1
|
Wang M, Huang J, Shi Y, Mprah R, Ding H, Zhang S, Li C. Exploring the efficacy of Wenshentiaojing decoction in PCOS: Network pharmacology and mouse model insights. Bioorg Chem 2025; 154:108089. [PMID: 39742672 DOI: 10.1016/j.bioorg.2024.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Wenshentiaojing Decoction (WSTJD), a traditional Chinese herbal prescription, was first recorded in the "Ye Tianshi female department secret recipe for diagnosis and treatment ". It has been proven effective in treating polycystic ovary syndrome (PCOS). However, the active ingredients and molecular mechanism of WSTJD against PCOS remain unclear. AIM OF THE STUDY To explore the therapeutic effect and molecular mechanism of WSTJD against PCOS by using network pharmacology and mouse model. MATERIALS AND METHODS Network pharmacology were used to predict active ingredients, potential targets, and pathways of WSTJD against PCOS. Female mice were injected subcutaneously with DHEA (6 mg/100 g body weight) daily to establish a PCOS model and administered with WSTJD and quercetin to observe its therapeutic effect. Thereafter, mouse phenotypes, indicators related to oxidative stress and ferroptosis, and hub genes were determined. RESULTS We identified 144 potential targets for WSTJD in the treatment of PCOS, which were enriched in immune-related signaling pathways such as reactive oxygen species, TNF and IL-17 signaling pathway. Thirteen hub genes were identified by proteinprotein interaction network (PPI) and algorithmic analysis, all of which were oxidative stress-related genes, and five of which, IL6, PTGS2, HIF1A, MTOR and EGFR, were ferroptosis-related genes. Further analysis revealed that quercetin was a key ingredient for WSTJD and that it had superior binding effects with the hub genes. Moreover, WSTJD and quercetin could significantly depress oxidative stress-related indicators and ferroptosis-related gene expression in PCOS mice. Finally, mouse models showed that the expression of the hub genes were consistent with the analysis results. CONCLUSIONS WSTJD and quercetin alleviated PCOS by suppressing oxidative stress and ferroptosis. Quercetin was the key ingredient for WSTJD against PCOS.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China; National Experimental Teaching Demonstration Center for Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China.
| | - Jing Huang
- Department of Medical Informatics Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China
| | - Yue Shi
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China; National Experimental Teaching Demonstration Center for Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China
| | - Richard Mprah
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China
| | - Huanhuan Ding
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China; National Experimental Teaching Demonstration Center for Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China
| | - Shanshan Zhang
- School of Biological Science, Jining Medical University, Rizhao, Shandong Province 276826, PR China.
| | - Cui Li
- Department of Physiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China; National Experimental Teaching Demonstration Center for Basic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province 221009, PR China.
| |
Collapse
|
2
|
Jian X, Shi C, Xu T, Liu B, Zhou L, Jiang L, Liu K. Efficacy and safety of dietary polyphenol administration as assessed by hormonal, glycolipid metabolism, inflammation and oxidative stress parameters in patients with PCOS: a meta-analysis and systematic review. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 39682053 DOI: 10.1080/10408398.2024.2440063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND The current knowledge about the efficacy and safety of dietary polyphenol administration in patients with polycystic ovarian syndrome (PCOS) is divergent. OBJECTIVE To evaluate the pooled efficacy and safety of dietary polyphenol administration in the treatment of patients with PCOS. METHODS The pubmed, Embase, Scopus, Cochrane Library, and Web of Science databases were searched for randomized controlled trials (RCTs) of dietary polyphenol administration for the treatment of PCOS. English-language RCTs involving adults with PCOS were thoroughly searched in electronic databases from the time of their establishment to May 2024. Random-effects models were used because heterogeneity was derived from differences in intervention materials and study duration, among other confounding factors. The effect sizes of the outcomes in the pooled analysis are expressed as weighted mean differences (WMDs) and 95% confidence intervals (CIs). RESULTS A total of 15 RCTs involving 934 patients were finally included. Compared with control treatments, dietary polyphenol administration significantly reduced luteinizing hormone (LH) (WMD: -0.85, 95% CI [-1.32 to -0.38], p = 0.00), and prolactin levels (WMD: -3.73, 95% CI [-6.73 to -0.74], p = 0.01). Dietary polyphenol administration significantly reduced insulin levels (WMD: -0.85, 95% CI [-1.32 to -0.38], p = 0.00). Regarding lipid metabolism, dietary polyphenol administration only reduced triglyceride levels (WMD: -8.96, 95% CI [-16.44 to -1.49], p = 0.02). Malondialdehyde (MDA) (WMD: -0.65, 95% CI [-0.68 to -0.62], p = 0.00), tumor necrosis factor (TNF-α) (WMD: -1.39, 95% CI [-2.41 to -0.37], p = 0.01) concentrations were significantly reduced by dietary polyphenol administration. None of the interventions significantly affected weight, body mass index (BMI), waist circumference (WC), homeostatic model-insulin resistance (HOMA-IR), fasting blood sugar (FBS), glycated hemoglobin (HBA1c), follicle-stimulating hormone (FSH), testosterone (T), dehydroepiandrosterone (DHEA), estradiol (E2), anti-Müllerian hormone (AMH), quantitative insulin-sensitivity check index (QUICKI), sex hormone-binding globulin (SHBG), total antioxidant capacity (TAC), C-peptide, C-reactive protein (CRP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), cholesterol, cholesterol/HDL, acne score, thyroid-stimulating hormone (TSH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) or alkaline phosphatase (ALP). CONCLUSION Dietary polyphenol administration was efficacious in patients with PCOS in our study. This review might provide new insight into the treatment of patients with PCOS and the potential of daily polyphenol supplementation in patients with PCOS. Nevertheless, these results must be interpreted carefully as a result of the heterogeneity and risk of bias among the studies and we expect that more high-quality RCTs evaluating the efficacy and safety of dietary polyphenol adnimistration in patients with PCOS will be conducted in the future. SYSTEMATIC REVIEW REGISTRATION CRD42024498494.
