08/10/2023]
Abstract
BACKGROUND Understanding the relationship between cerebrospinal fluid (CSF) dynamics and intrathecal drug delivery (ITDD) injection parameters is essential to improve treatment of central nervous system (CNS) disorders. METHODS An anatomically detailed in vitro model of the complete CSF system was constructed. Patient-specific cardiac- and respiratory-induced CSF oscillations were input to the model in the subarachnoid space and within the ventricles. CSF production was input at the lateral ventricles and CSF absorption at the superior sagittal sinus. A model small molecule simulated drug product containing fluorescein was imaged within the system over a period of 3-h post-lumbar ITDD injections and used to quantify the impact of (a) bolus injection volume and rate, (b) post-injection flush volume, rate, and timing, (c) injection location, and (d) type of injection device. For each experiment, neuraxial distribution of fluorescein in terms of spatial temporal concentration, area-under-the-curve (AUC), and percent of injected dose (%ID) to the brain was quantified at a time point 3-h post-injection. RESULTS For all experiments conducted with ITDD administration in the lumbar spine, %ID to the brain did not exceed 11.6% at a time point 3-h post-injection. Addition of a 12 mL flush slightly increased solute transport to the brain up to +3.9%ID compared to without a flush (p < 0.01). Implantation of a lumbar catheter with the tip at an equivalent location to the lumbar placed needle, but with rostral tip orientation, resulted in a small improvement of 1.5%ID to the brain (p < 0.05). An increase of bolus volume from 5 to 20 mL improved solute transport to the brain from 5.0 to 6.3%ID, but this improvement was not statistically significant. Increasing bolus injection rate from 5 to 13.3 mL/min lacked improvement of solute transport to the brain, with a value of 6.3 compared to 5.7%ID. CONCLUSION The in vitro modeling approach allowed precisely controlled and repeatable parametric investigation of ITDD injection protocols and devices. In combination, the results predict that parametric changes in lumbar spine ITDD-injection related parameters and devices can alter %ID to the brain and be tuned to optimize therapeutic benefit to CNS targets.
Collapse
Affiliation(s)
- Akari Seiner
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States
| | | | - Dev Shrestha
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States
| | - Mayumi Bowen
- Genentech, Inc., A Member of the Roche Group, South San Francisco, CA, United States
| | - Joshua D. Horvath
- Genentech, Inc., A Member of the Roche Group, South San Francisco, CA, United States
| | - Bryn A. Martin
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States
- Alcyone Therapeutics Inc., Lowell, MA, United States
| |
Collapse
|
12
|
Silibinin and Naringenin against Bisphenol A-Induced Neurotoxicity in Zebrafish Model-Potential Flavonoid Molecules for New Drug Design, Development, and Therapy for Neurological Disorders. Molecules 2022; 27:molecules27082572. [PMID: 35458770 PMCID: PMC9025613 DOI: 10.3390/molecules27082572] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Bisphenol A (BPA), a well-known xenoestrogen, is commonly utilised in the production of polycarbonate plastics. Based on the existing evidence, BPA is known to induce neurotoxicity and behavioural issues. Flavonoids such as silibinin and naringenin have been shown to have biological activity against a variety of illnesses. The current research evaluates the neuropharmacological effects of silibinin and naringenin in a zebrafish model against neurotoxicity and oxidative stress caused by Bisphenol A. In this study, a novel tank diving test (NTDT) and light−dark preference test (LDPT) were used in neurobehavioural investigations. The experimental protocol was planned to last 21 days. The neuroprotective effects of silibinin (10 μM) and naringenin (10 μM) in zebrafish (Danio rerio) induced by BPA (17.52 μM) were investigated. In the brine shrimp lethality assay, the 50% fatal concentrations (LC50) were 34.10 μg/mL (silibinin) and 91.33 μg/mL (naringenin) compared to the standard potassium dichromate (13.15 μg/mL). The acute toxicity investigation found no mortality or visible abnormalities in the silibinin- and naringenin-treated groups (LC50 > 100 mg/L). The altered scototaxis behaviour in LDPT caused by BPA was reversed by co-supplementation with silibinin and naringenin, as shown by decreases in the number of transitions to the light zone and the duration spent in the light zone. Our findings point to BPA’s neurotoxic potential in causing altered scototaxis and bottom-dwelling behaviour in zebrafish, as well as the usage of silibinin and naringenin as potential neuroprotectants.
Collapse
|
13
|
Hameedat F, Hawamdeh S, Alnabulsi S, Zayed A. High Performance Liquid Chromatography (HPLC) with Fluorescence Detection for Quantification of Steroids in Clinical, Pharmaceutical, and Environmental Samples: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061807. [PMID: 35335170 PMCID: PMC8949805 DOI: 10.3390/molecules27061807] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
Steroids are compounds widely available in nature and synthesized for therapeutic and medical purposes. Although several analytical techniques are available for the quantification of steroids, their analysis is challenging due to their low levels and complex matrices of the samples. The efficiency and quick separation of the HPLC combined with the sensitivity, selectivity, simplicity, and cost-efficiency of fluorescence, make HPLC coupled to fluorescence detection (HPLC-FLD) an ideal tool for routine measurement and detection of steroids. In this review, we covered HPLC-FLD methods reported in the literature for the steroids quantification in clinical, pharmaceutical, and environmental applications, focusing on the various approaches of fluorescent derivatization. The aspects related to analytical methodology including sample preparation, derivatization reagents, and chromatographic conditions will be discussed.
Collapse
Affiliation(s)
- Fatima Hameedat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (F.H.); (S.A.)
| | - Sahar Hawamdeh
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Soraya Alnabulsi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (F.H.); (S.A.)
| | - Aref Zayed
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; (F.H.); (S.A.)
- Correspondence: ; Tel.: +962-2-720-1000 (ext. 23240); Fax: +962-2-720-1075
| |
Collapse
|
14
|
Welch C, Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. Int J Mol Sci 2022; 23:2894. [PMID: 35270035 PMCID: PMC8910940 DOI: 10.3390/ijms23052894] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Substantial evidence indicates that bisphenol A (BPA), a ubiquitous environmental chemical used in the synthesis of polycarbonate plastics and epoxy resins, can impair brain development. Clinical and epidemiological studies exploring potential connections between BPA and neurodevelopmental disorders in humans have repeatedly identified correlations between early BPA exposure and developmental disorders, such as attention deficit/hyperactivity disorder and autism spectrum disorder. Investigations using invertebrate and vertebrate animal models have revealed that developmental exposure to BPA can impair multiple aspects of neuronal development, including neural stem cell proliferation and differentiation, synapse formation, and synaptic plasticity-neuronal phenotypes that are thought to underpin the fundamental changes in behavior-associated neurodevelopmental disorders. Consistent with neuronal phenotypes caused by BPA, behavioral analyses of BPA-treated animals have shown significant impacts on behavioral endophenotypes related to neurodevelopmental disorders, including altered locomotor activity, learning and memory deficits, and anxiety-like behavior. To contextualize the correlations between BPA and neurodevelopmental disorders in humans, this review summarizes the current literature on the developmental neurotoxicity of BPA in laboratory animals with an emphasis on neuronal phenotypes, molecular mechanisms, and behavioral outcomes. The collective works described here predominantly support the notion that gestational exposure to BPA should be regarded as a risk factor for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chloe Welch
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA;
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| |
Collapse
|
15
|
Yang Q, Mao Y, Wang J, Yu H, Zhang X, Pei X, Duan Z, Xiao C, Ma M. Gestational bisphenol A exposure impairs hepatic lipid metabolism by altering mTOR/CRTC2/SREBP1 in male rat offspring. Hum Exp Toxicol 2022; 41:9603271221129852. [PMID: 36137816 DOI: 10.1177/09603271221129852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid metabolism is an important biochemical process in the body. Recent studies have found that environmental endocrine disruptors play an important role in the regulation of lipid metabolism. Bisphenol A (BPA), a common environmental endocrine disruptor, has adverse effects on lipid metabolism, but the mechanism is still unclear. This study aimed to investigate the effects of gestational BPA exposure on hepatic lipid metabolism and its possible mechanism in male offspring. The pregnant Sprague-Dawley rats were exposed to BPA (0, 0.05, 0.5, 5 mg/kg/day) from day 5 to day 19 of gestation to investigate the levels of triglyceride (TG) and total cholesterol (TC), and the expression of liver lipid metabolism-related genes in male offspring rats. The results showed that compared with the control group, the TG and TC levels in serum and liver in BPA-exposed groups was increased. And the expressions of liver fatty acid oxidation related genes, such as peroxisome proliferators-activated receptor α (PPARα) and carnitine palmitoyl transferase 1α (CPT1α), were down-regulated. However, the expressions of fatty acid synthesis related genes, such as sterol regulatory element binding proteins 1 (SREBP-1), acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD-1), were up-regulated. The increased protein levels of mTOR and p-CRTC2 suggested that CREB-regulated transcription coactivator 2 (CRTC2) might be an important mediator in the mTOR/SREBP-1 pathway. In conclusion, these results demonstrated that mTOR/CRTC2/SREBP-1 could be affected by gestational BPA exposure, which may involve in the lipid metabolic disorders in later life.
