1
|
Reisman EG, Botella J, Huang C, Schittenhelm RB, Stroud DA, Granata C, Chandrasiri OS, Ramm G, Oorschot V, Caruana NJ, Bishop DJ. Fibre-specific mitochondrial protein abundance is linked to resting and post-training mitochondrial content in the muscle of men. Nat Commun 2024; 15:7677. [PMID: 39227581 PMCID: PMC11371815 DOI: 10.1038/s41467-024-50632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Analyses of mitochondrial adaptations in human skeletal muscle have mostly used whole-muscle samples, where results may be confounded by the presence of a mixture of type I and II muscle fibres. Using our adapted mass spectrometry-based proteomics workflow, we provide insights into fibre-specific mitochondrial differences in the human skeletal muscle of men before and after training. Our findings challenge previous conclusions regarding the extent of fibre-type-specific remodelling of the mitochondrial proteome and suggest that most baseline differences in mitochondrial protein abundances between fibre types reported by us, and others, might be due to differences in total mitochondrial content or a consequence of adaptations to habitual physical activity (or inactivity). Most training-induced changes in different mitochondrial functional groups, in both fibre types, were no longer significant in our study when normalised to changes in markers of mitochondrial content.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Javier Botella
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, VIC, Australia
| | - Cesare Granata
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Owala S Chandrasiri
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Georg Ramm
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Viola Oorschot
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nikeisha J Caruana
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Reisman EG, Caruana NJ, Bishop DJ. Exercise training and changes in skeletal muscle mitochondrial proteins: from blots to "omics". Crit Rev Biochem Mol Biol 2024; 59:221-243. [PMID: 39288086 DOI: 10.1080/10409238.2024.2383408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/19/2024]
Abstract
Mitochondria are essential, membrane-enclosed organelles that consist of ∼1100 different proteins, which allow for many diverse functions critical to maintaining metabolism. Highly metabolic tissues, such as skeletal muscle, have a high mitochondrial content that increases with exercise training. The classic western blot technique has revealed training-induced increases in the relatively small number of individual mitochondrial proteins studied (∼5% of the >1100 proteins in MitoCarta), with some of these changes dependent on the training stimulus. Proteomic approaches have identified hundreds of additional mitochondrial proteins that respond to exercise training. There is, however, surprisingly little crossover in the mitochondrial proteins identified in the published human training studies. This suggests that to better understand the link between training-induced changes in mitochondrial proteins and metabolism, future studies need to move beyond maximizing protein detection to adopting methods that will increase the reliability of the changes in protein abundance observed.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Nikeisha J Caruana
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| |
Collapse
|
3
|
Ashcroft SP, Stocks B, Egan B, Zierath JR. Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab 2024; 36:278-300. [PMID: 38183980 DOI: 10.1016/j.cmet.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
The risk associated with multiple cancers, cardiovascular disease, diabetes, and all-cause mortality is decreased in individuals who meet the current recommendations for physical activity. Therefore, regular exercise remains a cornerstone in the prevention and treatment of non-communicable diseases. An acute bout of exercise results in the coordinated interaction between multiple tissues to meet the increased energy demand of exercise. Over time, the associated metabolic stress of each individual exercise bout provides the basis for long-term adaptations across tissues, including the cardiovascular system, skeletal muscle, adipose tissue, liver, pancreas, gut, and brain. Therefore, regular exercise is associated with a plethora of benefits throughout the whole body, including improved cardiorespiratory fitness, physical function, and glycemic control. Overall, we summarize the exercise-induced adaptations that occur within multiple tissues and how they converge to ultimately improve cardiometabolic health.
Collapse
Affiliation(s)
- Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Landen S, Jacques M, Hiam D, Alvarez-Romero J, Schittenhelm RB, Shah AD, Huang C, Steele JR, Harvey NR, Haupt LM, Griffiths LR, Ashton KJ, Lamon S, Voisin S, Eynon N. Sex differences in muscle protein expression and DNA methylation in response to exercise training. Biol Sex Differ 2023; 14:56. [PMID: 37670389 PMCID: PMC10478435 DOI: 10.1186/s13293-023-00539-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Exercise training elicits changes in muscle physiology, epigenomics, transcriptomics, and proteomics, with males and females exhibiting differing physiological responses to exercise training. However, the molecular mechanisms contributing to the differing adaptations between the sexes are poorly understood. METHODS We performed a meta-analysis for sex differences in skeletal muscle DNA methylation following an endurance training intervention (Gene SMART cohort and E-MTAB-11282 cohort). We investigated for sex differences in the skeletal muscle proteome following an endurance training intervention (Gene SMART cohort). Lastly, we investigated whether the methylome and proteome are associated with baseline cardiorespiratory fitness (maximal oxygen consumption; VO2max) in a sex-specific manner. RESULTS Here, we investigated for the first time, DNA methylome and proteome sex differences in response to exercise training in human skeletal muscle (n = 78; 50 males, 28 females). We identified 92 DNA methylation sites (CpGs) associated with exercise training; however, no CpGs changed in a sex-dependent manner. In contrast, we identified 189 proteins that are differentially expressed between the sexes following training, with 82 proteins differentially expressed between the sexes at baseline. Proteins showing the most robust sex-specific response to exercise include SIRT3, MRPL41, and MBP. Irrespective of sex, cardiorespiratory fitness was associated with robust methylome changes (19,257 CpGs) and no proteomic changes. We did not observe sex differences in the association between cardiorespiratory fitness and the DNA methylome. Integrative multi-omic analysis identified sex-specific mitochondrial metabolism pathways associated with exercise responses. Lastly, exercise training and cardiorespiratory fitness shifted the DNA methylomes to be more similar between the sexes. CONCLUSIONS We identified sex differences in protein expression changes, but not DNA methylation changes, following an endurance exercise training intervention; whereas we identified no sex differences in the DNA methylome or proteome response to lifelong training. Given the delicate interaction between sex and training as well as the limitations of the current study, more studies are required to elucidate whether there is a sex-specific training effect on the DNA methylome. We found that genes involved in mitochondrial metabolism pathways are differentially modulated between the sexes following endurance exercise training. These results shed light on sex differences in molecular adaptations to exercise training in skeletal muscle.
Collapse
Affiliation(s)
- Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne, Australia
| | - Anup D Shah
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne, Australia
| | - Joel R Steele
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne, Australia
| | - Nicholas R Harvey
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Kevin J Ashton
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
5
|
Dowling P, Swandulla D, Ohlendieck K. Biochemical and proteomic insights into sarcoplasmic reticulum Ca 2+-ATPase complexes in skeletal muscles. Expert Rev Proteomics 2023; 20:125-142. [PMID: 37668143 DOI: 10.1080/14789450.2023.2255743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission. AREAS COVERED The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca2+-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective. EXPERT OPINION Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca2+-pump proteins of the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth Kildare, Ireland
| |
Collapse
|
6
|
Bahrami F, Fathi M, Ahmadvand H, Pajohi N. Endurance training changes the expression of miR-1 and miR-133 and predicted genes in slow and fast twitch muscles. Arch Gerontol Geriatr 2023; 108:104929. [PMID: 36645970 DOI: 10.1016/j.archger.2023.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
PURPOSE OF THE RESEARCH Endurance training can modify signaling and gene expression pathways that play a pivotal role in determining the phenotype of the fibers. The present study aimed to investigate the effects of endurance training on the expression of some myomiRs and related genes in slow and fast twitch muscles. METHODS Twenty healthy male adult Wistar rats (281 ± 14 g) were randomized to either control (n = 10) or treated (n = 10). The treated group performed an endurance program for eight weeks (running on a treadmill for eight weeks, 50 min, 23 m/min). After the end of the training protocol, the slow (soleus) and fast (EDL) twitch muscles were removed to assess the miR-1, miR-133 expression, and hdac4, mef2c genes, and protein by real-time PCR and western blot, respectively. RESULTS The soleus muscle miR-1 expression and mef2c gene in the treated group were significantly lower compared control (p = 0.0001). In contrast, miR-133 and hdac4 gene expression of the soleus muscle of the treated group increased significantly (p = 0001), and the EDL miR-133 and mef2c expression of the treated group increased in the compared control group (p = 0.0001). The EDL MEF2c protein expression in the treated group significantly decreased compared to the control group, although the expression of EDL HDAC4 protein significantly increased (p = 0.0001). CONCLUSIONS Endurance training changes the expression of the miR-1, miR-133, and their predicted genes in slow and fast twitch muscles. Also, the rate of HDAC4 and MEF2c protein synthesis, which are upstream and downstream of these myomiRs, was affected by endurance training.
Collapse
Affiliation(s)
- Farid Bahrami
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
| | - Mohammad Fathi
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran.
| | - Hassan Ahmadvand
- Faculty of Medical Sciences, Lorestan University of Medical Sciences, Khorammabad, Iran
| | - Naser Pajohi
- Faculty of Medical Sciences, Lorestan University of Medical Sciences, Khorammabad, Iran
| |
Collapse
|
7
|
Qumu S, Sun W, Guo J, Zhang Y, Cai L, Si C, Xu X, Yang L, Situ X, Yang T, He J, Shi M, Liu D, Ren X, Huang K, Niu H, Li H, Yu C, Chen Y, Yang T. Pulmonary rehabilitation restores limb muscle mitochondria and improves the intramuscular metabolic profile. Chin Med J (Engl) 2023; 136:461-472. [PMID: 36752784 PMCID: PMC10106246 DOI: 10.1097/cm9.0000000000002175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Exercise, as the cornerstone of pulmonary rehabilitation, is recommended to chronic obstructive pulmonary disease (COPD) patients. The underlying molecular basis and metabolic process were not fully elucidated. METHODS Sprague-Dawley rats were classified into five groups: non-COPD/rest ( n = 8), non-COPD/exercise ( n = 7), COPD/rest ( n = 7), COPD/medium exercise ( n = 10), and COPD/intensive exercise ( n = 10). COPD animals were exposed to cigarette smoke and lipopolysaccharide instillation for 90 days, while the non-COPD control animals were exposed to room air. Non-COPD/exercise and COPD/medium exercise animals were trained on a treadmill at a decline of 5° and a speed of 15 m/min while animals in the COPD/intensive exercise group were trained at a decline of 5° and a speed of 18 m/min. After eight weeks of exercise/rest, we used ultrasonography, immunohistochemistry, transmission electron microscopy, oxidative capacity of mitochondria, airflow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADESI-MSI), and transcriptomics analyses to assess rectal femoris (RF). RESULTS At the end of 90 days, COPD rats' weight gain was smaller than control by 59.48 ± 15.33 g ( P = 0.0005). The oxidative muscle fibers proportion was lower ( P < 0.0001). At the end of additional eight weeks of exercise/rest, compared to COPD/rest, COPD/medium exercise group showed advantages in weight gain, femoral artery peak flow velocity (Δ58.22 mm/s, 95% CI: 13.85-102.60 mm/s, P = 0.0104), RF diameters (Δ0.16 mm, 95% CI: 0.04-0.28 mm, P = 0.0093), myofibrils diameter (Δ0.06 μm, 95% CI: 0.02-0.10 μm, P = 0.006), oxidative muscle fiber percentage (Δ4.84%, 95% CI: 0.15-9.53%, P = 0.0434), mitochondria oxidative phosphorylate capacity ( P < 0.0001). Biomolecules spatial distribution in situ and bioinformatic analyses of transcriptomics suggested COPD-related alteration in metabolites and gene expression, which can be impacted by exercise. CONCLUSION COPD rat model had multi-level structure and function impairment, which can be mitigated by exercise.
