1
|
Samala N, Kulkarni M, Lele RS, Gripshover TC, Lynn Wise J, Rai SN, Cave MC. Associations between per- and polyfluoroalkyl substance exposures and metabolic dysfunction associated steatotic liver disease (MASLD) in adult National Health and Nutrition Examination Survey 2017 to 2018. Toxicol Sci 2024; 202:142-151. [PMID: 39150893 PMCID: PMC11514833 DOI: 10.1093/toxsci/kfae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants previously associated with elevated liver enzymes in human cohorts and steatotic liver disease in animal models. We aimed to evaluate the associations between PFAS exposures, and liver enzymes and vibration controlled transient elastography (VCTE) biomarkers of metabolic dysfunction associated steatotic liver disease (MASLD) in adult National Health and Nutrition Examination Survey (NHANES) 2017 to 2018. VCTE was determined by FibroScan. Serum PFAS (n = 14), measured by mass spectrometry, were analyzed individually and by principal component (PC). Univariate and multivariable associations were determined between PFAS exposures and liver disease outcome variables: alanine aminotransferase (ALT), controlled attenuation parameter (CAP), liver stiffness measurement (LSM), FibroScan-based Score (FAST), using R. About 1,400 participants including 50% women with a mean age of 48 ± 19 years and a mean BMI of 29 ± 7 kg/m2 were analyzed. Four PFAS clustered to PC1, whereas 3 PFAS clustered to PC2. PC1 was significantly associated with ALT (β = 0.028), CAP (β = 0.041), LSM (β = 0.025), and FAST (β = 0.198) in univariate analysis. Individual PFAS exposures were oftentimes inversely associated with these measurements in multivariate analysis. In adult NHANES 2017-2018, PFAS may not be a significant burden for MASLD, because of the inconsistent associations between the environmental PFAS exposures and biomarkers of liver steatosis, inflammation, and fibrosis. More data are required to better understand the relationships between PFAS exposures and liver disease.
Collapse
Affiliation(s)
- Niharika Samala
- Department of Medicine, Division of Gastroenterology & Hepatology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Manjiri Kulkarni
- Environmental Health Institute, University of Louisville, Louisville, KY 40202, United States
| | - Rachana S Lele
- Department of Biostatistics, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Tyler C Gripshover
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - Jaime Lynn Wise
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - Shesh N Rai
- Department of Biostatistics, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, United States
- University of Louisville Superfund Research Program, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
2
|
Wu Y, Zhou J, Zhang J, Li H. Cytokeratin 18 in nonalcoholic fatty liver disease: value and application. Expert Rev Mol Diagn 2024:1-14. [PMID: 39387822 DOI: 10.1080/14737159.2024.2413941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is a common metabolism-related disease worldwide. Although studies have shown that some medications may be effective for treating NAFLD, they do not satisfy the medical requirements, and lifestyle changes are the most basic strategy. Thus, early detection of NAFLD and timely lifestyle interventions are highly important. AREAS COVERED The traditional diagnostic methods for NAFLD are limited by accuracy, cost, and security issues. Cytokeratin 18 (CK18), which is a marker of apoptosis and overall cell death, is an excellent biomarker for NAFLD. Liver fat accumulation in NAFLD triggers the activation of caspases, which increases the CK18 cleavage and its release into the blood. CK18 can help diagnose different stages of NAFLD, especially the nonalcoholic steatohepatitis (NASH) stage. In evaluating the efficacy of the NAFLD treatment and predicting the risk of NAFLD-related diseases, CK18 plays a significant role. EXPERT OPINION CK18 can non-invasively monitor the pathological conditions of NAFLD patients and provide new hope for the early diagnosis of NAFLD. Adding CK18 to the NAFLD diagnostic criteria that are widely used in clinical settings may be efficient for the detection of NAFLD and early effective intervention.
Collapse
Affiliation(s)
- Yuan Wu
- School of Medicine, The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Jing Zhou
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Jun Zhang
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Hongshan Li
- School of Medicine, The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Liver Disease Department of Integrative Medicine, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
3
|
Léger T, Alilat S, Ferron PJ, Dec L, Bouceba T, Lanceleur R, Huet S, Devriendt-Renault Y, Parinet J, Clément B, Fessard V, Le Hégarat L. Chlordecone-induced hepatotoxicity and fibrosis are mediated by the proteasomal degradation of septins. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135177. [PMID: 39018595 DOI: 10.1016/j.jhazmat.2024.135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Chlordecone (CLD) is a pesticide persisting in soils and contaminating food webs. CLD is sequestered in the liver and poorly metabolized into chlordecol (CLDOH). In vitro liver cell models were used to investigate the fate and mechanistic effects of CLD and CLDOH using multiomics. A 3D-cell model was used to investigate whether CLD and CLDOH can affect susceptibility to the metabolic dysfunction-associated steatotic liver disease (MASLD). Hepatocytes were more sensitive to CLD than CLDOH. CLDOH was intensively metabolized into a glucuronide conjugate, whereas CLD was sequestered. CLD but not CLDOH induced a depletion of Septin-2,- 7,- 9,- 10,- 11 due to proteasomal degradation. Septin binding with CLD and CLDOH was confirmed by surface plasmon resonance. CLD disrupted lipid droplet size and increased saturated long-chain dicarboxylic acid production by inhibiting stearoyl-CoA desaturase (SCD) abundance. Neither CLD nor CLDOH induced steatosis, but CLD induced fibrosis in the 3D model of MASLD. To conclude, CLD hepatoxicity is specifically driven by the degradation of septins. CLDOH, was too rapidly metabolized to induce septin degradation. We show that the conversion of CLD to CLDOH reduced hepatotoxicity and fibrosis in liver organoids. This suggests that protective strategies could be explored to reduce the hepatotoxicity of CLD.
Collapse
Affiliation(s)
- Thibaut Léger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France.
| | - Sarah Alilat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Pierre-Jean Ferron
- INSERM, University of Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, Previtox Network, 35000 Rennes, France
| | - Léonie Dec
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Tahar Bouceba
- Sorbonne University, CNRS, Institut de Biologie Paris-Seine (IBPS), Protein Engineering Platform, Molecular Interaction Service, Paris, France
| | - Rachelle Lanceleur
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Yoann Devriendt-Renault
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Pesticides and Marine Biotoxins (PBM) unit, Maison-Alfort Laboratory, 94701 Maison-Alfort CEDEX, France
| | - Julien Parinet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Pesticides and Marine Biotoxins (PBM) unit, Maison-Alfort Laboratory, 94701 Maison-Alfort CEDEX, France
| | - Bruno Clément
- INSERM, University of Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, Previtox Network, 35000 Rennes, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Ludovic Le Hégarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| |
Collapse
|
4
|
Koenig AB, Tan A, Abdelaal H, Monge F, Younossi ZM, Goodman ZD. Review article: Hepatic steatosis and its associations with acute and chronic liver diseases. Aliment Pharmacol Ther 2024; 60:167-200. [PMID: 38845486 DOI: 10.1111/apt.18059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Hepatic steatosis is a common finding in liver histopathology and the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), whose global prevalence is rising. AIMS To review the histopathology of hepatic steatosis and its mechanisms of development and to identify common and rare disease associations. METHODS We reviewed literature on the basic science of lipid droplet (LD) biology and clinical research on acute and chronic liver diseases associated with hepatic steatosis using the PubMed database. RESULTS A variety of genetic and environmental factors contribute to the development of chronic hepatic steatosis or steatotic liver disease, which typically appears macrovesicular. Microvesicular steatosis is associated with acute mitochondrial dysfunction and liver failure. Fat metabolic processes in hepatocytes whose dysregulation leads to the development of steatosis include secretion of lipoprotein particles, uptake of remnant lipoprotein particles or free fatty acids from blood, de novo lipogenesis, oxidation of fatty acids, lipolysis and lipophagy. Hepatic insulin resistance is a key feature of MASLD. Seipin is a polyfunctional protein that facilitates LD biogenesis. Assembly of hepatitis C virus takes place on LD surfaces. LDs make important, functional contact with the endoplasmic reticulum and other organelles. CONCLUSIONS Diverse liver pathologies are associated with hepatic steatosis, with MASLD being the most important contributor. The biogenesis and dynamics of LDs in hepatocytes are complex and warrant further investigation. Organellar interfaces permit co-regulation of lipid metabolism to match generation of potentially toxic lipid species with their LD depot storage.
Collapse
Affiliation(s)
- Aaron B Koenig
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Albert Tan
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Hala Abdelaal
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Fanny Monge
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- The Global NASH Council, Center for Outcomes Research in Liver Diseases, Washington, DC, USA
| | - Zachary D Goodman
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
5
|
Souid A, Giambastiani L, Castagna A, Santin M, Vivarelli F, Canistro D, Morosini C, Paolini M, Franchi P, Lucarini M, Raffaelli A, Giorgetti L, Ranieri A, Longo V, Pozzo L, Vornoli A. Assessment of the Antioxidant and Hypolipidemic Properties of Salicornia europaea for the Prevention of TAFLD in Rats. Antioxidants (Basel) 2024; 13:596. [PMID: 38790701 PMCID: PMC11118816 DOI: 10.3390/antiox13050596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Halophyte species represent valuable reservoirs of natural antioxidants, and, among these, Salicornia europaea stands out as a promising edible plant. In this study, young and old S. europaea leaves were compared for the content of bioactive compounds and antioxidant activity to assess changes in different growth phases; then, the potential protective effects against low-dose CCl4-induced toxicant-associated fatty liver disease (TAFLD) were investigated by administering an aqueous suspension of young leaves to rats daily for two weeks. Quantification of total and individual phenolic compounds and in vitro antioxidant activity assays (DPPH, FRAP, and ORAC) showed the highest values in young leaves compared to mature ones. Salicornia treatment mitigated CCl4-induced hepatic oxidative stress, reducing lipid peroxidation and protein carbonyl levels, and preserving the decrease in glutathione levels. Electronic paramagnetic resonance (EPR) spectroscopy confirmed these results in the liver and evidenced free radicals increase prevention in the brain. Salicornia treatment also attenuated enzymatic disruptions in the liver's drug metabolizing system and Nrf2-dependent antioxidant enzymes. Furthermore, histopathological examination revealed reduced hepatic lipid accumulation and inflammation. Overall, this study highlights Salicornia's potential as a source of bioactive compounds with effective hepatoprotective properties capable to prevent TAFLD.
Collapse
Affiliation(s)
- Aymen Souid
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (A.C.); (M.S.); (A.R.)
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Lucia Giambastiani
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Antonella Castagna
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (A.C.); (M.S.); (A.R.)
| | - Marco Santin
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (A.C.); (M.S.); (A.R.)
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.V.); (D.C.); (C.M.); (M.P.)
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.V.); (D.C.); (C.M.); (M.P.)
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.V.); (D.C.); (C.M.); (M.P.)
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (F.V.); (D.C.); (C.M.); (M.P.)
| | - Paola Franchi
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (P.F.); (M.L.)
| | - Marco Lucarini
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum—University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy; (P.F.); (M.L.)
| | - Andrea Raffaelli
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
- Crop Science Research Center, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Annamaria Ranieri
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.S.); (A.C.); (M.S.); (A.R.)