Collapse
Affiliation(s)
- Q Yang
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - Y Mao
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - J Wang
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - H Yu
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - X Zhang
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - X Pei
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - Z Duan
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China
| | - C Xiao
- Department of Key Laboratory of Environmental Pollution and Microecology, 70577Shenyang Medical College, Shenyang, China
| | - M Ma
- Department of Toxicology, School of Public Heath, 70577Shenyang Medical College, Shenyang, China.,Department of Key Laboratory of Environmental Pollution and Microecology, 70577Shenyang Medical College, Shenyang, China
| |
Collapse
|
16
|
Kanlayaprasit S, Thongkorn S, Panjabud P, Jindatip D, Hu VW, Kikkawa T, Osumi N, Sarachana T. Autism-Related Transcription Factors Underlying the Sex-Specific Effects of Prenatal Bisphenol A Exposure on Transcriptome-Interactome Profiles in the Offspring Prefrontal Cortex. Int J Mol Sci 2021; 22:13201. [PMID: 34947998 PMCID: PMC8708761 DOI: 10.3390/ijms222413201] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is an environmental risk factor for autism spectrum disorder (ASD). BPA exposure dysregulates ASD-related genes in the hippocampus and neurological functions of offspring. However, whether prenatal BPA exposure has an impact on genes in the prefrontal cortex, another brain region highly implicated in ASD, and through what mechanisms have not been investigated. Here, we demonstrated that prenatal BPA exposure disrupts the transcriptome-interactome profiles of the prefrontal cortex of neonatal rats. Interestingly, the list of BPA-responsive genes was significantly enriched with known ASD candidate genes, as well as genes that were dysregulated in the postmortem brain tissues of ASD cases from multiple independent studies. Moreover, several differentially expressed genes in the offspring's prefrontal cortex were the targets of ASD-related transcription factors, including AR, ESR1, and RORA. The hypergeometric distribution analysis revealed that BPA may regulate the expression of such genes through these transcription factors in a sex-dependent manner. The molecular docking analysis of BPA and ASD-related transcription factors revealed novel potential targets of BPA, including RORA, SOX5, TCF4, and YY1. Our findings indicated that prenatal BPA exposure disrupts ASD-related genes in the offspring's prefrontal cortex and may increase the risk of ASD through sex-dependent molecular mechanisms, which should be investigated further.
Collapse
Grants
- FRB65_hea(80)_175_37_05 Fundamental Fund, Chulalongkorn University
- AHS-CU 61004 Faculty of Allied Health Sciences Research Fund, Chulalongkorn University
- GRU 6300437001-1 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- GRU_64_033_37_004 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship, Graduate School, Chulalongkorn University
- The Overseas Research Experience Scholarship for Graduate Students from Graduate School, Chulalongkorn University
- PHD/0029/2561 The Royal Golden Jubilee Ph.D. Programme Scholarship, Thailand Research Fund and National Research Council of Thailand
- National Research Council of Thailand (NRCT)
- GCUGR1125623067D-67 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125632108D-108 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- 2073011 Chulalongkorn University Laboratory Animal Center (CULAC) Grant
Collapse
Affiliation(s)
- Songphon Kanlayaprasit
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Surangrat Thongkorn
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Pawinee Panjabud
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Depicha Jindatip
- Systems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Valerie W. Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai 980-8577, Miyagi, Japan; (T.K.); (N.O.)
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai 980-8577, Miyagi, Japan; (T.K.); (N.O.)
| | - Tewarit Sarachana
- Systems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
17
|
Ni Y, Hu L, Yang S, Ni L, Ma L, Zhao Y, Zheng A, Jin Y, Fu Z. Bisphenol A impairs cognitive function and 5-HT metabolism in adult male mice by modulating the microbiota-gut-brain axis. CHEMOSPHERE 2021; 282:130952. [PMID: 34082316 DOI: 10.1016/j.chemosphere.2021.130952] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/25/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) has been found to promote hepatotoxicity, reproductive toxicity, and developmental toxicity. However, the neurotoxicity and mechanism of BPA on cognitive function are still unclear. To that end, eight-week-old adult male and female C57BL/6J mice were exposed to 0.05, 0.5, 5, and 50 mg/kg BPA by dietary supplementation for 22 weeks. BPA exposure impaired learning and memory in male mice, associated with increased neuroinflammation and damaged blood-brain barrier. BPA exposure reduced the tight junctions in the colon, resulting in dysfunction of the gut barrier. The levels of neurotransmitters in the serum, hippocampus, and colon of male mice, including tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid, were all decreased by BPA, together with reduced expression of tryptophan and 5-HT metabolism-related genes. Cecal microbiota analysis revealed that the diversity and composition of the microbiota in male mice were markedly altered by BPA, leading to functional profile changes in the microbial community. These results suggest that the neurotoxicity of BPA in male mice may be partly regulated by the interactions of the microbiota-gut-brain axis. However, BPA has little effect on the cognitive function in female mice, which might be caused by the microbial differences and the role of estrogen receptors.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Luting Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Song Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Lingyan Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Yufeng Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Aqian Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China.
| |
Collapse
|
18
|
Pradhan LK, Sahoo PK, Aparna S, Sargam M, Biswal AK, Polai O, Chauhan NR, Das SK. Suppression of bisphenol A-induced oxidative stress by taurine promotes neuroprotection and restores altered neurobehavioral response in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2021; 36:2342-2353. [PMID: 34403186 DOI: 10.1002/tox.23348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 07/11/2021] [Accepted: 08/04/2021] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA) has been documented as a mediator for a number of health effects, including inflammation, oxidative stress, carcinogenicity, and mood dysfunction. The literature on the role of BPA in inducing altered neurobehavioral response and brain morphology and plausible neuroprotective role of taurine against BPA induced oxidative stress mediated neurotoxicity is limited. Therefore, the present experimental paradigm was set for 21 days to expound the neuroprotective efficacy of taurine against BPA-induced neurotoxicity in zebrafish (Danio rerio) following waterborne exposure. Neurobehavioral studies were conducted by light-dark preference test (LDPT) and novel tank diving test (NTDT). To validate that the neuroprotective efficacy of taurine against BPA-induced neurotoxicity is associated with the modulation of the antioxidant defense system, we have conducted biochemical studies in zebrafish brain. Changes in brain morphology leading to neurobehavioral variations following co-supplementation of BPA and taurine were evaluated by Hoechst staining and cresyl violet staining (CVS) in periventricular gray zone (PGZ) of zebrafish brain. Our findings show that taurine co-supplementation significantly improved the BPA-induced altered scototaxis and explorative behavior of zebrafish. Further, BPA-induced augmented oxidative stress was considerably ameliorated by taurine co-supplementation. Subsequently, our observation also points toward the neuroprotective role of taurine against BPA-induced neuronal pyknosis and chromatin condensation in PGZ of zebrafish brain. In a nutshell, the findings of the current study show the neuroprotective efficacy of taurine against BPA-induced oxidative stress-mediated neurotoxicity. Elucidation of the underlying signaling mechanism of taurine-mediated neuroprotection would provide novel strategies for the prevention/treatment of BPA-persuaded serious neurological consequences.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Sai Aparna
- Neurobiology Laboratory, Department of Zoology, Ravenshaw University, Cuttack, India
| | - Meghana Sargam
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Amit Kumar Biswal
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Omkar Polai
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | | | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
19
|
Yang J, Link C, Henderson YO, Bithi N, Hine C. Peripubertal Bisphenol A Exposure Imparts Detrimental Age-Related Changes in Body Composition, Cognition, and Hydrogen Sulfide Production Capacities. Antioxid Redox Signal 2021; 36:1246-1267. [PMID: 34314248 PMCID: PMC9221154 DOI: 10.1089/ars.2020.8226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/19/2022]
Abstract
Aims: Peripubertal endocrine disruption has immediate and lifelong consequences on health, cognition, and lifespan. Disruption comes from dietary, environmental, and pharmaceutical sources. The plasticizer Bisphenol A (BPA) is one such endocrine disrupting chemical. However, it is unclear whether peripubertal BPA exposure incites long-lasting physiological, neuro-cognitive, and/or longevity-related metabolic impairments. Catabolism of cysteine via transsulfuration enzymes produces hydrogen sulfide (H2S), a redox-modulating gasotransmitter causative to endocrine and metabolic homeostasis and improved cognitive function with age. As thyroid hormone (TH) regulates hepatic H2S production and BPA is a TH receptor antagonist, we hypothesized that BPA exposure during peripubertal development impairs metabolic and neuro-cognitive/behavioral endpoints in aged mice, in part, due to altered peripheral and/or localized H2S production and redox status. Results: To test this, male C57BL/6J mice at 5 weeks of age were orally exposed daily for 5 weeks to 250 μg BPA/kg, defined as low dose group (LD BPA), or 250 mg BPA/kg, defined as high dose group (HD BPA). Both LD and HD BPA exposure decreased lean mass and increased fat mass accompanied by decreased serum total TH at advanced ages. In addition, LD BPA had an anxiogenic effect whereas HD BPA caused cognitive deficits. Notably, HD BPA disrupted tissue-specific H2S production capacities and/or protein persulfidation, with the former negatively correlated with memory deficits and oxidative stress. Innovation and Conclusion: These findings provide a potential mechanism of action for acute and long-term health impacts of BPA-induced peripubertal endocrine disruption and bolster the need for improved monitoring and limitation of adolescent BPA exposure.