Collapse
Affiliation(s)
- Shiwei Qumu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing 100029, China
| | - Weiliang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jing Guo
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yuting Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lesi Cai
- National Anti-Drug Laboratory Beijing Regional Center, Beijing 100164, China
| | - Chaozeng Si
- Department of Information Management, China–Japan Friendship Hospital, Beijing 100029, China
| | - Xia Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100005, China
| | - Lulu Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing 100029, China
- Capital Medical University, Beijing 100069, China
| | - Xuanming Situ
- Department of Rehabilitation, China–Japan Friendship Hospital, Beijing 100029, China
| | - Tianyi Yang
- Department of Rehabilitation, China–Japan Friendship Hospital, Beijing 100029, China
| | - Jiaze He
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing 100029, China
- Capital Medical University, Beijing 100069, China
| | - Minghui Shi
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing 100029, China
- Capital Medical University, Beijing 100069, China
| | - Dongyan Liu
- Tsinghua University School of Medicine, Beijing 100084, China
| | - Xiaoxia Ren
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing 100029, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing 100029, China
| | - Hongtao Niu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing 100029, China
| | - Hong Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chang’An Yu
- Department of Cardiology, China–Japan Friendship Hospital, Beijing 100029, China
| | - Yang Chen
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100005, China
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Science, Beijing 100029, China
| |
Collapse
|
8
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Abstract
The skeletal muscle proteome consists of a large number of diverse protein species with a broad and dynamic concentration range. Since mature skeletal muscles are characterized by a distinctive combination of contractile cells with differing physiological and biochemical properties, it is essential to determine specific differences in the protein composition of fast, slow, and hybrid fibers. Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is a powerful comparative tool to analyze fiber type-specific differences between predominantly fast contracting versus slower twitching muscles. In this chapter, the application of the 2D-DIGE method for the comparative analysis of different subtypes of skeletal muscles is outlined in detail. A standardized proteomic workflow is described, involving sample preparation, protein extraction, differential fluorescence labeling using a 3-CyDye system, first-dimension isoelectric focusing, second-dimension slab gel electrophoresis, 2D-DIGE image analysis, protein digestion, and mass spectrometry.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
10
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Hwang JH, Kim KM, Oh HT, Yoo GD, Jeong MG, Lee H, Park J, Jeong K, Kim YK, Ko YG, Hwang ES, Hong JH. TAZ links exercise to mitochondrial biogenesis via mitochondrial transcription factor A. Nat Commun 2022; 13:653. [PMID: 35115527 PMCID: PMC8814203 DOI: 10.1038/s41467-022-28247-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/15/2022] [Indexed: 12/25/2022] Open
Abstract
Mitochondria are energy-generating organelles and mitochondrial biogenesis is stimulated to meet energy requirements in response to extracellular stimuli, including exercise. However, the mechanisms underlying mitochondrial biogenesis remain unknown. Here, we demonstrate that transcriptional coactivator with PDZ-binding motif (TAZ) stimulates mitochondrial biogenesis in skeletal muscle. In muscle-specific TAZ-knockout (mKO) mice, mitochondrial biogenesis, respiratory metabolism, and exercise ability were decreased compared to wild-type mice. Mechanistically, TAZ stimulates the translation of mitochondrial transcription factor A via Ras homolog enriched in brain (Rheb)/Rheb like 1 (Rhebl1)-mTOR axis. TAZ stimulates Rhebl1 expression via TEA domain family transcription factor. Rhebl1 introduction by adeno-associated virus or mTOR activation recovered mitochondrial biogenesis in mKO muscle. Physiologically, mKO mice did not stimulate exercise-induced mitochondrial biogenesis. Collectively, our results suggested that TAZ is a novel stimulator for mitochondrial biogenesis and exercise-induced muscle adaptation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Cell Line
- Cells, Cultured
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- HEK293 Cells
- Humans
- Mice, Knockout
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myoblasts/cytology
- Myoblasts/metabolism
- Organelle Biogenesis
- Physical Conditioning, Animal
- Reactive Oxygen Species/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Mice
Collapse
Affiliation(s)
- Jun-Ha Hwang
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Kyung Min Kim
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Ho Taek Oh
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Gi Don Yoo
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Mi Gyeong Jeong
- College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Hyun Lee
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Joori Park
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Kwon Jeong
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Yoon Ki Kim
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Young-Gyu Ko
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Eun Sook Hwang
- College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea.
| | - Jeong-Ho Hong
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
12
|
Granata C, Caruana NJ, Botella J, Jamnick NA, Huynh K, Kuang J, Janssen HA, Reljic B, Mellett NA, Laskowski A, Stait TL, Frazier AE, Coughlan MT, Meikle PJ, Thorburn DR, Stroud DA, Bishop DJ. High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content. Nat Commun 2021; 12:7056. [PMID: 34862379 PMCID: PMC8642543 DOI: 10.1038/s41467-021-27153-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the overall increase in mitochondrial content. Our findings suggest enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and do not support the hypothesis that training-induced supercomplex formation enhances mitochondrial bioenergetics. Our study provides an analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding, and calling for careful reinterpretation of previous findings.
Collapse
Affiliation(s)
- Cesare Granata
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, 3011, Australia.
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, 40225, Düsseldorf, Germany.
| | - Nikeisha J Caruana
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, 3011, Australia
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Javier Botella
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, 3011, Australia
| | - Nicholas A Jamnick
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, 3011, Australia
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (iMPACT), Deakin University, Geelong, VIC, Australia
| | - Kevin Huynh
- Baker Heart & Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Jujiao Kuang
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, 3011, Australia
| | - Hans A Janssen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, 3011, Australia
| | - Boris Reljic
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800, Melbourne, Australia
| | | | - Adrienne Laskowski
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Tegan L Stait
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Ann E Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Baker Heart & Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Peter J Meikle
- Baker Heart & Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, 3011, Australia.
| |
Collapse
|
13
|
Massart J, Sjögren RJO, Egan B, Garde C, Lindgren M, Gu W, Ferreira DMS, Katayama M, Ruas JL, Barrès R, O'Gorman DJ, Zierath JR, Krook A. Endurance exercise training-responsive miR-19b-3p improves skeletal muscle glucose metabolism. Nat Commun 2021; 12:5948. [PMID: 34642330 PMCID: PMC8511155 DOI: 10.1038/s41467-021-26095-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is a highly adaptable tissue and remodels in response to exercise training. Using short RNA sequencing, we determine the miRNA profile of skeletal muscle from healthy male volunteers before and after a 14-day aerobic exercise training regime. Among the exercise training-responsive miRNAs identified, miR-19b-3p was selected for further validation. Overexpression of miR-19b-3p in human skeletal muscle cells increases insulin signaling, glucose uptake, and maximal oxygen consumption, recapitulating the adaptive response to aerobic exercise training. Overexpression of miR-19b-3p in mouse flexor digitorum brevis muscle enhances contraction-induced glucose uptake, indicating that miR-19b-3p exerts control on exercise training-induced adaptations in skeletal muscle. Potential targets of miR-19b-3p that are reduced after aerobic exercise training include KIF13A, MAPK6, RNF11, and VPS37A. Amongst these, RNF11 silencing potentiates glucose uptake in human skeletal muscle cells. Collectively, we identify miR-19b-3p as an aerobic exercise training-induced miRNA that regulates skeletal muscle glucose metabolism.
Collapse
Affiliation(s)
- Julie Massart
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Rasmus J O Sjögren
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Brendan Egan
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Health & Human Performance, Dublin City University, Dublin, Ireland
| | - Christian Garde
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Lindgren
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Weifeng Gu
- University of Massachusetts Medical School, Worchester, MA, USA
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA, USA
| | - Duarte M S Ferreira
- Department of Physiology and Pharmacology, Section of Molecular and Cellular Exercise Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Mutsumi Katayama
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Section of Molecular and Cellular Exercise Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Donal J O'Gorman
- Department of Health & Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anna Krook
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Hesketh SJ, Stansfield BN, Stead CA, Burniston JG. The application of proteomics in muscle exercise physiology. Expert Rev Proteomics 2021; 17:813-825. [PMID: 33470862 DOI: 10.1080/14789450.2020.1879647] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Exercise offers protection from non-communicable diseases and extends healthspan by offsetting natural physiological declines that occur in older age. Striated muscle is the largest bodily organ; it underpins the capacity for physical work, and the responses of muscle to exercise convey the health benefits of a physically active lifestyle. Proteomic surveys of muscle provide a means to study the protective effects of exercise and this review summaries some key findings from literature listed in PubMed during the last 10 years that have led to new insight in muscle exercise physiology. AREAS COVERED 'Bottom-up' analyses involving liquid-chromatography tandem mass spectrometry (LC-MS/MS) of peptide digests have become the mainstay of proteomic studies and have been applied to muscle mitochondrial fractions. Enrichment techniques for post-translational modifications, including phosphorylation, acetylation and ubiquitination, have evolved and the analysis of site-specific modifications has become a major area of interest in exercise proteomics. Finally, we consider emergent techniques for dynamic analysis of muscle proteomes that offer new insight to protein turnover and the contributions of synthesis and degradation to changes in protein abundance in response to exercise training. EXPERT OPINION Burgeoning methods for dynamic proteome profiling offer new opportunities to study the mechanisms of muscle adaptation.
