1
|
Ding W, Weltzien H, Peters C, Klein R. Nausea-induced suppression of feeding is mediated by central amygdala Dlk1-expressing neurons. Cell Rep 2024; 43:113990. [PMID: 38551964 DOI: 10.1016/j.celrep.2024.113990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
The motivation to eat is suppressed by satiety and aversive stimuli such as nausea. The neural circuit mechanisms of appetite suppression by nausea are not well understood. Pkcδ neurons in the lateral subdivision of the central amygdala (CeA) suppress feeding in response to satiety signals and nausea. Here, we characterized neurons enriched in the medial subdivision (CeM) of the CeA marked by expression of Dlk1. CeADlk1 neurons are activated by nausea, but not satiety, and specifically suppress feeding induced by nausea. Artificial activation of CeADlk1 neurons suppresses drinking and social interactions, suggesting a broader function in attenuating motivational behavior. CeADlk1 neurons form projections to many brain regions and exert their anorexigenic activity by inhibition of neurons of the parabrachial nucleus. CeADlk1 neurons are inhibited by appetitive CeA neurons, but also receive long-range monosynaptic inputs from multiple brain regions. Our results illustrate a CeA circuit that regulates nausea-induced feeding suppression.
Collapse
Affiliation(s)
- Wenyu Ding
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Helena Weltzien
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christian Peters
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
2
|
Qi Y, Cheng H, Lou Q, Wang X, Lai N, Gao C, Wu S, Xu C, Ruan Y, Chen Z, Wang Y. Paradoxical effects of posterior intralaminar thalamic calretinin neurons on hippocampal seizure via distinct downstream circuits. iScience 2022; 25:104218. [PMID: 35494226 PMCID: PMC9046245 DOI: 10.1016/j.isci.2022.104218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
Epilepsy is a circuit-level brain disorder characterized by hyperexcitatory seizures with unclear mechanisms. Here, we investigated the causal roles of calretinin (CR) neurons in the posterior intralaminar thalamic nucleus (PIL) in hippocampal seizures. Using c-fos mapping and calcium fiber photometry, we found that PIL CR neurons were activated during hippocampal seizures in a kindling model. Optogenetic activation of PIL CR neurons accelerated seizure development, whereas inhibition retarded seizure development. Further, viral-based circuit tracing verified that PIL CR neurons were long-range glutamatergic neurons, projecting toward various downstream regions. Interestingly, selective inhibition of PIL-lateral amygdala CR circuit attenuated seizure progression, whereas inhibition of PIL-zona incerta CR circuit presented an opposite effect. These results indicated that CR neurons in the PIL play separate roles in hippocampal seizures via distinct downstream circuits, which complements the pathogenic mechanisms of epilepsy and provides new insight for the precise medicine of epilepsy. PIL CR neurons are activated during hippocampal seizures Optogenetic control of PIL CR neurons bidirectionally modulates seizure development LA-projecting and ZI-projecting CR circuits present opposite effects in seizure modulation
Collapse
Affiliation(s)
- Yingbei Qi
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heming Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiuwen Lou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nanxi Lai
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chenshu Gao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuangshuang Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Corresponding author
| | - Yi Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Corresponding author
| |
Collapse
|
3
|
Revealing the Precise Role of Calretinin Neurons in Epilepsy: We Are on the Way. Neurosci Bull 2021; 38:209-222. [PMID: 34324145 PMCID: PMC8821741 DOI: 10.1007/s12264-021-00753-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/24/2021] [Indexed: 02/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by hyperexcitability in the brain. Its pathogenesis is classically associated with an imbalance of excitatory and inhibitory neurons. Calretinin (CR) is one of the three major types of calcium-binding proteins present in inhibitory GABAergic neurons. The functions of CR and its role in neural excitability are still unknown. Recent data suggest that CR neurons have diverse neurotransmitters, morphologies, distributions, and functions in different brain regions across various species. Notably, CR neurons in the hippocampus, amygdala, neocortex, and thalamus are extremely susceptible to excitotoxicity in the epileptic brain, but the causal relationship is unknown. In this review, we focus on the heterogeneous functions of CR neurons in different brain regions and their relationship with neural excitability and epilepsy. Importantly, we provide perspectives on future investigations of the role of CR neurons in epilepsy.
Collapse
|
4
|
Arai Y, Cwetsch AW, Coppola E, Cipriani S, Nishihara H, Kanki H, Saillour Y, Freret-Hodara B, Dutriaux A, Okada N, Okano H, Dehay C, Nardelli J, Gressens P, Shimogori T, D’Onofrio G, Pierani A. Evolutionary Gain of Dbx1 Expression Drives Subplate Identity in the Cerebral Cortex. Cell Rep 2019; 29:645-658.e5. [DOI: 10.1016/j.celrep.2019.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 10/25/2022] Open
|
5
|
Boon J, Clarke E, Kessaris N, Goffinet A, Molnár Z, Hoerder‐Suabedissen A. Long-range projections from sparse populations of GABAergic neurons in murine subplate. J Comp Neurol 2019; 527:1610-1620. [PMID: 30520039 PMCID: PMC6492162 DOI: 10.1002/cne.24592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/01/2018] [Accepted: 11/17/2018] [Indexed: 02/05/2023]
Abstract
The murine subplate contains some of the earliest generated populations of neurons in the cerebral cortex, which play an important role in the maturation of cortical inhibition. Here we present multiple lines of evidence, that the subplate itself is only very sparsely populated with GABAergic neurons at postnatal day (P)8. We used three different transgenic mouse lines, each of which labels a subset of GABAergic, ganglionic eminence derived neurons. Dlx5/6-eGFP labels the most neurons in cortex (on average 11% of NEUN+ cells across all layers at P8) whereas CGE-derived Lhx6-Cre::Dlx1-Venusfl cells are the sparsest (2% of NEUN+ cells across all layers at P8). There is significant variability in the layer distribution of labeled interneurons, with Dlx5/6-eGFP and Lhx6-Cre::R26R-YFP being expressed most abundantly in Layer 5, whereas CGE-derived Lhx6-Cre::Dlx1-Venusfl cells are least abundant in that layer. All three lines label at most 3% of NEUN+ neurons in the subplate, in contrast to L5, in which up to 30% of neurons are GFP+ in Dlx5/6-eGFP. We assessed all three GABAergic populations for expression of the subplate neuron marker connective tissue growth factor (CTGF). CTGF labels up to two-thirds of NEUN+ cells in the subplate, but was never found to colocalize with labeled GABAergic neurons in any of the three transgenic strains. Despite the GABAergic neuronal population in the subplate being sparse, long-distance axonal connection tracing with carbocyanine dyes revealed that some Gad65-GFP+ subplate cells form long-range axonal projections to the internal capsule or callosum.
Collapse
Affiliation(s)
- Jacqueline Boon
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Emma Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
- Royal Free London NHS Foundation TrustLondonUnited Kingdom
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - André Goffinet
- Institute of NeuroscienceUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Zoltán Molnár
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | | |
Collapse
|
6
|
Katsarou AM, Li Q, Liu W, Moshé SL, Galanopoulou AS. Acquired parvalbumin-selective interneuronopathy in the multiple-hit model of infantile spasms: A putative basis for the partial responsiveness to vigabatrin analogs? Epilepsia Open 2018; 3:155-164. [PMID: 30564774 PMCID: PMC6293059 DOI: 10.1002/epi4.12280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
West syndrome, an age-specific epileptic encephalopathy, manifests with infantile spasms (IS) and impaired neurodevelopmental outcomes and epilepsy. The multiple-hit rat model of IS is a chronic model of IS due to structural etiology, in which spasms respond partially to vigabatrin analogs. Using this model, we investigated whether IS due to structural etiology may have deficits in parvalbumin (PRV) and somatostatin (SST) immunoreactive (-ir) interneurons, and calretinin-ir (CR-ir) neurons of the primary somatosensory cortex of postnatal day (PN) 20-24 rats, using specific immunohistochemical assays. PN3 Sprague-Dawley male rats underwent the multiple-hit induction protocol, were monitored until PN20-24, and were transcardially perfused to collect brains for histology. Age-matched sham and naive control male rats were also used. Coronal brain cryosections were stained with anti-PRV, anti-CR, and anti-SST antibodies, and regions of interest (ROIs) from the primary somatosensory cortices were selected to determine PRV-, CR-, and SST-ir cell counts and cortical ROI volumes, with blinding to experimental group. Statistical analyses were done using a linear mixed model accounting for repeated measures. We found PRV-ir interneuronal selective reduction, sparing of the CR-ir and SST-ir neurons, and bilateral cortical atrophy. Our findings provide evidence for acquired PRV-selective interneuronopathy, possibly underlying the pathogenesis of IS, neurodevelopmental deficits, and epilepsy, and potentially contributing to the partial response to vigabatrin analogs in this model.