Collapse
Affiliation(s)
- Jie Yang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Christopher Link
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Yoko O. Henderson
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Nazmin Bithi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
20
|
Zulkifli S, Rahman AA, Kadir SHSA, Nor NSM. Bisphenol A and its effects on the systemic organs of children. Eur J Pediatr 2021; 180:3111-3127. [PMID: 33893858 DOI: 10.1007/s00431-021-04085-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023]
Abstract
For the past two decades, growing research has been pointing to multiple repercussions of bisphenol A (BPA) exposure to human health. BPA is a synthetic oestrogen which primarily targets the endocrine system; however, the compound also disturbs other systemic organ functions, in which the magnitude of impacts in those other systems is as comparable to those in the endocrine system. To date, the discoveries on the association between BPA and health outcomes mainly came from animal and in vitro studies, with limited human studies which emphasised on children's health. In this comprehensive review, we summarised studies on human, in vivo and in vitro models to understand the consequences of pre-, post- and perinatal BPA exposure on the perinatal, children and adult health, encompassing cardiovascular, neurodevelopmental, endocrine and reproductive effects.Conclusion: Evidence from in vitro and animal studies may provide further support and better understanding on the correlation between environmental BPA exposure and its detrimental effects in humans and child development, despite the difficulties to draw direct causal relations of BPA effects on the pathophysiology of the diseases/syndromes in children, due to differences in body system complexity between children and adults, as well as between animal and in vitro models and humans. What is known: • Very limited reviews are available on how BPA adversely affects children's health. • Previous papers mainly covered two systems in children. What is new: • Comprehensive review on the detrimental effects of BPA on children health outcomes, including expectations on adult health outcomes following perinatal BPA exposure, as well as covering a small part of BPA alternatives. • Essentially, BPA exposure during pregnancy has huge impacts on the foetus in which it may cause changes in foetal epigenetic programming, resulting in disease onsets during childhood as well as adulthood.
Collapse
Affiliation(s)
- Sarah Zulkifli
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.,Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Noor Shafina Mohd Nor
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia. .,Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
| |
Collapse
|
21
|
Sarrouilhe D, Defamie N, Mesnil M. Is the Exposome Involved in Brain Disorders through the Serotoninergic System? Biomedicines 2021; 9:1351. [PMID: 34680468 PMCID: PMC8533279 DOI: 10.3390/biomedicines9101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine acting as a neurotransmitter in the central nervous system (CNS), local mediator in the gut, and vasoactive agent in the blood. It has been linked to a variety of CNS functions and is implicated in many CNS and psychiatric disorders. The high comorbidity between some neuropathies can be partially understood by the fact that these diseases share a common etiology involving the serotoninergic system. In addition to its well-known functions, serotonin has been shown to be a mitogenic factor for a wide range of normal and tumor cells, including glioma cells, in vitro. The developing CNS of fetus and newborn is particularly susceptible to the deleterious effects of neurotoxic substances in our environment, and perinatal exposure could result in the later development of diseases, a hypothesis known as the developmental origin of health and disease. Some of these substances affect the serotoninergic system and could therefore be the source of a silent pandemic of neurodevelopmental toxicity. This review presents the available data that are contributing to the appreciation of the effects of the exposome on the serotoninergic system and their potential link with brain pathologies (neurodevelopmental, neurodegenerative, neurobehavioral disorders, and glioblastoma).
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 Rue de la Milétrie, Bât D1, TSA 51115, CEDEX 09, 86073 Poitiers, France
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| | - Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 Rue G. Bonnet–TSA 51106, CEDEX 09, 86073 Poitiers, France; (N.D.); (M.M.)
| |
Collapse
|
22
|
Ma Q, Deng P, Lin M, Yang L, Li L, Guo L, Zhang L, He M, Lu Y, Pi H, Zhang Y, Yu Z, Chen C, Zhou Z. Long-term bisphenol A exposure exacerbates diet-induced prediabetes via TLR4-dependent hypothalamic inflammation. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123926. [PMID: 33254826 DOI: 10.1016/j.jhazmat.2020.123926] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA), an environmental endocrine-disrupting compound, has been revealed associated with metabolic disorders such as obesity, prediabetes, and type 2 diabetes (T2D). However, its underlying mechanisms are still not fully understood. Here, we provide new evidence that BPA is a risk factor for T2D from a case-control study. To explore the detailed mechanisms, we used two types of diet models, standard diet (SD) and high-fat diet (HFD), to study the effects of long-term BPA exposure on prediabetes in 4-week-old mice. We found that BPA exposure for 12 weeks exacerbated HFD-induced prediabetic symptoms. Female mice showed increased body mass, serum insulin level, and impaired glucose tolerance, while male mice only exhibited impaired glucose tolerance. No change was found in SD-fed mice. Besides, BPA exposure enhanced astrocyte-dependent hypothalamic inflammation in both male and female mice, which impaired proopiomelanocortin (POMC) neuron functions. Moreover, eliminating inflammation by toll-like receptor 4 (TLR4) knockout significantly abolished the effects of BPA on the hypothalamus and diet-induced prediabetes. Taken together, our data establish a key role for TLR4-dependent hypothalamic inflammation in regulating the effects of BPA on prediabetes.
Collapse
Affiliation(s)
- Qinlong Ma
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Ping Deng
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Min Lin
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Lingling Yang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Le Li
- Department of Health Management Center, Southwest Hospital, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Lu Guo
- Department of Neurology, Daping Hospital, Army Medical University (Former Name: Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Lei Zhang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Mindi He
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Yonghui Lu
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Yanwen Zhang
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Chunhai Chen
- Department of Occupational Health, Army Medical University (Former Name: Third Military Medical University), Chongqing 400038, People's Republic of China.
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
23
|
Thongkorn S, Kanlayaprasit S, Panjabud P, Saeliw T, Jantheang T, Kasitipradit K, Sarobol S, Jindatip D, Hu VW, Tencomnao T, Kikkawa T, Sato T, Osumi N, Sarachana T. Sex differences in the effects of prenatal bisphenol A exposure on autism-related genes and their relationships with the hippocampus functions. Sci Rep 2021; 11:1241. [PMID: 33441873 PMCID: PMC7806752 DOI: 10.1038/s41598-020-80390-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Our recent study has shown that prenatal exposure to bisphenol A (BPA) altered the expression of genes associated with autism spectrum disorder (ASD). In this study, we further investigated the effects of prenatal BPA exposure on ASD-related genes known to regulate neuronal viability, neuritogenesis, and learning/memory, and assessed these functions in the offspring of exposed pregnant rats. We found that prenatal BPA exposure increased neurite length, the number of primary neurites, and the number of neurite branches, but reduced the size of the hippocampal cell body in both sexes of the offspring. However, in utero exposure to BPA decreased the neuronal viability and the neuronal density in the hippocampus and impaired learning/memory only in the male offspring while the females were not affected. Interestingly, the expression of several ASD-related genes (e.g. Mief2, Eif3h, Cux1, and Atp8a1) in the hippocampus were dysregulated and showed a sex-specific correlation with neuronal viability, neuritogenesis, and/or learning/memory. The findings from this study suggest that prenatal BPA exposure disrupts ASD-related genes involved in neuronal viability, neuritogenesis, and learning/memory in a sex-dependent manner, and these genes may play an important role in the risk and the higher prevalence of ASD in males subjected to prenatal BPA exposure.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanit Saeliw
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanawin Jantheang
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthathip Sarobol
- grid.411628.80000 0000 9758 8584Specimen Center, Department of Laboratory Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Tewin Tencomnao
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Takako Kikkawa
- grid.69566.3a0000 0001 2248 6943Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Tatsuya Sato
- grid.412754.10000 0000 9956 3487Department of Healthcare Management, Faculty of Health Sciences, Tohoku Fukushi University, Sendai, Miyagi Japan
| | - Noriko Osumi
- grid.69566.3a0000 0001 2248 6943Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Tewarit Sarachana
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
24
|
Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11:51. [PMID: 33396565 PMCID: PMC7824109 DOI: 10.3390/biom11010051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of brain pathologies has increased during last decades. Better diagnosis (autism spectrum disorders) and longer life expectancy (Parkinson's disease, Alzheimer's disease) partly explain this increase, while emerging data suggest pollutant exposures as a possible but still underestimated cause of major brain disorders. Taking into account that the brain parenchyma is rich in gap junctions and that most pollutants inhibit their function; brain disorders might be the consequence of gap-junctional alterations due to long-term exposures to pollutants. In this article, this hypothesis is addressed through three complementary aspects: (1) the gap-junctional organization and connexin expression in brain parenchyma and their function; (2) the effect of major pollutants (pesticides, bisphenol A, phthalates, heavy metals, airborne particles, etc.) on gap-junctional and connexin functions; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and pollutant involvement have been described. Based on these different aspects, the possible involvement of pollutant-inhibited gap junctions in brain disorders is discussed for prenatal and postnatal exposures.