Collapse
Affiliation(s)
- Stuart J Hesketh
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| | - Ben N Stansfield
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University , Liverpool, UK
| |
Collapse
|
15
|
Deshmukh AS, Steenberg DE, Hostrup M, Birk JB, Larsen JK, Santos A, Kjøbsted R, Hingst JR, Schéele CC, Murgia M, Kiens B, Richter EA, Mann M, Wojtaszewski JFP. Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training. Nat Commun 2021; 12:304. [PMID: 33436631 PMCID: PMC7803955 DOI: 10.1038/s41467-020-20556-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
Skeletal muscle conveys several of the health-promoting effects of exercise; yet the underlying mechanisms are not fully elucidated. Studying skeletal muscle is challenging due to its different fiber types and the presence of non-muscle cells. This can be circumvented by isolation of single muscle fibers. Here, we develop a workflow enabling proteomics analysis of pools of isolated muscle fibers from freeze-dried human muscle biopsies. We identify more than 4000 proteins in slow- and fast-twitch muscle fibers. Exercise training alters expression of 237 and 172 proteins in slow- and fast-twitch muscle fibers, respectively. Interestingly, expression levels of secreted proteins and proteins involved in transcription, mitochondrial metabolism, Ca2+ signaling, and fat and glucose metabolism adapts to training in a fiber type-specific manner. Our data provide a resource to elucidate molecular mechanisms underlying muscle function and health, and our workflow allows fiber type-specific proteomic analyses of snap-frozen non-embedded human muscle biopsies.
Collapse
Affiliation(s)
- A S Deshmukh
- The Novo Nordisk Foundation Center for Protein Research, Clinical Proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- The Novo Nordisk Foundation Center for Basic Metablic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - D E Steenberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - M Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - J B Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - J K Larsen
- The Novo Nordisk Foundation Center for Basic Metablic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Santos
- The Novo Nordisk Foundation Center for Protein Research, Clinical Proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - J R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - C C Schéele
- The Novo Nordisk Foundation Center for Basic Metablic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and Centre for Physical Activity Research Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - M Murgia
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - B Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - E A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - M Mann
- The Novo Nordisk Foundation Center for Protein Research, Clinical Proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - J F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Béland-Millar A, Takimoto M, Hamada T, Messier C. Brain and muscle adaptation to high-fat diets and exercise: Metabolic transporters, enzymes and substrates in the rat cortex and muscle. Brain Res 2020; 1749:147126. [PMID: 32946799 DOI: 10.1016/j.brainres.2020.147126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022]
Abstract
There is evidence suggesting that the effects of diet and physical activity on physical and mental well-being are the result of altered metabolic profiles. Though the central and peripheral systems work in tandem, the interactions between peripheral and central changes that lead to these altered states of well-being remains elusive. We measured changes in the metabolic profile of brain (cortex) and muscle (soleus and plantaris) tissue in rats following 5-weeks of treadmill exercise and/or a high-fat diet to evaluate peripheral and central interactions as well as identify any common adaptive mechanisms. To characterize changes in metabolic profiles, we measured relative changes in key metabolic enzymes (COX IV, hexokinase, LDHB, PFK), substrates (BHB, FFA, glucose, lactate, insulin, glycogen, BDNF) and transporters (MCT1, MCT2, MCT4, GLUT1, GLUT3). In the cortex, there was an increase in MCT1 and a decrease in glycogen following the high-fat diet, suggesting an increased reliance on monocarboxylates. Muscle changes were dependent muscle type. Within the plantaris, a high-fat diet increased the oxidative capacity of the muscle likely supported by increased glycolysis, whereas exercise increased the oxidative capacity of the muscle likely supported via increased glycogen synthesis. There was no effect of diet on soleus measurements, but exercise increased its oxidative capacity likely fueled by endogenous and exogenous monocarboxylates. For both the plantaris and soleus, combining exercise training and high-fat diet mediated results, resulting in a middling effect. Together, these results indicate the variable adaptions of two main metabolic pathways: glycolysis and oxidative phosphorylation. The results also suggest a dynamic relationship between the brain and body.
Collapse
Affiliation(s)
- Alexandria Béland-Millar
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada.
| | - Masaki Takimoto
- Laboratory of Exercise Physiology and Biochemistry, Graduate School of Sport and Exercise Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Taku Hamada
- Laboratory of Exercise Physiology and Biochemistry, Graduate School of Sport and Exercise Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Claude Messier
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
17
|
Kruse R, Sahebekhtiari N, Højlund K. The Mitochondrial Proteomic Signatures of Human Skeletal Muscle Linked to Insulin Resistance. Int J Mol Sci 2020; 21:ijms21155374. [PMID: 32731645 PMCID: PMC7432338 DOI: 10.3390/ijms21155374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Mitochondria are essential in energy metabolism and cellular survival, and there is growing evidence that insulin resistance in chronic metabolic disorders, such as obesity, type 2 diabetes (T2D), and aging, is linked to mitochondrial dysfunction in skeletal muscle. Protein profiling by proteomics is a powerful tool to investigate mechanisms underlying complex disorders. However, despite significant advances in proteomics within the past two decades, the technologies have not yet been fully exploited in the field of skeletal muscle proteome. Area covered: Here, we review the currently available studies characterizing the mitochondrial proteome in human skeletal muscle in insulin-resistant conditions, such as obesity, T2D, and aging, as well as exercise-mediated changes in the mitochondrial proteome. Furthermore, we outline technical challenges and limitations and methodological aspects that should be considered when planning future large-scale proteomics studies of mitochondria from human skeletal muscle. Authors’ view: At present, most proteomic studies of skeletal muscle or isolated muscle mitochondria have demonstrated a reduced abundance of proteins in several mitochondrial biological processes in obesity, T2D, and aging, whereas the beneficial effects of exercise involve an increased content of muscle proteins involved in mitochondrial metabolism. Powerful mass-spectrometry-based proteomics now provides unprecedented opportunities to perform in-depth proteomics of muscle mitochondria, which in the near future is expected to increase our understanding of the complex molecular mechanisms underlying the link between mitochondrial dysfunction and insulin resistance in chronic metabolic disorders.
Collapse
Affiliation(s)
- Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Navid Sahebekhtiari
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
- Correspondence: ; Tel.: +45-2532-06-48
| |
Collapse
|
18
|
Kumar AA, Kelly DP, Chirinos JA. Mitochondrial Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation 2019; 139:1435-1450. [PMID: 30856000 DOI: 10.1161/circulationaha.118.036259] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome with an increasingly recognized heterogeneity in pathophysiology. Exercise intolerance is the hallmark of HFpEF and appears to be caused by both cardiac and peripheral abnormalities in the arterial tree and skeletal muscle. Mitochondrial abnormalities can significantly contribute to impaired oxygen utilization and the resulting exercise intolerance in HFpEF. We review key aspects of the complex biology of this organelle, the clinical relevance of mitochondrial function, the methods that are currently available to assess mitochondrial function in humans, and the evidence supporting a role for mitochondrial dysfunction in the pathophysiology of HFpEF. We also discuss the role of mitochondrial function as a therapeutic target, some key considerations for the design of early-phase clinical trials using agents that specifically target mitochondrial function to improve symptoms in patients with HFpEF, and ongoing trials with mitochondrial agents in HFpEF.
Collapse
Affiliation(s)
- Anupam A Kumar
- From the University of Pennsylvania Perelman School of Medicine, Philadelphia (A.K., D.P.K., J.C.)
| | - Daniel P Kelly
- From the University of Pennsylvania Perelman School of Medicine, Philadelphia (A.K., D.P.K., J.C.)
| | - Julio A Chirinos
- From the University of Pennsylvania Perelman School of Medicine, Philadelphia (A.K., D.P.K., J.C.).,the Hospital of the University of Pennsylvania, Philadelphia (J.C.)
| |
Collapse
|
19
|
Amaro-Gahete FJ, Sanchez-Delgado G, Ara I, R Ruiz J. Cardiorespiratory Fitness May Influence Metabolic Inflexibility During Exercise in Obese Persons. J Clin Endocrinol Metab 2019; 104:5780-5790. [PMID: 31322652 DOI: 10.1210/jc.2019-01225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT We examined whether obese individuals have a reduced maximal fat oxidation (MFO) and the intensity that elicit MFO (Fatmax) compared with normal weight and overweight persons, taking into account their level of cardiorespiratory fitness. METHODS The study subjects were 138 sedentary adults (87 women) aged 30.1 ± 13.6 years. Based on their body mass index, subjects were categorized as being of normal weight (n = 66), overweight (n = 48), or obese (n = 24). MFO and Fatmax were determined for all subjects by indirect calorimetry, using a walking graded exercise test. MFO was expressed in absolute terms (g/min) and relative to whole-body lean mass (mg/kgleanmass/min). Cardiorespiratory fitness was assessed via a maximal treadmill test. RESULTS No differences in absolute MFO and Fatmax values were seen between the obese, normal weight, and overweight subjects (all P > 0.2), although after adjusting for cardiorespiratory fitness, the obese subjects returned significantly higher values than did their normal weight and overweight counterparts (all P < 0.03). However, when expressed with respect to lean mass, the MFO of the normal weight subjects was significantly greater than that of the overweight and obese subjects, independent of age, sex, or cardiorespiratory fitness. CONCLUSIONS Obese individuals have higher absolute MFO values when cardiorespiratory fitness is taken into account, but when expressed with respect to lean mass, normal weight individuals show a greater capacity to oxidize fat during exercise per unit of metabolically active tissue independent of age, sex, or cardiorespiratory fitness. These findings suggest that obese individuals may suffer from metabolic inflexibility during exercise.