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Luisa Pozzo
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| | - Andrea Vornoli
- Institute of Agricultural Biology and Biotechnology—National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy; (L.G.); (A.R.); (L.G.); (V.L.); (A.V.)
| |
Collapse
|
6
|
Luo YS, Ying RY, Chen XT, Yeh YJ, Wei CC, Chan CC. Integrating high-throughput phenotypic profiling and transcriptomic analyses to predict the hepatosteatosis effects induced by per- and polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133891. [PMID: 38457971 DOI: 10.1016/j.jhazmat.2024.133891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) is a large compound class (n > 12,000) that is extensively present in food, drinking water, and aquatic environments. Reduced serum triglycerides and hepatosteatosis appear to be the common phenotypes for different PFAS chemicals. However, the hepatosteatosis potential of most PFAS chemicals remains largely unknown. This study aims to investigate PFAS-induced hepatosteatosis using in vitro high-throughput phenotype profiling (HTPP) and high-throughput transcriptomic (HTTr) data. We quantified the in vitro hepatosteatosis effects and mitochondrial damage using high-content imaging, curated the transcriptomic data from the Gene Expression Omnibus (GEO) database, and then calculated the point of departure (POD) values for HTPP phenotypes or HTTr transcripts, using the Bayesian benchmark dose modeling approach. Our results indicated that PFAS compounds with fully saturated C-F bonds, sulfur- and nitrogen-containing functional groups, and a fluorinated carbon chain length greater than 8 have the potential to produce biological effects consistent with hepatosteatosis. PFAS primarily induced hepatosteatosis via disturbance in lipid transport and storage. The potency rankings of PFAS compounds are highly concordant among in vitro HTPP, HTTr, and in vivo hepatosteatosis phenotypes (ρ = 0.60-0.73). In conclusion, integrating the information from in vitro HTPP and HTTr analyses can accurately project in vivo hepatosteatosis effects induced by PFAS compounds.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan; Master of Public Health Program, College of Public Health, National Taiwan University, Taipei City, Taiwan.
| | - Ren-Yan Ying
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Xsuan-Ting Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Yu-Jia Yeh
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei City, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei City, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
7
|
Tovoli F, Stefanini B, Mandrioli D, Mattioli S, Vornoli A, Sgargi D, Manservisi F, Piscaglia F, Curti S, Bolondi L. Exploring occupational toxicant exposures in patients with metabolic dysfunction-associated steatotic liver disease: A prospective pilot study. Dig Liver Dis 2024; 56:571-578. [PMID: 38151451 DOI: 10.1016/j.dld.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) has been traditionally associated with insulin resistance and obesity. Recently, pollutants have been shown to contribute to the development of MASLD. Given the global burden of MASLD, understanding whether pollutants are merely associated with steatosis or contribute to its progression to advanced chronic liver disease (ACLD) and hepatocellular carcinoma (HCC) is critical. Workers exposed to occupational toxicants represent an ideal population for assessing the potentially hazardous consequences of professional exposure. Confirming a link between occupational exposure and ACLD/HCC may not only provide further elements in understanding MASLD, but also contribute to preventive strategies for exposed workers. OBJECTIVE This study aimed to assess the prevalence of self-reported occupational exposure to toxicants in patients with MASLD. METHODS This hospital-based prospective pilot study included 201 patients with MASLD. Data on workplace toxicant exposure were collected systematically using a structured questionnaire. Subsequently, patients with ACLD and/or HCC (n = 55) were compared to controls (n = 146). Logistic regression analysis and propensity score models were used to investigate the associations between self-reported occupational exposure and ACLD and/or HCC. RESULTS Patients with ACLD/HCC reported exposure to metals, halogenated refrigerants, pain/resins, and fuel emissions more often than the controls. After controlling for confounders, durations of 21-30 years and >30 years of occupational exposure to toxicants showed odds ratios (ORs) of 2.31 (95 % confidence interval [CI]: 1.09-4.88, p = 0.029) and 4.47 (95 % CI: 2.57-7.78, p<0.001), respectively. CONCLUSIONS In this pilot study, patients with MASLD complications were more likely to report workplace toxicant exposure. Our results warrant future multicentre confirmatory studies, as implementing prevention policies may reduce the risk of life-threatening diseases among exposed populations.
Collapse
Affiliation(s)
- Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Bernardo Stefanini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Stefano Mattioli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea Vornoli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Fabiana Manservisi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefania Curti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Bolondi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Gripshover TC, Wahlang B, Head KZ, Luo J, Bolatimi OE, Smith ML, Rouchka EC, Chariker JH, Xu J, Cai L, Cummins TD, Merchant ML, Zheng H, Kong M, Cave MC. Multiomics Analysis of PCB126's Effect on a Mouse Chronic-Binge Alcohol Feeding Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47007. [PMID: 38619879 PMCID: PMC11018247 DOI: 10.1289/ehp14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS Briefly, male C57BL/6J mice were exposed to 0.2 mg / kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in > 4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.
Collapse
Affiliation(s)
- Tyler C. Gripshover
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, Kentucky, USA
| | - Banrida Wahlang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Kimberly Z. Head
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jianzhu Luo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Oluwanifemi E. Bolatimi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Melissa L. Smith
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Kentucky IDeA Network of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - Julia H. Chariker
- Kentucky IDeA Network of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
- Department of Neuroscience Training, University of Louisville, Louisville, Kentucky, USA
| | - Jason Xu
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Timothy D. Cummins
- Division of Nephrology and Hypertension, Department of Medicine and Clinical Proteomics Center, University of Louisville, Louisville, Kentucky, USA
| | - Michael L. Merchant
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Division of Nephrology and Hypertension, Department of Medicine and Clinical Proteomics Center, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Hao Zheng
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Maiying Kong
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
- Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Matthew C. Cave
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Superfund Research Program, University of Louisville, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Hepatobiology & Toxicology COBRE, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
- The Liver Transplant Program at UofL Health – Jewish Hospital Trager Transplant Center, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Petri BJ, Piell KM, Wahlang B, Head KZ, Rouchka EC, Park JW, Hwang JY, Banerjee M, Cave MC, Klinge CM. Altered splicing factor and alternative splicing events in a mouse model of diet- and polychlorinated biphenyl-induced liver disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104260. [PMID: 37683712 PMCID: PMC10591945 DOI: 10.1016/j.etap.2023.104260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with human environmental exposure to polychlorinated biphenyls (PCBs). Alternative splicing (AS) is dysregulated in steatotic liver disease and is regulated by splicing factors (SFs) and N-6 methyladenosine (m6A) modification. Here integrated analysis of hepatic mRNA-sequencing data was used to identify differentially expressed SFs and differential AS events (ASEs) in the livers of high fat diet-fed C57BL/6 J male mice exposed to Aroclor1260, PCB126, Aroclor1260 + PCB126, or vehicle control. Aroclor1260 + PCB126 co-exposure altered 100 SFs and replicate multivariate analysis of transcript splicing (rMATS) identified 449 ASEs in 366 genes associated with NAFLD pathways. These ASEs were similar to those resulting from experimental perturbations in m6A writers, readers, and erasers. These results demonstrate specific hepatic SF and AS regulatory mechanisms are disrupted by HFD and PCB exposures, contributing to the expression of altered isoforms that may play a role in NAFLD progression to NASH.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Banrida Wahlang
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, USA
| | - Juw Won Park
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; KY INBRE Bioinformatics Core, University of Louisville, USA; Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Jae Yeon Hwang
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Mayukh Banerjee
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Matthew C Cave
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
10
|
McClain CJ, Kirpich I, Song M, Vatsalya V. Keratin 18-M65: A biomarker for early-stage alcohol-associated liver disease. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1257-1260. [PMID: 37526591 DOI: 10.1111/acer.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 08/02/2023]
Affiliation(s)
- Craig J McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Medicine, Robley Rex VA Medical Center, Louisville, Kentucky, USA
- Alcohol Reseach Center, University of louisville, Louisville, Kentucky, USA
| | - Irina Kirpich
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Alcohol Reseach Center, University of louisville, Louisville, Kentucky, USA
| | - Ming Song
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Alcohol Reseach Center, University of louisville, Louisville, Kentucky, USA
| | - Vatsalya Vatsalya
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Medicine, Robley Rex VA Medical Center, Louisville, Kentucky, USA
- Alcohol Reseach Center, University of louisville, Louisville, Kentucky, USA
| |
Collapse
|
11
|
Wahlang B. RISING STARS: Sex differences in toxicant-associated fatty liver disease. J Endocrinol 2023; 258:e220247. [PMID: 37074385 PMCID: PMC10330380 DOI: 10.1530/joe-22-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Based on biological sex, the consequential health outcomes from exposures to environmental chemicals or toxicants can differ in disease pathophysiology, progression, and severity. Due to basal differences in cellular and molecular processes resulting from sexual dimorphism of organs including the liver and additional factors influencing 'gene-environment' interactions, males and females can exhibit different responses to toxicant exposures. Associations between environmental/occupational chemical exposures and fatty liver disease (FLD) have been well-acknowledged in human epidemiologic studies and their causal relationships demonstrated in experimental models. However, studies related to sex differences in liver toxicology are still limited to draw any inferences on sex-dependent chemical toxicity. The purpose of this review is to highlight the present state of knowledge on the existence of sex differences in toxicant-associated FLD (TAFLD), discuss potential underlying mechanisms driving these differences, implications of said differences on disease susceptibility, and emerging concepts. Chemicals of interest include various categories of pollutants that have been investigated in TAFLD, namely persistent organic pollutants, volatile organic compounds, and metals. Insight into research areas requiring further development is also discussed, with the objective of narrowing the knowledge gap on sex differences in environmental liver diseases. Major conclusions from this review exercise are that biological sex influences TAFLD risks, in part due to (i) toxicant disruption of growth hormone and estrogen receptor signaling, (ii) basal sex differences in energy mobilization and storage, and (iii) differences in chemical metabolism and subsequent body burden. Finally, further sex-dependent toxicological assessments are warranted for the development of sex-specific intervention strategies.
Collapse
Affiliation(s)
- Banrida Wahlang
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
12
|
Liu S, He L, Bannister OB, Li J, Schnegelberger RD, Vanderpuye CM, Althouse AD, Schopfer FJ, Wahlang B, Cave MC, Monga SP, Zhang X, Arteel GE, Beier JI. Western diet unmasks transient low-level vinyl chloride-induced tumorigenesis; potential role of the (epi-)transcriptome. Toxicol Appl Pharmacol 2023; 468:116514. [PMID: 37061008 PMCID: PMC10164119 DOI: 10.1016/j.taap.2023.116514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND & AIMS Vinyl chloride (VC) monomer is a volatile organic compound commonly used in industry. At high exposure levels, VC causes liver cancer and toxicant-associated steatohepatitis. However, lower exposure levels (i.e., sub-regulatory exposure limits) that do not directly damage the liver, enhance injury caused by Western diet (WD). It is still unknown if the long-term impact of transient low-concentration VC enhances the risk of liver cancer development. This is especially a concern given that fatty liver disease is in and of itself a risk factor for the development of liver cancer. METHODS C57Bl/6 J mice were fed WD or control diet (CD) for 1 year. During the first 12 weeks of feeding only, mice were also exposed to VC via inhalation at sub-regulatory limit concentrations (<1 ppm) or air for 6 h/day, 5 days/week. RESULTS Feeding WD for 1 year caused significant hepatic injury, which was exacerbated by VC. Additionally, VC increased the number of tumors which ranged from moderately to poorly differentiated hepatocellular carcinoma (HCC). Transcriptomic analysis demonstrated VC-induced changes in metabolic but also ribosomal processes. Epitranscriptomic analysis showed a VC-induced shift of the modification pattern that has been associated with metabolic disease, mitochondrial dysfunction, and cancer. CONCLUSIONS These data indicate that VC sensitizes the liver to other stressors (e.g., WD), resulting in enhanced tumorigenesis. These data raise concerns about potential interactions between VC exposure and WD. It also emphasizes that current safety restrictions may be insufficient to account for other factors that can influence hepatotoxicity.
Collapse
Affiliation(s)
- Silvia Liu
- Department of Pathology, University of Pittsburgh, United States of America; Pittsburgh Liver Research Center, Pittsburgh, PA 15213, United States of America.
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, KY 40208, United States of America.
| | - Olivia B Bannister
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition University of Pittsburgh, United States of America.
| | - Jiang Li
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition University of Pittsburgh, United States of America.
| | - Regina D Schnegelberger
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, United States of America.
| | - Charis-Marie Vanderpuye
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition University of Pittsburgh, United States of America.
| | - Andrew D Althouse
- Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Francisco J Schopfer
- Pittsburgh Liver Research Center, Pittsburgh, PA 15213, United States of America; Department of Pharmacology and Chemical Biology, University of Pittsburgh, United States of America.
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, United States of America; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40202, United States of America; Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, United States of America; University of Louisville Alcohol Research Center, Louisville, KY 40202, United States of America.
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, United States of America; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States of America; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40202, United States of America; Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, United States of America; University of Louisville Alcohol Research Center, Louisville, KY 40202, United States of America; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, United States of America; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, United States of America; Liver Transplant Program at UofL Health-Jewish Hospital Trager Transplant Center, Louisville, KY 40202, United States of America; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, United States of America.
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, United States of America; Pittsburgh Liver Research Center, Pittsburgh, PA 15213, United States of America; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition University of Pittsburgh, United States of America.
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY 40208, United States of America; Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40202, United States of America; Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY 40202, United States of America; University of Louisville Alcohol Research Center, Louisville, KY 40202, United States of America.
| | - Gavin E Arteel
- Pittsburgh Liver Research Center, Pittsburgh, PA 15213, United States of America; Department of Environmental and Occupational Health University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Juliane I Beier
- Pittsburgh Liver Research Center, Pittsburgh, PA 15213, United States of America; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition University of Pittsburgh, United States of America; Department of Environmental and Occupational Health University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
13
|
Association Between Serum Trace Heavy Metals and Liver Function Among Adolescents. J Occup Environ Med 2023; 65:e155-e160. [PMID: 36868864 DOI: 10.1097/jom.0000000000002778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
BACKGROUND Exposure to metals has been associated with liver-related disease. Few studies have explored the effect of sex stratification on adolescent liver function. METHOD From the National Health and Nutrition Examination Survey (2011-2016), 1143 subjects aged 12-19 years were selected for analysis. The outcome variables were the levels of alanine aminotransferase (ALT), aspartate aminotransferase, and gamma-glutamyl transpeptidase. RESULTS The results showed a positive association between serum zinc and ALT in boys (odds ratio [OR], 2.37; 95% confidence interval [CI], 1.11-5.06). Serum mercury was associated with an increase in ALT level in girls (OR, 2.73; 95% CI, 1.14-6.57). Mechanistically, the efficacy mediated by total cholesterol accounted for 24.38% and 6.19% of the association between serum zinc and ALT. CONCLUSIONS The results imply that serum heavy metals were associated with the risk of liver injury, possibly mediated by serum cholesterol, in adolescents.