Collapse
Affiliation(s)
- Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Christian Naus
- Faculty of Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 rue de La Milétrie, bât D1, TSA 51115, 86073 Poitiers, France
| |
Collapse
|
25
|
Nguyen U, Tinsley B, Sen Y, Stein J, Palacios Y, Ceballos A, Welch C, Nzenkue K, Penn A, Murphy L, Leodones K, Casiquin J, Ivory I, Ghenta K, Danziger K, Widman E, Newman J, Triplehorn M, Hindi Z, Mulligan K. Exposure to bisphenol A differentially impacts neurodevelopment and behavior in Drosophila melanogaster from distinct genetic backgrounds. Neurotoxicology 2020; 82:146-157. [PMID: 33309840 DOI: 10.1016/j.neuro.2020.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental chemical that has been linked to behavioral differences in children and shown to impact critical neurodevelopmental processes in animal models. Though data is emerging, we still have an incomplete picture of how BPA disrupts neurodevelopment; in particular, how its impacts may vary across different genetic backgrounds. Given the genetic tractability of Drosophila melanogaster, they present a valuable model to address this question. Fruit flies are increasingly being used for assessment of neurotoxicants because of their relatively simple brain structure and variety of measurable behaviors. Here we investigated the neurodevelopmental impacts of BPA across two genetic strains of Drosophila-w1118 (control) and the Fragile X Syndrome (FXS) model-by examining both behavioral and neuronal phenotypes. We show that BPA induces hyperactivity in larvae, increases repetitive grooming behavior in adults, reduces courtship behavior, impairs axon guidance in the mushroom body, and disrupts neural stem cell development in the w1118 genetic strain. Remarkably, for every behavioral and neuronal phenotype examined, the impact of BPA in FXS flies was either insignificant or contrasted with the phenotypes observed in the w1118 strain. This data indicates that the neurodevelopmental impacts of BPA can vary widely depending on genetic background and suggests BPA may elicit a gene-environment interaction with Drosophila fragile X mental retardation 1 (dFmr1)-the ortholog of human FMR1, which causes Fragile X Syndrome and is associated with autism spectrum disorder.
Collapse
Affiliation(s)
- U Nguyen
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - B Tinsley
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Y Sen
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Stein
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Y Palacios
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - A Ceballos
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - C Welch
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Nzenkue
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - A Penn
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - L Murphy
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Leodones
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Casiquin
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - I Ivory
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Ghenta
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Danziger
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - E Widman
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - J Newman
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - M Triplehorn
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - Z Hindi
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States
| | - K Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA, 95819, United States.
| |
Collapse
|
26
|
Komada M, Nagao T, Kagawa N. Prenatal and postnatal bisphenol A exposure inhibits postnatal neurogenesis in the hippocampal dentate gyrus. J Toxicol Sci 2020; 45:639-650. [PMID: 33012732 DOI: 10.2131/jts.45.639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bisphenol A (BPA), an endocrine disruptor with estrogenic effects, is widely used as a raw material for manufacturing polycarbonate plastic and epoxy resins. Prenatal and postnatal exposure to BPA affects brain morphogenesis. However, the effects of prenatal and postnatal BPA exposure on postnatal neurogenesis in mice are poorly understood. In this study, we developed a mouse model of prenatal and postnatal BPA exposure and analyzed its effects on hippocampal neurogenesis. The hippocampal dentate gyrus is vulnerable to chemical exposure, as neurogenesis continues in this region even after birth. Our results showed that in mice, prenatal and postnatal BPA exposure decreased the number of type-1, 2a, 2b, and 3 neural progenitor cells, as well as in granule cells, in the hippocampal dentate gyrus on postnatal days 16 and 70. The effect of prenatal and postnatal BPA exposure on neural progenitors were affected at all differentiation stages. In addition, prenatal and postnatal BPA exposure affects the maintenance of long-term memory on postnatal day 70. Our results suggest that neurodevelopmental toxicity due to prenatal and postnatal BPA exposure might affect postnatal morphogenesis and functional development of the hippocampal dentate gyrus.
Collapse
Affiliation(s)
| | | | - Nao Kagawa
- Department of Life Science, Kindai University
| |
Collapse
|
27
|
Sahoo PK, Pradhan LK, Aparna S, Agarwal K, Banerjee A, Das SK. Quercetin abrogates bisphenol A induced altered neurobehavioral response and oxidative stress in zebrafish by modulating brain antioxidant defence system. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103483. [PMID: 32866630 DOI: 10.1016/j.etap.2020.103483] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA), a well-recognized anthropogenic xenoestrogen, has been identified as a causative agent responsible for inducing carcinogenicity, cognitive impairment, neurotoxicity, oxidative stress, etc. However, BPA-induced neurotoxicity and its possible amelioration through natural compound intervention remain elusive. The current study was performed to elucidate the neurotoxic potential of BPA in zebrafish (Danio rerio) by waterborne exposure and its possible amelioration by quercetin co-supplementation. Protective effect of quercetin against BPA-induced altered neurobehavioral response, oxidative stress and neuromorphological changes were evaluated in zebrafish brain. The present findings reveal that BPA-induced altered neurobehavioral response was ameliorated by quercetin. Biochemical studies advocate the potential therapeutic efficacy of quercetin against BPA-induced oxidative stress in zebrafish brain. Quercetin also shows neuroprotection against BPA-induced augmented neuronal pyknosis in periventricular grey zone (PGZ) of zebrafish brain. These basic findings indicate that quercetin may act as an effective intervention against BPA-induced neurotoxicity in zebrafish through down-regulation of oxidative stress.
Collapse
Affiliation(s)
- Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar 751003, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar 751003, India
| | - Sai Aparna
- Neurobiology Laboratory, Department of Zoology, Ravenshaw University, Cuttack 753003, India
| | - Komal Agarwal
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar 751003, India
| | - Ankita Banerjee
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar 751003, India.
| |
Collapse
|
28
|
Prenatal exposure to bisphenol A alters the transcriptome-interactome profiles of genes associated with Alzheimer's disease in the offspring hippocampus. Sci Rep 2020; 10:9487. [PMID: 32528016 PMCID: PMC7289845 DOI: 10.1038/s41598-020-65229-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/27/2020] [Indexed: 01/01/2023] Open
Abstract
Our recent study revealed that prenatal exposure to bisphenol A (BPA) disrupted the transcriptome profiles of genes in the offspring hippocampus. In addition to genes linked to autism, several genes associated with Alzheimer’s disease (AD) were found to be differentially expressed, although the association between BPA-responsive genes and AD-related genes has not been thoroughly investigated. Here, we demonstrated that in utero BPA exposure also disrupted the transcriptome profiles of genes associated with neuroinflammation and AD in the hippocampus. The level of NF-κB protein and its AD-related target gene Bace1 were significantly increased in the offspring hippocampus in a sex-dependent manner. Quantitative RT-PCR analysis also showed an increase in the expression of Tnf gene. Moreover, the reanalysis of transcriptome profiling data from several previously published BPA studies consistently showed that BPA-responsive genes were significantly associated with top AD candidate genes. The findings from this study suggest that maternal BPA exposure may increase AD risk in offspring by dysregulating genes associated with AD neuropathology and inflammation and reveal a possible relationship between AD and autism, which are linked to the same environmental factor. Sex-specific effects of prenatal BPA exposure on the susceptibility of AD deserve further investigation.