Collapse
Affiliation(s)
- Francisco J Amaro-Gahete
- EFFECTS-262 Research Group, Department of Physiology, School of Medicine, University of Granada, Spain
- PROmoting FITness and Health through Physical Activity Research Group, Sport and Health University Research Institute, Department of Physical and Sports Education, School of Sports Science, University of Granada, Spain
| | - Guillermo Sanchez-Delgado
- PROmoting FITness and Health through Physical Activity Research Group, Sport and Health University Research Institute, Department of Physical and Sports Education, School of Sports Science, University of Granada, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain
- CIBER of Frailty and Healthy Aging, Madrid, Spain
| | - Jonatan R Ruiz
- PROmoting FITness and Health through Physical Activity Research Group, Sport and Health University Research Institute, Department of Physical and Sports Education, School of Sports Science, University of Granada, Spain
| |
Collapse
|
20
|
Agudelo LZ, Ferreira DMS, Dadvar S, Cervenka I, Ketscher L, Izadi M, Zhengye L, Furrer R, Handschin C, Venckunas T, Brazaitis M, Kamandulis S, Lanner JT, Ruas JL. Skeletal muscle PGC-1α1 reroutes kynurenine metabolism to increase energy efficiency and fatigue-resistance. Nat Commun 2019; 10:2767. [PMID: 31235694 PMCID: PMC6591322 DOI: 10.1038/s41467-019-10712-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/22/2019] [Indexed: 12/02/2022] Open
Abstract
The coactivator PGC-1α1 is activated by exercise training in skeletal muscle and promotes fatigue-resistance. In exercised muscle, PGC-1α1 enhances the expression of kynurenine aminotransferases (Kats), which convert kynurenine into kynurenic acid. This reduces kynurenine-associated neurotoxicity and generates glutamate as a byproduct. Here, we show that PGC-1α1 elevates aspartate and glutamate levels and increases the expression of glycolysis and malate-aspartate shuttle (MAS) genes. These interconnected processes improve energy utilization and transfer fuel-derived electrons to mitochondrial respiration. This PGC-1α1-dependent mechanism allows trained muscle to use kynurenine metabolism to increase the bioenergetic efficiency of glucose oxidation. Kat inhibition with carbidopa impairs aspartate biosynthesis, mitochondrial respiration, and reduces exercise performance and muscle force in mice. Our findings show that PGC-1α1 activates the MAS in skeletal muscle, supported by kynurenine catabolism, as part of the adaptations to endurance exercise. This crosstalk between kynurenine metabolism and the MAS may have important physiological and clinical implications. PGC-1α is activated by exercise and promotes resistance to fatigue in muscles. Here, the authors show that PGC-1α activates the malate-aspartate shuttle, and allows muscle to utilise kynurenine, leading to more efficient glucose oxidation and mitochondrial respiration.
Collapse
Affiliation(s)
- Leandro Z Agudelo
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Biomedicum C5, 171 77, Stockholm, Sweden.,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Duarte M S Ferreira
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Biomedicum C5, 171 77, Stockholm, Sweden
| | - Shamim Dadvar
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Biomedicum C5, 171 77, Stockholm, Sweden
| | - Igor Cervenka
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Biomedicum C5, 171 77, Stockholm, Sweden
| | - Lars Ketscher
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Biomedicum C5, 171 77, Stockholm, Sweden
| | - Manizheh Izadi
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Biomedicum C5, 171 77, Stockholm, Sweden
| | - Liu Zhengye
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Biomedicum C5, 171 77, Stockholm, Sweden
| | - Regula Furrer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Tomas Venckunas
- Institute of Sports Science and Innovations, Lithuanian Sports University, Sporto str. 6, 44221, Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sports Science and Innovations, Lithuanian Sports University, Sporto str. 6, 44221, Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sports Science and Innovations, Lithuanian Sports University, Sporto str. 6, 44221, Kaunas, Lithuania
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Biomedicum C5, 171 77, Stockholm, Sweden
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, Biomedicum C5, 171 77, Stockholm, Sweden.
| |
Collapse
|
21
|
Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes 2019; 7:proteomes7020025. [PMID: 31226838 PMCID: PMC6631179 DOI: 10.3390/proteomes7020025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
The mass spectrometric analysis of skeletal muscle proteins has used both peptide-centric and protein-focused approaches. The term 'top-down proteomics' is often used in relation to studying purified proteoforms and their post-translational modifications. Two-dimensional gel electrophoresis, in combination with peptide generation for the identification and characterization of intact proteoforms being present in two-dimensional spots, plays a critical role in specific applications of top-down proteomics. A decisive bioanalytical advantage of gel-based and top-down approaches is the initial bioanalytical focus on intact proteins, which usually enables the swift identification and detailed characterisation of specific proteoforms. In this review, we describe the usage of two-dimensional gel electrophoretic top-down proteomics and related approaches for the systematic analysis of key components of the contractile apparatus, with a special focus on myosin heavy and light chains and their associated regulatory proteins. The detailed biochemical analysis of proteins belonging to the thick and thin skeletal muscle filaments has decisively improved our biochemical understanding of structure-function relationships within the contractile apparatus. Gel-based and top-down proteomics has clearly established a variety of slow and fast isoforms of myosin, troponin and tropomyosin as excellent markers of fibre type specification and dynamic muscle transition processes.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| |
Collapse
|
22
|
Hyperbaric oxygen and aerobic exercise in the long-term treatment of fibromyalgia: A narrative review. Biomed Pharmacother 2018; 109:629-638. [PMID: 30399600 DOI: 10.1016/j.biopha.2018.10.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/13/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is one of the most common clinical presentations in the primary care settings. In the US, Fibromyalgia (FM) affects about 1-3% of adults and commonly occurs in adults between the ages of 40-50 years. FM causes widespread muscular pain and tenderness with hyperalgesia and allodynia and may be associated with other somatic complaints. Hyperbaric oxygen therapy (HBOT) has been utilized and has recently shown promising effects in the management of FM and other chronic pain disorders. In HBOT, the intermittent breathing of 100% oxygen in a pressurized chamber where the pressure is higher than 1 atmosphere absolute (ATA) has been utilized. HBOT exhibits a significant anti-inflammatory effect through reducing production of glial cells and inflammatory mediators which results in pain alleviation in different chronic pain conditions. HBOT can also influence neuroplasticity and affects the mitochondrial mechanisms resulting in functional brain changes. In addition to that, HBOT stimulates nitric oxide (NO) synthesis which helps in alleviating hyperalgesia and NO-dependent release of endogenous opioids which seemed to be the primary HBOT mechanism of antinociception. Moreover, aerobic exercise and meditative movement therapies (MMT) have gained attention for their role in pain alleviation through different anti-inflammatory and antioxidant mechanisms. In this review, we aim to elucidate the different mechanisms of HBOT and aerobic exercise in attenuating pain as adjuvant therapy in the multidisciplinary treatment strategy of chronic pain, and more particularly fibromyalgia.
Collapse
|
23
|
Kruse R, Højlund K. Proteomic study of skeletal muscle in obesity and type 2 diabetes: progress and potential. Expert Rev Proteomics 2018; 15:817-828. [PMID: 30251560 DOI: 10.1080/14789450.2018.1528147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Skeletal muscle is the major site of insulin-stimulated glucose uptake and imparts the beneficial effects of exercise, and hence is an important site of insulin resistance in obesity and type 2 diabetes (T2D). Despite extensive molecular biology-oriented research the molecular mechanisms underlying insulin resistance in skeletal muscle remain to be established. Areas covered: The proteomic capabilities have greatly improved over the last decades. This review summarizes the technical challenges in skeletal muscle proteomics studies as well as the results of quantitative proteomic studies of skeletal muscle in relation to obesity, T2D, and exercise. Expert commentary: Current available proteomic studies contribute to the view that insulin resistance in obesity and T2D is associated with increased glycolysis and reduced mitochondrial oxidative metabolism in skeletal muscle, and that the latter can be improved by exercise. Future proteomics studies should be designed to markedly intensify the identification of abnormalities in metabolic and signaling pathways in skeletal muscle of insulin-resistant individuals to increase the understanding of the pathogenesis of T2D, but more importantly to identify multiple novel targets of treatment of which at least some can be safely targeted by novel drugs to treat and prevent T2D and reduce risk of cardiovascular disease.
Collapse
Affiliation(s)
- Rikke Kruse
- a The Section of Molecular Diabetes and Metabolism, Department of Clinical Research and Department of Molecular Medicine , University of Southern Denmark , Odense , Denmark.,b Steno Diabetes Center Odense , Odense University Hospital , Odense , Denmark
| | - Kurt Højlund
- a The Section of Molecular Diabetes and Metabolism, Department of Clinical Research and Department of Molecular Medicine , University of Southern Denmark , Odense , Denmark.,b Steno Diabetes Center Odense , Odense University Hospital , Odense , Denmark
| |
Collapse
|
24
|
Cho Y, Ross RS. A mini review: Proteomics approaches to understand disused vs. exercised human skeletal muscle. Physiol Genomics 2018; 50:746-757. [PMID: 29958080 DOI: 10.1152/physiolgenomics.00043.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Immobilization, bed rest, or denervation leads to muscle disuse and subsequent skeletal muscle atrophy. Muscle atrophy can also occur as a component of various chronic diseases such as cancer, AIDS, sepsis, diabetes, and chronic heart failure or as a direct result of genetic muscle disorders. In addition to this atrophic loss of muscle mass, metabolic deregulation of muscle also occurs. In contrast, physical exercise plays a beneficial role in counteracting disuse-induced atrophy by increasing muscle mass and strength. Along with this, exercise can also reduce mitochondrial dysfunction and metabolic deregulation. Still, while exercise causes valuable metabolic and functional adaptations in skeletal muscle, the mechanisms and effectors that lead to these changes such as increased mitochondria content or enhanced protein synthesis are not fully understood. Therefore, mechanistic insights may ultimately provide novel ways to treat disuse induced atrophy and metabolic deregulation. Mass spectrometry (MS)-based proteomics offers enormous promise for investigating the molecular mechanisms underlying disuse and exercise-induced changes in skeletal muscle. This review will focus on initial findings uncovered by using proteomics approaches with human skeletal muscle specimens and discuss their potential for the future study.
Collapse
Affiliation(s)
- Yoshitake Cho
- Division of Cardiology, Department of Medicine, University of California San Diego , La Jolla, California
| | - Robert S Ross
- Division of Cardiology, Department of Medicine, University of California San Diego , La Jolla, California.,Cardiology Section, Department of Medicine, Veterans Administration Healthcare , San Diego, California
| |
Collapse
|
25
|
Maunder E, Plews DJ, Kilding AE. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front Physiol 2018; 9:599. [PMID: 29875697 PMCID: PMC5974542 DOI: 10.3389/fphys.2018.00599] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Using a short-duration step protocol and continuous indirect calorimetry, whole-body rates of fat and carbohydrate oxidation can be estimated across a range of exercise workloads, along with the individual maximal rate of fat oxidation (MFO) and the exercise intensity at which MFO occurs (Fatmax). These variables appear to have implications both in sport and health contexts. After discussion of the key determinants of MFO and Fatmax that must be considered during laboratory measurement, the present review sought to synthesize existing data in order to contextualize individually measured fat oxidation values. Data collected in homogenous cohorts on cycle ergometers after an overnight fast was synthesized to produce normative values in given subject populations. These normative values might be used to contextualize individual measurements and define research cohorts according their capacity for fat oxidation during exercise. Pertinent directions for future research were identified.