Collapse
Affiliation(s)
- Anna-Maria Katsarou
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A
| | - Qianyun Li
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A
| | - Wei Liu
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A
| | - Solomon L Moshé
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A.,Laboratory of Developmental Epilepsy Isabelle Rapin Division of Child Neurology Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A.,Department of Pediatrics Albert Einstein College of Medicine Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Albert Einstein College of Medicine Bronx New York U.S.A.,Laboratory of Developmental Epilepsy Isabelle Rapin Division of Child Neurology Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A
| |
Collapse
|
7
|
Diao Y, Chen Y, Zhang P, Cui L, Zhang J. Molecular guidance cues in the development of visual pathway. Protein Cell 2017; 9:909-929. [PMID: 29181831 PMCID: PMC6208478 DOI: 10.1007/s13238-017-0490-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/30/2017] [Indexed: 01/23/2023] Open
Abstract
70%–80% of our sensory input comes from vision. Light hit the retina at the back of our eyes and the visual information is relayed into the dorsal lateral geniculate nuclei (dLGN) and primary visual cortex (V1) thereafter, constituting the image-forming visual circuit. Molecular cues are one of the key factors to guide the wiring and refinement of the image-forming visual circuit during pre- and post-embryonic stages. Distinct molecular cues are involved in different developmental stages and nucleus, suggesting diverse guidance mechanisms. In this review, we summarize molecular guidance cues throughout the image-forming visual circuit, including chiasm determination, eye-specific segregation and refinement in the dLGN, and at last the reciprocal connections between the dLGN and V1.
Collapse
Affiliation(s)
- Yupu Diao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuqing Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peijun Zhang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Liyuan Cui
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Równiak M. The neurons expressing calcium-binding proteins in the amygdala of the guinea pig: precisely designed interface for sex hormones. Brain Struct Funct 2017; 222:3775-3793. [PMID: 28456912 PMCID: PMC5676811 DOI: 10.1007/s00429-017-1432-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/24/2017] [Indexed: 01/18/2023]
Abstract
The generation of emotional responses by the amygdala is determined largely by the balance of excitatory and inhibitory inputs to its principal neurons. These responses are often sex-specific, and any imbalance in excitatory and/or inhibitory tones leads to serious psychiatric disorders which occur with different rates in men versus women. To investigate the neural basis of sex-specific processing in the amygdala, relationships between the neurons expressing calbindin (CB), parvalbumin (PV) and calretinin (CR), which form in the amygdala main subsets of γ-aminobutyric acid (GABA)-ergic inhibitory system, and neurons endowed with oestrogen alpha (ERα), oestrogen beta (ERβ) or androgen (AR) receptors were analysed using double immunohistochemistry in male and female guinea pig subjects. The results show that in various nuclei of the amygdala in both sexes small subsets of CB neurons and substantial proportions of PV neurons co-express ERβ, while many of the CR neurons co-express ERα. Both these oestrogen-sensitive populations are strictly separated as CB and PV neurons almost never co-express ERα, while CR cells are usually devoid of ERβ. In addition, in the medial nucleus and some other neighbouring regions, there are non-overlapping subpopulations of CB and CR neurons which co-express AR. In conclusion, the localization of ERα, ERβ or AR within subsets of GABAergic interneurons across diverse amygdaloid regions suggests that steroid hormones may exert a significant influence over local neuronal activity by directly modulating inhibitory tone. The control of inhibitory tone may be one of the mechanisms whereby oestrogen and androgen could modulate amygdala processing in a sex-specific manner. Another mechanism may be thorough steroid-sensitive projection neurons, which are most probably located in the medial and central nuclei.
Collapse
Affiliation(s)
- Maciej Równiak
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727, Olsztyn, Poland.
| |
Collapse
|
9
|
Żakowski W. Neurochemistry of the Anterior Thalamic Nuclei. Mol Neurobiol 2016; 54:5248-5263. [DOI: 10.1007/s12035-016-0077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023]
|
10
|
Al-Jaberi N, Lindsay S, Sarma S, Bayatti N, Clowry GJ. The early fetal development of human neocortical GABAergic interneurons. Cereb Cortex 2015; 25:631-45. [PMID: 24047602 PMCID: PMC4318531 DOI: 10.1093/cercor/bht254] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
GABAergic interneurons are crucial to controlling the excitability and responsiveness of cortical circuitry. Their developmental origin may differ between rodents and human. We have demonstrated the expression of 12 GABAergic interneuron-associated genes in samples from human neocortex by quantitative rtPCR from 8 to 12 postconceptional weeks (PCW) and shown a significant anterior to posterior expression gradient, confirmed by in situ hybridization or immunohistochemistry for GAD1 and 2, DLX1, 2, and 5, ASCL1, OLIG2, and CALB2. Following cortical plate (CP) formation from 8 to 9 PCW, a proportion of cells were strongly stained for all these markers in the CP and presubplate. ASCL1 and DLX2 maintained high expression in the proliferative zones and showed extensive immunofluorescent double-labeling with the cell division marker Ki-67. CALB2-positive cells increased steadily in the SVZ/VZ from 10 PCW but were not double-labeled with Ki-67. Expression of GABAergic genes was generally higher in the dorsal pallium than in the ganglionic eminences, with lower expression in the intervening ventral pallium. It is widely accepted that the cortical proliferative zones may generate CALB2-positive interneurons from mid-gestation; we now show that the anterior neocortical proliferative layers especially may be a rich source of interneurons in the early neocortex.
Collapse
Affiliation(s)
- Nahidh Al-Jaberi
- Institute of Neuroscience Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Subrot Sarma
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Nadhim Bayatti
- Institute of Neuroscience Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK Current address: Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | | |
Collapse
|
11
|
Camillo D, Levelt CN, Heimel JA. Lack of functional specialization of neurons in the mouse primary visual cortex that have expressed calretinin. Front Neuroanat 2014; 8:89. [PMID: 25237298 PMCID: PMC4154467 DOI: 10.3389/fnana.2014.00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/18/2014] [Indexed: 12/11/2022] Open
Abstract
Calretinin is a calcium-binding protein often used as a marker for a subset of inhibitory interneurons in the mammalian neocortex. We studied the labeled cells in offspring from a cross of a Cre-dependent reporter line with the CR-ires-Cre mice, which express Cre-recombinase in the same pattern as calretinin. We found that in the mature visual cortex, only a minority of the cells that have expressed calretinin and Cre-recombinase during their lifetime is GABAergic and only about 20% are immunoreactive for calretinin. The reason behind this is that calretinin is transiently expressed in many cortical pyramidal neurons during development. To determine whether neurons that express or have expressed calretinin share any distinct functional characteristics, we recorded their visual response properties using GCaMP6s calcium imaging. The average orientation selectivity, size tuning, and temporal and spatial frequency tuning of this group of cells, however, match the response profile of the general neuronal population, revealing the lack of functional specialization for the features studied.
Collapse
Affiliation(s)
- Daniela Camillo
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - Christiaan N Levelt
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - J Alexander Heimel
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| |
Collapse
|
12
|
Kröcher T, Röckle I, Diederichs U, Weinhold B, Burkhardt H, Yanagawa Y, Gerardy-Schahn R, Hildebrandt H. A crucial role for polysialic acid in developmental interneuron migration and the establishment of interneuron densities in the mouse prefrontal cortex. Development 2014; 141:3022-32. [PMID: 24993945 DOI: 10.1242/dev.111773] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polysialic acid (polySia) is a unique glycan modification of the neural cell adhesion molecule NCAM and a major determinant of brain development. Polysialylation of NCAM is implemented by the two polysialyltransferases (polySTs) ST8SIA2 and ST8SIA4. Dysregulation of the polySia-NCAM system and variation in ST8SIA2 has been linked to schizophrenia and other psychiatric disorders. Here, we show reduced interneuron densities in the medial prefrontal cortex (mPFC) of mice with either partial or complete loss of polySia synthesizing capacity by ablation of St8sia2, St8sia4, or both. Cells positive for parvalbumin and perineuronal nets as well as somatostatin-positive cells were reduced in the mPFC of all polyST-deficient lines, whereas calretinin-positive cells and the parvalbumin-negative fraction of calbindin-positive cells were unaffected. Reduced interneuron numbers were corroborated by analyzing polyST-deficient GAD67-GFP knock-in mice. The accumulation of precursors in the ganglionic eminences and reduced numbers of tangentially migrating interneurons in the pallium were observed in polyST-deficient embryos. Removal of polySia by endosialidase treatment of organotypic slice cultures led to decreased entry of GAD67-GFP-positive interneurons from the ganglionic eminences into the pallium. Moreover, the acute loss of polySia caused significant reductions in interneuron velocity and leading process length. Thus, attenuation of polySia interferes with the developmental migration of cortical interneurons and causes pathological changes in specific interneuron subtypes. This provides a possible link between genetic variation in polyST genes, neurodevelopmental alterations and interneuron dysfunction in neuropsychiatric disease.
Collapse
Affiliation(s)
- Tim Kröcher
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany Center for Systems Neuroscience Hannover (ZSN), 30559 Hannover, Germany
| | - Iris Röckle
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ute Diederichs
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Birgit Weinhold
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Hannelore Burkhardt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine and CREST, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Rita Gerardy-Schahn
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany Center for Systems Neuroscience Hannover (ZSN), 30559 Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany Center for Systems Neuroscience Hannover (ZSN), 30559 Hannover, Germany
| |
Collapse
|
13
|
Olson EC. Analysis of preplate splitting and early cortical development illuminates the biology of neurological disease. Front Pediatr 2014; 2:121. [PMID: 25426475 PMCID: PMC4227491 DOI: 10.3389/fped.2014.00121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022] Open
Abstract
The development of the layered cerebral cortex starts with a process called preplate splitting. Preplate splitting involves the establishment of prospective cortical layer 6 (L6) neurons within a plexus of pioneer neurons called the preplate. The forming layer 6 splits the preplate into a superficial layer of pioneer neurons called the marginal zone and a deeper layer of pioneer neurons called the subplate. Disruptions of this early developmental event by toxin exposure or mutation are associated with neurological disease including severe intellectual disability. This review explores recent findings that reveal the dynamism of gene expression and morphological differentiation during this early developmental period. Over 1000 genes show expression increases of ≥2-fold during this period in differentiating mouse L6 neurons. Surprisingly, 88% of previously identified non-syndromic intellectual-disability (NS-ID) genes are expressed at this time and show an average expression increase of 1.6-fold in these differentiating L6 neurons. This changing genetic program must, in part, support the dramatic cellular reorganizations that occur during preplate splitting. While different models have been proposed for the formation of a layer of L6 cortical neurons within the preplate, original histological studies and more recent work exploiting transgenic mice suggest that the process is largely driven by the coordinated polarization and coalescence of L6 neurons rather than by cellular translocation or migration. The observation that genes associated with forms of NS-ID are expressed during very early cortical development raises the possibility of studying the relevant biological events at a time point when the cortex is small, contains relatively few cell types, and few functional circuits. This review then outlines how explant models may prove particularly useful in studying the consequence of toxin and mutation on the etiology of some forms of NS-ID.