Collapse
Affiliation(s)
- Xian Jian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Chen Shi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Liyuan Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| |
Collapse
|
3
|
Tello-Palencia MA, Yang T, Sularz O, Demers LE, Ma Y, Boycott C, Zhang HA, Lubecka-Gajewska K, Kumar S, Ramsey BS, Torregrosa-Allen S, Elzey BD, Lanman NA, Korthauer K, Stefanska B. Pterostilbene Targets Hallmarks of Aging in the Gene Expression Landscape in Blood of Healthy Rats. Mol Nutr Food Res 2024; 68:e2400662. [PMID: 39562169 DOI: 10.1002/mnfr.202400662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Indexed: 11/21/2024]
Abstract
SCOPE Polyphenols from the phytoestrogen group, including pterostilbene (PTS), are known for their antioxidant, anti-inflammatory, and anti-cancer effects. In recent reports, phytoestrogens attenuate age-related diseases; however, their pro-longevity effects in healthy models in mammals remain unknown. As longevity research demonstrates age-related transcriptomic signatures in human blood, the current study hypothesizes that phytoestrogen-supplemented diet may induce changes in gene expression that ultimately confer pro-longevity benefits. METHODS AND RESULTS In the present study, RNA sequencing is conducted to determine transcriptome-wide changes in gene expression in whole blood of healthy rats consuming diets supplemented with phytoestrogens. Ortholog cell deconvolution is applied to analyze the omics data. The study discovered that PTS leads to changes in the gene expression landscape and PTS-target genes are associated with functions counteracting hallmarks of aging, including genomic instability, epigenetic alterations, compromised autophagy, mitochondrial dysfunction, deregulated nutrient sensing, altered intercellular interaction, and loss of proteostasis. These functions bridge together under anti-inflammatory effects through multiple pathways, including immunometabolism, where changes in cellular metabolism (e.g., ribosome biogenesis) impact the immune system. CONCLUSION The findings provide a rationale for pre-clinical and clinical longevity studies and encourage investigations on PTS in maintaining cellular homeostasis, decelerating the process of aging, and improving conditions with chronic inflammation.
Collapse
Affiliation(s)
- Marco A Tello-Palencia
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Olga Sularz
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, 31-120, Poland
| | - Louis Erik Demers
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Parasitology, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Huiying Amelie Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | - Sadhri Kumar
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Benjamin S Ramsey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Sandra Torregrosa-Allen
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Bennett D Elzey
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Nadia Atallah Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Keegan Korthauer
- Department of Statistics, Faculty of Science, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, BC, V6H 0B3, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
4
|
Wang Y, Cao X, Ma J, Liu S, Jin X, Liu B. Unveiling the Longevity Potential of Natural Phytochemicals: A Comprehensive Review of Active Ingredients in Dietary Plants and Herbs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24908-24927. [PMID: 39480905 PMCID: PMC11565747 DOI: 10.1021/acs.jafc.4c07756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Ancient humans used dietary plants and herbs to treat disease and to pursue eternal life. Today, phytochemicals in dietary plants and herbs have been shown to be the active ingredients, some of which have antiaging and longevity-promoting effects. Here, we summarize 210 antiaging phytochemicals in dietary plants and herbs, systematically classify them into 8 groups. We found that all groups of phytochemicals can be categorized into six areas that regulate organism longevity: ROS levels, nutrient sensing network, mitochondria, autophagy, gut microbiota, and lipid metabolism. We review the role of these processes in aging and the molecular mechanism of the health benefits through phytochemical-mediated regulation. Among these, how phytochemicals promote longevity through the gut microbiota and lipid metabolism is rarely highlighted in the field. Our understanding of the mechanisms of phytochemicals based on the above six aspects may provide a theoretical basis for the further development of antiaging drugs and new insights into the promotion of human longevity.