Collapse
|
29
|
Zhang H, Wang Z, Meng L, Kuang H, Liu J, Lv X, Pang Q, Fan R. Maternal exposure to environmental bisphenol A impairs the neurons in hippocampus across generations. Toxicology 2020; 432:152393. [PMID: 32027964 DOI: 10.1016/j.tox.2020.152393] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Humans from fetal to adult stages are chronically and passively exposed to bisphenol A (BPA, an endocrine disruptor) due to its ubiquitous existence in daily life. To investigate the long-term neurotoxicity of maternal exposure to BPA for offspring, mice were used as the animal model. In this study, pregnant mice (F0) were orally dosed with BPA (i.e. mice from low-, medium- and high-exposed groups were treated with 0.5, 50, 5000 μg/kg·bw of BPA per day) until weaning. Then, the first generation (F1) mice were used to generate the F2 ones. The offspring of mice not exposed to BPA served as the control groups. The Y-maze test, comet assay, hematoxylin-eosin (HE) staining method, Golgi-Cox assay and liquid chromatography-tandem mass spectrometry (LC/MS/MS) were conducted to study any alterations to learning and memory abilities, the morphological variations in hippocampal neurons and transmitter levels of F1 and F2 mice induced by BPA exposure. Results showed that even a low-dose of maternal BPA exposure could sex-dependently and significantly impair the learning and memory ability of F1 male mice, but not of generation F2. Furthermore, decreased neuron quantities and spine densities in hippocampi were observed in both F1 and F2 generations after maternal BPA exposure. However, DNA damage of brain cells were only limited to F1 offspring, in which DNA damage was only observed in the low-exposed male mice and medium-exposed female mice. Additionally, maternal BPA exposure leads to variations in hippocampal neurotransmitter levels, indicated by the decreased ratio of Glu/GABA in F1 offspring. In conclusion, maternal exposure to an environmental dose of BPA resulted in lasting adverse effects on neurological development for offspring mice.
Collapse
Affiliation(s)
- Haibin Zhang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhouyu Wang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lingxue Meng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hongxuan Kuang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jian Liu
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xuejing Lv
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qihua Pang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Gupta M, Bogdanowicz T, Reed MA, Barden CJ, Weaver DF. The Brain Exposure Efficiency (BEE) Score. ACS Chem Neurosci 2020; 11:205-224. [PMID: 31815431 DOI: 10.1021/acschemneuro.9b00650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB), composed of microvascular tight junctions and glial cell sheathing, selectively controls drug permeation into the central nervous system (CNS) by either passive diffusion or active transport. Computational techniques capable of predicting molecular brain penetration are important to neurological drug design. A novel prediction algorithm, termed the Brain Exposure Efficiency Score (BEE), is presented. BEE addresses the need to incorporate the role of trans-BBB influx and efflux active transporters by considering key brain penetrance parameters, namely, steady state unbound brain to plasma ratio of drug (Kp,uu) and dose normalized unbound concentration of drug in brain (Cu,b). BEE was devised using quantitative structure-activity relationships (QSARs) and molecular modeling studies on known transporter proteins and their ligands. The developed algorithms are provided as a user-friendly open source calculator to assist in optimizing a brain penetrance strategy during the early phases of small molecule molecular therapeutic design.
Collapse
Affiliation(s)
- Mayuri Gupta
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Thomas Bogdanowicz
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Mark A. Reed
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Christopher J. Barden
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 Canada
| |
Collapse
|
31
|
Manivannan B, Yegambaram M, Supowit S, Beach TG, Halden RU. Assessment of Persistent, Bioaccumulative and Toxic Organic Environmental Pollutants in Liver and Adipose Tissue of Alzheimer’s Disease Patients and Age-matched Controls. Curr Alzheimer Res 2019; 16:1039-1049. [DOI: 10.2174/1567205016666191010114744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Background:
Lifetime exposure to environmental (neuro) toxicants may contribute to the
pathogenesis of Alzheimer’s Disease (AD). Since many contaminants do not cross the blood-brain
barrier, brain tissue alone cannot serve to assess the spectrum of environmental exposures.
Methods:
We used liquid and gas chromatography tandem mass spectrometry to monitor, in postmortem
liver and adipose tissues of AD patients and age-matched controls, the occurrence and
concentrations of 11 environmental contaminants.
Results:
Seven toxicants were detected at 100% frequency: p,p'-DDE, dieldrin, triclosan,
methylparaben, bisphenol A, fipronil and tetrabromobisphenol A (TBBPA). Intra-individual, tissuedependent
differences were detected for triclosan, methylparaben, fipronil and TBBPA. High
concentrations of p,p’-DDE and dieldrin were observed in adipose tissue when compared to liver values
for both AD cases and controls.
Conclusion:
This study provides vital data on organ-specific human body burdens to select analytes and
demonstrate the feasibility of analyzing small sample quantities for toxicants suspected to constitute AD
risk factors.
Collapse
Affiliation(s)
- Bhagyashree Manivannan
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, United States
| | - Manivannan Yegambaram
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, United States
| | - Samuel Supowit
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, United States
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ-85287, United States
| | - Rolf U. Halden
- Biodesign Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
32
|
Wang H, Chang L, Aguilar JS, Dong S, Hong Y. Bisphenol-A exposure induced neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. ENVIRONMENT INTERNATIONAL 2019; 127:324-332. [PMID: 30953815 DOI: 10.1016/j.envint.2019.01.059] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol-A (BPA) is a lipophilic, organic, synthetic compound that has been used as an additive in polycarbonate plastics manufacturing since 1957. Studies have shown that BPA interferes with the development and functions of the brain, but little is known about the effects of BPA on human glutamatergic neurons (hGNs) at the molecular and cellular levels. We investigated the impact of chronic exposure to BPA to hGNs derived from human embryonic stem cells (hESCs). The results showed that chronic exposure of different concentrations of BPA (0, 0.1, 1.0 and 10 μM) to hGNs for 14 days reduced neurite outgrowth in a concentration-dependent manner. Using presynaptic protein synaptophysin and postsynaptic protein PSD-95 antibodies, immunofluorescence staining and western blotting results indicated that BPA exposure altered the morphology of dendritic spines and increased synaptophysin and PSD-95 expression. Furthermore, BPA exposure at concentrations higher than 1.0 μM resulted in the increase of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) expression and deterioration of dendritic spines. In addition, our results suggested that these BPA mediated neurotoxicity effects were due to an increased production of reactive nitrogen species (RNS) and reactive oxygen species (ROS) via increased nitric oxide synthase (iNOS), neuronal nitric oxide synthase (nNOS), 3-nitrotyrosine expression and Ca2+ influx. These results imply that hESC-based neuronal differentiation is an excellent cellular model to examine BPA-induced neurotoxicity on human neurons at the cellular and molecular level.
Collapse
Affiliation(s)
- Hongou Wang
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lawrence Chang
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Jose S Aguilar
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Sijun Dong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Yiling Hong
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA.
| |
Collapse
|
33
|
Broniowska Ż, Bystrowska B, Starek-Świechowicz B, Pomierny B, Krzyżanowska W, Walczak M, Budziszewska B. Benzophenone-2 Concentration and Its Effect on Oxidative Stress and Apoptosis Markers in Rat Brain. Neurotox Res 2019; 36:39-48. [PMID: 31006828 PMCID: PMC6570683 DOI: 10.1007/s12640-019-0011-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 02/05/2023]
Abstract
Benzophenones, frequently used as UV chemical filters, are absorbed through the skin and can exert systemic adverse effects. So far, most of the data are related to their action on sex hormone receptors whereas potential neurotoxic effect is expected mainly on the basis of in vitro studies. The aim of the present study was to determine concentrations of BP-2, oxidative stress and apoptosis markers in the rat brain after topical administration of this compound. Male Wistar rats were treated dermally with BP-2 (100 mg/kg, 4 weeks), and next, blood and tissue BP-2 concentrations and oxidative stress and apoptotic markers in the frontal cortex and hippocampus were determined. After dermal BP-2 administration, blood level of this compound was about 300 ng/ml while in the liver and adipose tissue 1354 and 823 ng/g wt tissue, respectively. In the studied brain structures, the levels of the test compound were from 5 to 19 ng/g tissue. In the hippocampus, where BP-2 level was about 3.5-fold lower than in the frontal cortex, no significant changes in either oxidative stress and apoptosis markers were observed. There was also no change in apoptosis markers in the frontal cortex but unexpectedly the oxidative stress markers were reduced. The research showed that BP-2 passes through the blood-brain barrier but its concentration in the brain structures are much lower than in the blood. This compound did not exacerbate oxidative stress and apoptosis markers in the hippocampus and frontal cortex, and even lowered oxidative stress in the frontal cortex.
Collapse
Affiliation(s)
- Żaneta Broniowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Beata Bystrowska
- Department of Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Beata Starek-Świechowicz
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Bartosz Pomierny
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Weronika Krzyżanowska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Maria Walczak
- Department of Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, PL, Poland.
| |
Collapse
|
34
|
Sex Differences in the Effects of Prenatal Bisphenol A Exposure on Genes Associated with Autism Spectrum Disorder in the Hippocampus. Sci Rep 2019; 9:3038. [PMID: 30816183 PMCID: PMC6395584 DOI: 10.1038/s41598-019-39386-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/21/2019] [Indexed: 11/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder inexplicably biased towards males. Although prenatal exposure to bisphenol A (BPA) has recently been associated with the ASD risk, whether BPA dysregulates ASD-related genes in the developing brain remains unclear. In this study, transcriptome profiling by RNA-seq analysis of hippocampi isolated from neonatal pups prenatally exposed to BPA was conducted and revealed a list of differentially expressed genes (DEGs) associated with ASD. Among the DEGs, several ASD candidate genes, including Auts2 and Foxp2, were dysregulated and showed sex differences in response to BPA exposure. The interactome and pathway analyses of DEGs using Ingenuity Pathway Analysis software revealed significant associations between the DEGs in males and neurological functions/disorders associated with ASD. Moreover, the reanalysis of transcriptome profiling data from previously published BPA studies consistently showed that BPA-responsive genes were significantly associated with ASD-related genes. The findings from this study indicate that prenatal BPA exposure alters the expression of ASD-linked genes in the hippocampus and suggest that maternal BPA exposure may increase ASD susceptibility by dysregulating genes associated with neurological functions known to be negatively impacted in ASD, which deserves further investigations.