Collapse
Affiliation(s)
- Eric C Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University , Syracuse, NY , USA ; Developmental Exposure Alcohol Research Center (DEARC), Binghamton University , Binghamton, NY , USA
| |
Collapse
|
14
|
Sarnat HB. Clinical neuropathology practice guide 5-2013: markers of neuronal maturation. Clin Neuropathol 2013; 32:340-69. [PMID: 23883617 PMCID: PMC3796735 DOI: 10.5414/np300638] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
This review surveys immunocytochemical and histochemical markers of neuronal lineage for application to tissue sections of fetal and neonatal brain. They determine maturation of individual nerve cells as the tissue progresses to mature architecture. From a developmental perspective, neuronal markers are all about timing. These diverse cellular labels may be classified in two ways: 1) time of onset of expression (early; intermediate; late); 2) labeling of subcellular structures or metabolic functions (nucleoproteins; synaptic vesicle proteins; enolases; cytoskeletal elements; calcium-binding; nucleic acids; mitochondria). Apart from these positive markers of maturation, other negative markers are expressed in primitive neuroepithelial cells and early stages of neuroblast maturation, but no longer are demonstrated after initial stages of maturation. These examinations are relevant for studies of normal neuroembryology at the cellular level. In fetal and perinatal neuropathology they provide control criteria for application to malformations of the brain, inborn metabolic disorders and acquired fetal insults in which neuroblastic maturation may be altered. Disorders, in which cells differentiate abnormally, as in tuberous sclerosis and hemimegalencephaly, pose another yet aspect of mixed cellular lineage. The measurement in living patients, especially neonates, of serum and CSF levels of enolases, chromogranins and S-100 proteins as biomarkers of brain damage may potentially be correlated with their corresponding tissue markers at autopsy in infants who do not survive. The neuropathological markers here described can be performed in ordinary hospital laboratories, not just research facilities, and offer another dimension of diagnostic precision in interpreting abnormally developed fetal and postnatal brains.
Collapse
|
15
|
Morona R, González A. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. J Comp Neurol 2013; 521:79-108. [PMID: 22678695 DOI: 10.1002/cne.23163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/07/2012] [Accepted: 06/01/2012] [Indexed: 11/09/2022]
Abstract
The present study represents a detailed spatiotemporal analysis of the localization of calbindin-D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, University Complutense, 28040 Madrid, Spain
| | | |
Collapse
|
16
|
Żakowski W, Robak A. Developmental changes of calretinin immunoreactivity in the anterior thalamic nuclei of the guinea pig. J Chem Neuroanat 2013; 47:28-34. [DOI: 10.1016/j.jchemneu.2012.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/27/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
|
17
|
|
18
|
Joven A, Morona R, Moreno N, González A. Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development. Brain Struct Funct 2012; 218:969-1003. [PMID: 22843286 DOI: 10.1007/s00429-012-0442-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/07/2012] [Indexed: 11/28/2022]
Abstract
The sequence of appearance of calretinin and calbindin-D28k immunoreactive (CRir and CBir, respectively) cells and fibers has been studied in the brain of the urodele amphibian Pleurodeles waltl. Embryonic, larval and juvenile stages were studied. The early expression and the dynamics of the distribution of CBir and CRir structures have been used as markers for developmental aspects of distinct neuronal populations, highlighting the accurate extent of many regions in the developing brain, not observed on the basis of cytoarchitecture alone. CR and, to a lesser extent, CB are expressed early in the central nervous system and show a progressively increasing expression from the embryonic stages throughout the larval life and, in general, the labeled structures in the developing brain retain their ability to express these proteins in the adult brain. The onset of CRir cells primarily served to follow the development of the olfactory bulbs, subpallium, thalamus, alar hypothalamus, mesencephalic tegmentum, and distinct cell populations in the rhombencephalic reticular formation. CBir cells highlighted the development of, among others, the pallidum, hypothalamus, dorsal habenula, midbrain tegmentum, cerebellum, and central gray of the rostral rhombencephalon. However, it was the relative and mostly segregated distribution of both proteins in distinct cell populations which evidenced the developing regionalization of the brain. The results have shown the usefulness in neuroanatomy of the analysis during development of the onset of CBir and CRir structures, but the comparison with previous data has shown extensive variability across vertebrate classes. Therefore, one should be cautious when comparing possible homologue structures across species only on the basis of the expression of these proteins, due to the variation of the content of calcium-binding proteins observed in well-established homologous regions in the brain of different vertebrates.
Collapse
Affiliation(s)
- Alberto Joven
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Changes in the distribution of calbindin D28-k, parvalbumin, and calretinin in the hippocampus of the circling mouse. Brain Res 2012; 1437:58-68. [DOI: 10.1016/j.brainres.2011.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/18/2011] [Accepted: 12/04/2011] [Indexed: 01/29/2023]
|
20
|
Piontkewitz Y, Bernstein HG, Dobrowolny H, Bogerts B, Weiner I, Keilhoff G. Effects of risperidone treatment in adolescence on hippocampal neurogenesis, parvalbumin expression, and vascularization following prenatal immune activation in rats. Brain Behav Immun 2012; 26:353-63. [PMID: 22154704 DOI: 10.1016/j.bbi.2011.11.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/21/2022] Open
Abstract
Maternal infection in pregnancy is an environmental risk factor for the development of schizophrenia and related disorders in the offspring, and this association is recapitulated in animal models using gestational infection or immune stimulation. We have recently shown that behavioral abnormalities and altered hippocampal morphology emerging in adult offspring of dams treated with the viral mimic polyriboinosinic-polyribocytidilic acid (poly I:C) are prevented by treatment with the atypical antipsychotic drug risperidone (RIS) in adolescence. Here we used a battery of cellular markers and Nissl stain to morphometrically analyze different hippocampal cell populations in the offspring of poly I:C and saline-treated mothers that received saline or RIS in adolescence, at different time points of postnatal development. We report that impaired neurogenesis, disturbed micro-vascularization and loss of parvalbumin-expressing hippocampal interneurons, are found in the offspring of poly I:C-treated dams. Most, but not all, of these neuropathological changes are not present in poly I:C offspring that had been treated with RIS. These effects may be part of the complex processes underlying the capacity of RIS treatment in adolescence to prevent structural and behavioral abnormalities deficits in the poly I:C offspring.
Collapse
Affiliation(s)
- Yael Piontkewitz
- Department of Psychology, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
21
|
A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. J Neurosci 2011; 31:10948-70. [PMID: 21795545 DOI: 10.1523/jneurosci.0323-11.2011] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although vastly outnumbered, inhibitory interneurons critically pace and synchronize excitatory principal cell populations to coordinate cortical information processing. Precision in this control relies upon a remarkable diversity of interneurons primarily determined during embryogenesis by genetic restriction of neuronal potential at the progenitor stage. Like their neocortical counterparts, hippocampal interneurons arise from medial and caudal ganglionic eminence (MGE and CGE) precursors. However, while studies of the early specification of neocortical interneurons are rapidly advancing, similar lineage analyses of hippocampal interneurons have lagged. A "hippocampocentric" investigation is necessary as several hippocampal interneuron subtypes remain poorly represented in the neocortical literature. Thus, we investigated the spatiotemporal origins of hippocampal interneurons using transgenic mice that specifically report MGE- and CGE-derived interneurons either constitutively or inducibly. We found that hippocampal interneurons are produced in two neurogenic waves between E9-E12 and E12-E16 from MGE and CGE, respectively, and invade the hippocampus by E14. In the mature hippocampus, CGE-derived interneurons primarily localize to superficial layers in strata lacunosum moleculare and deep radiatum, while MGE-derived interneurons readily populate all layers with preference for strata pyramidale and oriens. Combined molecular, anatomical, and electrophysiological interrogation of MGE/CGE-derived interneurons revealed that MGE produces parvalbumin-, somatostatin-, and nitric oxide synthase-expressing interneurons including fast-spiking basket, bistratified, axo-axonic, oriens-lacunosum moleculare, neurogliaform, and ivy cells. In contrast, CGE-derived interneurons contain cholecystokinin, calretinin, vasoactive intestinal peptide, and reelin including non-fast-spiking basket, Schaffer collateral-associated, mossy fiber-associated, trilaminar, and additional neurogliaform cells. Our findings provide a basic blueprint of the developmental origins of hippocampal interneuron diversity.