Collapse
|
14
|
Dong Y, Wang X, Hu W, Bian H, Wang X, Kang N, Han F, Zhang S, Ye M. Improvements in protective measures in factories with acetylene hydrochlorination and ethylene oxychlorination techniques declined risk assessment levels and affected liver health status. Front Public Health 2022; 10:1053300. [PMID: 36483242 PMCID: PMC9723347 DOI: 10.3389/fpubh.2022.1053300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
Acetylene hydrochlorination and ethylene oxychlorination are the two most common methods of producing vinyl chloride monomer (VCM), which has been linked to liver impairment, hepatocellular carcinoma (HCC), and angiosarcoma of the liver (ASL) in occupational settings. However, whether and how these impairments could be effectively improved from workplace root causes has yet to be discovered. This study aimed to evaluate whether improvements in protective measures in groups Y (408 subjects) and Z (349 subjects) could have an influential impact on the alleviation of liver impairment by comparing risk assessment levels under several semi-quantitative models and results from liver ultrasound detection and liver function tests before and after the improvement. Importantly, significant differences in constituent ratio involved in parameters among age, length of employment, weekly exposure time, smoking status, alcohol consumption, and sleeping quality were found between Y and Z before improvement took place in 2020 (P < 0.05 or P < 0.001), and population distribution by gender between Y and Z was in a large homogeneity with differences in age and length of employment. CSTE involves ore breaking, acetylene generation, steam stripping, outward processing, and welding maintenance, was disqualified in 2020 compared to OEL, and was said to have declined to meet OEL requirements by 2021. Further, a negative correction of fresh air requirement and ventilation air changing rate with ambient concentration toward hazards in Y was stronger in 2021 than in 2020. Significant differences in risk levels in Y between 2020 and 2021 were found as ore breaking, acetylene generation, steam stripping, outward processing, VCM polymerization, welding, and repairing, decreasing to relatively lower risk levels in 2021 from the original ones in 2020 only under the semi-quantitative comprehensive index model. Abnormal rates toward other hepatic symptoms decreased in the majority of positions after the improvement, as referred to by alterations such as ALT, AST, and GGT. Overall, the effect of improvements on protective measures effectively reduced positions' risk assessment levels through ventilation enhancement and airtight strengthening, which further affected abnormal rates toward other hepatic symptoms, and alterations such as ALT, AST, and GGT were much more significant in Y than effect in Z.
Collapse
Affiliation(s)
- Yiwen Dong
- Department of Occupational Epidemiology and Risk Assessment, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xingang Wang
- Department of Occupational Health and Radiological Health, Tianjin Binhai New Area Center for Disease Control and Prevention, Tianjin, China
| | - Weijiang Hu
- Department of Occupational Epidemiology and Risk Assessment, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongying Bian
- Department of Occupational Epidemiology and Risk Assessment, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- Department of Occupational Epidemiology and Risk Assessment, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ning Kang
- Department of Occupational Epidemiology and Risk Assessment, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Han
- Department of Occupational Epidemiology and Risk Assessment, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Siyu Zhang
- Department of Occupational Epidemiology and Risk Assessment, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Ye
- Department of Occupational Epidemiology and Risk Assessment, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China,*Correspondence: Meng Ye
| |
Collapse
|
15
|
Chen X, Zhuang J, Chen Q, Xu L, Yue X, Qiao D. Chronic exposure to polyvinyl chloride microplastics induces liver injury and gut microbiota dysbiosis based on the integration of liver transcriptome profiles and full-length 16S rRNA sequencing data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:155984. [PMID: 35588832 DOI: 10.1016/j.scitotenv.2022.155984] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) have become harmful environmental pollutants, and their potential toxicity to organisms has attracted extensive attention. However, the effects of polyvinyl chloride MPs (PVC-MPs) on the liver and their associated mechanism in mice remain obscure. Here, male mice were exposed to 2-μm PVC-MPs (0.5 mg/day) for 60 days and then sacrificed, and their liver, blood and gut feces were subsequently collected for testing. The liver tissue and fecal samples were subjected to RNA sequencing and full-length 16S rRNA sequencing analysis, respectively. Our results showed that the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the mice exposed to PVC-MPs were markedly higher than those in the control group, implying hepatic injury, as evidenced by hepatic histopathological changes. Moreover, the serum and hepatic triglyceride (TG) and total bile acid (TBA) levels were decreased after exposure to PVC-MPs. The RNA sequencing of mouse liver tissue identified a total of 1540 differentially expressed genes (DEGs) associated with 47 pathways, including the lipid metabolic pathway, oxidative stress, and the phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway, and these DEGs were enriched in the mouse livers. The full-length 16S rRNA sequencing analysis of the gut microbiota in mouse fecal samples revealed that PVC-MPs exposure decreased the relative abundance of probiotics and increased the abundance of conditionally pathogenic bacteria. In conclusion, chronic PVC-MPs exposure causes hepatotoxicity and gut microbiota dysbiosis in mice, and these findings provide new insight into the potential risks of PVC-MPs to human health.
Collapse
Affiliation(s)
- Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingshen Zhuang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
16
|
Kim HY, Park CH, Park JB, Ko K, Lee MH, Chung J, Yoo YH. Hepatic STAMP2 alleviates polychlorinated biphenyl-induced steatosis and hepatic iron overload in NAFLD models. ENVIRONMENTAL TOXICOLOGY 2022; 37:2223-2234. [PMID: 35616167 DOI: 10.1002/tox.23589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/03/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) have been associated with neurotoxicity, hepatoxicity, oncogenicity, and endocrine-disrupting effects. Although the recent studies have demonstrated that PCB exposure leads to nonalcoholic fatty liver disease (NAFLD), the underlying mechanism has remained unsolved. In this study, we examined the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, and PCB 126 in C57BL/6 mice. Male C57Bl/6 mice were fed a standard diet or a 60% high-fat diet and exposed to Aroclor 1260 (10 mg/kg or 20 mg/kg) or PCB 126 (1 mg/kg or 5 mg/kg) by intraperitoneal injection for a total of four injections (2, 3, 4, and 5 weeks) for 6 weeks. In mice, both Aroclor 1260 and PCB 126-induced liver damage, hepatic steatosis and inflammation. We also observed that PCB exposure-induced hepatic iron overload (HIO). We previously demonstrated that hepatic six transmembrane protein of prostate 2 (STAMP2) may represent a suitable therapeutic target for NAFLD patients. Thus, we further examined whether hepatic STAMP2 is involved in PCB-induced NAFLD. We observed that hepatic STAMP2 was significantly decreased in PCB-induced NAFLD models in vivo and in vitro. Furthermore, overexpression of hepatic STAMP2 using an adenoviral delivery system resulted in improvement of PCB-induced steatosis and HIO in vivo and in vitro. Our findings indicate that enhancing hepatic STAMP2 expression represents a potential therapeutic avenue for the treatment of PCB exposure-induced NAFLD.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
- Department of Oral Microbiology and Oral Genomics Research Center, School of Dentistry, Pusan National University, Busan, Republic of Korea
| | - Chul Hee Park
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Joon Beom Park
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Kangeun Ko
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Mi Hwa Lee
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology and Oral Genomics Research Center, School of Dentistry, Pusan National University, Busan, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology and BK21 program, Department of Translational Biomedical Science, Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
17
|
Kim HY, Yoo YH. The Role of STAMP2 in Pathogenesis of Chronic Diseases Focusing on Nonalcoholic Fatty Liver Disease: A Review. Biomedicines 2022; 10:biomedicines10092082. [PMID: 36140186 PMCID: PMC9495648 DOI: 10.3390/biomedicines10092082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health issue. NAFLD can progress from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH). NASH can progress to cirrhosis or hepatocellular carcinoma. Unfortunately, there is no currently approved pharmacologic therapy for NAFLD patients. The six transmembrane protein of prostate 2 (STAMP2), a metalloreductase involved in iron and copper homeostasis, is well known for its critical role in the coordination of glucose/lipid metabolism and inflammation in metabolic tissues. We previously demonstrated that hepatic STAMP2 could be a suitable therapeutic target for NAFLD. In this review, we discuss the emerging role of STAMP2 in the dysregulation of iron metabolism events leading to NAFLD and suggest therapeutic strategies targeting STAMP2.
Collapse
|
18
|
Recombinant FGF21 Attenuates Polychlorinated Biphenyl-Induced NAFLD/NASH by Modulating Hepatic Lipocalin-2 Expression. Int J Mol Sci 2022; 23:ijms23168899. [PMID: 36012166 PMCID: PMC9408415 DOI: 10.3390/ijms23168899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Although recent studies have demonstrated that polychlorinated biphenyls (PCB) exposure leads to toxicant-associated steatohepatitis, the underlying mechanism of this condition remains unsolved. Male C57Bl/6 mice fed a standard diet (SD) or 60% high fat diet (HFD) were exposed to the nondioxin-like PCB mixture Aroclor1260 or dioxin-like PCB congener PCB126 by intraperitoneal injection for a total of four times for six weeks. We observed hepatic injury, steatosis, inflammation, and fibrosis in not only the Aroclor1260-treated mice fed a HFD but the PCB126-treated mice fed either a SD or a HFD. We also observed that both types of PCB exposure induced hepatic iron overload (HIO). Noticeably, the expression of hepatic lipocalin-2 (LCN2) was significantly increased in the PCB-induced nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) models. The knockdown of LCN2 resulted in improvement of PCB-induced lipid and iron accumulation in vitro, suggesting that LCN2 plays a pivotal role in PCB-induced NAFLD/NASH. We observed that recombinant FGF21 improved hepatic steatosis and HIO in the PCB-induced NAFLD/NASH models. Importantly, recombinant FGF21 reduced the PCB-induced overexpression of hepatic LCN2 in vivo and in vitro. Our findings indicate that recombinant FGF21 attenuates PCB-induced NAFLD/NASH by modulating hepatic lipocalin-2 expression. Our data suggest that hepatic LCN2 might represent a suitable therapeutic target for improving PCB-induced NAFLD/NASH accompanying HIO.
Collapse
|
19
|
Environmental Toxicants and NAFLD: A Neglected yet Significant Relationship. Dig Dis Sci 2022; 67:3497-3507. [PMID: 34383198 DOI: 10.1007/s10620-021-07203-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/27/2021] [Indexed: 01/09/2023]
Abstract
The liver is an organ of vital importance in the body; it is the center of metabolic activities and acts as the primary line of defense against toxic compounds. Exposure to environmental toxicants is an unavoidable fallout from rapid industrialization across the world and is even higher in developing countries. Technological development and industrialization have led to the release of toxicants such as pollutant toxic gases, chemical discharge, industrial effluents, pesticides and solvents, into the environment. In the last few years, a growing body of evidence has shed light on the potential impact of environmental toxicants on liver health, in particular, on non-alcoholic fatty liver disease (NAFLD) incidence and progression. NAFLD is a multifactorial disease linked to metabolic derangement including diabetes and other complications. Environmental toxicants including xenobiotics and pollutants may have a direct or indirect steatogenic/fibrogenic impact on the liver and should be considered as risk factors associated with NAFLD. This review discusses the contribution of environmental toxicants toward the increasing disease burden of NAFLD.
Collapse
|
20
|
Vornoli A, Tibaldi E, Gnudi F, Sgargi D, Manservisi F, Belpoggi F, Tovoli F, Mandrioli D. Evaluation of Toxicant-Associated Fatty Liver Disease and Liver Neoplastic Progress in Sprague-Dawley Rats Treated with Low Doses of Aflatoxin B1 Alone or in Combination with Extremely Low Frequency Electromagnetic Fields. Toxins (Basel) 2022; 14:toxins14050325. [PMID: 35622572 PMCID: PMC9143281 DOI: 10.3390/toxins14050325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 02/05/2023] Open
Abstract
The term toxicant-associated fatty liver disease (TAFLD) has been proposed to describe fatty liver diseases connected to toxicants other than alcohol. Aflatoxins are mycotoxins commonly found as contaminants in foods and feeds, which are known liver toxicants and potential candidates as potential causes of TAFLD. Aflatoxin B1 (AFB1) was administered at low doses to Sprague-Dawley (SD) rats, alone or in combination with S-50 Hz an extremely low frequency electromagnetic field (ELFEMF), to study the evolution of TAFLD, preneoplastic and neoplastic lesions of the liver and the potential enhancing effect of lifespan exposure to ELFEMF. Steatosis, inflammation and foci of different types were significantly increased in both aflatoxin-treated males and females, which is consistent with a pattern of TAFLD. A significant increase in adenomas, cystic dilation of biliary ducts, hepatocellular hyperplasia and hypertrophy and oval cell hyperplasia were also observed in treated females only. The administration of low doses of AFB1 caused TAFLD in SD rats, inducing liver lesions encompassing fatty infiltration, foci of different types and adenomas. Furthermore, the pattern of change observed in preneoplastic liver lesions often included liver steatosis and steatohepatitis (TASH). ELFEMF did not result in any enhancing or toxic effect in the liver of SD rats.