Collapse
|
35
|
Rosin JM, Kurrasch DM. Bisphenol A and microglia: could microglia be responsive to this environmental contaminant during neural development? Am J Physiol Endocrinol Metab 2018; 315:E279-E285. [PMID: 29812986 DOI: 10.1152/ajpendo.00443.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a growing interest in the functional role of microglia in the developing brain. In our laboratory, we have become particularly intrigued as to whether fetal microglia in the embryonic brain are susceptible to maternal challenges in utero (e.g., maternal infection, stress) and, if so, whether their precocious activation could then adversely influence brain development. One such challenge that is newly arising in this field is whether microglia might be downstream targets to endocrine-disrupting chemicals, such as the plasticizer bisphenol A (BPA), which functions in part by mimicking estrogen structure and function. A growing body of evidence demonstrates that gestational exposure to BPA has adverse effects on brain development, although the exact mechanisms are still emerging. Given that microglia express estrogen receptors and steroid-producing enzymes, microglia might be an unappreciated target of BPA. Mechanistically, we propose that BPA binding to estrogen receptors within microglia initiates transcription of downstream target genes, which then leads to activation of microglia that can then perhaps adversely influence brain development. Here, we first briefly outline the current understanding of how microglia may influence brain development and then describe how this literature overlaps with our understanding of BPA's effects during similar time points. We also outline the current literature demonstrating that BPA exposure affects microglia. We conclude by discussing our thoughts on the mechanisms through which exposure to BPA could disrupt normal microglia functions, ultimately affecting brain development that could potentially lead to lasting behavioral effects and perhaps even neuroendocrine diseases such as obesity.
Collapse
Affiliation(s)
- Jessica M Rosin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
36
|
da Conceição RR, de Souza JS, de Oliveira KC, de Barros Maciel RM, Romano MA, Romano RM, da Silva MRD, Chiamolera MI, Giannocco G. Anatomical specificity of the brain in the modulation of Neuroglobin and Cytoglobin genes after chronic bisphenol a exposure. Metab Brain Dis 2017; 32:1843-1851. [PMID: 28721559 DOI: 10.1007/s11011-017-0066-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/06/2017] [Indexed: 01/23/2023]
Abstract
The aim of this study was to investigate the influence of Bisphenol A (BPA) exposure on Neuroglobin (Ngb) and Cytoglobin (Cygb) as well as oxidative stress gene expression in the cerebellum, hippocampus, hypothalamus and cortex. Male Wistar rats were randomly divided into 3 groups: Control and two groups receiving 2 different daily BPA dosages, 5 or 25 mg/kg from postnatal day 50 (PND50) through PND90 and they were euthanized at PND105. In the cortex, we found an increase in Ngb gene expression and also in superoxide dismutase 1 and Catalase (Cat). In the cerebellum, we found an increase in Ngb and Cat, in the hypothalamus, there was a decrease in Cygb and an increase in glutathione peroxidase and Cat and in hypoxia-inducible factor 1 alpha (Hif1α) at the low dosage and a decrease in Hif1α at the high BPA dosage. Finally, in the hippocampus, we observed a decrease in Ngb and Cygb and an increase in Hif1α. In summary, BPA promotes the modulation of both Ngb and Cygb, but such changes occur by different mechanisms depending on the exposure dose and anatomical area.
Collapse
Affiliation(s)
- Rodrigo Rodrigues da Conceição
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil
| | - Janaina Sena de Souza
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil
| | - Kelen Carneiro de Oliveira
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil
| | - Rui Monteiro de Barros Maciel
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil
| | - Marco Aurélio Romano
- Department of Pharmacy, State University of Centro-Oeste, Curitiba, Parana, Brazil
| | - Renata Marino Romano
- Department of Pharmacy, State University of Centro-Oeste, Curitiba, Parana, Brazil
| | - Magnus Régios Dias da Silva
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil
| | - Maria Izabel Chiamolera
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil
| | - Gisele Giannocco
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp/EPM), São Paulo, SP, Brazil.
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil.
- Laboratório de Endocriologia Molecular e Translacional, Departamento de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo, Vila Clementino, Sao Paulo, SP, 04039032, Brazil.
| |
Collapse
|
37
|
El Tabaa MM, Sokkar SS, Ramadan ES, Abd El Salam IZ, Zaid A. Neuroprotective role of Ginkgo biloba against cognitive deficits associated with Bisphenol A exposure: An animal model study. Neurochem Int 2017; 108:199-212. [DOI: 10.1016/j.neuint.2017.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
|
38
|
Hu F, Li T, Gong H, Chen Z, Jin Y, Xu G, Wang M. Bisphenol A Impairs Synaptic Plasticity by Both Pre- and Postsynaptic Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600493. [PMID: 28852612 PMCID: PMC5566242 DOI: 10.1002/advs.201600493] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/10/2017] [Indexed: 05/30/2023]
Abstract
Bisphenol A (BPA), an environmental xenoestrogen, has been reported to induce learning and memory impairments in rodent animals. However, effects of BPA exposure on synaptic plasticity and the underlying physiological mechanisms remain elusive. Our behavioral and electrophysiological analyses show that BPA obviously perturbs hippocampal spatial memory of juvenile Sprague-Dawley rats after four weeks exposure, with significantly impaired long-term potentiation (LTP) in the hippocampus. These effects involve decreased spine density of pyramidal neurons, especially the apical dendritic spine. Further presynaptic findings show an overt inhibition of pulse-paired facilitation during electrophysiological recording, which suggest the decrease of presynaptic transmitter release and is consistent with reduced production of presynaptic glutamate after BPA exposure. Meanwhile, LTP-related glutamate receptors, NMDA receptor 2A (NR2A) and AMPA receptor 1 (GluR1), are significantly downregulated in BPA-exposed rats. Excitatory postsynaptic currents (EPSCs) results also show that EPSCNMDA, but not EPSCAMPA, is declined by 40% compared to the baseline in BPA-perfused brain slices. Taken together, these findings reveal that juvenile BPA exposure has negative effects on synaptic plasticity, which result from decreases in dendritic spine density and excitatory synaptic transmission. Importantly, this study also provides new insights into the dynamics of BPA-induced memory deterioration during the whole life of rats.
Collapse
Affiliation(s)
- Fan Hu
- School of Food Science and EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| | - Tingting Li
- School of Food Science and EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| | - Huarui Gong
- CAS Key Laboratory of Brain Function and DiseasesSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Zhi Chen
- School of Food Science and EngineeringHefei University of TechnologyHefeiAnhui230009P. R. China
| | - Yan Jin
- CAS Key Laboratory of Brain Function and DiseasesSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Guangwei Xu
- CAS Key Laboratory of Brain Function and DiseasesSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Ming Wang
- CAS Key Laboratory of Brain Function and DiseasesSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| |
Collapse
|
39
|
Wnuk A, Rzemieniec J, Lasoń W, Krzeptowski W, Kajta M. Apoptosis Induced by the UV Filter Benzophenone-3 in Mouse Neuronal Cells Is Mediated via Attenuation of Erα/Pparγ and Stimulation of Erβ/Gpr30 Signaling. Mol Neurobiol 2017; 55:2362-2383. [PMID: 28357806 PMCID: PMC5840254 DOI: 10.1007/s12035-017-0480-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
Although benzophenone-3 (BP-3) has frequently been reported to play a role in endocrine disruption, there is insufficient data regarding the impact of BP-3 on the nervous system, including its possible adverse effects on the developing brain. Our study demonstrated that BP-3 caused neurotoxicity and activated apoptosis via an intrinsic pathway involving the loss of mitochondrial membrane potential and the activation of caspases-9 and -3 and kinases p38/MAPK and Gsk3β. These biochemical alterations were accompanied by ROS production, increased apoptotic body formation and impaired cell survival, and by an upregulation of the genes involved in apoptosis. The BP-3-induced effects were tissue-specific and age-dependent with the most pronounced effects observed in neocortical cells at 7 days in vitro. BP-3 changed the messenger RNA (mRNA) expression levels of Erα, Erβ, Gpr30, and Pparγ in a time-dependent manner. At 3 h of exposure, BP-3 downregulated estrogen receptor mRNAs but upregulated Pparγ mRNA. After prolonged exposures, BP-3 downregulated the receptor mRNAs except for Erβ mRNA that was upregulated. The BP-3-induced patterns of mRNA expression measured at 6 and 24 h of exposure reflected alterations in the protein levels of the receptors and paralleled their immunofluorescent labeling. Erα and Pparγ agonists diminished, but Erβ and Gpr30 agonists stimulated the BP-3-induced apoptotic and neurotoxic effects. Receptor antagonists caused the opposite effects, except for ICI 182,780. This is in line with a substantial reduction in the effects of BP-3 in cells with siRNA-silenced Erβ/Gpr30 and the maintenance of BP-3 effects in Erα- and Pparγ siRNA-transfected cells. We showed for the first time that BP-3-affected mRNA and protein expression levels of Erα, Erβ, Gpr30, and Pparγ, paralleled BP-3-induced apoptosis and neurotoxicity. Therefore, we suggest that BP-3-evoked apoptosis of neuronal cells is mediated via attenuation of Erα/Pparγ and stimulation of Erβ/Gpr30 signaling.