Collapse
|
22
|
Nichols AJ, Olson EC. Reelin promotes neuronal orientation and dendritogenesis during preplate splitting. ACTA ACUST UNITED AC 2010; 20:2213-23. [PMID: 20064940 DOI: 10.1093/cercor/bhp303] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The secreted ligand Reelin is thought to regulate the translocation and positioning of prospective layer 6 (L6) neurons into the preplate, a plexus of neurons overlying the ventricular zone. We examined wild type and Reelin-deficient cortices and found that L6 neurons were equivalently positioned beneath the pia during the period of preplate splitting and initial cortical plate (CP) formation. The absence of detectable L6 ectopia in "reeler" cortices at this developmental time point indicates that Reelin-signaling might not regulate L6 neuron migration or gross positioning during preplate splitting. To explore the acute response of L6 neurons to Reelin, subpial injections of Reelin were made into Reelin-deficient explants. Reelin injection caused L6 neurons to orient their nuclei and polarize their Golgi toward the pia while initiating exuberant dendritic (MAP2+) outgrowth within 4 h. This rapid Reelin-dependent neuronal orientation and alignment created CP-like histology without any significant change in the mean position of the population of L6 neurons. Conversely, subplate cells and chondroitin sulfate proteoglycan immunoreactivity were found at significantly deeper positions from the pial surface after injection, suggesting that Reelin partially rescues preplate splitting within 4 h. Thus, Reelin has a direct role in promoting rapid morphological differentation and orientation of L6 neurons during preplate splitting.
Collapse
Affiliation(s)
- Anna J Nichols
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
23
|
Nielsen JV, Blom JB, Noraberg J, Jensen NA. Zbtb20-induced CA1 pyramidal neuron development and area enlargement in the cerebral midline cortex of mice. ACTA ACUST UNITED AC 2009; 20:1904-14. [PMID: 19955470 DOI: 10.1093/cercor/bhp261] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expression of the transcriptional repressor Zbtb20 is confined to the hippocampal primordium of the developing dorsal midline cortex in mice. Here, we show that misexpression of Zbtb20 converts projection neurons of the subiculum and postsubiculum (dorsal presubiculum) to CA1 pyramidal neurons that are innervated by Schaffer collateral projections in ectopic strata oriens and radiatum. The Zbtb20-transformed neurons express Bcl11B, Satb2, and Calbindin-D28k, which are markers of adult CA1 pyramidal neurons. Downregulation of Zbtb20 expression by RNA interference impairs the normal maturation of CA1 pyramidal neurons resulting in deficiencies in Calbindin-D28k expression and in reduced apical dendritic arborizations in stratum lacunosum moleculare. Overall, the results show that Zbtb20 is required for various aspects of CA1 pyramidal neuron development such as the postnatal extension of apical dendritic arbors in the distal target zone and the subtype differentiation of Calbindin-D28k-positive subsets. They further suggest that Zbtb20 plays a role in arealization of the midline cortex.
Collapse
Affiliation(s)
- Jakob V Nielsen
- Molecular Neurobiology Laboratory, Medical Biotechnology Center, Department of Molecular Medicine, University of Southern Denmark, J.B. Winslows Vej 25, DK-5000 Odense C, Denmark
| | | | | | | |
Collapse
|
24
|
Jahagirdar V, Wagner CK. Ontogeny of progesterone receptor expression in the subplate of fetal and neonatal rat cortex. Cereb Cortex 2009; 20:1046-52. [PMID: 19684244 DOI: 10.1093/cercor/bhp165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The progesterone receptor (PR) is transiently expressed in the rat cortex during development and its expression is initiated in the developmentally critical layer, the subplate. As subplate neurons pioneer thalamocortical and corticofugal connectivity, the expression of PR in this layer suggests an important function for PR in cortical development. Using immunocytochemistry for PR, the present study determined the precise ontogeny of PR expression in subplate neurons. The number of cells containing PR immunoreactivity (PRir) within the subplate was quantified from embryonic day (E) 17 through postnatal day (P) 14. The subplate was positively identified by the marker calretinin and by BrDU birthdating. The results demonstrate that PRir is undetectable in fetal cortex on E17, but is first observed in the subplate on E18. The number of PRir cells peaks on P2 and then steadily declines, until PRir is once again not detectable in subplate by P14. This developmental window of PR expression within the subplate coincides with establishment of early cortical circuitry and the gradual demise of subplate cells, suggesting that PR may play a critical role in mediating these fundamental developmental processes.
Collapse
Affiliation(s)
- Vaishali Jahagirdar
- Department of Psychology and Center for Neuroscience Research, University at Albany-State University of New York, Albany, NY 12222, USA
| | | |
Collapse
|
25
|
Pulvers JN, Huttner WB. Brca1 is required for embryonic development of the mouse cerebral cortex to normal size by preventing apoptosis of early neural progenitors. Development 2009; 136:1859-68. [PMID: 19403657 DOI: 10.1242/dev.033498] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The extent of apoptosis of neural progenitors is known to influence the size of the cerebral cortex. Mouse embryos lacking Brca1, the ortholog of the human breast cancer susceptibility gene BRCA1, show apoptosis in the neural tube, but the consequences of this for brain development have not been studied. Here we investigated the role of Brca1 during mouse embryonic cortical development by deleting floxed Brca1 using Emx1-Cre, which leads to conditional gene ablation specifically in the dorsal telencephalon after embryonic day (E) 9.5. The postnatal Brca1-ablated cerebral cortex was substantially reduced in size with regard to both cortical thickness and surface area. Remarkably, although the thickness of the cortical layers (except for the upper-most layer) was decreased, cortical layering as such was essentially unperturbed. High levels of apoptosis were found at E11.5 and E13.5, but dropped to near-control levels by E16.5. The apoptosis at the early stage of neurogenesis occurred in both BrdU pulse-labeled neural progenitors and the neurons derived therefrom. No changes were observed in the mitotic index of apical (neuroepithelial, radial glial) progenitors and basal (intermediate) progenitors, indicating that Brca1 ablation did not affect cell cycle progression. Brca1 ablation did, however, result in the nuclear translocation of p53 in neural progenitors, suggesting that their apoptosis involved activation of the p53 pathway. Our results show that Brca1 is required for the cerebral cortex to develop to normal size by preventing the apoptosis of early cortical progenitors and their immediate progeny.
Collapse
Affiliation(s)
- Jeremy N Pulvers
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
26
|
Consonni S, Leone S, Becchetti A, Amadeo A. Developmental and neurochemical features of cholinergic neurons in the murine cerebral cortex. BMC Neurosci 2009; 10:18. [PMID: 19272148 PMCID: PMC2660337 DOI: 10.1186/1471-2202-10-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 03/09/2009] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The existence and role of intrinsic cholinergic cells in the cerebral cortex is controversial, because of their variable localization and morphology in different mammalian species. We have applied choline acetyltransferase (ChAT) immunocytochemistry to study the distribution of cholinergic neurons in the murine cerebral cortex, in the adult and during postnatal development. For more precise neurochemical identification of these neurons, the possible colocalization of ChAT with different markers of cortical neuronal populations has been analyzed by confocal microscopy. This method was also used to verify the relationship between cholinergic cells and cortical microvessels. RESULTS ChAT positive cells appeared at the end of the first postnatal week. Their density dramatically increased at the beginning of the second postnatal week, during which it remained higher than in perinatal and adult stages. In the adult neocortex, cholinergic neurons were particularly expressed in the somatosensory area, although their density was also significant in visual and auditory areas. ChAT positive cells tended to be scarce in other regions. They were mainly localized in the supragranular layers and displayed a fusiform/bipolar morphology. The colocalization of ChAT with pyramidal neuron markers was negligible. On the other hand, more than half of the cholinergic neurons contained calretinin, but none of them expressed parvalbumin or calbindin. However, only a fraction of the ChAT positive cells during development and very few in adulthood turned out to be GABAergic, as judged from expression of GABA and its biosynthetic enzymes GAD67/65. Consistently, ChAT showed no localization with interneurons expressing green fluorescent protein under control of the GAD67 promoter in the adult neocortex. Finally, the cortical cholinergic cells often showed close association with the microvessel walls, as identified with the gliovascular marker aquaporin 4, supporting previous hypotheses on the role of cholinergic cells in modulating the cortical microcirculation. CONCLUSION Our results show that the development of the intracortical cholinergic system accompanies the cortical rearrangements during the second postnatal week, a crucial stage for the establishment of cortical cytoarchitecture and for synaptogenesis. Although intrinsic ChAT positive cells usually expressed calretinin, they displayed a variable GABAergic phenotype depending on marker and on cortical developmental stage.
Collapse
Affiliation(s)
- Silvia Consonni
- Department of Biotechnology and Biosciences, Piazza della Scienza 2, University of Milano, Bicocca, 20126 Milano, Italy
| | - Silvia Leone
- Department of Biomolecular Sciences and Biotechnology, Via Celoria 26, University of Milano, 20133 Milano, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, Piazza della Scienza 2, University of Milano, Bicocca, 20126 Milano, Italy
| | - Alida Amadeo
- Department of Biomolecular Sciences and Biotechnology, Via Celoria 26, University of Milano, 20133 Milano, Italy
| |
Collapse
|
27
|
Zhao Y, Flandin P, Long JE, Cuesta MD, Westphal H, Rubenstein JLR. Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J Comp Neurol 2008; 510:79-99. [PMID: 18613121 PMCID: PMC2547494 DOI: 10.1002/cne.21772] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Here we analyze the role of the Lhx6 lim-homeobox transcription factor in regulating the development of subsets of neocortical, hippocampal, and striatal interneurons. An Lhx6 loss-of-function allele, which expresses placental alkaline phosphatase (PLAP), allowed analysis of the development and fate of Lhx6-expressing interneurons in mice lacking this homeobox transcription factor. There are Lhx6+;Dlx+ and Lhx6-;Dlx+ subtypes of tangentially migrating interneurons. Most interneurons in Lhx6(PLAP/PLAP) mutants migrate to the cortex, although less efficiently, and exhibit defects in populating the marginal zone and superficial parts of the neocortical plate. By contrast, migration to superficial parts of the hippocampus is not seriously affected. Furthermore, whereas parvalbumin+ and somatostatin+ interneurons do not differentiate, NPY+ interneurons are present; we suggest that these NPY+ interneurons are derived from the Lhx6-;Dlx+ subtype. Striatal interneurons show deficits distinct from pallial interneurons, including a reduction in the NPY+ subtype. We provide evidence that Lhx6 mediates these effects through promoting expression of receptors that regulate interneuron migration (ErbB4, CXCR4, and CXCR7), and through promoting the expression of transcription factors either known (Arx) or implicated (bMaf, Cux2, and NPAS1) in controlling interneuron development.