Collapse
Affiliation(s)
- Yu Wang
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jin Ma
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41390, Sweden
| |
Collapse
|
5
|
Kowalska K, Olejnik A. Rosehip Extract Decreases Reactive Oxygen Species Production and Lipid Accumulation in Hypertrophic 3T3-L1 Adipocytes with the Modulation of Inflammatory State. Nutrients 2024; 16:3269. [PMID: 39408236 PMCID: PMC11478984 DOI: 10.3390/nu16193269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Rosa canina L. (rosehip) is used worldwide in traditional medicine as a plant with medicinal properties. However, its anti-obesity effects are not fully explained on a transcriptional level. METHODS In the present work, the 3T3-L preadipocytes were utilized to explore the impact of R. canina fruit extract (RCE) on the cellular and molecular pathways involved in adipocyte hypertrophy. RESULTS Obtained results showed the ability of RCE to reduce lipid overloads in hypertrophic adipocytes associated with the down-regulation of mRNA expressions of adipogenic transcription factors such as PPARγ, C/EBPα, and SREBP-1c as well as genes involved in lipid biosyntheses such as FAS, LPL, and aP2. Moreover, obesity-associated oxidative stress (antioxidant enzyme activities and ROS generation) and inflammation were ameliorated in RCE-treated hypertrophic adipocytes. The mRNA and protein levels of adipokines such as leptin, resistin, and adiponectin were restored to more favorable levels. CONCLUSIONS Rosa canina fruit might be a valuable source of phytochemicals in preventing obesity and obesity-related metabolic complications.
Collapse
Affiliation(s)
- Katarzyna Kowalska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland;
| | | |
Collapse
|
6
|
Ungurianu A, Zanfirescu A, Margină D. Exploring the therapeutic potential of quercetin: A focus on its sirtuin-mediated benefits. Phytother Res 2024; 38:2361-2387. [PMID: 38429891 DOI: 10.1002/ptr.8168] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 03/03/2024]
Abstract
As the global population ages, preventing lifestyle- and aging-related diseases is increasing, necessitating the search for safe and affordable therapeutic interventions. Among nutraceuticals, quercetin, a flavonoid ubiquitously present in various plants, has garnered considerable interest. This review aimed to collate and analyze existing literature on the therapeutic potentials of quercetin, especially its interactions with SIRTs and its clinical applicability based on its bioavailability and safety. This narrative review was based on a literature survey spanning from 2015 to 2023 using PUBMED. The keywords and MeSH terms used were: "quercetin" AND "bioavailability" OR "metabolism" OR "metabolites" as well as "quercetin" AND "SIRTuin" OR "SIRT*" AND "cellular effects" OR "pathway" OR "signaling" OR "neuroprotective" OR "cardioprotective" OR "nephroprotective" OR "antiatherosclerosis" OR "diabetes" OR "antidiabetic" OR "dyslipidemia" AND "mice" OR "rats". Quercetin demonstrates multiple therapeutic activities, including neuroprotective, cardioprotective, and anti-atherosclerotic effects. Its antioxidant, anti-inflammatory, antiviral, and immunomodulatory properties are well-established. At a molecular level, it majorly interacts with SIRTs, particularly SIRT1 and SIRT6, and modulates numerous signaling pathways, contributing to its therapeutic effects. These pathways play roles in reducing oxidative stress, inflammation, autophagy regulation, mitochondrial biogenesis, glucose utilization, fatty acid oxidation, and genome stability. However, clinical trials on quercetin's effectiveness in humans are scarce. Quercetin exhibits a wide range of SIRT-mediated therapeutic effects. Despite the compelling preclinical data, more standardized clinical trials are needed to fully understand its therapeutic potential. Future research should focus on addressing its bioavailability and safety concerns.
Collapse
Affiliation(s)
- Anca Ungurianu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, Department of Pharmacology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Denisa Margină
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania
| |
Collapse
|
7
|
Jian X, Shi C, Luo W, Zhou L, Jiang L, Liu K. Therapeutic effects and molecular mechanisms of quercetin in gynecological disorders. Biomed Pharmacother 2024; 173:116418. [PMID: 38461683 DOI: 10.1016/j.biopha.2024.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Quercetin is a representative flavonoid that is widely present in fruits, herbs, and vegetables. It is also an important active core component in traditional Chinese medicines. As an important flavonoid, quercetin has various properties and exerts antioxidant, anti-inflammatory, and cardioprotective effects. The public interest in quercetin is increasing, and quercetin has been used to prevent or treat numerous of diseases, such as polycystic ovary syndrome (PCOS), cancer, autoimmune diseases and chronic cardiovascular diseases, in clinical experiments and animal studies due to its powerful antioxidant properties and minimal side effects. Quercetin exerts marked pharmacological effects on gynecological disorders; however, there have been no reviews about the potential health benefits of quercetin in the context of gynecological disorders, including PCOS, premature ovary failure (POF), endometriosis (EM), ovarian cancer (OC), cervical cancer (CC) and endometrial carcinoma (EC). Thus, this review aimed to summarize the biological effects of quercetin on gynecological disorders and its mechanisms.