Collapse
Affiliation(s)
- Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | | | | |
Collapse
|
26
|
Hostrup M, Onslev J, Jacobson GA, Wilson R, Bangsbo J. Chronic β 2 -adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men. J Physiol 2017; 596:231-252. [PMID: 28983994 DOI: 10.1113/jp274970] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS While several studies have investigated the effects of exercise training in human skeletal muscle and the chronic effect of β2 -agonist treatment in rodent muscle, their effects on muscle proteome signature with related functional measures in humans are still incompletely understood. Herein we show that daily β2 -agonist treatment attenuates training-induced enhancements in exercise performance and maximal oxygen consumption, and alters muscle proteome signature and phenotype in trained young men. Daily β2 -agonist treatment abolished several of the training-induced enhancements in muscle oxidative capacity and caused a repression of muscle metabolic pathways; furthermore, β2 -agonist treatment induced a slow-to-fast twitch muscle phenotype transition. The present study indicates that chronic β2 -agonist treatment confounds the positive effect of high intensity training on exercise performance and oxidative capacity, which is of interest for the large proportion of persons using inhaled β2 -agonists on a daily basis, including athletes. ABSTRACT Although the effects of training have been studied for decades, data on muscle proteome signature remodelling induced by high intensity training in relation to functional changes in humans remains incomplete. Likewise, β2 -agonists are frequently used to counteract exercise-induced bronchoconstriction, but the effects β2 -agonist treatment on muscle remodelling and adaptations to training are unknown. In a placebo-controlled parallel study, we randomly assigned 21 trained men to 4 weeks of high intensity training with (HIT+β2 A) or without (HIT) daily inhalation of β2 -agonist (terbutaline, 4 mg dose-1 ). Of 486 proteins identified by mass-spectrometry proteomics of muscle biopsies sampled before and after the intervention, 32 and 85 were changing (false discovery rate (FDR) ≤5%) with the intervention in HIT and HIT+β2 A, respectively. Proteome signature changes were different in HIT and HIT+β2 A (P = 0.005), wherein β2 -agonist caused a repression of 25 proteins in HIT+β2 A compared to HIT, and an upregulation of 7 proteins compared to HIT. β2 -Agonist repressed or even downregulated training-induced enrichment of pathways related to oxidative phosphorylation and glycogen metabolism, but upregulated pathways related to histone trimethylation and the nucleosome. Muscle contractile phenotype changed differently in HIT and HIT+β2 A (P ≤ 0.001), with a fast-to-slow twitch transition in HIT and a slow-to-fast twitch transition in HIT+β2 A. β2 -Agonist attenuated training-induced enhancements in maximal oxygen consumption (P ≤ 0.01) and exercise performance (6.1 vs. 11.6%, P ≤ 0.05) in HIT+β2 A compared to HIT. These findings indicate that daily β2 -agonist treatment attenuates the beneficial effects of high intensity training on exercise performance and oxidative capacity, and causes remodelling of muscle proteome signature towards a fast-twitch phenotype.
Collapse
Affiliation(s)
- Morten Hostrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Johan Onslev
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Glenn A Jacobson
- Division of Pharmacy, School of Medicine, University of Tasmania, Hobart, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Srisawat K, Shepherd SO, Lisboa PJ, Burniston JG. A Systematic Review and Meta-Analysis of Proteomics Literature on the Response of Human Skeletal Muscle to Obesity/Type 2 Diabetes Mellitus (T2DM) Versus Exercise Training. Proteomes 2017; 5:proteomes5040030. [PMID: 29137117 PMCID: PMC5748565 DOI: 10.3390/proteomes5040030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022] Open
Abstract
We performed a systematic review and meta-analysis of proteomics literature that reports human skeletal muscle responses in the context of either pathological decline associated with obesity/T2DM and physiological adaptations to exercise training. Literature was collected from PubMed and DOAJ databases following PRISMA guidelines using the search terms ‘proteom*’, and ‘skeletal muscle’ combined with either ‘obesity, insulin resistance, diabetes, impaired glucose tolerance’ or ‘exercise, training’. Eleven studies were included in the systematic review, and meta-analysis was performed on a sub-set (four studies) of the reviewed literature that reported the necessary primary data. The majority of proteins (n = 73) more abundant in the muscle of obese/T2DM individuals were unique to this group and not reported to be responsive to exercise training. The main response of skeletal muscle to exercise training was a greater abundance of proteins of the mitochondrial electron transport chain, tricarboxylic acid cycle and mitochondrial respiratory chain complex I assembly. In total, five proteins were less abundant in muscle of obese/T2DM individuals and were also reported to be more abundant in the muscle of endurance-trained individuals, suggesting one of the major mechanisms of exercise-induced protection against the deleterious effects of obesity/T2DM occurs at complex I of the electron transport chain.
Collapse
Affiliation(s)
- Kanchana Srisawat
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
- Bureau of Non-Communicable Diseases, Department of Diseases Control, Ministry of Public Health, Nonthaburi 11000, Thailand.
| | - Sam O Shepherd
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | - Paulo J Lisboa
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | - Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
28
|
Abstract
The skeletal muscle proteome consists of a large number of diverse protein species with a broad and dynamic concentration range. Since mature skeletal muscles are characterized by a specific combination of contractile cells with differing physiological and biochemical properties, it is essential to determine specific differences in the protein composition of fast, slow, and hybrid fibers. Fluorescence two-dimensional gel electrophoresis (DIGE) is a powerful comparative tool to analyze fiber type-specific differences between fast and slow muscles. In this chapter, the application of the DIGE method for the comparative analysis of different subtypes of skeletal muscles is outlined in detail. A standardized proteomic workflow is described, involving sample preparation, protein extraction, differential fluorescence labeling using a 3-dye system, first-dimension isoelectric focusing, second-dimension slab gel electrophoresis, DIGE image analysis, protein digestion, and mass spectrometry.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
29
|
Massart J, Sjögren RJO, Lundell LS, Mudry JM, Franck N, O'Gorman DJ, Egan B, Zierath JR, Krook A. Altered miR-29 Expression in Type 2 Diabetes Influences Glucose and Lipid Metabolism in Skeletal Muscle. Diabetes 2017; 66:1807-1818. [PMID: 28404597 DOI: 10.2337/db17-0141] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/27/2017] [Indexed: 11/13/2022]
Abstract
MicroRNAs have emerged as important regulators of glucose and lipid metabolism in several tissues; however, their role in skeletal muscle remains poorly characterized. We determined the effects of the miR-29 family on glucose metabolism, lipid metabolism, and insulin responsiveness in skeletal muscle. We provide evidence that miR-29a and miR-29c are increased in skeletal muscle from patients with type 2 diabetes and are decreased following endurance training in healthy young men and in rats. In primary human skeletal muscle cells, inhibition and overexpression strategies demonstrate that miR-29a and miR-29c regulate glucose uptake and insulin-stimulated glucose metabolism. We identified that miR-29 overexpression attenuates insulin signaling and expression of insulin receptor substrate 1 and phosphoinositide 3-kinase. Moreover, miR-29 overexpression reduces hexokinase 2 expression and activity. Conversely, overexpression of miR-29 by electroporation of mouse tibialis anterior muscle decreased glucose uptake and glycogen content in vivo, concomitant with decreased abundance of GLUT4. We also provide evidence that fatty acid oxidation is negatively regulated by miR-29 overexpression, potentially through the regulation of peroxisome proliferator-activated receptor γ coactivator-1α expression. Collectively, we reveal that miR-29 acts as an important regulator of insulin-stimulated glucose metabolism and lipid oxidation, with relevance to human physiology and type 2 diabetes.
Collapse
Affiliation(s)
- Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Rasmus J O Sjögren
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Leonidas S Lundell
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan M Mudry
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Niclas Franck
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Donal J O'Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- 3U Diabetes Consortium, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Brendan Egan
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Lakhdar R, Drost EM, MacNee W, Bastos R, Rabinovich RA. 2D-DIGE proteomic analysis of vastus lateralis from COPD patients with low and normal fat free mass index and healthy controls. Respir Res 2017; 18:81. [PMID: 28468631 PMCID: PMC5415759 DOI: 10.1186/s12931-017-0525-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is associated with several extra-pulmonary effects of which skeletal muscle wasting is one of the most common and contributes to reduced quality of life, increased morbidity and mortality. The molecular mechanisms leading to muscle wasting are not fully understood. Proteomic analysis of human skeletal muscle is a useful approach for gaining insight into the molecular basis for normal and pathophysiological conditions. METHODS To identify proteins involved in the process of muscle wasting in COPD, we searched differentially expressed proteins in the vastus lateralis of COPD patients with low fat free mass index (FFMI), as a surrogate of muscle mass (COPDL, n = 10) (FEV1 33 ± 4.3% predicted, FFMI 15 ± 0.2 Kg.m-2), in comparison to patients with COPD and normal FFMI (COPDN, n = 8) and a group of age, smoking history, and sex matched healthy controls (C, n = 9) using two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) technology, combined with mass spectrometry (MS). The effect of silencing DOT1L protein expression on markers of cell arrest was analyzed in skeletal muscle satellite cells (HSkMSCs) in vitro and assessed by qPCR and Western blotting. RESULTS A subset of 7 proteins was differentially expressed in COPDL compared to both COPDN and C. We found an increased expression of proteins associated with muscle homeostasis and protection against oxidative stress, and a decreased expression of structural muscle proteins and proteins involved in myofibrillogenesis, cell proliferation, cell cycle arrest and energy production. Among these was a decreased expression of the histone methyltransferase DOT1L. In addition, silencing of the DOT1L gene in human skeletal muscle satellite cells in vitro was significantly related to up regulation of p21 WAF1/Cip1/CDKN1A, a marker of cell arrest and ageing. CONCLUSIONS 2D-DIGE coupled with MS identified differences in the expression of several proteins in the wasted vastus lateralis that are relevant to the disease process. Down regulation of DOT1L in the vastus lateralis of COPDL patients may mediate the muscle wasting process through up regulation of markers of cell arrest and senescence.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Ellen M. Drost
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - William MacNee
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Ricardo Bastos
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Roberto A. Rabinovich
- ELEGI Colt Laboratory, Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| |
Collapse
|
31
|
Robinson MM, Dasari S, Konopka AR, Johnson ML, Manjunatha S, Esponda RR, Carter RE, Lanza IR, Nair KS. Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. Cell Metab 2017; 25:581-592. [PMID: 28273480 PMCID: PMC5423095 DOI: 10.1016/j.cmet.2017.02.009] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/07/2016] [Accepted: 02/16/2017] [Indexed: 01/07/2023]
Abstract
The molecular transducers of benefits from different exercise modalities remain incompletely defined. Here we report that 12 weeks of high-intensity aerobic interval (HIIT), resistance (RT), and combined exercise training enhanced insulin sensitivity and lean mass, but only HIIT and combined training improved aerobic capacity and skeletal muscle mitochondrial respiration. HIIT revealed a more robust increase in gene transcripts than other exercise modalities, particularly in older adults, although little overlap with corresponding individual protein abundance was noted. HIIT reversed many age-related differences in the proteome, particularly of mitochondrial proteins in concert with increased mitochondrial protein synthesis. Both RT and HIIT enhanced proteins involved in translational machinery irrespective of age. Only small changes of methylation of DNA promoter regions were observed. We provide evidence for predominant exercise regulation at the translational level, enhancing translational capacity and proteome abundance to explain phenotypic gains in muscle mitochondrial function and hypertrophy in all ages.