Collapse
Affiliation(s)
- Yangu Zhao
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
28
|
De Gasperi R, Gama Sosa MA, Wen PH, Li J, Perez GM, Curran T, Elder GA. Cortical development in the presenilin-1 null mutant mouse fails after splitting of the preplate and is not due to a failure of reelin-dependent signaling. Dev Dyn 2008; 237:2405-14. [PMID: 18729224 PMCID: PMC2566957 DOI: 10.1002/dvdy.21661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cortical development is disrupted in presenilin-1 null mutant (Psen1-/-) mice. Prior studies have commented on similarities between Psen1-/- and reeler mice. Reelin induces phosphorylation of Dab1 and activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Psen1 is known to modulate PI3K/Akt signaling and both known reelin receptors (apoER2 and VLDLR) are substrates for Psen1 associated gamma-secretase activity. The purpose of this study was to determine whether reelin signaling is disrupted in Psen1-/- mice. We show that, while Dab1 is hypophosphorylated late in cortical development in Psen1-/- mice, it is normally phosphorylated at earlier ages and reelin signaling is intact in Psen1-/- primary neuronal cultures. gamma-secretase activity was also not required for reelin-induced phosphorylation of Dab1. Unlike reeler mice the preplate splits in Psen1-/- brain. Thus cortical development in Psen1-/- mice fails only after splitting of the preplate and is not due to an intrinsic failure of reelin signaling.
Collapse
Affiliation(s)
- Rita De Gasperi
- Research and Development, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029
| | - Miguel A. Gama Sosa
- Research and Development, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029
| | - Paul H. Wen
- Research and Development, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029
| | - Jingjun Li
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029
| | - Gissel M. Perez
- Research and Development, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029
| | - Tom Curran
- Abramson Research Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Gregory A. Elder
- Research and Development, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468
- Rehabilitation Medicine Services, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
29
|
Voltage-gated Na+ channel II immunoreactivity is selectively up-regulated in hippocampal interneurons of seizure sensitive gerbils. Neurosci Lett 2008; 438:295-9. [PMID: 18487017 DOI: 10.1016/j.neulet.2008.04.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 11/20/2022]
Abstract
In the present study, we investigated the distribution of voltage-gated Na(+) channels (VGSCs) in the normal and epileptic hippocampus of gerbils (a genetic epilepsy model) in order to confirm the relationship between VGSC and seizure activity in these animals. There was no difference of VGSC I immunoreactivity in the hippocampus between seizure-resistant (SR) and seizure sensitive (SS) gerbils. VGSC II immunoreactivity was rarely detected in the perikarya of principal neurons and interneurons in the SR gerbil hippocampus. However, in the SS gerbil hippocampus, VGSC II immunoreactivity was densely observed in the somata of interneurons located in the stratum radiatum and stratum lacunosum-moleculare. Double immunofluorescent study showed immunoreactivity for calretinin (approximately 80% in VGSC II-positive neurons) or calbindin D-28k (approximately 20% in VGSC II-positive neurons) in VGSC II-immunoreactive neurons. VGSC II-immunoreactive neurons did not show parvalbumin immunoreactivity. These findings suggest that seizure activity in SS gerbils may be related to the selective hyperactivation of interneurons in stratum lacunosum-moleculare via the up-regulation of VGSC II expression, which leads to the disinhibition of CA1 pyramidal cells.
Collapse
|
30
|
Gonchar Y, Wang Q, Burkhalter A. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front Neuroanat 2008; 1:3. [PMID: 18958197 PMCID: PMC2525923 DOI: 10.3389/neuro.05.003.2007] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 01/21/2008] [Indexed: 02/01/2023] Open
Abstract
The majority of cortical interneurons use GABA (gamma amino butyric acid) as inhibitory neurotransmitter. GABAergic neurons are morphologically, connectionally, electrically and chemically heterogeneous. In rat cerebral cortex three distinct groups of GABAergic interneurons have been identified by the expression of parvalbumin (PV), calretinin (CR) and somatostatin (SOM). Recent studies in mouse cerebral cortex have revealed a different organization in which the CR and SOM populations are partially overlapping. Because CR and SOM neurons derive from different progenitors located in different embryonic structures, the coexpression of CR + SOM suggests that the chemical differentiation of interneurons is regulated postmitotically. Here, we have taken an important first step towards understanding this process by triple immunostaining mouse visual cortex with a panel of antibodies, which has been used extensively for classifying developing interneurons. We have found at least 13 distinct groups of GABAergic neurons which include PV, CR, SOM, CCK (cholecystokinin), CR + SOM, CR + NPY (neuropeptide Y), CR + VIP (vasointestinal polypeptide), SOM + NPY, SOM + VIP, VIP + ChAT (choline acetyltransferase), CCK + NPY, CR + SOM + NPY and CR + SOM + VIP expressing cells. Triple immunostaining with PV, CR and SOM antibodies during postnatal development further showed that PV is never colocalized with CR and SOM. Importantly, expression of SOM and CR + SOM developed after the percentage of CR cells that do not express SOM has reached the mature level, suggesting that the chemical differentiation of SOM and CR + SOM neurons is a postnatal event, which may be controlled by transcriptional regulation.
Collapse
Affiliation(s)
- Yuri Gonchar
- Department of Anatomy and Neurobiology, Washington University School of Medicine St. Louis, MO, USA
| | | | | |
Collapse
|
31
|
Xu Q, Tam M, Anderson SA. Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol 2008; 506:16-29. [PMID: 17990269 DOI: 10.1002/cne.21529] [Citation(s) in RCA: 422] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The homeodomain transcription factor Nkx2.1 is expressed in the pallidal (subcortical) telencephalon, including the medial ganglionic eminence (MGE) and preoptic area. Studies have shown that Nkx2.1 is required for normal patterning of the MGE and for the specification of the parvalbumin (PV)- and somatostatin (SST)-expressing cortical interneurons. To define the contribution of Nkx2.1 lineages to neurons in the mature telencephalon, we have generated transgenic mice carrying the genomic integration of a modified bacterial artificial chromosome (BAC) in which the second exon of Nkx2.1 is replaced by the Cre recombinase. Analysis of these mice has found that they express the Cre recombinase and Cre reporters within Nkx2.1-expressing domains of the brain, thyroid, pituitary, and lung. Telencephalic expression of reporters begins at about embryonic day 10.5. Expression both of Cre and of recombination-based Cre reporters is weaker within the dorsalmost region of the MGE than in other Nkx2.1-expressing regions. In this paper, we present fate-mapping data on Nkx2.1-lineage neurons throughout the telencephalon, including the cerebral cortex, amygdala, olfactory bulb, striatum, globus pallidus, septum, and nucleus basalis.
Collapse
Affiliation(s)
- Qing Xu
- Department of Psychiatry, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | |
Collapse
|
32
|
SOX5 Controls the Sequential Generation of Distinct Corticofugal Neuron Subtypes. Neuron 2008; 57:232-47. [DOI: 10.1016/j.neuron.2007.12.023] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 11/30/2007] [Accepted: 12/19/2007] [Indexed: 12/12/2022]
|
33
|
Vitalis T, Cases O, Passemard S, Callebert J, Parnavelas JG. Embryonic depletion of serotonin affects cortical development. Eur J Neurosci 2007; 26:331-44. [PMID: 17650110 DOI: 10.1111/j.1460-9568.2007.05661.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Compelling evidence suggests that serotonin (5-HT) is necessary for the refined organization of the cerebral cortex. Here we sought to analyse the short- and long-term consequences of embryonic 5-HT depletion on the development of the cerebral neocortex of the rat. We focused on the migration and differentiation of the pyramidal (projection) and nonpyramidal (interneuron) neuronal populations. Our paradigm used daily injection of DL-P-chlorophenylalanine (PCPA), a reversible inhibitor of 5-HT synthesis, during the E12-17 stage of embryonic development, when major events in corticogenesis take place. We monitored the 5-HT depletion induced by this treatment and showed that it led to subtle alterations in both the pyramidal and nonpyramidal neuronal populations. We found that E12-17 PCPA treatment altered the maturation of pyramidal neurons of layers III and V of the somatosensory cortex, with these cells displaying reduced dendritic arborization and complexity. These long-lasting alterations were not associated with modification of cortical BDNF levels at postnatal stages. We also showed that PCPA treatment transiently altered the incorporation in the cortical plate of interneurons derived from the caudal ganglionic eminence, and persistently affected the differentiation of a subpopulation expressing calretinin and/or cholecystokinin.