Collapse
Affiliation(s)
- Xian Jian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chen Shi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Weichen Luo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liyuan Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
8
|
Almeida Balieiro CC, Hespanhol LC, Mendes Fonseca L, Wantowski S, Freitas MAA, Dias YJM, Burlá MM, Maria Lima de Oliveira L. Effects of polyphenol in women with polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Eur J Obstet Gynecol Reprod Biol 2024; 294:84-91. [PMID: 38219608 DOI: 10.1016/j.ejogrb.2023.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is an endocrinopathy with a high prevalence in women of reproductive age. Different treatments were tested to increase insulin sensitivity and hormone regulation, and recently polyphenols have emerged as a promising option for these women. We aimed to perform a systematic review and meta-analysis of randomized clinical trials (RCTs) comparing polyphenols to placebo in PCOS. DESIGN A systematic review and meta-analysis. METHODS PubMed, Cochrane Library, and Embase databases were searched for RCTs comparing polyphenols to placebo. Random-effects model was used to calculate the Mean Difference (MD) and Standardized Mean Difference (SMD), with 95% confidence interval (CIs). RESULTS A total of fifteen RCTs comprising 916 patients were included, of whom 445 (49 %) received polyphenols. Compared to placebo, polyphenols significantly reduced serum insulin level (MD -2.49; 95 % CI [-3.72, -1.25]; p < 0.01), BMI levels (MD -0.12; 95 % CI [-0.18, -0.06]; p < 0.01), and LH levels (MD -0.87; 95 % CI [-1.54, -0.20]; p = 0.01). There was no significant difference between groups in testosterone levels (SMD -0.14; 95 % CI [-0.53, 0.25]; p = 0.48). CONCLUSION In this meta-analysis polyphenols were associated with a reduction in serum insulin, LH levels, and BMI in women with PCOS, compared to placebo. These findings support the effectiveness of polyphenols in women with PCOS. SIGNIFICANT STATEMENT There are no comprehensive systematic recommendations for polyphenols in PCOS treatment. However, increasing evidence has highlighted its substantial impact on women's health. This systematic review and meta-analysis provide evidence for the efficacy of polyphenols in reducing serum insulin, LH, and BMI in women with PCOS compared with placebo.
Collapse
Affiliation(s)
| | | | | | | | - Marcos A A Freitas
- State University of Região Tocantina do Maranhão, Division of Medicine, Brazil
| | - Yasmin J M Dias
- Washington University in St Louis, Division of Medicine, USA
| | - Marina M Burlá
- Estácio de Sá Vista Carioca University, Division of Medicine, Brazil
| | - Lilia Maria Lima de Oliveira
- Harvard T.H Chan School of Public Health - Principles and Practice of Clinical Research (PPCR) - Post-graduate Program, ECPE, Boston, MA, USA
| |
Collapse
|
9
|
Fu Y, Xie P, Yang Q, Chen P, Yu J. Analysis on the therapeutic effect of Cangfu Daotan Decoction combined with drospirenone and ethinylestradiol tablets (II) on patients with polycystic ovary syndrome. Prostaglandins Other Lipid Mediat 2024; 170:106801. [PMID: 37984794 DOI: 10.1016/j.prostaglandins.2023.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE This study was designed to investigate the therapeutic effect of Cangfu Daotan Decoction (CDD) combined with drospirenone and ethinylestradiol tablets (II) on patients with polycystic ovary syndrome (PCOS). METHODS Patients with PCOS were gathered from September 2020 to September 2022 and divided into the experimental group (n = 36), treated with CDD combined with drospirenone and ethinylestradiol tablets (II), and the control group (n = 41), received only drospirenone and ethinylestradiol tablets (II). Levels of sex hormone, obesity, blood glucose, blood lipid were detected and compared between the two groups pre- and post-treatment. The treatment efficacy, Traditional Chinese Medicine (TCM) syndrome score, adverse drug reactions, and pregnancy rate were compared as well. RESULTS After treatment, the experimental group had a higher treatment efficacy (94.44% vs 73.17%, P < 0.05) and a higher pregnancy rate (44.44% vs 21.95%, P < 0.05) than the control group, but the difference in the incidence of adverse drug reactions was not statistically significant (P > 0.05). Compared with control group, TCM syndrome score and levels of fasting blood glucose, fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and waist circumference of the experimental group after treatment displayed remarkable reduction (P < 0.05), while the levels of estradiol (E2) and high-density lipoprotein cholesterol (HDL-C) showed a remarkable increase (P < 0.05). CONCLUSION CDD in combination with drospirenone and ethinylestradiol tablets (II) may be effective in treating PCOS by improving obesity, glucose metabolism and lipid metabolism with no serious adverse events, making it a feasible clinical practice option.