Collapse
Affiliation(s)
- Andrea Vornoli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| | - Eva Tibaldi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
- Correspondence:
| | - Federica Gnudi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| | - Fabiana Manservisi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| |
Collapse
|
21
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
22
|
Zelko IN, Taylor BS, Das TP, Watson WH, Sithu ID, Wahlang B, Malovichko MV, Cave MC, Srivastava S. Effect of vinyl chloride exposure on cardiometabolic toxicity. ENVIRONMENTAL TOXICOLOGY 2022; 37:245-255. [PMID: 34717031 PMCID: PMC8724461 DOI: 10.1002/tox.23394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/09/2021] [Accepted: 10/22/2021] [Indexed: 05/08/2023]
Abstract
Vinyl chloride (VC) is an organochlorine mainly used to manufacture its polymer polyvinyl chloride, which is extensively used in the manufacturing of consumer products. Recent studies suggest that chronic low dose VC exposure affects glucose homeostasis in high fat diet-fed mice. Our data suggest that even in the absence of high fat diet, exposure to VC (0.8 ppm, 6 h/day, 5 day/week, for 12 weeks) induces glucose intolerance (1.0 g/kg, i.p.) in male C57BL/6 mice. This was accompanied with the depletion of hepatic glutathione and a modest increase in lung interstitial macrophages. VC exposure did not affect the levels of circulating immune cells, endothelial progenitor cells, platelet-immune cell aggregates, and cytokines and chemokines. The acute challenge of VC-exposed mice with LPS did not affect lung immune cell composition or plasma IL-6. To examine the effect of VC exposure on vascular inflammation and atherosclerosis, LDL receptor-KO mice on C57BL/6 background maintained on western diet were exposed to VC for 12 weeks (0.8 ppm, 6 h/day, 5 day/week). Unlike the WT C57BL/6 mice, VC exposure did not affect glucose tolerance in the LDL receptor-KO mice. Plasma cytokines, lesion area in the aortic valve, and markers of lesional inflammation in VC-exposed LDL receptor-KO mice were comparable with the air-exposed controls. Collectively, despite impaired glucose tolerance and modest pulmonary inflammation, chronic low dose VC exposure does not affect surrogate markers of cardiovascular injury, LPS-induced acute inflammation in C57BL/6 mice, and chronic inflammation and atherosclerosis in the LDL receptor-KO mice.
Collapse
Affiliation(s)
- Igor N. Zelko
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
| | - Breandon S. Taylor
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
| | - Trinath P. Das
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
| | - Walter H. Watson
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
- Hepatobiology and Toxicology Program, University of Louisville, KY 40202
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, KY 40202
| | - Israel D. Sithu
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
| | - Banrida Wahlang
- Superfund Research Center, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
- Hepatobiology and Toxicology Program, University of Louisville, KY 40202
| | - Marina V. Malovichko
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
| | - Matthew C. Cave
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
- Hepatobiology and Toxicology Program, University of Louisville, KY 40202
| | - Sanjay Srivastava
- Superfund Research Center, University of Louisville, KY 40202
- Envirome Institute, University of Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, KY 40202
| |
Collapse
|
23
|
Cave MC, Pinkston CM, Rai SN, Wahlang B, Pavuk M, Head KZ, Carswell GK, Nelson GM, Klinge CM, Bell DA, Birnbaum LS, Chorley BN. Circulating MicroRNAs, Polychlorinated Biphenyls, and Environmental Liver Disease in the Anniston Community Health Survey. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17003. [PMID: 34989596 PMCID: PMC8734566 DOI: 10.1289/ehp9467] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Polychlorinated biphenyl (PCB) exposures have been associated with liver injury in human cohorts, and steatohepatitis with liver necrosis in model systems. MicroRNAs (miRs) maintain cellular homeostasis and may regulate the response to environmental stress. OBJECTIVES We tested the hypothesis that specific miRs are associated with liver disease and PCB exposures in a residential cohort. METHODS Sixty-eight targeted hepatotoxicity miRs were measured in archived serum from 734 PCB-exposed participants in the cross-sectional Anniston Community Health Survey. Necrotic and other liver disease categories were defined by serum keratin 18 (K18) biomarkers. Associations were determined between exposure biomarkers (35 ortho-substituted PCB congeners) and disease biomarkers (highly expressed miRs or previously measured cytokines), and Ingenuity Pathway Analysis was performed. RESULTS The necrotic liver disease category was associated with four up-regulated miRs (miR-99a-5p, miR-122-5p, miR-192-5p, and miR-320a) and five down-regulated miRs (let-7d-5p, miR-17-5p, miR-24-3p, miR-197-3p, and miR-221-3p). Twenty-two miRs were associated with the other liver disease category or with K18 measurements. Eleven miRs were associated with 24 PCBs, most commonly congeners with anti-estrogenic activities. Most of the exposure-associated miRs were associated with at least one serum hepatocyte death, pro-inflammatory cytokine or insulin resistance bioarker, or with both. Within each biomarker category, associations were strongest for the liver-specific miR-122-5p. Pathways of liver toxicity that were identified included inflammation/hepatitis, hyperplasia/hyperproliferation, cirrhosis, and hepatocellular carcinoma. Tumor protein p53 and tumor necrosis factor α were well integrated within the top identified networks. DISCUSSION These results support the human hepatotoxicity of environmental PCB exposures while elucidating potential modes of PCB action. The MiR-derived liquid liver biopsy represents a promising new technique for environmental hepatology cohort studies. https://doi.org/10.1289/EHP9467.
Collapse
Affiliation(s)
- Matthew C. Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
- Liver Transplant Program at UofL Health–Jewish Hospital Trager Transplant Center, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, Louisville, Kentucky, USA
| | - Christina M. Pinkston
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, Kentucky, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Shesh N. Rai
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
- Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
- University of Louisville Alcohol Research Center, Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, Kentucky, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Superfund Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Marian Pavuk
- Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kimberly Z. Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky, USA
| | - Gleta K. Carswell
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Gail M. Nelson
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Douglas A. Bell
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Brian N. Chorley
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
24
|
Wahlang B, Gripshover TC, Gao H, Krivokhizhina T, Keith RJ, Sithu ID, Rai SN, Bhatnagar A, McClain CJ, Srivastava S, Cave MC. Associations Between Residential Exposure to Volatile Organic Compounds and Liver Injury Markers. Toxicol Sci 2021; 185:50-63. [PMID: 34668566 PMCID: PMC8714366 DOI: 10.1093/toxsci/kfab119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Occupational exposures to volatile organic compounds (VOCs) have been associated with numerous health complications including steatohepatitis and liver cancer. However, the potential impact of environmental/residential VOC exposures on liver health and function is largely unknown. To address this knowledge gap, the objective of this cross-sectional study is to investigate associations between VOCs and liver injury biomarkers in community residents. Subjects were recruited from six Louisville neighborhoods, and informed consent was obtained. Exposure biomarkers included 16 creatinine-adjusted urinary metabolites corresponding to 12 parent VOCs. Serological disease biomarkers measured included cytokertain-18 (K18 M65 and M30), liver enzymes, and direct bilirubin. Associations between exposure and disease biomarkers were assessed using generalized linear models. Smoking status was confirmed through urinary cotinine levels. The population comprised of approximately 60% females and 40% males; White persons accounted 78% of the population; with more nonsmokers (n = 413) than smokers (n = 250). When compared with nonsmokers, males (45%) and Black persons (26%) were more likely to be smokers. In the overall population, metabolites of acrolein, acrylonitrile, acrylamide, 1,3-butadiene, crotonaldehyde, styrene, and xylene were positively associated with alkaline phosphatase. These associations persisted in smokers, with the exception of crotonaldehyde, and addition of N,N-dimethylformamide and propylene oxide metabolites. Although no positive associations were observed for K18 M30, the benzene metabolite was positively associated with bilirubin, irrespective of smoking status. Taken together, the results demonstrated that selected VOCs were positively associated with liver injury biomarkers. These findings will enable better risk assessment and identification of populations vulnerable to liver disease.
Collapse
Affiliation(s)
- Banrida Wahlang
- Superfund Research Center, the University of Louisville, Louisville, Kentucky 40202, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, the University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
| | - Tyler C Gripshover
- Superfund Research Center, the University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology & Toxicology, the University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Hong Gao
- Superfund Research Center, the University of Louisville, Louisville, Kentucky 40202, USA
- Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Tatiana Krivokhizhina
- Superfund Research Center, the University of Louisville, Louisville, Kentucky 40202, USA
- Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Rachel J Keith
- Superfund Research Center, the University of Louisville, Louisville, Kentucky 40202, USA
- Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Israel D Sithu
- Superfund Research Center, the University of Louisville, Louisville, Kentucky 40202, USA
- Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | - Shesh N Rai
- Superfund Research Center, the University of Louisville, Louisville, Kentucky 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Bioinformatics and Biostatistics, the School of Public Health and Information Sciences, the University of Louisville, Louisville, Kentucky 40202, USA
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, Louisville, Kentucky 40202, USA
| | - Aruni Bhatnagar
- Superfund Research Center, the University of Louisville, Louisville, Kentucky 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology & Toxicology, the University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
- Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Biochemistry and Molecular Genetics, the University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Craig J McClain
- Superfund Research Center, the University of Louisville, Louisville, Kentucky 40202, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, the University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology & Toxicology, the University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
- Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Biochemistry and Molecular Genetics, the University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40202, USA
- Alcohol Research Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Sanjay Srivastava
- Superfund Research Center, the University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology & Toxicology, the University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
- Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Biochemistry and Molecular Genetics, the University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Mathew C Cave
- Superfund Research Center, the University of Louisville, Louisville, Kentucky 40202, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, the University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Pharmacology & Toxicology, the University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
- Envirome Institute, University of Louisville, Louisville, Kentucky 40202, USA
- Department of Biochemistry and Molecular Genetics, the University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky 40202, USA
- Alcohol Research Center, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
25
|
Beier JI, Arteel GE. Environmental exposure as a risk-modifying factor in liver diseases: Knowns and unknowns. Acta Pharm Sin B 2021; 11:3768-3778. [PMID: 35024305 PMCID: PMC8727918 DOI: 10.1016/j.apsb.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Liver diseases are considered to predominantly possess an inherited or xenobiotic etiology. However, inheritance drives the ability to appropriately adapt to environmental stressors, and disease is the culmination of a maladaptive response. Thus “pure” genetic and “pure” xenobiotic liver diseases are modified by each other and other factors, identified or unknown. The purpose of this review is to highlight the knowledgebase of environmental exposure as a potential risk modifying agent for the development of liver disease by other causes. This exercise is not to argue that all liver diseases have an environmental component, but to challenge the assumption that the current state of our knowledge is sufficient in all cases to conclusively dismiss this as a possibility. This review also discusses key new tools and approaches that will likely be critical to address this question in the future. Taken together, identifying the key gaps in our understanding is critical for the field to move forward, or at the very least to “know what we don't know.”
Collapse
Affiliation(s)
- Juliane I. Beier
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center and University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, PA 15213, USA
- Corresponding authors.
| | - Gavin E. Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center and University of Pittsburgh, Pittsburgh, PA 15213, USA
- Corresponding authors.
| |
Collapse
|
26
|
Jin J, Wahlang B, Thapa M, Head KZ, Hardesty JE, Srivastava S, Merchant ML, Rai SN, Prough RA, Cave MC. Proteomics and metabolic phenotyping define principal roles for the aryl hydrocarbon receptor in mouse liver. Acta Pharm Sin B 2021; 11:3806-3819. [PMID: 35024308 PMCID: PMC8727924 DOI: 10.1016/j.apsb.2021.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Dioxin-like molecules have been associated with endocrine disruption and liver disease. To better understand aryl hydrocarbon receptor (AHR) biology, metabolic phenotyping and liver proteomics were performed in mice following ligand-activation or whole-body genetic ablation of this receptor. Male wild type (WT) and Ahr–/– mice (Taconic) were fed a control diet and exposed to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) (61 nmol/kg by gavage) or vehicle for two weeks. PCB126 increased expression of canonical AHR targets (Cyp1a1 and Cyp1a2) in WT but not Ahr–/–. Knockouts had increased adiposity with decreased glucose tolerance; smaller livers with increased steatosis and perilipin-2; and paradoxically decreased blood lipids. PCB126 was associated with increased hepatic triglycerides in Ahr–/–. The liver proteome was impacted more so by Ahr–/– genotype than ligand-activation, but top gene ontology (GO) processes were similar. The PCB126-associated liver proteome was Ahr-dependent. Ahr principally regulated liver metabolism (e.g., lipids, xenobiotics, organic acids) and bioenergetics, but it also impacted liver endocrine response (e.g., the insulin receptor) and function, including the production of steroids, hepatokines, and pheromone binding proteins. These effects could have been indirectly mediated by interacting transcription factors or microRNAs. The biologic roles of the AHR and its ligands warrant more research in liver metabolic health and disease.