Collapse
Affiliation(s)
- Tania Vitalis
- Department of Anatomy and Developmental Biology, University College London, London, UK.
| | | | | | | | | |
Collapse
|
34
|
Stumm R, Kolodziej A, Schulz S, Kohtz JD, Höllt V. Patterns of SDF-1alpha and SDF-1gamma mRNAs, migration pathways, and phenotypes of CXCR4-expressing neurons in the developing rat telencephalon. J Comp Neurol 2007; 502:382-99. [PMID: 17366607 DOI: 10.1002/cne.21336] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cortical GABAergic neurons originate in the ventral telencephalon, invade the cortex via tangential migration, and integrate into the cortical plate by surface-directed and ventricle-directed migration. In mice lacking CXCR4 or SDF-1, GABAergic neurons fail to complete their migration. It is presently unknown which parts of the migration of CXCR4-expressing GABAergic neurons are driven by SDF-1. Here we compared patterns of SDF-1 isoforms and CXCR4 in the developing rat telencephalon. In the ventral telencephalon, radial glia, striatal, and migratory GABAergic neurons expressed CXCR4. Tangentially migrating CXCR4-expressing neurons populated the marginal zone and started to invade the lateral intermediate zone at embryonic day (E)14. Until E17 the spread of CXCR4-expressing neurons in the dorsomedial direction was accompanied by progressive upregulation of SDF-1alpha in the dorsomedial intermediate/subventricular zone. In the meninges, SDF-1alpha and SDF-1gamma were expressed persistently. During invasion of the cortical plate the orientation of CXCR4-immunoreactive neurons changed gradually from tangential (E17/E18) to radial (postnatal day [P] 0), which was paralleled by downregulation of SDF-1alpha in the intermediate/subventricular zone. At E17, CXCR4-immunoreactive cells were colabeled with markers for ventral forebrain-derived neurons (Dlx) but not markers for glutamatergic (Tbr) or subplate (calretinin) neurons. Postnatally, calretinin- and somatostatin-expressing but not parvalbumin-expressing GABAergic neurons or pyramidal cells contained CXCR4. Pyramidal cells and few large blood vessels expressed SDF-1alpha, while microvessels contained SDF-1gamma transcripts. In summary, SDF-1alpha is expressed along cortical but not subcortical migration routes of GABAergic neurons. We propose that regulated expression of SDF-1 in the intermediate/subventricular zone influences lateromedial tangential migration of CXCR4-expressing GABAergic neurons.
Collapse
Affiliation(s)
- Ralf Stumm
- Institute of Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
35
|
Kadowaki M, Nakamura S, Machon O, Krauss S, Radice GL, Takeichi M. N-cadherin mediates cortical organization in the mouse brain. Dev Biol 2006; 304:22-33. [PMID: 17222817 DOI: 10.1016/j.ydbio.2006.12.014] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/05/2006] [Accepted: 12/07/2006] [Indexed: 11/24/2022]
Abstract
The cerebral cortex is a complex laminated structure generated by the sequential migration of developing neurons from the ventricular zone. One of the molecules that may play a role in cortical morphogenesis is N-cadherin since its blocking causes disruption of the ordered arrangement of cells in other neural tissues, such as the neural retina. Here, we show that when the N-cadherin gene had been conditionally deleted in the mouse cerebral cortex, the intra-cortical structures were nearly completely randomized; e.g., mitotic cells and postmitotic cells were scattered throughout the cortex without any order. These defects seemed to mainly originate from the disruption of the adherens junctions (AJs) localized in the apical end of neuroepithelial cells, where N-cadherin is normally most highly concentrated. In the absence of N-cadherin, neuroepithelial or radial glial cells could not expand their bodies or processes to span the distance between the ventricular and pial surfaces and therefore terminated them in the middle zone of the cortex. These results demonstrate that N-cadherin is essential for maintaining the normal architecture of neuroepithelial or radial glial cells and that their disruption randomizes the internal structures of the cortex.
Collapse
Affiliation(s)
- Masakazu Kadowaki
- Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan, and Institute of Medical Microbiology and Centre for Molecular Biology and Neuroscience, The National Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
36
|
Martins GJ, Plachez C, Powell EM. Loss of Embryonic MET Signaling Alters Profiles of Hippocampal Interneurons. Dev Neurosci 2006; 29:143-58. [PMID: 17148957 DOI: 10.1159/000096219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 05/10/2006] [Indexed: 11/19/2022] Open
Abstract
Hippocampal interneurons arise in the ventral forebrain and migrate dorsally in response to cues, including hepatocyte growth factor/scatter factor which signals via its receptor MET. Examination of the hippocampus in adult mice in which MET had been inactivated in the embryonic proliferative zones showed an increase in parvalbumin-expressing cells in the dentate gyrus, but a loss of these cells in the CA3 region. An overall loss of calretinin-expressing cells was seen throughout the hippocampus. A similar CA3 deficit of parvalbumin and calretinin cells was observed when MET was eliminated only in postmitotic cells. These data suggest that MET is required for the proper hippocampal development, and embryonic perturbations lead to long-term anatomical defects with possible learning and memory dysfunction.
Collapse
Affiliation(s)
- Gabriela J Martins
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
37
|
Chang Y, Ostling P, Akerfelt M, Trouillet D, Rallu M, Gitton Y, El Fatimy R, Fardeau V, Le Crom S, Morange M, Sistonen L, Mezger V. Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev 2006; 20:836-47. [PMID: 16600913 PMCID: PMC1472286 DOI: 10.1101/gad.366906] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heat-shock factors (HSFs) are associated with multiple developmental processes, but their mechanisms of action in these processes remain largely enigmatic. Hsf2-null mice display gametogenesis defects and brain abnormalities characterized by enlarged ventricles. Here, we show that Hsf2-/- cerebral cortex displays mispositioning of neurons of superficial layers. HSF2 deficiency resulted in a reduced number of radial glia fibers, the architectural guides for migrating neurons, and of Cajal-Retzius cells, which secrete the positioning signal Reelin. Therefore, we focused on the radial migration signaling pathways. The levels of Reelin and Dab1 tyrosine phosphorylation were reduced, suggesting that the Reelin cascade is affected in Hsf2-/- cortices. The expression of p35, an activator of cyclin-dependent kinase 5 (Cdk5), essential for radial migration, was dependent on the amount of HSF2 in gain- and loss-of-function systems. p39, another Cdk5 activator, displayed reduced mRNA levels in Hsf2-/- cortices, which, together with the lowered p35 levels, decreased Cdk5 activity. We demonstrate in vivo binding of HSF2 to the p35 promoter and thereby identify p35 as the first target gene for HSF2 in cortical development. In conclusion, HSF2 affects cellular populations that assist in radial migration and directly regulates the expression of p35, a crucial actor of radial neuronal migration.
Collapse
Affiliation(s)
- Yunhua Chang
- Biologie Moléculaire du Stress, Centre National de la Recherche Scientifique (CNRS) UMR8541, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Nonreceptor protein tyrosine kinases of the Src family regulate the survival, proliferation, differentiation, and motility of many cell types, but their roles in brain development are unclear. Biochemical and in vitro experiments implicate Src and Fyn in the Reelin-dependent tyrosine phosphorylation of Dab1, which controls the positioning of radially migrating neurons in many brain regions. However, genetic evidence that either Src or Fyn mediates Reelin-dependent migrations in vivo has been lacking. Here, we report that, although Src is dispensable and although the absence of Fyn causes an intermediate phenotype, the combined absence of Src and Fyn almost abolishes tyrosine phosphorylation of Dab1 and causes defects in the fetal cortex and cerebellum very similar to those of dab1 mutants of the same age. Neurogenesis is not detectably affected, but the layering of neurons in the cortex is inverted, and the formation of the Purkinje plate is impaired. This implies that Src and Fyn are needed for Reelin-dependent events during brain development.
Collapse
Affiliation(s)
- Gloria Kuo
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
39
|
Paredes M, Pleasure SJ, Baraban SC. Embryonic and early postnatal abnormalities contributing to the development of hippocampal malformations in a rodent model of dysplasia. J Comp Neurol 2006; 495:133-48. [PMID: 16432901 PMCID: PMC2827607 DOI: 10.1002/cne.20871] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
While there are many recent examples of single gene deletions that lead to defects in cortical development, most human cases of cortical disorganization can be attributed to a combination of environmental and genetic factors. Elucidating the cellular or developmental basis of teratogenic exposures in experimental animals is an important approach to understanding how environmental insults at particular developmental junctures can lead to complex brain malformations. Rats with prenatal exposure to methylazoxymethanol (MAM) reproduce many anatomical features seen in epilepsy patients. Previous studies have shown that heterotopic clusters of neocortically derived neurons exhibit hyperexcitable firing activity and may be a source of heightened seizure susceptibility; however, the events that lead to the formation of these abnormal cell clusters is unclear. Here we used a panel of molecular markers and birthdating studies to show that in MAM-exposed rats the abnormal cell clusters (heterotopia) first appear postnatally in the hippocampus (P1-2) and that their appearance is preceded by a distinct sequence of perturbations in neocortical development: 1) disruption of the radial glial scaffolding with premature astroglial differentiation, and 2) thickening of the marginal zone with redistribution of Cajal-Retzius neurons to deeper layers. These initial events are followed by disruption of the cortical plate and appearance of subventricular zone nodules. Finally, we observed the erosion of neocortical subventricular zone nodules into the hippocampus around parturition followed by migration of nodules to hippocampus. We conclude that prenatal MAM exposure disrupts critical developmental processes and prenatal neocortical structures, ultimately resulting in neocortical disorganization and hippocampal malformations.