Collapse
Affiliation(s)
- Yanhong Fu
- Department of Gynecology, Guangzhou Huadu District Maternal And Child Care Service Centre, Guangzhou City, Guangdong Province 510800, China
| | - Pengpeng Xie
- Department of TCM Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province 510623, China
| | - Qingping Yang
- Department of Gynecology, Guangzhou Huadu District Maternal And Child Care Service Centre, Guangzhou City, Guangdong Province 510800, China
| | - Peng Chen
- Department of Gynecology, Guangzhou Huadu District Maternal And Child Care Service Centre, Guangzhou City, Guangdong Province 510800, China
| | - Jingwei Yu
- Gynecology of Traditonal Chinese Medicine, Panyu Matermal and Child Care Service Centre (Panyu He Xian Memorial Hospital), Guangzhou City, Guangdong Province 511442, China.
| |
Collapse
|
10
|
Xie L, Chi X, Wang H, Dai A, Dong J, Liu S, Zhang D. Mechanism of action of buckwheat quercetin in regulating lipid metabolism and intestinal flora via Toll-like receptor 4 or nuclear factor κB pathway in rats on a high-fat diet. Nutrition 2023; 115:112148. [PMID: 37541145 DOI: 10.1016/j.nut.2023.112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 08/06/2023]
Abstract
OBJECTIVES Buckwheat quercetin (QUE) was used as a dietary supplement to investigate the mechanism of QUE on the regulation of lipid metabolism and intestinal flora in hyperlipidemic rats. METHODS Here, using a high-fat diet-induced hyperlipidemia model, the intervention was carried out by gavage of QUE at doses of 50, 100, and 200 mg/kg. Serum lipid levels, liver biochemical parameters, and histopathologic changes in the liver and intestinal microorganisms were measured in rats by enzyme-linked immunosorbent assay, hematoxylin-eosin, and high-throughput sequencing, respectively. RESULTS Our results found that QUE, at a dose of 200 mg/kg, significantly reduced body weight, liver index, and lipid levels in rats (P < 0.05); improved hepatic oxidative stress; and repaired liver injury. In addition, the upregulation of beneficial bacteria, such as christensenellaceae and Bifidobacterium, in the organism increased the content of short-chain fatty acids, thus interfering with intestinal pH and improving the intestinal environment, while downregulating the relative abundance of Proteobacteria and Eubacterium_coprostanoligenes_group, and regulating the overproduction of butyrate. The real-time fluorescence quantitative polymerase chain reaction results found that QUE inhibited the expression of Toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) mRNA content and blocked the activation of the TLR4/NF-κB signaling pathway, thus affecting the downregulation of lipid levels and restoring intestinal homeostasis. CONCLUSIONS A QUE dose of 200 mg/kg may improve lipid levels and the composition of intestinal flora through the TLR4/NF-κB pathway, suggesting that proteobacteria and christensenellaceae abundance changes may be biomarkers of potential diseases.
Collapse
Affiliation(s)
- Linlin Xie
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Xiaoxing Chi
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China; National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang Province, China.
| | - Helin Wang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Anna Dai
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Jiaping Dong
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Shufan Liu
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China
| | - Dongjie Zhang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, China; National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang Province, China
| |
Collapse
|
11
|
Luo Y, Zeng Y, Peng J, Zhang K, Wang L, Feng T, Nhamdriel T, Fan G. Phytochemicals for the treatment of metabolic diseases: Evidence from clinical studies. Biomed Pharmacother 2023; 165:115274. [PMID: 37542856 DOI: 10.1016/j.biopha.2023.115274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
With the continuous improvement of people's living standard, the incidence of metabolic diseases is gradually increasing in recent years. There is growing interest in finding drugs to treat metabolic diseases from natural compounds due to their good efficacy and limited side effects. Over the past few decades, many phytochemicals derived from natural plants, such as berberine, curcumin, quercetin, resveratrol, rutin, and hesperidin, have been shown to have good pharmacological activity against metabolic diseases in preclinical studies. More importantly, clinical trials using these phytochemicals to treat metabolic diseases have been increasing. This review comprehensively summarizes the clinical progress of phytochemicals derived from natural plants in the treatment of several metabolic diseases, including type 2 diabetes mellitus (T2DM), obesity and non-alcoholic fatty liver disease (NAFLD). Accumulating clinical evidence shows that a total of 18 phytochemicals have good therapeutic effects on the three metabolic diseases by lowering blood glucose and lipid levels, reducing insulin resistance, enhancing insulin sensitivity, increasing energy expenditure, improving liver function, and relieving inflammation and oxidative stress. The information will help us better understand the medicinal value of these phytochemicals and promote their clinical application in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yuting Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yujiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tu Feng
- School of Ecological Engineering, Guizhou University of Engineering Science, Bijie 551700, China.