Collapse
Affiliation(s)
- Matthew M Robinson
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Surendra Dasari
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Adam R Konopka
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Johnson
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - S Manjunatha
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Raul Ruiz Esponda
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - Rickey E Carter
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ian R Lanza
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA
| | - K Sreekumaran Nair
- Division of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
32
|
Gonzalez-Freire M, Semba RD, Ubaida-Mohien C, Fabbri E, Scalzo P, Højlund K, Dufresne C, Lyashkov A, Ferrucci L. The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature. J Cachexia Sarcopenia Muscle 2017; 8:5-18. [PMID: 27897395 PMCID: PMC5326819 DOI: 10.1002/jcsm.12121] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 04/05/2016] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of 'sarcopenia', a condition that impairs mobility, challenges autonomy, and is a risk factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review of the literature and analysed publically available protein databases. A systematic search of peer-reviewed studies was performed using PubMed. Search terms included 'human', 'skeletal muscle', 'proteome', 'proteomic(s)', and 'mass spectrometry', 'liquid chromatography-mass spectrometry (LC-MS/MS)'. A catalogue of 5431 non-redundant muscle proteins identified by mass spectrometry-based proteomics from 38 peer-reviewed scientific publications from 2002 to November 2015 was created. We also developed a nosology system for the classification of muscle proteins based on localization and function. Such inventory of proteins should serve as a useful background reference for future research on changes in muscle proteome assessed by quantitative mass spectrometry-based proteomic approaches that occur with ageing and diseases. This classification and compilation of the human skeletal muscle proteome can be used for the identification and quantification of proteins in skeletal muscle to discover new mechanisms for sarcopenia and specific muscle diseases that can be targeted for the prevention and treatment.
Collapse
Affiliation(s)
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Elisa Fabbri
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Paul Scalzo
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Alexey Lyashkov
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
33
|
Sollanek KJ, Burniston JG, Kavazis AN, Morton AB, Wiggs MP, Ahn B, Smuder AJ, Powers SK. Global Proteome Changes in the Rat Diaphragm Induced by Endurance Exercise Training. PLoS One 2017; 12:e0171007. [PMID: 28135290 PMCID: PMC5279855 DOI: 10.1371/journal.pone.0171007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/13/2017] [Indexed: 01/15/2023] Open
Abstract
Mechanical ventilation (MV) is a life-saving intervention for many critically ill patients. Unfortunately, prolonged MV results in the rapid development of diaphragmatic atrophy and weakness. Importantly, endurance exercise training results in a diaphragmatic phenotype that is protected against ventilator-induced diaphragmatic atrophy and weakness. The mechanisms responsible for this exercise-induced protection against ventilator-induced diaphragmatic atrophy remain unknown. Therefore, to investigate exercise-induced changes in diaphragm muscle proteins, we compared the diaphragmatic proteome from sedentary and exercise-trained rats. Specifically, using label-free liquid chromatography-mass spectrometry, we performed a proteomics analysis of both soluble proteins and mitochondrial proteins isolated from diaphragm muscle. The total number of diaphragm proteins profiled in the soluble protein fraction and mitochondrial protein fraction were 813 and 732, respectively. Endurance exercise training significantly (P<0.05, FDR <10%) altered the abundance of 70 proteins in the soluble diaphragm proteome and 25 proteins of the mitochondrial proteome. In particular, key cytoprotective proteins that increased in relative abundance following exercise training included mitochondrial fission process 1 (Mtfp1; MTP18), 3-mercaptopyruvate sulfurtransferase (3MPST), microsomal glutathione S-transferase 3 (Mgst3; GST-III), and heat shock protein 70 kDa protein 1A/1B (HSP70). While these proteins are known to be cytoprotective in several cell types, the cyto-protective roles of these proteins have yet to be fully elucidated in diaphragm muscle fibers. Based upon these important findings, future experiments can now determine which of these diaphragmatic proteins are sufficient and/or required to promote exercise-induced protection against inactivity-induced muscle atrophy.
Collapse
Affiliation(s)
- Kurt J. Sollanek
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Jatin G. Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Andreas N. Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States of America
| | - Aaron B. Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| | - Michael P. Wiggs
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| | - Scott K. Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
34
|
Padrão AI, Ferreira R, Amado F, Vitorino R, Duarte JA. Uncovering the exercise-related proteome signature in skeletal muscle. Proteomics 2016; 16:816-30. [PMID: 26632760 DOI: 10.1002/pmic.201500382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 01/01/2023]
Abstract
Exercise training has been recommended as a nonpharmacological strategy for the prevention and attenuation of skeletal muscle atrophy in distinct pathophysiological conditions. Despite the well-established phenotypic alterations, the molecular mechanisms underlying exercise-induced skeletal muscle remodeling are poorly characterized. Proteomics based on mass spectrometry have been successfully applied for the characterization of skeletal muscle proteome, representing a pivotal approach for the wide characterization of the molecular networks that lead to skeletal muscle remodeling. Nevertheless, few studies were performed to characterize the exercise-induced proteome remodeling of skeletal muscle, with only six research papers focused on the cross-talk between exercise and pathophysiological conditions. In order to add new insights on the impact of distinct exercise programs on skeletal muscle proteome, molecular network analysis was performed with bioinformatics tools. This analysis highlighted an exercise-related proteome signature characterized by the up-regulation of the capacity for ATP generation, oxygen delivery, antioxidant capacity and regulation of mitochondrial protein synthesis. Chronic endurance training up-regulates the tricarboxylic acid cycle and oxidative phosphorylation system, whereas the release of calcium ion into cytosol and amino acid metabolism are the biological processes up-regulated by a single bout of exercise. Other issues as exercise intensity, load, mode and regimen as well as muscle type also influence the exercise-induced proteome signature. The comprehensive analysis of the molecular networks modulated by exercise training in health and disease, taking in consideration all these variables, might not only support the therapeutic effect of exercise but also highlight novel targets for the development of enhanced pharmacological strategies.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CIAFEL, Faculty of Sports, University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Francisco Amado
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences and Institute for Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
35
|
Murphy S, Dowling P, Ohlendieck K. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis. Proteomes 2016; 4:proteomes4030027. [PMID: 28248237 PMCID: PMC5217355 DOI: 10.3390/proteomes4030027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022] Open
Abstract
The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry1975, 250, 4007–4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
36
|
Petriz BA, Gomes CPC, Almeida JA, de Oliveira GP, Ribeiro FM, Pereira RW, Franco OL. The Effects of Acute and Chronic Exercise on Skeletal Muscle Proteome. J Cell Physiol 2016; 232:257-269. [PMID: 27381298 DOI: 10.1002/jcp.25477] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 01/16/2023]
Abstract
Skeletal muscle plasticity and its adaptation to exercise is a topic that is widely discussed and investigated due to its primary role in the field of exercise performance and health promotion. Repetitive muscle contraction through exercise stimuli leads to improved cardiovascular output and the regulation of endothelial dysfunction and metabolic disorders such as insulin resistance and obesity. Considerable improvements in proteomic tools and data analysis have broth some new perspectives in the study of the molecular mechanisms underlying skeletal muscle adaptation in response to physical activity. In this sense, this review updates the main relevant studies concerning muscle proteome adaptation to acute and chronic exercise, from aerobic to resistance training, as well as the proteomic profile of natural inbred high running capacity animal models. Also, some promising prospects in the muscle secretome field are presented, in order to better understand the role of physical activity in the release of extracellular microvesicles and myokines activity. Thus, the present review aims to update the fast-growing exercise-proteomic scenario, leading to some new perspectives about the molecular events under skeletal muscle plasticity in response to physical activity. J. Cell. Physiol. 232: 257-269, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Clarissa P C Gomes
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jeeser A Almeida
- Curso de Educação Física, Universidade Federal do Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brasil.,S-Inova Biotech, Universidade Cat ólica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brasil
| | - Getulio P de Oliveira
- Programa de Pós-Graduação em Patologia Molecular-Universidade de Brasília, DF, Brasil
| | - Filipe M Ribeiro
- Centro de Analises Proteomicas e Bioquímicas, Programa de P os-Graduacão em Ciências Genômicas e Biotecnologia, Universidade Cat ólica de Brasília, Brasília/DF, Brasil
| | - Rinaldo W Pereira
- Centro de Analises Proteomicas e Bioquímicas, Programa de P os-Graduacão em Ciências Genômicas e Biotecnologia, Universidade Cat ólica de Brasília, Brasília/DF, Brasil
| | - Octavio L Franco
- S-Inova Biotech, Universidade Cat ólica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brasil.,Centro de Analises Proteomicas e Bioquímicas, Programa de P os-Graduacão em Ciências Genômicas e Biotecnologia, Universidade Cat ólica de Brasília, Brasília/DF, Brasil
| |
Collapse
|
37
|
Munters LA, Loell I, Ossipova E, Raouf J, Dastmalchi M, Lindroos E, Chen YW, Esbjörnsson M, Korotkova M, Alexanderson H, Nagaraju K, Crofford LJ, Jakobsson PJ, Lundberg IE. Endurance Exercise Improves Molecular Pathways of Aerobic Metabolism in Patients With Myositis. Arthritis Rheumatol 2016; 68:1738-50. [DOI: 10.1002/art.39624] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 01/26/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Li Alemo Munters
- Vanderbilt University, Nashville, Tennessee, and Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Ingela Loell
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Elena Ossipova
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Joan Raouf
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Maryam Dastmalchi
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Eva Lindroos
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Yi-Wen Chen
- George Washington University and Children's National Medical Center; Washington DC
| | - Mona Esbjörnsson
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Marina Korotkova
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Helene Alexanderson
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Kanneboyina Nagaraju
- George Washington University and Children's National Medical Center; Washington DC
| | | | - Per-Johan Jakobsson
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| | - Ingrid E. Lundberg
- Karolinska Institutet and Karolinska University Hospital; Solna Stockholm Sweden
| |
Collapse
|
38
|
Grabež V, Kathri M, Phung V, Moe KM, Slinde E, Skaugen M, Saarem K, Egelandsdal B. Protein expression and oxygen consumption rate of early postmortem mitochondria relate to meat tenderness. J Anim Sci 2016; 93:1967-79. [PMID: 26020220 DOI: 10.2527/jas.2014-8575] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Oxygen consumption rate (OCR) of muscle fibers from bovine semimembranosus muscle of 41 animals was investigated 3 to 4 h and 3 wk postmortem. Significant relations (P < 0.05) were found between OCR measurements and Warner-Bratzler shear force measurement. Muscles with high mitochondrial OCR after 3 to 4 h and low nonmitochondrial oxygen consumption gave more tender meat. Tender (22.92 ± 2.2 N/cm2) and tough (72.98 ± 7.2 N/cm2) meat samples (4 samples each), separated based on their OCR measurements, were selected for proteomic studies using mitochondria isolated approximately 2.5 h postmortem. Twenty-six differently expressed proteins (P < 0.05) were identified in tender meat and 19 in tough meat. In tender meat, the more prevalent antioxidant and chaperon enzymes may reduce reactive oxygen species and prolong oxygen removal by the electron transport system (ETS). Glycolytic, Krebs cycle, and ETS enzymes were also more abundant in tender meat
Collapse
|
39
|
Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology. Proteomes 2016; 4:proteomes4010006. [PMID: 28248217 PMCID: PMC5217365 DOI: 10.3390/proteomes4010006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC), MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.