Collapse
Affiliation(s)
- Mercedes Paredes
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco
| | | | - Scott C. Baraban
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California, San Francisco
| |
Collapse
|
40
|
Kritzer MF. Regional, Laminar and Cellular Distribution of Immunoreactivity for ERβ in the Cerebral Cortex of Hormonally Intact, Postnatally Developing Male and Female Rats. Cereb Cortex 2005; 16:1181-92. [PMID: 16221921 DOI: 10.1093/cercor/bhj059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Estrogen influences cerebral cortical development. Among the receptors involved are classical (ERalpha) and beta (ERbeta) intracellular estrogen receptors. In the first 2 weeks of postnatal life, cortical ERalpha is transiently expressed at much higher levels than in adulthood. In this study, development of ERbeta was examined by mapping ERbeta immunoreactivity in relation to major cortical regions, layers and cell types in postnatal male and female rats that were 1-28 postnatal days (PND) old. These studies revealed that ERbeta-immunoreactive nuclei were present in the allocortices on PND 1 but were not detected in isocortex until PND 7. Allocortical labeling was also higher on PND 1 than at all later ages, while in isocortical areas low numbers of ERbeta nuclei were seen on PND 7 that rose to higher, near adult densities by PND 21. Finally, double labeling showed that ERalpha was expressed mainly in neurons immunopositive for calretinin, while ERbeta was localized predominantly in parvalbumin-immunoreactive cells. Thus, the postnatal cortical developments of ERbeta and ERalpha occur according to different timetables, different patterns and in association with different cortical cells. It thus seems it likely that the two also make distinct contributions to postnatal cortical development and/or sexual differentiation.
Collapse
Affiliation(s)
- Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA.
| |
Collapse
|
41
|
Dávila JC, Real MA, Olmos L, Legaz I, Medina L, Guirado S. Embryonic and postnatal development of GABA, calbindin, calretinin, and parvalbumin in the mouse claustral complex. J Comp Neurol 2005; 481:42-57. [PMID: 15558732 DOI: 10.1002/cne.20347] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We analyzed the development of immunoreactive expression patterns for the neurotransmitter gamma-aminobutyric acid (GABA) and the calcium-binding proteins calbindin, calretinin, and parvalbumin in the embryonic and postnatal mouse claustral complex. Each calcium-binding protein shows a different temporal and spatial pattern of development. Calbindin-positive cells start to be seen very early during embryogenesis and increase dramatically until birth, thus becoming the most abundant cell type during embryonic development, especially in the ventral pallial part of the claustrum. The distribution of calbindin neurons throughout the claustrum during embryonic development partly parallels that of GABA neurons, suggesting that at least part of the calbindin neurons of the claustral complex are GABAergic and originate in the subpallium. Parvalbumin cells, on the other hand, start to be seen only postnatally, and their number then increases while the density of calbindin neurons decreases. Based on calretinin expression in axons, the core/shell compartments of the dorsal claustrum start to be clearly seen at embryonic day 18.5 and may be related to the development of the thalamoclaustral input. Comparison with the expression of Cadherin 8, a marker of the developing dorsolateral claustrum, indicates that the core includes a central part of the dorsolateral claustrum, whereas the shell includes a peripheral area of the dorsolateral claustrum, plus the adjacent ventromedial claustrum. The present data on the spatiotemporal developmental patterns of several subtypes of GABAergic neurons in the claustral complex may help for future studies on temporal lobe epilepsies, which have been related to an alteration of the GABAergic activity.
Collapse
Affiliation(s)
- José Carlos Dávila
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Pozas E, Ibáñez CF. GDNF and GFRalpha1 promote differentiation and tangential migration of cortical GABAergic neurons. Neuron 2005; 45:701-13. [PMID: 15748846 DOI: 10.1016/j.neuron.2005.01.043] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 11/05/2004] [Accepted: 01/27/2005] [Indexed: 12/17/2022]
Abstract
Cortical GABAergic neurons are generated in the ventral telencephalon and migrate dorsally into the cortex following a tangential path. GDNF signaling via GFRalpha1 was found to promote the differentiation of ventral precursors into GABAergic cells, enhancing their neuronal morphology and motility. GDNF stimulated axonal growth in cortical GABAergic neurons and acted as a potent chemoattractant of GABAergic cells. These effects required GFRalpha1 but neither RET nor NCAM, the two transmembrane signaling receptors known for GDNF. Mutant mice lacking GDNF or GFRalpha1, but neither RET nor NCAM, showed reduced numbers of GABAergic cells in the cerebral cortex and hippocampus. We conclude that one of the normal functions of GDNF signaling via GFRalpha1 in the developing brain is to promote the differentiation and migration of cortical GABAergic neurons. The lack of involvement of RET or NCAM in these processes suggests the existence of additional transmembrane effectors for GDNF.
Collapse
Affiliation(s)
- Esther Pozas
- Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, S-17177 Stockholm, Sweden.
| | | |
Collapse
|
43
|
Wen PH, De Gasperi R, Gama Sosa MA, Elder GA. Neural progenitor cells do not differentiate prematurely in presenilin-1 null mutant mice. Neurosci Lett 2005; 371:249-54. [PMID: 15519767 DOI: 10.1016/j.neulet.2004.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 09/01/2004] [Indexed: 10/26/2022]
Abstract
Mice with a null mutation of the presenilin-1 (PS1-/-) gene die during late intrauterine life or shortly after birth and exhibit defects in cortical development. A previous report suggested that neurons differentiate prematurely in PS1-/- brain [M. Handler, X. Yang, J. Shen, Presenilin-1 regulates neuronal differentiation during neurogenesis, Development 127 (2000) 2593-2606]. Here we reexamined the issue of whether premature neuronal differentiation occurs in PS1-/- brain using fresh cell suspensions from embryonic E11.5 and E13.5 telencephalon where individual cell phenotypes can be easily determined with cell type specific markers. Immunostaining with seven neuronal specific markers (MAP2, beta-III tubulin, GABA, reelin, GluR2/3, calbindin, and calretinin) failed to reveal any evidence of premature neuronal differentiation in PS1-/- telencephalon. We also determined the fraction of cells expressing the neural progenitor marker nestin and found no evidence for premature depletion of neural progenitor cells in PS1-/- telencephalon. Moreover, based on MAP2 staining of tissue sections from E12.5 embryos the topography of newly generated neurons also appeared to be undisturbed in the telencephalon of PS1-/- embryos. These studies thus argue that premature neuronal differentiation is unlikely to be a core pathophysiological feature underlying the aberrant cortical development that occurs in PS1-/- brain.
Collapse
Affiliation(s)
- Paul H Wen
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
44
|
Ha HY, Cho IH, Lee KW, Lee KW, Song JY, Kim KS, Yu YM, Lee JK, Song JS, Yang SD, Shin HS, Han PL. The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1. Dev Biol 2005; 277:184-99. [PMID: 15572149 DOI: 10.1016/j.ydbio.2004.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 09/12/2004] [Accepted: 09/13/2004] [Indexed: 11/17/2022]
Abstract
The JNK interacting protein, JSAP1, has been identified as a scaffold protein for mitogen-activated protein kinase (MAPK) signaling pathways and as a linker protein for the cargo transport along the axons. To investigate the physiological function of JSAP1 in vivo, we generated mice lacking JSAP1. The JSAP1 null mutation produced various developmental deficits in the brain, including an axon guidance defect of the corpus callosum, in which phospho-FAK and phospho-JNK were distributed at reduced levels. The axon guidance defect of the corpus callosum in the jsap1-/- brain was correlated with the misplacement of glial sling cells, which reverted to their normal position after the transgenic expression of JNK interacting protein 1(JIP1). The transgenic JIP1 partially rescued the axon guidance defect of the corpus callosum and the anterior commissure of the jsap1-/- brain. The JSAP1 null mutation impaired the normal distribution of the Ca+2 regulating protein, calretinin, but not the synaptic vesicle marker, SNAP-25, along the axons of the thalamocortical tract. These results suggest that JSAP1 is required for the axon guidance of the telencephalic commissures and the distribution of cellular protein(s) along axons in vivo, and that the signaling network organized commonly by JIP1 and JSAP1 regulates the axon guidance in the developing brain.
Collapse
Affiliation(s)
- Hye-Yeong Ha
- Department of Neuroscience, Neuroscience Research Center and Medical Research Institute, Ewha Womans University School of Medicine, Seoul 110-783, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kwak SE, Kim JE, Kim DS, Jung JY, Won MH, Kwon OS, Choi SY, Kang TC. Effects of GABAergic transmissions on the immunoreactivities of calcium binding proteins in the gerbil hippocampus. J Comp Neurol 2005; 485:153-64. [PMID: 15776449 DOI: 10.1002/cne.20482] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although reduced calcium binding protein (CBP) immunoreactivities in the epileptic hippocampus have been well established, it has been controversial that these changes may directly indicate neuronal degeneration. In the present study, therefore, we investigated CBP expressions in the gerbil hippocampus following treatment with gamma-aminobutyric acid (GABA) receptor antagonists in order to assess whether altered CBP expressions are the result of either abnormal excitation or indicative of neuronal damage/degeneration. Seizure-sensitive (SS) gerbils showed a loss/decline of CBP immunoreactivities in some hippocampal neurons as compared with seizure-resistant (SR) gerbils. In muscimol (GABA(A) receptor agonist) treated SS gerbils, expression levels of CBP were enhanced as compared with saline-treated SS gerbils. Bicuculline (a GABA(A) receptor antagonist) treatment markedly reduced CBP immunoreactivities in hippocampal neurons of the SR gerbil. Baclofen (a GABA(B) receptor agonist) treatment increased CBP immunoreactivities in the hippocampus of SS gerbils, although its effect was lower than that of muscimol treatment. Moreover, phaclofen (GABA(B) receptor antagonist) treated SR gerbil showed reduction in calbindin D-28K immunoreactivity, not parvalbumin immunoreactivity, in the hippocampus. These findings therefore suggest that reduced CBP immunoreactivities may be the consequence of abnormal discharge caused by loss of GABAergic inhibition rather than an indication of the neuronal damage/degeneration.