| | - Tsedien Nhamdriel
- Department of Tibetan medicine, University of Tibetan Medicine, Lhasa 850000, China.
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| |
Collapse
|
12
|
Ulug E, Pinar AA. A New Approach to Polycystic Ovary Syndrome and Related Cardio-metabolic Risk Factors: Dietary Polyphenols. Curr Nutr Rep 2023; 12:508-526. [PMID: 37530952 DOI: 10.1007/s13668-023-00488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW Polycystic ovarian syndrome (PCOS) is a common endocrine disease characterized by ovulatory dysfunction, hyperandrogenism, and polycystic ovarian morphology and causing various reproductive, metabolic, cardiovascular, oncological, and psychological complications. Recent meta-analyses and systemic reviews showed that PCOS increases the risk factor for various cardio-metabolic complications like insulin resistance, type II diabetes mellitus, dyslipidemia, metabolic syndrome, hypertension, and endothelial dysfunction. In addition to these, it was suggested that chronic low-grade inflammation and oxidative stress are the underlying mechanisms of PCOS-mediated metabolic consequences and might trigger cardio-metabolic risk in women with PCOS. At this point, there is substantial evidence to suggest that various non-nutrient food components modulate cardio-metabolic health together with inflammation and oxidative stress. RECENT FINDINGS Increasing the intake of dietary polyphenols might reduce oxidative stress and inflammation and thus alleviate the risk of metabolic, endothelial, and cardiovascular disorders. Nowadays, there are an increasing number of studies related to the effects of dietary polyphenols on PCOS and its accompanying cardio-metabolic disturbances. Currently, there is a cumulative number of studies connected to the effects of dietary polyphenols on PCOS and accompanying cardio-metabolic disturbances. However, there is a lack of knowledge in combining the probable mechanisms of dietary polyphenols on PCOS and related cardio-metabolic consequences. Thus, the effects of dietary polyphenols on PCOS and accompanying cardio-metabolic disturbances need to be discussed and evaluated with underlying mechanisms. Consequently, this review was written to reveal the potential effects of dietary polyphenols on PCOS and related metabolic and cardiovascular risk factors in all their aspects.
Collapse
Affiliation(s)
- Elif Ulug
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Ankara, Turkey
| | - Aylin Acikgoz Pinar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
13
|
Chavez GN, Jaworsky K, Basu A. The Effects of Plant-Derived Phytochemical Compounds and Phytochemical-Rich Diets on Females with Polycystic Ovarian Syndrome: A Scoping Review of Clinical Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6534. [PMID: 37569074 PMCID: PMC10418663 DOI: 10.3390/ijerph20156534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is an endocrine condition that impacts nutritional status, metabolic, and hormonal function in females of reproductive age. This condition is associated with increased androgen production (hyperandrogenism) and decreased insulin sensitivity, which often leads to insulin resistance and hyperinsulinemia. This increase in androgen production and insulin resistance is strongly associated with a high incidence of obesity, type-2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), and certain types of gonad-related cancers among females who suffer from this condition. As research continues to grow, it has been demonstrated that PCOS is a complex condition, and some of its characteristics vary among the females that have this disorder. However, it has been suggested that oxidative stress and low-grade chronic inflammation could play an important role in the development of PCOS. Current evidence suggest that phytochemicals could potentially help with weight-loss by reducing oxidative stress and low-grade inflammation, as well as aid in metabolic and hormonal regulation due to their antioxidant properties. Some of the bioactive compounds found in plants that have shown positive effects in the attenuation of PCOS include flavonoids, polyphenols, phytoestrogen, and polyunsaturated fatty acids (PUFAs). Thus, a review of the current literature published on PCOS and phytochemicals was conducted in PubMed, Google Scholar, and the Academy of Nutrition and Dietetics databases for articles published between 2013 and 2023 with a study duration of 1 to 3 months and adequate sample sizes. The main purpose of this review of literature was to investigate the metabolic effects of phytochemical compounds and phytochemical-rich diets on females with PCOS by comparing the results of several randomized clinical trials.
Collapse
Affiliation(s)
- Guadalupe Nayeli Chavez
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (G.N.C.); (K.J.)
| | - Kataryna Jaworsky
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (G.N.C.); (K.J.)
- Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, NV 89106, USA
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA; (G.N.C.); (K.J.)
| |
Collapse
|
14
|
Shivanandappa TB, Chinnadhurai M, Kandasamy G, Vasudevan R, Sam G, Karunakarannair A. Ziziphus mauritiana Leaves Normalize Hormonal Profile and Total Cholesterol in Polycystic Ovarian Syndrome Rats. PLANTS (BASEL, SWITZERLAND) 2023; 12:2599. [PMID: 37514214 PMCID: PMC10384539 DOI: 10.3390/plants12142599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
In the present study, the beneficial effect of leaves of Ziziphus mauritiana on testosterone, estradiol, progesterone, LH hormones, blood glucose, and total cholesterol levels in the experimentally induced polycystic ovaries of female Sprague Dawley rats were evaluated. Letrozole was used to induce PCOS in rats, and clomiphene citrate was used as a standard control. This study was carried out in vivo on 30 female rats where group I received normal saline and group II to V were treated with letrozole (1 mg/kg/day), which was dissolved in normal saline orally for 21 days to induce PCOS. After PCOS induction, test groups III and IV were orally treated with ZMME at a dose of 100 mg/kg and 200 mg/kg for 14 days, respectively, and group V was treated with clomiphene citrate (2 mg/kg) orally for 14 days. At the end of the experimental period, the animals were sacrificed by cervical dislocation, and blood samples were collected by cardiac puncture. After blood collection, the ovaries were removed and weighed. The results showed that Ziziphus mauritiana normalized all hormones and total cholesterol levels. The HPTLC profile showed the presence of gallic acid, rutin, quercetin, and ursolic acid. Many studies have reported that quercetin is effective against PCOS and its complications; it suppresses insulin resistance and reduces testosterone and LH levels. The present study showed an improvement in the inflammatory microenvironment of the ovarian tissue in the PCOS rat model. This research concluded that the leaves of Ziziphus mauritiana have potential efficacy in the treatment of PCOS by normalizing abnormal hormones and total cholesterol levels, which could be due to the presence of quercetin in the leaves.
Collapse
Affiliation(s)
| | - Maheswari Chinnadhurai
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Gigi Sam
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Anjana Karunakarannair
- Department of Biomedical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| |
Collapse
|
15
|
Bellavite P, Fazio S, Affuso F. A Descriptive Review of the Action Mechanisms of Berberine, Quercetin and Silymarin on Insulin Resistance/Hyperinsulinemia and Cardiovascular Prevention. Molecules 2023; 28:4491. [PMID: 37298967 PMCID: PMC10254920 DOI: 10.3390/molecules28114491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Insulin resistance (IR) and the associated hyperinsulinemia are early pathophysiological changes which, if not well treated, can lead to type 2 diabetes, endothelial dysfunction and cardiovascular disease. While diabetes care is fairly well standardized, the prevention and treatment of IR lacks a single pharmaceutical approach and many lifestyle and dietary interventions have been proposed, including a wide range of food supplements. Among the most interesting and well-known natural remedies, alkaloid berberine and the flavonol quercetin have particular relevance in the literature, while silymarin-the active principle of the Silybum marianum thistle-was traditionally used for lipid metabolism disorders and to sustain liver function. This review describes the major defects of insulin signaling leading to IR and the main properties of the three mentioned natural substances, their molecular targets and synergistic action mechanisms. The actions of berberine, quercetin and silymarin are partially superimposable as remedies against reactive oxygen intermediates generated by a high-lipid diet and by NADPH oxidase, which is triggered by phagocyte activation. Furthermore, these compounds inhibit the secretion of a battery of pro-inflammatory cytokines, modulate intestinal microbiota and are especially able to control the various disorders of the insulin receptor and post-receptor signaling systems. Although most of the evidence on the effects of berberine, quercetin and silymarin in modulating insulin resistance and preventing cardiovascular disease derive from experimental studies on animals, the amount of pre-clinical knowledge strongly suggests the need to investigate the therapeutic potential of these substances in human pathology.