Collapse
|
40
|
Dalziel AC, Martin N, Laporte M, Guderley H, Bernatchez L. Adaptation and acclimation of aerobic exercise physiology in Lake Whitefish ecotypes (Coregonus clupeaformis). Evolution 2015; 69:2167-86. [PMID: 26177840 DOI: 10.1111/evo.12727] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022]
Abstract
The physiological mechanisms underlying local adaptation in natural populations of animals, and whether the same mechanisms contribute to adaptation and acclimation, are largely unknown. Therefore, we tested for evolutionary divergence in aerobic exercise physiology in laboratory bred, size-matched crosses of ancestral, benthic, normal Lake Whitefish (Coregonus clupeaformis) and derived, limnetic, more actively swimming "dwarf" ecotypes. We acclimated fish to constant swimming (emulating limnetic foraging) and control conditions (emulating normal activity levels) to simultaneously study phenotypic plasticity. We found extensive divergence between ecotypes: dwarf fish generally had constitutively higher values of traits related to oxygen transport (ventricle size) and use by skeletal muscle (percent oxidative muscle, mitochondrial content), and also evolved differential plasticity of mitochondrial function (Complex I activity and flux through Complexes I-IV and IV). The effects of swim training were less pronounced than differences among ecotypes and the traits which had a significant training effect (ventricle protein content, ventricle malate dehydrogenase activity, and muscle Complex V activity) did not differ among ecotypes. Only one trait, ventricle mass, varied in a similar manner with acclimation and adaptation and followed a pattern consistent with genetic accommodation. Overall, the physiological and biochemical mechanisms underlying acclimation and adaptation to swimming activity in Lake Whitefish differ.
Collapse
Affiliation(s)
- Anne C Dalziel
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6.
| | - Nicolas Martin
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6.,School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Martin Laporte
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6
| | - Helga Guderley
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6.,Department of Biology, Life Science Centre, Dalhousie University, 1355 Oxford Street PO BOX 15000, Halifax, NS, Canada, B3H 4R2
| | - Louis Bernatchez
- Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6
| |
Collapse
|
41
|
Abstract
The health-promoting benefits of exercise have been recognized for centuries, yet the molecular and cellular mechanisms for the acute and chronic adaptive response to a variety of physical activities remain incompletely described. This Perspective will take a forward view to highlight emerging questions and frontiers in the ever-changing landscape of exercise biology. The biology of exercise is complex, highly variable, and involves a myriad of adaptive responses in multiple organ systems. Given the multitude of changes that occur in each organ during exercise, future researchers will need to integrate tissue-specific responses with large-scale omics to resolve the integrated biology of exercise. The ultimate goal will be to understand how these system-wide, tissue-specific exercise-induced changes lead to measurable physiological outcomes at the whole-body level to improve health and well-being.
Collapse
|
42
|
Schild M, Ruhs A, Beiter T, Zügel M, Hudemann J, Reimer A, Krumholz-Wagner I, Wagner C, Keller J, Eder K, Krüger K, Krüger M, Braun T, Nieß A, Steinacker J, Mooren FC. Basal and exercise induced label-free quantitative protein profiling of m. vastus lateralis in trained and untrained individuals. J Proteomics 2015; 122:119-32. [PMID: 25857276 DOI: 10.1016/j.jprot.2015.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/13/2015] [Accepted: 03/28/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED Morphological and metabolic adaptations of the human skeletal muscle to exercise are crucial to improve performance and prevent chronic diseases and metabolic disorders. In this study we investigated human skeletal muscle protein composition in endurance trained (ET) versus untrained individuals (UT) and its modulation by an acute bout of endurance exercise. Participants were recruited based on their VO2max and subjected to a bicycle exercise test. M. vastus lateralis biopsies were taken before and three hours after exercise. Muscle lysates were analyzed using off-gel LC-MS/MS. Relative protein abundances were compared between ET and UT at rest and after exercise. Comparing UT and ET, we identified 92 significantly changed proteins under resting conditions. Specifically, fiber-type-specific and proteins of the oxidative phosphorylation and tricarboxylic acid cycle were increased in ET. In response to acute exercise, 71 proteins in ET and 44 in UT were altered. Here, a decrease of proteins involved in energy metabolism accompanied with alterations of heat shock and proteasomal proteins could be observed. In summary, long-term endurance training increased the basal level of structural and mitochondrial proteins in skeletal muscle. In contrast, acute exercise resulted in a depletion of proteins related to substrate utilization, especially in trained athletes. BIOLOGICAL SIGNIFICANCE The investigation of the human skeletal muscle proteome in response to exercise may provide novel insights into the process of muscular plasticity. It is of importance in the development of exercise-based strategies in the prevention and therapy of many chronic inflammatory and degenerative diseases which are often accompanied by muscular deconditioning. Up to date, proteomic investigations of the human muscle proteome in adaptation to exercise are mainly focused on untrained individuals and often restricted to animal studies. In the present study we compare the protein composition in endurance trained athletes and untrained individuals in the resting muscle and its modulation in response to acute exercise. To our knowledge, we present the first comprehensive analysis of skeletal muscle proteome alterations in response to acute and long-term exercise intervention.
Collapse
Affiliation(s)
- Marius Schild
- Department of Sports Medicine, Justus-Liebig University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Aaron Ruhs
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Thomas Beiter
- Department of Sports Medicine, University Hospital of Tuebingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
| | - Martina Zügel
- Division of Sport and Rehabilitation Medicine, University Hospital Ulm, Parkstr. 11, 89075 Ulm, Germany
| | - Jens Hudemann
- Department of Sports Medicine, University Hospital of Tuebingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
| | - Anna Reimer
- Department of Sports Medicine, Justus-Liebig University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Ilke Krumholz-Wagner
- Department of Sports Medicine, Justus-Liebig University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Carola Wagner
- Division of Sport and Rehabilitation Medicine, University Hospital Ulm, Parkstr. 11, 89075 Ulm, Germany
| | - Janine Keller
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Karsten Krüger
- Department of Sports Medicine, Justus-Liebig University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Marcus Krüger
- CECAD Research Center, Institute of Genetics, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Parkstr. 1, 61231 Bad Nauheim, Germany
| | - Andreas Nieß
- Department of Sports Medicine, University Hospital of Tuebingen, Otfried-Müller-Str. 10, 72076 Tuebingen, Germany
| | - Jürgen Steinacker
- Division of Sport and Rehabilitation Medicine, University Hospital Ulm, Parkstr. 11, 89075 Ulm, Germany
| | - Frank C Mooren
- Department of Sports Medicine, Justus-Liebig University Giessen, Kugelberg 62, 35394 Giessen, Germany.
| |
Collapse
|
43
|
Peinado JR, Diaz-Ruiz A, Frühbeck G, Malagon MM. Mitochondria in metabolic disease: getting clues from proteomic studies. Proteomics 2014; 14:452-66. [PMID: 24339000 DOI: 10.1002/pmic.201300376] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/08/2013] [Accepted: 11/21/2013] [Indexed: 01/11/2023]
Abstract
Mitochondria play a key role as major regulators of cellular energy homeostasis, but in the context of mitochondrial dysfunction, mitochondria may generate reactive oxidative species and induce cellular apoptosis. Indeed, altered mitochondrial status has been linked to the pathogenesis of several metabolic disorders and specially disorders related to insulin resistance, such as obesity, type 2 diabetes, and other comorbidities comprising the metabolic syndrome. In the present review, we summarize information from various mitochondrial proteomic studies of insulin-sensitive tissues under different metabolic states. To that end, we first focus our attention on the pancreas, as mitochondrial malfunction has been shown to contribute to beta cell failure and impaired insulin release. Furthermore, proteomic studies of mitochondria obtained from liver, muscle, and adipose tissue are summarized, as these tissues constitute the primary insulin target metabolic tissues. Since recent advances in proteomic techniques have exposed the importance of PTMs in the development of metabolic disease, we also present information on specific PTMs that may directly affect mitochondria during the pathogenesis of metabolic disease. Specifically, mitochondrial protein acetylation, phosphorylation, and other PTMs related to oxidative damage, such as nitrosylation and carbonylation, are discussed.