Collapse
Affiliation(s)
- Sung-Eun Kwak
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Albrieux M, Platel JC, Dupuis A, Villaz M, Moody WJ. Early expression of sodium channel transcripts and sodium current by cajal-retzius cells in the preplate of the embryonic mouse neocortex. J Neurosci 2004; 24:1719-25. [PMID: 14973256 PMCID: PMC6730446 DOI: 10.1523/jneurosci.3548-02.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In mouse, the first neurons are generated at embryonic day (E) 12 and form the preplate (PP), which contains a mix of future marginal zone cells, including Cajal-Retzius cells, and subplate cells. To detect developmental changes in channel populations in these earliest-generated neurons of the cerebral cortex, we studied the electrophysiological properties of proliferative cells of the ventricular zone and postmitotic neurons of the PP at E12 and E13, using whole-cell patch-clamp recordings. We found an inward sodium current in 55% of PP cells. To determine whether sodium currents occur in a specific cell type, we stained recorded cells with an antibody for calretinin, a calcium-binding protein found specifically in Cajal-Retzius cells. All calretinin-positive cells had sodium currents, although so did some calretinin-negative cells. To correlate the Na current expression to Na channel gene expression with the Cajal-Retzius cell phenotype, we performed single-cell reverse transcription-PCR on patch-clamp recorded cells to detect expression of the Cajal-Retzius cell marker reelin and the Na channel isoforms SCN 1, 2, and 3. These results showed that virtually all Cajal-Retzius cells (97%), as judged by reelin expression, express the SCN transcript identified as the SCN3 isoform. Of these, 41% presented a functional Na current. There is, however, a substantial SCN-positive population in the PP (27% of SCN-positive cells) that does not express reelin. These results raise the possibility that populations of pioneer neurons of the PP, including Cajal-Retzius cells, gain neuronal physiological properties early in development via expression of the Na(v)1.3 (SCN3) Na channel isoform.
Collapse
Affiliation(s)
- Mireille Albrieux
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
47
|
Morozov YM, Freund TF. Postnatal development and migration of cholecystokinin-immunoreactive interneurons in rat hippocampus. Neuroscience 2003; 120:923-39. [PMID: 12927199 DOI: 10.1016/s0306-4522(03)00409-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of cholecystokinin-immunoreactive (CCK-IR) interneurons in the rat hippocampus was studied using immunocytochemical methods at the light and electron microscopic levels from early (P0-P8) to later postnatal (P12-P20) periods. The laminar distribution of CCK-IR cell bodies changed considerably during the studied period, which is suggested to be due to migration. CCK-IR cells appear to move from the molecular layer of the dentate gyrus to their final destination at the stratum granulosum/hilus border, and tend to concentrate in the distal third of stratum radiatum in CA1-3. The density of CCK-IR cells is rapidly decreasing during the first 4 postnatal days without any apparent reduction in their total number, therefore it is due to the pronounced growth of hippocampal volume in this period. Axons of CCK-IR interneurons formed symmetrical synapses already at P0, and by far the predominant targets were dendrites of presumed principal cells in all subfields of the hippocampus. These axon arbors began to concentrate around pyramidal cell bodies only at P8, at earlier ages CCK-IR axons crossed stratum pyramidale at right angles, and gave rise to varicose collaterals only outside this layer. The dendrites and somata of CCK-IR cells received synapses already at P0, but those were mostly symmetrical, apart from a few immature asymmetrical synapses. At P4, mature asymmetrical synapses with considerable amounts of synaptic vesicles were already commonly encountered. Thus, the innervation of CCK-IR interneurons apparently develops later than their output synapses, suggesting that they may be able to release transmitter before receiving any considerable excitatory drive. We conclude that CCK-IR cells represent one, if not the major, interneuron type that assists in the maturation of glutamatergic synapses (activation of N-methyl-D-aspartate receptors) via GABAergic depolarization of principal cell dendrites, and may contribute to the generation of giant depolarizing potentials. CCK-IR cells will change their function to perisomatic hyperpolarizing inhibition, as glutamatergic transmission in the network becomes operational.
Collapse
Affiliation(s)
- Y M Morozov
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, H-1083, Budapest, Hungary
| | | |
Collapse
|
48
|
Castro A, Becerra M, Manso MJ, Anadón R. Distribution and development of calretinin-like immunoreactivity in the telencephalon of the brown trout,Salmo trutta fario. J Comp Neurol 2003; 467:254-69. [PMID: 14595772 DOI: 10.1002/cne.10923] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immunocytochemical techniques were used to investigate the distribution of calretinin (CR) in the telencephalon of adult and developing brown trout (Salmo trutta fario L.). Previous immunoblotting analysis of trout brain extracts with a CR antibody revealed a single protein band of 29 kDa, similar to that observed in rat brain extracts. In the forebrain of adult trout, CR immunoreactivity was distributed in well-defined cell groups, which allowed us to analyze the CR-immunoreactive (ir) neuronal populations in terms of their respective regions of origin. Our results show that the CR-ir populations of the dorsal and ventral telencephalon are differentially distributed along the rostrocaudal axis, indicating the existence of four main populations of pallial origin and several ventral (subpallial) populations. A highly specific pattern of innervation by CR-ir fibers of different telencephalic regions was observed from alevins to adults. The first CR-ir cell groups of the telencephalic hemispheres were observed in the ventral telencephalic area and preoptic region of 7-8-mm embryos. In later embryos and in alevins, further CR-ir cell groups appeared in the ventral and dorsal telencephalic areas, showing a dorsoventrally banded pattern at precommissural levels. Study of CR expression provided new criteria for understanding the organization of the telencephalon of trout, and hence of teleosts.
Collapse
Affiliation(s)
- Antonio Castro
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | | | | | |
Collapse
|
49
|
Kikkawa S, Yamamoto T, Misaki K, Ikeda Y, Okado H, Ogawa M, Woodhams PL, Terashima T. Missplicing resulting from a short deletion in the reelin gene causes reeler-like neuronal disorders in the mutant shaking rat Kawasaki. J Comp Neurol 2003; 463:303-15. [PMID: 12820163 DOI: 10.1002/cne.10761] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The shaking rat Kawasaki (SRK) is an autosomal recessive mutant that exhibits reeler-like abnormal locomotor behaviors. The murine reeler mutants arise from several mutations in the specific gene called reelin, which result in defects of Reelin expression or secretion in the cerebral cortex and other regions of CNS. To address the issue of whether the SRK mutation also arises from a mutation in reelin, we analyzed the reelin gene in SRK. Northern analysis of reelin mRNA from normal rats showed that rat reelin was expressed as a approximately 12-kb transcript in both the cerebrum and the cerebellum, whereas reelin expression was markedly reduced in the SRK brains. In situ hybridization analysis showed that reelin mRNA in the SRK brains was expressed in Cajal-Retzius cells in the marginal zone of the cerebral cortex and outer granular cells in the cerebellar cortex in similar manners to normal controls, but its expression was considerably reduced. On Western blotting and immunohistochemical analyses using antibodies specific for the Reelin protein, no immunoproduct was recognized in the cerebral and cerebellar cortices. From the cDNA sequences, we found a 64-base heterologous sequence in SRK reelin, which contains a termination codon in the reading frame. Furthermore, genomic DNA analysis revealed that a 10-base deletion, which contains a predicted splice donor site, occurred in the SRK genomic reelin gene, resulting in "read through" into the following intron in SRK. Thus, the SRK mutation is another type of mutation that lacks expression of the functional Reelin protein and, therefore, causes the reeler phenotype.
Collapse
Affiliation(s)
- Satoshi Kikkawa
- Division of Anatomy and Developmental Neurobiology, Department of Neuroscience, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Layer 1 in the developing cerebral cortex is populated by two basic neuronal cell types, Cajal-Retzius (CR) cells and non-CR cells. We generated transgenic mice in which green fluorescent protein (GFP) was driven by the promoter of metabotropic glutamate receptor subtype 2 and expressed specifically in CR cells during cortical development. On the basis of the precise identification of CR cells with GFP fluorescence, we pursued developmental changes and synaptic mechanisms of both CR and non-CR cells during the postnatal period. Immunostaining in combination with GFP fluorescence imaging showed that GFP and reelin, a protein involved in corticogenesis, completely overlap in CR cells at postnatal day 0. At the subsequent postnatal stage, reelin-positive neurons are segregated and categorized into GFP-positive/GABA-negative CR cells and GFP-negative/GABA-positive non-CR cells. Individual and simultaneous whole-cell recordings of CR and non-CR cells in developing cerebral slices revealed that spontaneous and electrically evoked postsynaptic currents (sPSCs and ePSCs) measured in CR and non-CR cells are differentially mediated by GABA(A) receptors versus GABA(A), AMPA, and NMDA receptors, respectively. Furthermore, CR and non-CR cells show synchronized repetitive barrages of sPSCs that reflect a network-driven activity in the developing cerebral cortex. These findings imply that the layer 1 neurons dynamically change and play a distinct and integral role in the postnatal developing neocortex.
Collapse
|