Collapse
Key Words
- AHR
- AHR, aryl hydrocarbon receptor
- ALT, alanine transaminase
- ANOVA, analysis of variance
- AST, aspartate transaminase
- AUC, area under the curve
- CAR, constitutive androstane receptor
- CD36, cluster of differentiation 36
- CYP, cytochrome P450
- EPF, enrichment by protein function
- Endocrine disruption
- Environmental liver disease
- FDR, false discovery rate
- FGF21, fibroblast growth factor 21
- GCR, glucocorticoid receptor
- GO, gene ontology
- H&E, hematoxylin-eosin
- HDL, high-density lipoprotein
- HFD, high fat diet
- IGF1, insulin-like growth factor 1
- IL-6, interleukin 6
- IPF, interaction by protein function
- LDL, low-density lipoprotein
- MCP-1, monocyte chemoattractant protein-1
- MUP, major urinary protein
- NAFLD, non-alcoholic fatty liver disease
- NFKBIA, nuclear factor kappa-inhibitor alpha
- Nonalcoholic fatty liver disease
- PAI-1, plasminogen activator inhibitor-1
- PCB, polychlorinated biphenyl
- PCB126
- PLIN2, perilipin-2
- PNPLA3, patatin-like phospholipase domain-containing protein 3
- PPARα, peroxisome proliferator-activated receptor alpha
- PXR, pregnane-xenobiotic receptor
- Perilipin-2
- Pheromones
- SGK1, serum/glucocorticoid regulated kinase
- TAFLD, toxicant-associated fatty liver disease
- TASH, toxicant-associated steatohepatitis
- TAT, tyrosine aminotransferase
- TMT, tandem mass tag
- VLDL, very low-density lipoprotein
- WT, wild type
- ZFP125, zinc finger protein 125
- miR, microRNA
- nHDLc, non-HDL cholesterol
Collapse
|
27
|
Schnegelberger RD, Lang AL, Arteel GE, Beier JI. Environmental toxicant-induced maladaptive mitochondrial changes: A potential unifying mechanism in fatty liver disease? Acta Pharm Sin B 2021; 11:3756-3767. [PMID: 35024304 PMCID: PMC8727895 DOI: 10.1016/j.apsb.2021.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Occupational and environmental exposures to industrial chemicals are well known to cause hepatotoxicity and liver injury. However, despite extensive evidence showing that exposure can lead to disease, current research approaches and regulatory policies fail to address the possibility that subtle changes caused by low level exposure to chemicals may also enhance preexisting conditions. In recent years, the conceptual understanding of the contribution of environmental chemicals to liver disease has progressed significantly. Mitochondria are often target of toxicity of environmental toxicants resulting in multisystem disorders involving different cells, tissues, and organs. Here, we review persistent maladaptive changes to mitochondria in response to environmental toxicant exposure as a mechanism of hepatotoxicity. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of toxicant-induced liver disease, rational targeted therapy can be developed to better predict risk, as well as to treat or prevent this disease.
Collapse
Affiliation(s)
- Regina D. Schnegelberger
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anna L. Lang
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gavin E. Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Juliane I. Beier
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
28
|
Jia J, Chen SQ, Pan WZ, Yu SN, Zhao XT, Hao Y, Shen YM, Cheng Y, Wei CL, Tian FJ, Yan XY, Qiu YL. Mechanism of subchronic vinyl chloride exposure combined with a high-fat diet on hepatic steatosis. J Appl Toxicol 2021; 42:490-505. [PMID: 34601724 DOI: 10.1002/jat.4234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Vinyl chloride (VC) is a common industrial organic chlorine and environmental pollutant. In recent years, the dietary structure of residents especially Chinese has gradually shifted to western dietary patterns. VC aggravates dietary fatty acid-induced hepatic steatosis, but its mechanism is still unclear. And if the risk factors for steatosis persist, more severe diseases such as fibrosis and cirrhosis will occur. Therefore, we studied the effects and mechanisms of VC (160 and 800 mg/m3 ) and its metabolite (chloroacetaldehyde, 2.25, 4.5, and 9 μM) on hepatic steatosis of high-fat diet (HFD)-fed mice and palmitic acid (PA, 100 μM) treated HepG2 cells. Liver and serum biochemical indicators and pathological staining of the liver showed that the hepatic steatosis of VC combined with HFD groups was more severe than that of single-exposure groups (HFD group, low-dose VC group, and high-dose VC group). Moreover, VC enhanced HFD-induced oxidative stress (OS) and endoplasmic reticulum stress (ERS) and further upregulated the expression of sterol regulatory element-binding protein 1 (SREBP-1) and FAS. Besides, antioxidants and ERS inhibitors reduced the steatosis of HepG2 cells induced by VC metabolites and PA. These results suggest that VC exposure can enhance the degree of hepatic steatosis in HFD-fed mice. VC combined with HFD led to OS and ERS and upregulated the expression of de novo lipogenesis-related proteins, which may be related to the occurrence of hepatic steatosis. And the increased expression of CYP2E1 induced by VC combined with HFD may be the cause of OS.
Collapse
Affiliation(s)
- Jin Jia
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shi-Qi Chen
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Wei-Zhe Pan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Sheng-Nan Yu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiao-Tian Zhao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yan Hao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yong-Mei Shen
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ying Cheng
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Cai-Ling Wei
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Feng-Jie Tian
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiao-Yan Yan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yu-Lan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
29
|
Jirapatnakul A, Yip R, Branch AD, Lewis S, Crane M, Yankelevitz DF, Henschke CI. Dose-response relationship between World Trade Center dust exposure and hepatic steatosis. Am J Ind Med 2021; 64:837-844. [PMID: 34328231 DOI: 10.1002/ajim.23269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The World Trade Center (WTC) attack exposed thousands of workers to toxic chemicals that have been linked to liver diseases and cancers. This study examined the relationship between the intensity of WTC dust exposure and the risk of hepatic steatosis in the WTC General Responders Cohort (GRC). METHODS All low-dose computed tomography (CT) scans of the chest performed on the WTC GRC between September 11, 2001 and December 31, 2018, collected as part of the World Trade Center Health Program, were reviewed. WTC dust exposure was categorized into five groups based on WTC arrival time. CT liver density was estimated using an automated algorithm, statistics-based liver density estimation from imaging. The relationship between the intensity of WTC dust exposure and the risk of hepatic steatosis was examined using univariate and multivariable regression analyses. RESULTS Of the 1788 WTC responders, 258 (14.4%) had liver attenuation less than 40 Hounsfield units (HU < 40) on their earliest CT. Median time after September 11, 2001 and the earliest available CT was 11.3 years (interquartile range: 8.0-14.9 years). Prevalence of liver attenuation less than 40 HU was 17.0% for arrivals on September 11, 2001, 16.0% for arrivals on (September 12, 2001 or September 13, 2001), 10.9% for arrivals on September 14-30, 2001, and 9.0% for arrivals on January 10, 2001 or later (p = 0.0015). A statistically significant trend of increasing liver steatosis was observed with earlier arrival times (p < 0.0001). WTC arrival time remained a significant independent factor for decreased liver attenuation after controlling for other covariates. CONCLUSIONS Early arrival at the WTC site was significantly associated with increasing hepatic steatosis.
Collapse
Affiliation(s)
- Artit Jirapatnakul
- Department of Radiology Icahn School of Medicine at Mount Sinai New York New York USA
| | - Rowena Yip
- Department of Radiology Icahn School of Medicine at Mount Sinai New York New York USA
| | - Andrea D. Branch
- Division of Liver Diseases, Department of Medicine Icahn School of Medicine at Mount Sinai New York New York USA
| | - Sara Lewis
- Department of Radiology Icahn School of Medicine at Mount Sinai New York New York USA
| | - Michael Crane
- Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York New York USA
| | - David F. Yankelevitz
- Department of Radiology Icahn School of Medicine at Mount Sinai New York New York USA
| | - Claudia I. Henschke
- Department of Radiology Icahn School of Medicine at Mount Sinai New York New York USA
| |
Collapse
|
30
|
Linares R, Fernández MF, Gutiérrez A, García-Villalba R, Suárez B, Zapater P, Martínez-Blázquez JA, Caparrós E, Tomás-Barberán FA, Francés R. Endocrine disruption in Crohn's disease: Bisphenol A enhances systemic inflammatory response in patients with gut barrier translocation of dysbiotic microbiota products. FASEB J 2021; 35:e21697. [PMID: 34085740 DOI: 10.1096/fj.202100481r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/02/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
The relevance of environmental triggers in Crohn's disease remains poorly explored, despite the well-known association between industrialization and disease onset/progression. We have aimed at evaluating the influence of endocrine disrupting chemicals in CD patients. We performed a prospective observational study on consecutive patients diagnosed of CD. Serum levels of endocrine disruptors, short-chain fatty acids, tryptophan and cytokines were measured. Bacterial-DNA and serum endotoxin levels were also evaluated. Gene expression of ER-α, ER-β and GPER was measured in PBMCs. All patients were genotyped for NOD2 and ATG16L1 polymorphisms. A series of 200 CD patients (140 in remission, 60 with active disease) was included in the study. Bisphenol A was significantly higher in patients with active disease versus remission and in colonic versus ileal disease. GPER was significantly increased in active patients and correlated with BPA levels. BPA was significantly increased in patients with bacterial-DNA and correlated with serum endotoxin levels, (r = 0.417; P = .003). Serum butyrate and tryptophan levels were significantly lower in patients with bacterial-DNA and an inverse relationship was present between them and BPA levels (r = -0.491; P = .001) (r = -0.611; P = .001). Serum BPA levels correlated with IL-23 (r = 0.807; P = .001) and IL-17A (r = 0.743; P = .001). The multivariate analysis revealed an independent significant contribution of BPA and bacterial-DNA to serum levels of IL-23 and IL-17A. In conclusion, bisphenol A significantly affects systemic inflammatory response in CD patients with gut barrier disruption and dysbiotic microbiota secretory products in blood. These results provide evidence of an endocrine disruptor playing an actual pathogenic role on CD.
Collapse
Affiliation(s)
- Raquel Linares
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Mariana F Fernández
- Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain.,CIBEResp, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Gutiérrez
- IIS ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Beatriz Suárez
- Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain.,CIBEResp, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Zapater
- IIS ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Farmacología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | | | - Esther Caparrós
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain.,IIS ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | | | - Rubén Francés
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain.,IIS ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Maier S, Wieland A, Cree-Green M, Nadeau K, Sullivan S, Lanaspa MA, Johnson RJ, Jensen T. Lean NAFLD: an underrecognized and challenging disorder in medicine. Rev Endocr Metab Disord 2021; 22:351-366. [PMID: 33389543 PMCID: PMC8893229 DOI: 10.1007/s11154-020-09621-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Classically, Non-Alcoholic Fatty Liver Disease (NAFLD) has been thought to be driven by excessive weight gain and obesity. The overall greater awareness of this disorder has led to its recognition in patients with normal body mass index (BMI). Ongoing research has helped to better understand potential causes of Lean NAFLD, the risks for more advanced disease, and potential therapies. Here we review the recent literature on prevalence, risk factors, severity of disease, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Sheila Maier
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amanda Wieland
- Division of Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Melanie Cree-Green
- Division of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen Nadeau
- Division of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shelby Sullivan
- Division of Gastroenterology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Jensen
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA.
- Division of Endocrinology, University of Colorado, Denver, Denver, CO, USA.
| |
Collapse
|
32
|
Pan W, Yu S, Jia J, Hu J, Jie L, Zhang P, Wang Q, Yan X, Qiu Y. Deregulation of the cell cycle and related microRNA expression induced by vinyl chloride monomer in the hepatocytes of rats. Toxicol Ind Health 2021; 37:365-376. [PMID: 33973497 DOI: 10.1177/07482337211015591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vinyl chloride (VC) is a confirmed human carcinogen associated with hepatocellular carcinoma and angiosarcoma. However, the role of microRNAs (miRNAs) in liver cell cycle changes under VC exposure remains unclear, which prevents research on the mechanism of VC-induced carcinogenesis. In this study, male rats were injected intraperitoneally with VC (0, 5, 25, and 125 mg/kg body weight) for 6, 8, and 12 weeks. Cell cycle analysis of liver cells, miRNA-222, miRNA-199a, miRNA-195, and miRNA-125b expression in the liver and serum, and target protein expression were performed at different time points. The results showed a higher percentage of hepatocytes in the G1/G0 and S phases at the end of 6 and 12 weeks of VC exposure, respectively. MiRNA-222 expression decreased initially and then increased, whereas miRNA-199a, miRNA-195, and miRNA-125b expression increased initially and then decreased, which corresponded with changes in cell cycle distribution and related target proteins expression (p27, cyclinA, cyclinD1, and CDK6). The corresponding expression levels of miRNAs in serum did not change. Dynamic changes in miR-222, miR-199a, miR-195, and miR-125b induced by VC can lead to cell cycle deregulation by affecting cell cycle-related proteins, and these miRNAs can serve as early biomarkers for malignant transformation caused by VC.