Collapse
Affiliation(s)
- A Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - J Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - W Lasoń
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland
| | - W Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Gronostajowa Street 9, 30-387, Krakow, Poland
| | - M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna Street 12, 31-343, Krakow, Poland.
| |
Collapse
|
40
|
Nesan D, Kurrasch DM. Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol Cell Endocrinol 2016; 438:3-17. [PMID: 27720896 DOI: 10.1016/j.mce.2016.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical regulator of body homeostasis, influencing the autonomic nervous system and releasing trophic hormones to modulate the endocrine system. The developmental mechanisms that govern formation of the mature hypothalamus are becoming increasingly understood as research in this area grows, leading us to gain appreciation for how these developmental programs are susceptible to disruption by maternal exposure to endocrine disrupting chemicals or other environmental factors in utero. These vulnerabilities, combined with the prominent roles of the various hypothalamic nuclei in regulating appetite, reproductive behaviour, mood, and other physiologies, create a window whereby early developmental disruption can have potent long-term effects. Here we broadly outline our current understanding of hypothalamic development, with a particular focus on the tuberal hypothalamus, including what is know about nuclear coalescing and maturation. We finish by discussing how exposure to environmental or maternally-derived factors can perhaps disrupt these hypothalamic developmental programs, and potentially lead to neuroendocrine disease states.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
41
|
Preciados M, Yoo C, Roy D. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases. Int J Mol Sci 2016; 17:E2086. [PMID: 27983596 PMCID: PMC5187886 DOI: 10.3390/ijms17122086] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/21/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs) because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA), polychlorinated biphenyls (PCBs), phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1) signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2) and NRF1. Some of these genes are involved with brain diseases, such as Alzheimer's Disease (AD), Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis, Autism Spectrum Disorder, and Brain Neoplasms. For example, the search of enriched pathways showed that top ten E2 interacting genes in AD-APOE, APP, ATP5A1, CALM1, CASP3, GSK3B, IL1B, MAPT, PSEN2 and TNF-underlie the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) AD pathway. With AD, the six E2-responsive genes are NRF1 target genes: APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1. These genes are also responsive to the following EEDs: ethinyl estradiol (APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1), BPA (APBB2, EIF2S1, ENO1, MAPT, and PAXIP1), dibutyl phthalate (DPYSL2, EIF2S1, and ENO1), diethylhexyl phthalate (DPYSL2 and MAPT). To validate findings from Comparative Toxicogenomics Database (CTD) curated data, we used Bayesian network (BN) analysis on microarray data of AD patients. We observed that both gender and NRF1 were associated with AD. The female NRF1 gene network is completely different from male human AD patients. AD-associated NRF1 target genes-APLP1, APP, GRIN1, GRIN2B, MAPT, PSEN2, PEN2, and IDE-are also regulated by E2. NRF1 regulates targets genes with diverse functions, including cell growth, apoptosis/autophagy, mitochondrial biogenesis, genomic instability, neurogenesis, neuroplasticity, synaptogenesis, and senescence. By activating or repressing the genes involved in cell proliferation, growth suppression, DNA damage/repair, apoptosis/autophagy, angiogenesis, estrogen signaling, neurogenesis, synaptogenesis, and senescence, and inducing a wide range of DNA damage, genomic instability and DNA methylation and transcriptional repression, NRF1 may act as a major regulator of EEDs-induced brain health deficits. In summary, estrogenic endocrine disrupting chemicals-modified genes in brain health deficits are part of both estrogen and NRF1 signaling pathways. Our findings suggest that in addition to estrogen signaling, EEDs influencing NRF1 regulated communities of genes across genomic and epigenomic multiple networks may contribute in the development of complex chronic human brain health disorders.
Collapse
Affiliation(s)
- Mark Preciados
- Department of Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA.
| | - Changwon Yoo
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA.
| | - Deodutta Roy
- Department of Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
42
|
Giesbrecht GF, Liu J, Ejaredar M, Dewey D, Letourneau N, Campbell T, Martin JW. Urinary bisphenol A is associated with dysregulation of HPA-axis function in pregnant women: Findings from the APrON cohort study. ENVIRONMENTAL RESEARCH 2016; 151:689-697. [PMID: 27640068 DOI: 10.1016/j.envres.2016.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is associated with dysregulation of hypothalamic-pituitary-adrenal (HPA) axis activity in rodents, but evidence in humans is lacking. OBJECTIVE To determine whether BPA exposure during pregnancy is associated with dysregulation of the HPA-axis, we examined the association between urinary BPA concentrations and diurnal salivary cortisol in pregnant women. Secondary analyses investigated whether the association between BPA and cortisol was dependent on fetal sex. METHODS Diurnal salivary cortisol and urinary BPA were collected during pregnancy from 174 women in a longitudinal cohort study, the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Associations between BPA and daytime cortisol and the cortisol awakening response (CAR) were estimated using mixed models after adjusting for covariates. RESULTS Higher concentrations of total BPA uncorrected for urinary creatinine were associated with dysregulation of the daytime cortisol pattern, including reduced cortisol at waking, β=-.055, 95% CI (-.100, -.010) and a flatter daytime pattern, β=.014, 95% CI (.006, .022) and β=-.0007 95% CI (-.001, -.0002) for the linear and quadratic slopes, respectively. Effect sizes in creatinine corrected BPA models were slightly smaller. None of the interactions between fetal sex and BPA were significant (all 95% CI's include zero). CONCLUSIONS These findings provide the first human evidence suggesting that BPA exposure is associated with dysregulation of HPA-axis function during pregnancy.
Collapse
Affiliation(s)
- Gerald F Giesbrecht
- Department of Paediatrics, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Maede Ejaredar
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Paediatrics, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Department of Paediatrics, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada
| | - Tavis Campbell
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
43
|
Nowicki BA, Hamada MA, Robinson GY, Jones DC. Adverse effects of bisphenol A (BPA) on the dopamine system in two distinct cell models and corpus striatum of the Sprague-Dawley rat. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:912-924. [PMID: 27494678 DOI: 10.1080/15287394.2016.1204577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to examine the effects of bisphenol A (BPA) on the brain dopamine (DA) system utilizing both in vitro models (GH3 cells, a rat pituitary cell line, and SH-SY5Y cells, a human neuroblastoma cell line) and an animal model such as Sprague-Dawley (SD) rats. First, cellular DA uptake was measured 2 or 8 h following BPA exposure (0.1-400 μM) in SH-SY5Y cells, where a significant increase in DA uptake was noted. BPA exerted no marked effect on dopamine active transporter levels in GH3 cells exposed for 8 or 24 h. However, SH-SY5Y cells displayed an increase in dopamine transporter (DAT) levels following 24 h of exposure to BPA. In contrast to DAT levels, BPA exposure produced no marked effect on DA D1 receptor levels in SH-SY5Y cells, yet a significant decrease in GH3 cells following both 8- and 24-h exposure periods was noted, suggesting that BPA exerts differential effects dependent upon cell type. BPA produced no significant effects on prolactin levels at 2 h, but a marked fall occurred at 24 h of exposure in GH3 cells. Finally, to examine the influence of dietary developmental exposure to BPA on brain DA levels in F1 offspring, SD rats were exposed to BPA (0.5-20 mg/kg) through maternal transfer and/or diet and striatal DA levels were measured on postnatal day (PND) 60 using high-performance liquid chromatography (HPLC). Data demonstrated that chronic exposure to BPA did not significantly alter striatal DA levels in the SD rat.