Collapse
Affiliation(s)
- Juan R Peinado
- Department of Medical Sciences, Faculty of Medicine, Ciudad Real, Spain
| | | | | | | |
Collapse
|
44
|
Burniston JG, Kenyani J, Gray D, Guadagnin E, Jarman IH, Cobley JN, Cuthbertson DJ, Chen YW, Wastling JM, Lisboa PJ, Koch LG, Britton SL. Conditional independence mapping of DIGE data reveals PDIA3 protein species as key nodes associated with muscle aerobic capacity. J Proteomics 2014; 106:230-45. [PMID: 24769234 PMCID: PMC4150023 DOI: 10.1016/j.jprot.2014.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 12/11/2022]
Abstract
Profiling of protein species is important because gene polymorphisms, splice variations and post-translational modifications may combine and give rise to multiple protein species that have different effects on cellular function. Two-dimensional gel electrophoresis is one of the most robust methods for differential analysis of protein species, but bioinformatic interrogation is challenging because the consequences of changes in the abundance of individual protein species on cell function are unknown and cannot be predicted. We conducted DIGE of soleus muscle from male and female rats artificially selected as either high- or low-capacity runners (HCR and LCR, respectively). In total 696 protein species were resolved and LC–MS/MS identified proteins in 337 spots. Forty protein species were differentially (P < 0.05, FDR < 10%) expressed between HCR and LCR and conditional independence mapping found distinct networks within these data, which brought insight beyond that achieved by functional annotation. Protein disulphide isomerase A3 emerged as a key node segregating with differences in aerobic capacity and unsupervised bibliometric analysis highlighted further links to signal transducer and activator of transcription 3, which were confirmed by western blotting. Thus, conditional independence mapping is a useful technique for interrogating DIGE data that is capable of highlighting latent features.
Collapse
Affiliation(s)
- Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | - Jenna Kenyani
- Department of Cellular and Molecular Physiology, University of Liverpool, Nuffield Building, Liverpool L69 3BX, UK
| | - Donna Gray
- Department of Obesity and Endocrinology, Clinical Sciences Center, University Hospital Anitree, Liverpool L9 7AL, UK
| | - Eleonora Guadagnin
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Ian H Jarman
- Department of Mathematics and Statistics, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - James N Cobley
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Daniel J Cuthbertson
- Department of Obesity and Endocrinology, Clinical Sciences Center, University Hospital Anitree, Liverpool L9 7AL, UK
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA; Department of Integrative Systems Biology, George Washington University, Washington DC, USA
| | - Jonathan M Wastling
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, L3 5RF, UK
| | - Paulo J Lisboa
- Department of Mathematics and Statistics, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Lauren G Koch
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Steven L Britton
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
45
|
Ferguson DP, Dangott LJ, Schmitt EE, Vellers HL, Lightfoot JT. Differential skeletal muscle proteome of high- and low-active mice. J Appl Physiol (1985) 2014; 116:1057-67. [PMID: 24505100 DOI: 10.1152/japplphysiol.00911.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physical inactivity contributes to cardiovascular disease, type II diabetes, obesity, and some types of cancer. While the literature is clear that there is genetic regulation of physical activity with existing gene knockout data suggesting that skeletal muscle mechanisms contribute to the regulation of activity, actual differences in end-protein expression between high- and low-active mice have not been investigated. This study used two-dimensional differential gel electrophoresis coupled with mass spectrometry to evaluate the proteomic differences between high-active (C57L/J) and low-active (C3H/HeJ) mice in the soleus and extensor digitorum longus (EDL). Furthermore, vivo-morpholinos were used to transiently knockdown candidate proteins to confirm their involvement in physical activity regulation. Proteins with higher expression patterns generally fell into the calcium-regulating and Krebs (TCA) cycle pathways in the high-active mice (e.g., annexin A6, P = 0.0031; calsequestrin 1; P = 0.000025), while the overexpressed proteins in the low-active mice generally fell into cytoskeletal structure- and electron transport chain-related pathways (e.g., ATPase, P = 0.031; NADH dehydrogenase, P = 0.027). Transient knockdown of annexin A6 and calsequestrin 1 protein of high-active mice with vivo-morpholinos resulted in decreased physical activity levels (P = 0.001). These data suggest that high- and low-active mice have unique protein expression patterns and that each pattern contributes to the peripheral capability to be either high- or low-active, suggesting that different specific mechanisms regulate activity leading to the high- or low-activity status of the animal.
Collapse
Affiliation(s)
- David P Ferguson
- Children's Nutritional Research Center, Baylor College of Medicine, Houston, Texas
| | | | | | | | | |
Collapse
|
46
|
Holland A, Ohlendieck K. Proteomic profiling of the contractile apparatus from skeletal muscle. Expert Rev Proteomics 2014; 10:239-57. [DOI: 10.1586/epr.13.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Jiang LQ, Franck N, Egan B, Sjögren RJO, Katayama M, Duque-Guimaraes D, Arner P, Zierath JR, Krook A. Autocrine role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am J Physiol Endocrinol Metab 2013; 305:E1359-66. [PMID: 24105413 DOI: 10.1152/ajpendo.00236.2013] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Low-grade inflammation associated with type 2 diabetes (T2DM) is postulated to exacerbate insulin resistance. We report that serum levels, as well as IL-13 secreted from cultured skeletal muscle, are reduced in T2DM vs. normal glucose-tolerant (NGT) subjects. IL-13 exposure increases skeletal muscle glucose uptake, oxidation, and glycogen synthesis via an Akt-dependent mechanism. Expression of microRNA let-7a and let-7d, which are direct translational repressors of the IL-13 gene, was increased in skeletal muscle from T2DM patients. Overexpression of let-7a and let-7d in cultured myotubes reduced IL-13 secretion. Furthermore, basal glycogen synthesis was reduced in cultured myotubes exposed to an IL-13-neutralizing antibody. Thus, IL-13 is synthesized and released by skeletal muscle through a mechanism involving let-7, and this effect is attenuated in skeletal muscle from insulin-resistant T2DM patients. In conclusion, IL-13 plays an autocrine role in skeletal muscle to increase glucose uptake and metabolism, suggesting a role in glucose homeostasis in metabolic disease.
Collapse
Affiliation(s)
- Lake Q Jiang
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Egan B, O’Connor PL, Zierath JR, O’Gorman DJ. Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to short-term aerobic exercise training in human skeletal muscle. PLoS One 2013; 8:e74098. [PMID: 24069271 PMCID: PMC3771935 DOI: 10.1371/journal.pone.0074098] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
Repeated bouts of episodic myofibrillar contraction associated with exercise training are potent stimuli for physiological adaptation. However, the time course of adaptation and the continuity between alterations in mRNA expression and protein content are not well described in human skeletal muscle. Eight healthy, sedentary males cycled for 60 min at 80% of peak oxygen consumption (VO2peak) each day for fourteen consecutive days, resulting in an increase in VO2peak of 17.5±3.8%. Skeletal muscle biopsies were taken at baseline, and on the morning following (+16 h after exercise) the first, third, seventh, tenth and fourteenth training sessions. Markers of mitochondrial adaptation (Cyt c and COXIV expression, and citrate synthase activity) were increased within the first week of training, but the mtDNA/nDNA ratio was unchanged by two weeks of training. Accumulation of PGC-1α and ERRα protein during training suggests a regulatory role for these factors in adaptations of mitochondrial and metabolic gene expression. A subset of genes were transiently increased after one training session, but returned to baseline levels thereafter, which is supportive of the concept of transcriptional capacity being particularly sensitive to the onset of a new level of contractile activity. Thus, gene-specific temporal patterns of induction of mRNA expression and protein content are described. Our results illustrate the phenomenology of skeletal muscle plasticity and support the notion that transcript level adjustments, coupled to accumulation of encoded protein, underlie the modulation of skeletal muscle metabolism and phenotype by regular exercise.
Collapse
Affiliation(s)
- Brendan Egan
- Institute for Sport and Health, School of Public Health, Physiotherapy, and Population Sciences, University College Dublin, Dublin, Ireland
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institute, Stockholm, Sweden
| | - Paul L. O’Connor
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Juleen R. Zierath
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institute, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Donal J. O’Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
- Centre for Preventive Medicine, Dublin City University, Dublin, Ireland
- * E-mail:
| |
Collapse
|
49
|
Ohlendieck K. Proteomic identification of biomarkers of skeletal muscle disorders. Biomark Med 2013; 7:169-86. [PMID: 23387498 DOI: 10.2217/bmm.12.96] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Disease-specific biomarkers play a central diagnostic and therapeutic role in muscle pathology. Serum levels of a variety of muscle-derived enzymes are routinely used for the detection of muscle damage in diagnostic procedures, as well as for the monitoring of physical training status in sports medicine. Over the last few years, the systematic application of mass spectrometry-based proteomics for studying skeletal muscle degeneration has greatly expanded the range of muscle biomarkers, including new fiber-associated proteins involved in muscle transformation, muscular atrophy, muscular dystrophy, motor neuron disease, inclusion body myositis, myotonia, hypoxia, diabetes, obesity and sarcopenia of old age. These mass spectrometric studies have clearly established skeletal muscle proteomics as a reliable method for the identification of novel indicators of neuromuscular diseases.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Muscle Biology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.
| |
Collapse
|
50
|
Russell AP, Lamon S, Boon H, Wada S, Güller I, Brown EL, Chibalin AV, Zierath JR, Snow RJ, Stepto N, Wadley GD, Akimoto T. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J Physiol 2013; 591:4637-53. [PMID: 23798494 DOI: 10.1113/jphysiol.2013.255695] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The identification of microRNAs (miRNAs) has established new mechanisms that control skeletal muscle adaptation to exercise. The present study investigated the mRNA regulation of components of the miRNA biogenesis pathway (Drosha, Dicer and Exportin-5), muscle enriched miRNAs, (miR-1, -133a, -133b and -206), and several miRNAs dysregulated in muscle myopathies (miR-9, -23, -29, -31 and -181). Measurements were made in muscle biopsies from nine healthy untrained males at rest, 3 h following an acute bout of moderate-intensity endurance cycling and following 10 days of endurance training. Bioinformatics analysis was used to predict potential miRNA targets. In the 3 h period following the acute exercise bout, Drosha, Dicer and Exportin-5, as well as miR-1, -133a, -133-b and -181a were all increased. In contrast miR-9, -23a, -23b and -31 were decreased. Short-term training increased miR-1 and -29b, while miR-31 remained decreased. Negative correlations were observed between miR-9 and HDAC4 protein (r=-0.71; P=0.04), miR-31 and HDAC4 protein (r=-0.87; P=0.026) and miR-31 and NRF1 protein (r=-0.77; P=0.01) 3 h following exercise. miR-31 binding to the HDAC4 and NRF1 3 untranslated region (UTR) reduced luciferase reporter activity. Exercise rapidly and transiently regulates several miRNA species in muscle. Several of these miRNAs may be involved in the regulation of skeletal muscle regeneration, gene transcription and mitochondrial biogenesis. Identifying endurance exercise-mediated stress signals regulating skeletal muscle miRNAs, as well as validating their targets and regulatory pathways post exercise, will advance our understanding of their potential role/s in human health.
Collapse
Affiliation(s)
- Aaron P Russell
- A. P. Russell: Centre for Physical Activity and Nutrition Research (C-PAN), School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway 3125, Burwood, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|