Collapse
Affiliation(s)
- Weizhe Pan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shengnan Yu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jin Jia
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Junyang Hu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Liang Jie
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Panhong Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Yan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
33
|
Guardiola JJ, Hardesty JE, Beier JI, Prough RA, McClain CJ, Cave MC. Plasma Metabolomics Analysis of Polyvinyl Chloride Workers Identifies Altered Processes and Candidate Biomarkers for Hepatic Hemangiosarcoma and Its Development. Int J Mol Sci 2021; 22:5093. [PMID: 34065028 PMCID: PMC8150673 DOI: 10.3390/ijms22105093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND High-level occupational vinyl chloride (VC) exposures have been associated with hepatic hemangiosarcoma, which typically develops following a long latency period. Although VC is genotoxic, a more comprehensive mode of action has not been determined and diagnostic biomarkers have not been established. The purpose of this study is to address these knowledge gaps through plasma metabolomics. METHODS Plasma samples from polyvinyl chloride polymerization workers who developed hemangiosarcoma (cases, n = 15) and VC exposure-matched controls (n = 17) underwent metabolomic analysis. Random forest and bioinformatic analyses were performed. RESULTS Cases and controls had similar demographics and routine liver biochemistries. Mass spectroscopy identified 606 known metabolites. Random forest analysis had an 82% predictive accuracy for group classification. 60 metabolites were significantly increased and 44 were decreased vs. controls. Taurocholate, bradykinin and fibrin degradation product 2 were up-regulated by greater than 80-fold. The naturally occurring anti-angiogenic phenol, 4-hydroxybenzyl alcohol, was down-regulated 5-fold. Top affected ontologies involved: (i) metabolism of bile acids, taurine, cholesterol, fatty acids and amino acids; (ii) inflammation and oxidative stress; and (iii) nicotinic cholinergic signaling. CONCLUSIONS The plasma metabolome was differentially regulated in polyvinyl chloride workers who developed hepatic hemangiosarcoma. Ontologies potentially involved in hemangiosarcoma pathogenesis and candidate biomarkers were identified.
Collapse
Affiliation(s)
- John J. Guardiola
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.J.G.); (J.E.H.); (C.J.M.)
| | - Josiah E. Hardesty
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.J.G.); (J.E.H.); (C.J.M.)
- Hepatology and Nutrition, University of Louisville Division of Gastroenterology, Louisville, KY 40202, USA
| | - Juliane I. Beier
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- University of Pittsburgh Liver Research Center (PLRC), Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Russell A. Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA;
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.J.G.); (J.E.H.); (C.J.M.)
- Hepatology and Nutrition, University of Louisville Division of Gastroenterology, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- The UofL Health—Jewish Hospital Trager Transplant Center, Louisville, KY 40202, USA
- The University of Louisville Superfund Research Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Matthew C. Cave
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; (J.J.G.); (J.E.H.); (C.J.M.)
- Hepatology and Nutrition, University of Louisville Division of Gastroenterology, Louisville, KY 40202, USA
- University of Pittsburgh Liver Research Center (PLRC), Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA;
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- The UofL Health—Jewish Hospital Trager Transplant Center, Louisville, KY 40202, USA
| |
Collapse
|
34
|
Negi CK, Khan S, Dirven H, Bajard L, Bláha L. Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms22084282. [PMID: 33924165 PMCID: PMC8074384 DOI: 10.3390/ijms22084282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system’s components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.
Collapse
Affiliation(s)
- Chander K. Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
- Correspondence: or
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Hubert Dirven
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, 0456 Oslo, Norway;
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| |
Collapse
|
35
|
Triclosan leads to dysregulation of the metabolic regulator FGF21 exacerbating high fat diet-induced nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A 2020; 117:31259-31266. [PMID: 33229553 DOI: 10.1073/pnas.2017129117] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triclosan (TCS), employed as an antiseptic and disinfectant, comes into direct contact with humans through a plethora of consumer products and its rising environmental release. We have demonstrated that TCS promotes liver tumorigenesis in mice, yet the biological and molecular mechanisms by which TCS exerts its toxicity, especially in early stages of liver disease, are largely unexplored. When mice were fed a high-fat diet (HFD), we found that fatty liver and dyslipidemia are prominent early signs of liver abnormality induced by TCS. The presumably protective HFD-induced hepatic expression of the metabolic regulator fibroblast growth factor 21 (FGF21) was blunted by TCS. TCS-altered Fgf21 expression aligned with aberrant expression of genes encoding metabolic enzymes manifested as profound systemic metabolic changes that disturb homeostasis of amino acids, fatty acids, and glucose. Using a type 1 diabetic animal model, TCS potentiates and accelerates the development of steatohepatitis and fibrosis, accompanied by increased levels of hepatic lipid droplets and oxidative stress. Analysis of fecal samples revealed that HFD-fed mice exhibited a reduction in fecal species richness, and that TCS further diminished microbial diversity and shifted the bacterial community toward lower Bacteriodetes and higher Firmicutes, resembling changes in microbiota composition in nonalcoholic steatohepatitis (NASH) patients. Using reverse-genetic approaches, we demonstrate that, along with HFD, TCS induces hepatic steatosis and steatohepatitis jointly regulated by the transcription factor ATF4 and the nuclear receptor PPARα, which participate in the transcriptional regulation of the Fgf21 gene. This study provides evidence linking nutritional imbalance and exposure to TCS with the progression of NASH.
Collapse
|
36
|
Cave MC. Environmental Pollution and the Developmental Origins of Childhood Liver Disease. Hepatology 2020; 72:1518-1521. [PMID: 32910501 PMCID: PMC8312735 DOI: 10.1002/hep.31549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Louisville, KY
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
- The Superfund Research Center, The Center for Integrated Environmental Health Sciences, Alcohol Research Center and the Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY
- The Robley Rex Veterans Affairs Medical Center, Louisville, KY
- The Liver Transplant Program at UofL Health-Jewish Hospital Trager Transplant Center, Louisville, KY
| |
Collapse
|
37
|
Yuan TH, Chen JL, Shie RH, Yeh YP, Chen YH, Chan CC. Liver fibrosis associated with potential vinyl chloride and ethylene dichloride exposure from the petrochemical industry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139920. [PMID: 32534314 DOI: 10.1016/j.scitotenv.2020.139920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The understanding of the relationship between exposure to carcinogenic vinyl chloride (VCM) and ethylene dichloride (EDC) and liver fibrosis is limited. OBJECTIVE This study aimed to investigate the associations between the urinary metabolite levels of VCM and EDC and the risk of liver fibrosis in residents living near a petrochemical complex. METHODS Our study comprised 447 adult residents of two townships with questionnaire survey and health examination near the largest petrochemical complex in central Taiwan. The urinary levels of thiodiglycolic acid (TdGA), the metabolite of VCM and EDC, were detected in study subjects. We utilized fibrosis-4 (FIB-4) as the noninvasive liver fibrosis index. Adjusted linear model was applied to evaluate the associations between the distance from the complex and the urinary TdGA levels. Adjusted logistic regression model was applied to evaluate the associations between the urinary TdGA levels and the risk of liver fibrosis. RESULTS The study subjects living in the closer township had significant higher urinary TdGA levels than those living in the more distant township (269.6 ± 200.7 vs. 199.2 ± 164.7 μg/g creatinine) (p < 0.001). It showed that urinary TdGA levels were decreased 0.53-fold when the distances from the complex were increased 1-fold after adjusting for confounding factors. It demonstrated that the study subjects with the highest TdGA levels (>343.3 μg/g creatinine) had a higher risk of FIB-4>1.29 (OR = 2.09; 95% CI: 1.17, 3.78), and those with higher TdGA levels (232.7 to 343.3 μg/g creatinine) had a marginally higher risk of FIB-4>1.29 (OR = 1.65; 95% CI: 0.94, 2.90). CONCLUSION The residents living closer to the VCM/PVC plant in the petrochemical complex had higher urinary TdGA levels, which were associated with an increased risk of fibrosis. This confirmed that the EDC and VCM potentially emitted from the petrochemical industry may have an impact on the liver health of nearby residents.
Collapse
Affiliation(s)
- Tzu-Hsuen Yuan
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Taipei, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jun-Lin Chen
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ruei-Hao Shie
- Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yen-Po Yeh
- Changhua Health Bureau, Changhua County, Taiwan
| | - Yi-Hsuan Chen
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chang-Chuan Chan
- Institute of Environmental and Occupational Health Science, College of Public Health, National Taiwan University, Taipei, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
38
|
Vatsalya V, Cave MC, Kong M, Gobejishvili L, Falkner KC, Craycroft J, Mitchell M, Szabo G, McCullough A, Dasarathy S, Radaeva S, Barton B, McClain CJ. Keratin 18 Is a Diagnostic and Prognostic Factor for Acute Alcoholic Hepatitis. Clin Gastroenterol Hepatol 2020; 18:2046-2054. [PMID: 31811953 PMCID: PMC7269867 DOI: 10.1016/j.cgh.2019.11.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Acute alcoholic hepatitis (AAH) is a major cause of liver-related morbidity and mortality; there are no good blood biomarkers for diagnosis or determining magnitude of cell death. Keratin 18 (KRT18, also called K18), found in epithelial cells, is released from hepatocytes upon death. We investigated whether level of K18 is a better marker of hepatocyte death than standard biomarkers and might be used to identify patients with AAH at risk for death within 90 days. METHODS We analyzed data from 173 participants in a large trial performed at 4 medical centers. Participants with AAH were classified as severe (n = 57, model for end-stage liver disease [MELD] scores above 20) or moderate (n = 27, MELD scores from 12 to 19); 38 participants had alcohol use disorder with mild (n = 28) or no liver injury (n = 10); 34 participants had nonalcoholic steatohepatitis; and 17 participants were healthy (controls). We quantified serum levels of K18 using ELISAs and APOPTOSENSE kits. RESULTS Serum level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and the ratio of AST:ALT did not correlate with MELD scores. Patients with alcohol use disorder had higher serum levels of ALT than patients with severe AAH. Levels of K18M65 and K18M30 had statistically significant increases as liver disease worsened, as did the degree of necrosis (ratio of K18 M65:M30). The ratio of K18M65:ALT was increased in serum from patients with AAH compared with controls. Serum levels of K18 identified patients who died within 90 days with greater accuracy than commonly used static biomarkers. CONCLUSIONS There is a stronger association between serum level of keratin 18 and amount of hepatocyte death and liver disease severity than for other biomarkers (AST, ALT, and the AST:ALT ratio). The ratio of K18M65:M30 might be used as marker of mechanism of hepatocyte death, and the ratio of K18M65:ALT might be used to distinguish patients with AAH from patients with nonalcoholic steatohepatitis. Serum levels of K18 might be used to identify patients with severe AAH at risk for death. ClinicalTrials.gov identifier # NCT01922895 and NCT01809132.
Collapse
Affiliation(s)
- Vatsalya Vatsalya
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine, University of Louisville, Louisville KY,Robley Rex VA Medical Center, Louisville KY,University of Louisville Alcohol Research Center,Hepatobiology & Toxicology Program, University of Louisville, Louisville KY
| | - Matthew C. Cave
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine, University of Louisville, Louisville KY,Robley Rex VA Medical Center, Louisville KY,University of Louisville Alcohol Research Center,Hepatobiology & Toxicology Program, University of Louisville, Louisville KY,Department of Pharmacology & Toxicology, University of Louisville, Louisville KY,Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville KY
| | - Maiying Kong
- Department of Biostatistics and Bioinformatics, School of Public Health and Information Sciences, University of Louisville, Louisville KY
| | - Leila Gobejishvili
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine, University of Louisville, Louisville KY,University of Louisville Alcohol Research Center,Hepatobiology & Toxicology Program, University of Louisville, Louisville KY,Department of Pharmacology & Toxicology, University of Louisville, Louisville KY
| | - K. Cameron Falkner
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine, University of Louisville, Louisville KY
| | - John Craycroft
- Department of Biostatistics and Bioinformatics, School of Public Health and Information Sciences, University of Louisville, Louisville KY
| | - Mack Mitchell
- University of Texas Southwestern Medical Center, Dallas TX
| | - Gyongi Szabo
- University of Massachusetts Medical School, Worcester MA
| | | | | | | | - Bruce Barton
- University of Massachusetts Medical School, Worcester MA
| | - Craig J McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky; Robley Rex VA Medical Center, Louisville, Kentucky; University of Louisville Alcohol Research Center, Louisville, Kentucky; Hepatobiology and Toxicology Program, University of Louisville, Louisville Kentucky; Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
39
|
Brauner C, Joveleviths D, Álvares-da-Silva MR, Marroni N, Bona S, Schemitt E, Nardi R. Exposure to organic solvents and hepatotoxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1173-1178. [PMID: 32602765 DOI: 10.1080/10934529.2020.1779532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study was to identify the long-term effect of chemical exposure on the liver. Laboratory tests included alanine aminotransferase (ALT) dosage and oxidative stress tests, such as thiobarbituric acid reactive substances in plasma and superoxide dismutase (SOD) and glutathione S-transferase analysis in erythrocytes. The cross-sectional study comprised 70 workers, 30 of them exposed to organic solvents and 40 not exposed. All those exposed presented at least 5 years of exposure to solvents. Hepatitis B and C, known hepatic disease, comorbidities, use of alcohol, illicit drugs or hepatotoxic medications, smoking, body mass index >30, female sex and age (<18 or >65) were excluded from the sample. Results indicated that elevated ALT was more frequent in the exposed group compared to controls: 33% vs. 10.5%, with a statistical significance (p < 0.05). Thiobarbituric acid reactive substances were significantly elevated (p < 0.01) in the exposed group in comparison to controls. Antioxidant enzymes were more elevated in the exposed group compared to controls: SOD 7.29 (4.30-8.91) USOD/mg of protein vs. 3.48 (2.98-5.28) USOD/mg of protein and GST 2.57 µmol/min/mg of protein (1.80-4.78) vs. 1.81 µmol/min/mg of protein (1.45- 2.30) µM/min/mg of protein. The results suggest an association between exposure to organic solvents and hepatotoxicity.