Collapse
Affiliation(s)
| | - Matt A Hamada
- a AZCOM , Midwestern University , Glendale , AZ , 85308 USA
| | | | | |
Collapse
|
44
|
Khadrawy YA, Noor NA, Mourad IM, Ezz HSA. Neurochemical impact of bisphenol A in the hippocampus and cortex of adult male albino rats. Toxicol Ind Health 2016; 32:1711-9. [DOI: 10.1177/0748233715579803] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical, is widely used in the manufacture of polycarbonated plastics and epoxy resins and line metal beverage cans. Growing evidence suggests that BPA acts directly on neuronal functions as it is lipophilic and could accumulate in the brain. The present study aims to investigate the effect of two doses of BPA (10 mg/kg for 6 and 10 weeks and 25 mg/kg for 6 weeks) on excitatory (glutamate and aspartate) and inhibitory (γ-aminobutyric acid, glycine, and taurine) amino acid neurotransmitter levels in the cortex and hippocampus. This study extends to investigate the effect of BPA on acetylcholinesterase (AchE) activity and some oxidative stress parameters in the two regions. In the cortex, a significant increase in the excitatory and a significant decrease in the inhibitory amino acids occurred after BPA (10 mg/kg for 10 weeks and 25 mg/kg for 6 weeks). This was accompanied by a significant increase in lipid peroxidation, nitric oxide, and reduced glutathione after 6 weeks of BPA (25 mg/kg). In the hippocampus, a significant increase in the excitatory and inhibitory amino acid neurotransmitters occurred after 6 weeks of BPA. Hippocampal lipid peroxidation increased significantly after BPA exposure and hippocampal reduced glutathione increased significantly after 6 weeks of BPA exposure (10 mg/kg). BPA induced a significant increase in cortical and hippocampal AchE activity. The present neurochemical changes in the cortex and hippocampus suggest that BPA induced a state of excitotoxicity and oxidative stress. This may raise concerns about the exposure of humans to BPA due to its wide applications in industry.
Collapse
Affiliation(s)
- Yasser A Khadrawy
- Department of Medical Physiology, Medical Division, National Research Center, Giza, Egypt
| | - Neveen A Noor
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Iman M Mourad
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Heba S Aboul Ezz
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
45
|
Abstract
Brain development is an organized, but constantly adaptive, process in which genetic and epigenetic signals allow neurons to differentiate, to migrate, and to develop correct connections. Gender specific prenatal sex hormone milieu participates in the dimorphic development of many neuronal networks. Environmental cues may interfere with these developmental programs, producing adverse outcomes. Bisphenol A (BPA), an estrogenic/antiandrogenic endocrine disruptor widely diffused in the environment, produces adverse effects at levels below the acceptable daily intake. This review analyzes the recent literature on the consequences of perinatal exposure to BPA environmental doses on the development of a dimorphic brain. The BPA interference with the development and function of the neuroendocrine hypothalamus and of the nuclei controlling energy balance, and with the hippocampal memory processing is also discussed. The detrimental action of BPA appears complex, involving different hormonal and epigenetic pathways activated, often in a dimorphic way, within clearcut susceptibility windows. To date, discrepancies in experimental approaches and in related outcomes make unfeasible to translate the available information into clear dose-response models for human risk assessment. Evaluation of BPA brain levels in relation to the appearance of adverse effects in future basic studies will certainly give better definition of the warning threshold for human health.
Collapse
Affiliation(s)
- P Negri-Cesi
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, INBB Research Unit, Milano, Italy
| |
Collapse
|
46
|
An JH, Choi DK, Lee KJ, Choi JW. Surface-enhanced Raman spectroscopy detection of dopamine by DNA Targeting amplification assay in Parkisons's model. Biosens Bioelectron 2015; 67:739-46. [DOI: 10.1016/j.bios.2014.10.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022]
|
47
|
Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.3978] [Citation(s) in RCA: 528] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
48
|
Sadowski RN, Wise LM, Park PY, Schantz SL, Juraska JM. Early exposure to bisphenol A alters neuron and glia number in the rat prefrontal cortex of adult males, but not females. Neuroscience 2014; 279:122-31. [PMID: 25193849 DOI: 10.1016/j.neuroscience.2014.08.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/30/2014] [Accepted: 08/25/2014] [Indexed: 11/26/2022]
Abstract
Previous work has shown that exposure to bisphenol A (BPA) during early development can alter sexual differentiation of the brain in rodents, although few studies have examined effects on areas of the brain associated with cognition. The current study examined if developmental BPA exposure alters the total number of neurons and glia in the medial prefrontal cortex (mPFC) in adulthood. Pregnant Long-Evans rats were orally exposed to 0, 4, 40, or 400-μg/kg BPA in corn oil throughout pregnancy. From postnatal days 1 to 9, pups were given daily oral doses of oil or BPA, at doses corresponding to those given during gestation. Brains were examined in adulthood, and the volume of layers 2/3 and layers 5/6 of the mPFC was parcellated. The density of neurons and glia in these layers was quantified stereologically with the optical disector, and density was multiplied by volume for each animal. Males exposed to 400-μg/kg BPA were found to have increased numbers of neurons and glia in layers 5/6. Although there were no significant effects of BPA in layers 2/3, the pattern of increased neuron number in males exposed to 400-μg/kg BPA was similar to that seen in layers 5/6. No effects of BPA were seen in females or in males exposed to the other doses of BPA. This study indicates that males are more susceptible to the long-lasting effects of BPA on anatomy of the mPFC, an area implicated in neurological disorders.
Collapse
Affiliation(s)
- R N Sadowski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - L M Wise
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - P Y Park
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - S L Schantz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States
| | - J M Juraska
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, United States.
| |
Collapse
|
49
|
Koriem KMM, Arbid MS, Emam KR. Therapeutic effect of pectin on octylphenol induced kidney dysfunction, oxidative stress and apoptosis in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:14-23. [PMID: 24860957 DOI: 10.1016/j.etap.2014.04.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
Octylphenol (OP) is one of ubiquitous pollutants in the environment. It belongs to endocrine-disrupting chemicals (EDC). It is used in many industrial and agricultural products. Pectin is a family of complex polysaccharides that function as a hydrating agent and cementing material for the cellulose network. The aim of this study was to evaluate the therapeutic effect of pectin in kidney dysfunction, oxidative stress and apoptosis induced by OP exposure. Thirty-two male albino rats were divided into four equal groups; group 1 control was injected intraperitoneally (i.p) with saline [1 ml/kg body weight (bwt)], groups 2, 3 & 4 were injected i.p with OP (50 mg/kg bwt) three days/week over two weeks period where groups 3 & 4 were injected i.p with pectin (25 or 50 mg/kg bwt) three days/week over three weeks period. The results of the present study revealed that OP significantly decreased glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT), reduced glutathione (GSH), glutathione reductase (GR) and superoxide dismutase (SOD) levels while increased significantly lipid peroxidation (MDA), nitric oxide (NO) and protein carbonyls (PC) levels in the kidney tissues. On the other hand, OP increased serum urea and creatinine. Furthermore, OP increased significantly serum uric acid but decreased significantly the kidney weight. Moreover, OP decreased p53 expression while increased bcl-2 expression in the kidney tissue. The treatment with either dose of pectin to OP-exposed rats restores all the above parameters to approach the normal values where pectin at higher dose was more effective than lower one. These results were supported by histopathological investigations. In conclusion, pectin has antioxidant and anti-apoptotic activities in kidney toxicity induced by OP and the effect was dose-dependent.
Collapse
Affiliation(s)
- Khaled M M Koriem
- Medical Physiology Department, National Research Centre, Dokki, Giza, Egypt; Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia (USM), Malaysia.
| | - Mahmoud S Arbid
- Department of Pharmacology, National Research Centre, Dokki, Giza, Egypt
| | | |
Collapse
|
50
|
Kuwahara R, Kawaguchi S, Kohara Y, Jojima T, Yamashita K. Bisphenol A does not affect memory performance in adult male rats. Cell Mol Neurobiol 2014; 34:333-42. [PMID: 24326521 DOI: 10.1007/s10571-013-0017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/03/2013] [Indexed: 12/30/2022]
Abstract
Bisphenol A (BPA) is an estrogenic endocrine disruptor used for producing polycarbonate plastics and epoxy resins. This study investigated the effects of oral BPA administration on memory performance, general activity, and emotionality in adult male Sprague Dawley rats using a battery of behavioral tests, including an appetite-motivated maze test (MAZE test) used to assess spatial memory performance. In addition, in order to confirm the effects of BPA on spatial memory performance, we examined whether intrahippocampal injection of BPA affects spatial memory consolidation. In the MAZE test, although oral BPA administration at 10 mg/kg significantly altered the number of entries into the incorrect area compared to those of vehicle-treated rats, male rats given BPA through either oral administration or intrahippocampal injection failed to show significant differences in latencies to reach the reward. Also, oral BPA administration did not affect fear-motivated memory performance in the step-through passive avoidance test. Oral BPA administration at 0.05 mg/kg, the lowest dose used in this study, was correlated with a decrease in locomotor activity in the open-field test, whereas oral administration at 10 mg/kg, the highest dose used in this study, was correlated with a light anxiolytic effect in the elevated plus-maze test. The present study suggests that BPA in adulthood has little effect on spatial memory performance in male rats.
Collapse
Affiliation(s)
- Rika Kuwahara
- Graduate School of Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | | | | | | | | |
Collapse
|