Collapse
Affiliation(s)
- Cristiano Brauner
- Postgraduate Program - Gastroenterology and Hepatology Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Dvora Joveleviths
- Gastroenterology and Hepatology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- FAMED, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mário R Álvares-da-Silva
- Gastroenterology and Hepatology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- FAMED, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Norma Marroni
- Gastroenterology and Hepatology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- FAMED, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Silvia Bona
- Postgraduate Program - Gastroenterology and Hepatology Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elizângela Schemitt
- Postgraduate Program - Gastroenterology and Hepatology Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Raissa Nardi
- Postgraduate Program - Gastroenterology and Hepatology Sciences, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
40
|
Kaelin BR, McKenzie CM, Hempel KW, Lang AL, Arteel GE, Beier JI. Adipose tissue-liver crosstalk during pathologic changes caused by vinyl chloride metabolites in mice. Toxicol Appl Pharmacol 2020; 399:115068. [PMID: 32445754 DOI: 10.1016/j.taap.2020.115068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Volatile organic compounds (VOCs), such as vinyl chloride (VC), can be directly toxic at high concentrations. However, we have shown that 'nontoxic' exposures to VC and its metabolite chloroethanol (CE) enhances experimental non-alcoholic fatty liver disease (NAFLD), suggesting an unpredicted interaction. Importantly, VOC exposure has been identified as a potential risk factor for the development of obesity and its sequelae in humans. As there is a known axis between adipose and hepatic tissue in NAFLD, the impact of CE on white adipose tissue (WAT) inflammation and lipolysis was investigated. Mice were administered CE (or vehicle) once, after 10 weeks of being fed high-fat or low-fat diet (LFD). CE significantly enhanced hepatic steatosis and inflammation caused by HFD. HFD significantly increased the size of epididymal fat pads, which was enhanced by CE. The relative size of adipocyte lipid droplets increased by HFD + CE, which was also correlated with increased expression of lipid-associated proteins (e.g., PLINs). CE also enhanced HFD-induced indices of WAT inflammation, and ER stress. Hepatic-derived circulating FGF21, a major modulator of WAT lipolysis, which is hypothesized to thereby regulate hepatic steatosis, was significantly increased by CE in animals fed HFD. Taken together these data support the hypothesis that environmental toxicant exposure can exacerbate the severity of NAFLD/NASH, involving the liver-adipose axis in this process. Specifically, CE enhances local inflammation and alters lipid metabolism and WAT-mediated hepatic steatosis due to changes in WAT lipolysis.
Collapse
Affiliation(s)
- Brenna R Kaelin
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, United States of America.
| | - Collin M McKenzie
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, United States of America.
| | - Karl W Hempel
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, United States of America.
| | - Anna L Lang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, United States of America; Hepatobiology and Toxicology Program, University of Louisville, Louisville, KY 40292, United States of America.
| | - Gavin E Arteel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Juliane I Beier
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
41
|
Werder EJ, Beier JI, Sandler DP, Falkner KC, Gripshover T, Wahlang B, Engel LS, Cave MC. Blood BTEXS and heavy metal levels are associated with liver injury and systemic inflammation in Gulf states residents. Food Chem Toxicol 2020; 139:111242. [PMID: 32205228 PMCID: PMC7368391 DOI: 10.1016/j.fct.2020.111242] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Exposures to volatile organic compounds and metals have previously been associated with liver diseases including steatohepatitis, although more data are needed. Benzene, toluene, ethylbenzene, xylenes, styrene (BTEXS) and metals were measured in blood samples collected between May 2012-July 2013 from volunteers participating in home visits for the Gulf Long-term Follow-up (GuLF) Study. This cross-sectional analysis evaluates associations of exposure biomarkers with serum liver injury and adipocytokine biomarkers in a sample of 214 men. METHODS Adult nonsmoking men without a history of liver disease or heavy alcohol consumption were included. The serologic disease biomarkers evaluated were the hepatocellular injury biomarker, cytokeratin 18 [whole (CK18 M65) and caspase-cleaved fragment (CK18 M30)]; and adipocytokines. Confounder-adjusted beta coefficients were determined using linear regression models for the overall sample (primary endpoints) and for obesity-classified sub-groups (secondary endpoints). A product interaction term between the exposure of interest and a dichotomized indicator of obesity was included to determine the disease modifying effects of obesity on the biomarker associations. RESULTS The study sample was 57% white and 51% obese. In the overall sample, lead was positively associated with CK18 M30 (β = 21.7 ± 6.0 (SE), p = 0.0004); IL-1β (β = 32.8 ± 5.2, p < 0.0001); IL-6 (β = 72.8 ± 18.3, p = 0.0001); and IL-8 (β = 140.8 ± 42.2, p = 0.001). Cadmium exposures were associated with increased IL-1β (β = 77.8 ± 26.3, p = 0.003) and IL-8 (β = 419.5 ± 201.2, p = 0.04). There were multiple significant interactions between obesity and exposure to lead, cadmium, benzene and toluene in relation to outcome biomarkers. Among obese participants (n = 108), benzene, lead, and cadmium were each positively associated with CK18 M30, IL-1β, IL-6, and IL-8. In obese subjects, lead was also inversely associated with leptin, and toluene was positively associated with IL-1β. CONCLUSION For the overall sample, heavy metal exposures were associated with liver injury (lead only) and/or systemic inflammation (lead and cadmium). Obesity modified the associations between BTEXS and heavy metal exposures on several of the outcome variables. In the obesity subgroup, liver injury was positively associated with lead, cadmium and benzene exposures; systemic inflammation was increased with lead, cadmium, benzene, and toluene exposures; and leptin was inversely associated with lead exposures. The cross-sectional design of this study makes it difficult to determine causality, and all results should be interpreted cautiously. Nonetheless, the potential impact of exposures to lead, cadmium, benzene and toluene in steatohepatitis, an obesity-associated inflammatory liver disease, warrants further investigation.
Collapse
Affiliation(s)
- Emily J Werder
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC, USA
| | - Juliane I Beier
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh School of Medicine and the Pittsburgh Liver Research Center, Pittsburgh, PA, 15213, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC, USA
| | - Keith C Falkner
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Tyler Gripshover
- Department Pharmacology & Toxicology, University of Louisville School of Medicine and the UofL Superfund Research Center, Louisville, KY, 40202, USA
| | - Banrida Wahlang
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, University of Louisville School of Medicine and the UofL Superfund Research Center, Louisville, KY, 40202, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew C Cave
- Departments of Medicine, Pharmacology & Toxicology, Biochemistry & Molecular Genetics, University of Louisville School of Medicine, The UofL Superfund Research Center, The UofL Hepatobiology and Toxicology Center, The UofL Alcohol Research Center and the Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA; Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206, USA.
| |
Collapse
|
42
|
Zhao Y, Yan Y, Xie L, Wang L, He Y, Wan X, Xue Q. Long-term environmental exposure to microcystins increases the risk of nonalcoholic fatty liver disease in humans: A combined fisher-based investigation and murine model study. ENVIRONMENT INTERNATIONAL 2020; 138:105648. [PMID: 32187572 DOI: 10.1016/j.envint.2020.105648] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/21/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Microcystins (MCs) produced by cyanobacteria pose serious threats to human health. However, the contribution of long-term exposure to MCs to the development of nonalcoholic fatty liver disease (NAFLD) remains poorly documented. In this study, we estimated the environmental uptake of MCs by a small population of fishers who have lived for many years on Meiliang Bay of Lake Taihu, where cyanobacterial blooms occur frequently. Serum biochemical indices of liver function and their relationships with MC contamination in these people were also investigated. Moreover, to mimic the long-term effects of MC on the livers of fishers, an animal model was established in which mice were exposed to MC-LR at an environmentally relevant level, a reference level (the no-observed adverse effect level, NOAEL), and three times the NOAEL through drinking water for 12 months. We estimated the total daily intake of MCs by fishers through contaminated lake water and food to be 5.95 μg MC-LReq, far exceeding the tolerable daily intake (2.40 μg MC-LReq) proposed by the World Health Organization (WHO). More than 80% of participants had at least one abnormal serum marker. The indices of aspartate aminotransferase (AST)/alanine aminotransferase (ALT), triglyceride (TG), globulin (GLB), and lactate dehydrogenase (LDH) had close positive associations with MC contamination, indicating that both liver damage and lipid metabolism dysfunction were induced by chronic MC exposure. Furthermore, the animal experimental results showed that long-term exposure to MC-LR at the environmentally relevant level led to hepatic steatosis with molecular alterations in circadian rhythm regulation, lipid metabolic processes, and the cell cycle pathway. Exposure to MC-LR at or above the NOAEL worsened the pathological phenotype towards nonalcoholic steatohepatitis disease (NASH) or fibrosis. These results suggest that prolonged exposure to the reference level (NOAEL) of MC-LR could cause severe liver injury to mammals. People with long-term environmental exposure to MCs might be at high risk for developing NAFLD.
Collapse
Affiliation(s)
- Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Lixiao Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Yaojia He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Xiang Wan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| |
Collapse
|
43
|
Matsuzaka Y, Hosaka T, Ogaito A, Yoshinari K, Uesawa Y. Prediction Model of Aryl Hydrocarbon Receptor Activation by a Novel QSAR Approach, DeepSnap-Deep Learning. Molecules 2020; 25:molecules25061317. [PMID: 32183141 PMCID: PMC7144728 DOI: 10.3390/molecules25061317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that senses environmental exogenous and endogenous ligands or xenobiotic chemicals. In particular, exposure of the liver to environmental metabolism-disrupting chemicals contributes to the development and propagation of steatosis and hepatotoxicity. However, the mechanisms for AhR-induced hepatotoxicity and tumor propagation in the liver remain to be revealed, due to the wide variety of AhR ligands. Recently, quantitative structure–activity relationship (QSAR) analysis using deep neural network (DNN) has shown superior performance for the prediction of chemical compounds. Therefore, this study proposes a novel QSAR analysis using deep learning (DL), called the DeepSnap–DL method, to construct prediction models of chemical activation of AhR. Compared with conventional machine learning (ML) techniques, such as the random forest, XGBoost, LightGBM, and CatBoost, the proposed method achieves high-performance prediction of AhR activation. Thus, the DeepSnap–DL method may be considered a useful tool for achieving high-throughput in silico evaluation of AhR-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 204-8588 Tokyo, Japan;
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8529, Japan; (T.H.); (A.O.); (K.Y.)
| | - Anna Ogaito
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8529, Japan; (T.H.); (A.O.); (K.Y.)
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8529, Japan; (T.H.); (A.O.); (K.Y.)
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, 204-8588 Tokyo, Japan;
- Correspondence:
| |
Collapse
|
44
|
Understanding Environmental Contaminants' Direct Effects on Non-alcoholic Fatty Liver Disease Progression. Curr Environ Health Rep 2020; 6:95-104. [PMID: 31090041 DOI: 10.1007/s40572-019-00231-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Environmental contaminants are considered one of the major factors in the development and progression of NAFLD, the most common liver disease in the USA. RECENT FINDINGS The evolving knowledge of mechanisms of hepatic steatosis and steatohepatitis has recently been reviewed and characterized as ALD, NAFLD, and TAFLD. The most recent mechanistic studies on PFAS and PCBs have revealed a greater role for toxicants in the initiation of not only TAFLD but also NAFLD and the more progressive inflammatory stage of NAFLD, non-alcoholic steatohepatitis. In addition to insecticides, recent studies support a significant contribution of fungicides and herbicides to NAFLD. The mechanisms of PFAS, PCBs, and fungicides in contributing to the increased prevalence of NAFLD remain unclear. Addressing whether chronic, low-dose exposures could result in liver pathology and whether real-world exposure to mixtures of environmental contaminants pose a significant risk factor for NAFLD is paramount to understand the impact of NAFLD on populations today.
Collapse
|
45
|
Wahlang B, Hardesty JE, Head KZ, Jin J, Falkner KC, Prough RA, Cave MC, Beier JI. Hepatic Injury Caused by the Environmental Toxicant Vinyl Chloride is Sex-Dependent in Mice. Toxicol Sci 2020; 174:79-91. [PMID: 31774537 DOI: 10.1093/toxsci/kfz236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Vinyl chloride (VC), a common industrial chemical, has been associated with hemangiosarcoma and toxicant-associated steatohepatitis (TASH) in men working at rubber-production plants. Our group previously demonstrated that chronic VC inhalation at environmentally relevant levels (< 1 ppm) in male mice exacerbated hepatic injury caused by high-fat diet (HFD) feeding. Because VC studies on TASH have only been performed in male models, the objective of this study is to examine VC inhalation in female mice in the context of TASH mechanisms. Male and female C57Bl/6 mice were fed either a low-fat diet or HFD and exposed to VC or room air using an inhalation chamber, for 12 weeks (6 h, 5 days/week); and plasma and liver samples were collected after euthanasia. Compared with males, females were less susceptible to HFD+VC-induced obesogenic effects demonstrated by lower body weight and fat composition. Histological analysis revealed that whereas VC exacerbated HFD-induced steatosis in males, this effect was absent in females. In addition, females were more resistant to VC-induced hepatic inflammation whereas males had increased liver weights and higher hepatic Tnfα mRNA levels. Systemic markers of hepatic injury, namely alanine aminotransaminase and thrombin/antithrombin levels were increased by HFD+VC co-exposures only in males. In addition, females did not show significant cell death as previously reported in males. Taken together, the results suggested that VC inhalation led to sex-dependent liver and metabolic toxicity. This study implicated the importance of assessing sex differences in environmental basic science and epidemiologic studies to better identify at-risk populations in both men and women.
Collapse
Affiliation(s)
- Banrida Wahlang
- UofL Superfund Research Center; University of Louisville, Louisville, KY 40202, USA.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA.,Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kimberly Z Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jian Jin
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Keith C Falkner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Matthew C Cave
- UofL Superfund Research Center; University of Louisville, Louisville, KY 40202, USA.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA.,Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.,Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY 40202, USA.,Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
| | - Juliane I Beier
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
46
|
Lee CC, Shen Y, Hsu CW, Fong JP, Uang SN, Chang JW. Reduced adiponectin:leptin ratio associated with inhalation exposure to vinyl chloride monomer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135488. [PMID: 31757555 DOI: 10.1016/j.scitotenv.2019.135488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/21/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
The hepatic toxicity of vinyl chloride monomer (VCM) has often been reported, but few studies have assessed insulin resistance or adipose tissue dysfunction. We analyzed the chronic health effects of moderate exposure to VCM on factory workers in Taiwan. Data were collected from personal air samples, urine samples, and immunohistochemical (IHC) examinations of 122 recruited voluntary participants. Air samples were analyzed to assess personal levels of exposure to VCM and ethylene dichloride (EDC). Urine samples were collected from each worker before they started and after they finished their daily shift. Urinary thiodiglycolic acid (TDGA) levels were analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). IHC examinations included liver function and serum adipokine level tests for insulin resistance. Consequently, the participants included for the final analysis were 113. After confounders had been adjusted for, the airborne VCM concentration significantly (P = 0.043) correlated with pre-shift urinary TDGA levels (β = 0.194). A multivariate analysis showed a significant (P = 0.013) inverse correlation between the adiponectin:leptin ratio and the airborne VCM concentration (β = -0.283), which means that exposure to VCM might increase the risk of insulin resistance and adiponectin abnormalities. We hypothesized that pre-shift urinary TDGA levels can be used as exposure biomarkers for the exposure of workers to VCM.
Collapse
Affiliation(s)
- Ching-Chang Lee
- Research Center for Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying Shen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Wei Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jer-Pei Fong
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shi-Nian Uang
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, Taipei, Taiwan
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
47
|
Wahlang B, Appana S, Falkner KC, McClain CJ, Brock G, Cave MC. Insecticide and metal exposures are associated with a surrogate biomarker for non-alcoholic fatty liver disease in the National Health and Nutrition Examination Survey 2003-2004. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6476-6487. [PMID: 31873887 PMCID: PMC7047555 DOI: 10.1007/s11356-019-07066-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/13/2019] [Indexed: 04/16/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common form of liver disease, affects over 30% of the US population. Our group and others have previously demonstrated that low-level environmental pollutant exposures were associated with increased odds ratios for unexplained alanine aminotransferase (ALT) elevation, a surrogate biomarker for NAFLD, in the adult National Health and Nutrition Examination Survey (NHANES). However, recently, more sensitive and lower ALT cutoffs have been proposed. The objective of this observational study is to utilize these ALT cutoffs to determine new associations between environmental chemicals and the surrogate NAFLD biomarker. Adult NHANES 2003-2004 participants without viral hepatitis, hemochromatosis, or alcoholic liver disease were analyzed in this cross-sectional study. ALT elevation was defined as > 30 IU/L in men and > 19 IU/L in women. Odds ratios adjusted for potential confounders for ALT elevation were determined across exposure quartiles for 17 pollutant subclasses comprised of 111 individual pollutants. The overall prevalence of ALT elevation was 37.6%. Heavy metal and organochlorine insecticide subclasses were associated with dose-dependent increased adjusted odds ratios for ALT elevation of 1.6 (95% CI 1.2-2.3) and 3.5 (95% CI 2.3-5.5) respectively, for the highest vs. lowest exposure quartiles (ptrend < 0.01). Within these subclasses, increasing whole blood levels of lead and mercury, and lipid-adjusted serum levels of dieldrin, and the chlordane metabolites, heptachlor epoxide, and trans-nonachlor, were associated with increased odds ratios for ALT elevation. In conclusion, organochlorine insecticide, lead, and mercury exposures were associated with ALT elevation and suspected NAFLD in adult NHANES 2003-2004.
Collapse
Affiliation(s)
- Banrida Wahlang
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Louisville, Louisville, 40202, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Savitri Appana
- School of Public Health, University of Louisville, Department of Bioinformatics and Biostatistics, Louisville, 40202, KY, USA
- Department of Biostatistics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, 77030, TX, USA
| | - K Cameron Falkner
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Louisville, Louisville, 40202, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Kosair Charities Clinical and Translational Research Building 505 S. Hancock St., Louisville, 40202, KY, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Louisville, Louisville, 40202, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Kosair Charities Clinical and Translational Research Building 505 S. Hancock St., Louisville, 40202, KY, USA
- The Robley Rex Veterans Affairs Medical Center, 800 Zorn Ave, Louisville, KY, USA
| | - Guy Brock
- School of Public Health, University of Louisville, Department of Bioinformatics and Biostatistics, Louisville, 40202, KY, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, 43210, OH, USA
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Louisville, Louisville, 40202, USA.
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, USA.
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, Kosair Charities Clinical and Translational Research Building 505 S. Hancock St., Louisville, 40202, KY, USA.
- The Robley Rex Veterans Affairs Medical Center, 800 Zorn Ave, Louisville, KY, USA.
| |
Collapse
|
48
|
Lang AL, Goldsmith WT, Schnegelberger RD, Arteel GE, Beier JI. Vinyl Chloride and High-Fat Diet as a Model of Environment and Obesity Interaction. J Vis Exp 2020:10.3791/60351. [PMID: 31984951 PMCID: PMC7450540 DOI: 10.3791/60351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vinyl chloride (VC), an abundant environmental contaminant, causes steatohepatitis at high levels, but is considered safe at lower levels. Although several studies have investigated the role of VC as a direct hepatotoxicant, the concept that VC modifies sensitivity of the liver to other factors, such as nonalcoholic fatty liver disease (NAFLD) caused by high-fat diet (HFD) is novel. This protocol describes an exposure paradigm to evaluate the effects of chronic, low-level exposure to VC. Mice are acclimated to low-fat or high-fat diet one week prior to the beginning of the inhalation exposure and remain on these diets throughout the experiment. Mice are exposed to VC (sub-OSHA level: <1 ppm) or room air in inhalation chambers for 6 hours/day, 5 days/week, for up to 12 weeks. Animals are monitored weekly for body weight gain and food consumption. This model of VC exposure causes no overt liver injury with VC inhalation alone. However, the combination of VC and HFD significantly enhances liver disease. A technical advantage of this co-exposure model is the whole-body exposure, without restraint. Moreover, the conditions more closely resemble a very common human situation of a combined exposure to VC with underlying nonalcoholic fatty liver disease and therefore support the novel hypothesis that VC is an environmental risk factor for the development of liver damage as a complication of obesity (i.e., NAFLD). This work challenges the paradigm that the current exposure limits of VC (occupational and environmental) are safe. The use of this model can shed new light and concern on the risks of VC exposure. This model of toxicant-induced liver injury can be used for other volatile organic compounds and to study other interactions that may impact the liver and other organ systems.
Collapse
Affiliation(s)
- Anna L Lang
- Department of Pharmacology and Toxicology, University of Louisville; Hepatobiology and Toxicology Program, University of Louisville
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University; Center for Inhalation Toxicology, West Virginia University
| | - Regina D Schnegelberger
- Department of Pharmacology and Chemical Biology, University of Pittsburgh; Pittsburgh Liver Research Center, University of Pittsburgh
| | - Gavin E Arteel
- Pittsburgh Liver Research Center, University of Pittsburgh; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh
| | - Juliane I Beier
- Pittsburgh Liver Research Center, University of Pittsburgh; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh;
| |
Collapse
|
49
|
Chen X, Ma T, Yip R, Perumalswami PV, Branch AD, Lewis S, Crane M, Yankelevitz DF, Henschke CI. Elevated prevalence of moderate-to-severe hepatic steatosis in World Trade Center General Responder Cohort in a program of CT lung screening. Clin Imaging 2019; 60:237-243. [PMID: 31945662 DOI: 10.1016/j.clinimag.2019.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS To determine the prevalence of moderate-to-severe hepatic steatosis (HS) and associated risk factors in members of the World Trade Center (WTC) General Responder Cohort (GRC) who qualify for low-dose non-contrast computed tomography for lung cancer screening and compare them to non-WTC participants in the same screening program. METHODS All participants gave written informed consent before participating in this IRB-approved study. Clinical variables and laboratory values were recorded. Hepatic attenuation measurement (Hounsfield unit; HU) was measured on low-dose computed tomography (LDCT) and a threshold attenuation value <40HU indicated moderate-to-severe HS. Bivariate and multivariable linear and logistic regression analyses were performed. Propensity scores (PS) were calculated and inverse probability weighting (IPW) was used to adjust for potential confounders when comparing the WTC with non-WTC participants. RESULTS The prevalence of moderate-to-severe HS was 16.2% among 154 WTC participants compared to 5.3% among 170 non-WTC participants. In WTC members, moderate-to-severe HS was associated with higher BMI, higher laboratory liver function tests, and former smoking status. Using PS analysis and IPW to account for potential confounders, the odds ratio for moderate-to-severe HS was 3.4-fold higher (95% confidence interval: 1.7-6.7) in the WTC participants compared with non-WTC participants. Moderate-to-severe HS was also associated with higher BMI and former smoker status. CONCLUSION Prevalence of moderate-to-severe HS was >3-fold higher in the WTC-GRC group than in other participants.
Collapse
Affiliation(s)
- Xiangmeng Chen
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Radiology, Jiangmen Central Hospital, Jiangmen 529030, China
| | - Teng Ma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Radiology, Tong Ren Hospital, Capital Medical University, Beijing 100730, China
| | - Rowena Yip
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ponni V Perumalswami
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Andrea D Branch
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Sara Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Michael Crane
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - David F Yankelevitz
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Claudia I Henschke
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
50
|
EASL Clinical Practice Guideline: Occupational liver diseases. J Hepatol 2019; 71:1022-1037. [PMID: 31540728 DOI: 10.1016/j.jhep.2019.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022]
Abstract
A variety of chemicals have been linked to occupational liver diseases, including several solvents and mixtures thereof, pesticides, and metals. Workplace exposures have been associated with virtually the entire spectrum of acute and chronic liver diseases. However, their prevalence is inadequately quantified and their epidemiology limited. Occupational liver diseases may result from high accidental or from prolonged lower level exposures. Whereas the former is uncommon and easily recognised, the latter are relatively more frequent but often overlooked because they may display normal values of conventional markers, have an insidious onset and be asymptomatic or be obfuscated and confounded by concurrent conditions. In addition, specific tests of toxicity are not available, histopathology may not be revealing and the assessment of internal dose of chemicals is usually not decisive. Given these circumstances, the diagnosis of these liver disorders is challenging, one of exclusion and often requires an interdisciplinary approach. These recommendations offer a classification of the type of liver injuries associated with occupational exposures - based in part on the criteria for drug-induced liver injury - a grading of their severity, and the diagnostic and preventive criteria for chemically induced occupational liver disease.
Collapse
|