Collapse
Affiliation(s)
- Paolo Bellavite
- Pathophysiology Chair, Homeopathic Medical School of Verona, 37121 Verona, Italy
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, 80138 Naples, Italy;
| | | |
Collapse
|
16
|
Ford ML, Cooley JM, Sripada V, Xu Z, Erickson JS, Bennett KP, Crawford DR. Eat4Genes: a bioinformatic rational gene targeting app and prototype model for improving human health. Front Nutr 2023; 10:1196520. [PMID: 37305078 PMCID: PMC10250663 DOI: 10.3389/fnut.2023.1196520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction and aims Dietary Rational Gene Targeting (DRGT) is a therapeutic dietary strategy that uses healthy dietary agents to modulate the expression of disease-causing genes back toward the normal. Here we use the DRGT approach to (1) identify human studies assessing gene expression after ingestion of healthy dietary agents with an emphasis on whole foods, and (2) use this data to construct an online dietary guide app prototype toward eventually aiding patients, healthcare providers, community and researchers in treating and preventing numerous health conditions. Methods We used the keywords "human", "gene expression" and separately, 51 different dietary agents with reported health benefits to search GEO, PubMed, Google Scholar, Clinical trials, Cochrane library, and EMBL-EBI databases for related studies. Studies meeting qualifying criteria were assessed for gene modulations. The R-Shiny platform was utilized to construct an interactive app called "Eat4Genes". Results Fifty-one human ingestion studies (37 whole food related) and 96 key risk genes were identified. Human gene expression studies were found for 18 of 41 searched whole foods or extracts. App construction included the option to select either specific conditions/diseases or genes followed by food guide suggestions, key target genes, data sources and links, dietary suggestion rankings, bar chart or bubble chart visualization, optional full report, and nutrient categories. We also present user scenarios from physician and researcher perspectives. Conclusion In conclusion, an interactive dietary guide app prototype has been constructed as a first step towards eventually translating our DRGT strategy into an innovative, low-cost, healthy, and readily translatable public resource to improve health.
Collapse
Affiliation(s)
- Morgan L. Ford
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jessica M. Cooley
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Veda Sripada
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Zhengwen Xu
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John S. Erickson
- Rensselaer Institute for Data Exploration and Applications, Renssalaer Polytechnic Institute, Troy, NY, United States
| | - Kristin P. Bennett
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer Institute for Data Exploration and Applications, Renssalaer Polytechnic Institute, Troy, NY, United States
| | - Dana R. Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
17
|
Zhang X, Tang Y, Lu G, Gu J. Pharmacological Activity of Flavonoid Quercetin and Its Therapeutic Potential in Testicular Injury. Nutrients 2023; 15:2231. [PMID: 37432408 DOI: 10.3390/nu15092231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Quercetin is a natural flavonoid widely found in natural fruits and vegetables. Recent studies have shown that quercetin mediates multiple beneficial effects in a variety of organ damage and diseases, and is considered a healthcare supplement with health-promoting potential. Male infertility is a major health concern, and testicular damage from multiple causes is an important etiology. Previous studies have shown that quercetin has a protective effect on reproductive function. This may be related to the antioxidant, anti-inflammatory, and anti-apoptotic biological activities of quercetin. Therefore, this paper reviews the mechanisms by which quercetin exerts its pharmacological activity and its role in testicular damage induced by various etiologies. In addition, this paper compiles the application of quercetin in clinical trials, demonstrating its practical effects in regulating blood pressure and inhibiting cellular senescence in human patients. However, more in-depth experimental studies and clinical trials are needed to confirm the true value of quercetin for the prevention and protection against testicular injury.
Collapse
Affiliation(s)
- Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
18
|
Çıtar Dazıroğlu ME, Acar Tek N. The Effect on Inflammation of Adherence to the Mediterranean Diet in Polycystic Ovary Syndrome. Curr Nutr Rep 2023; 12:191-202. [PMID: 36719550 DOI: 10.1007/s13668-023-00451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Polycystic ovary syndrome (PCOS), which is common in women of reproductive age worldwide, is a syndrome that reduces the lifelong quality of life and poses a significant risk for various diseases. PCOS is a combination of symptoms of hyperandrogenism, oligo-anovulation, and polycystic ovarian morphology (PCOM). In PCOS, which is characterized by chronic low-grade inflammation, some inflammatory cytokines are increased. This review aimed to explain possible mechanisms of inflammation in PCOS and the effects of Mediterranean diet components on reducing this inflammation. RECENT FINDINGS Although the exact mechanisms of inflammation in PCOS are not yet fully known, it is stated that it is mediated by obesity, insulin resistance, and high androgen concentration. This inflammatory state negatively impacts the risk of future health problems and the quality of life of PCOS. Therefore, strategies to reduce inflammation are thought to be important. Dietary adjustments have important effects in reducing this inflammation and preventing disease. At this point, the Mediterranean diet, which has been proven to have a protective effect against many diseases, draws attention. Among the components of the Mediterranean diet, especially omega-3, antioxidants and dietary fiber may contribute to the reduction of inflammation through different mechanisms. PCOS is characterized by chronic low-grade inflammation, which increases women's risk of health problems, both now and in the future. Reducing inflammation is therefore extremely important, and it can be achieved with adherence to the Mediterranean diet. Inflammation pathways and the effect of the components of the Mediterranean diet in PCOS. AGE, advanced glycation end products; NF-κB, nuclear factor kappa-B. Obesity, insulin resistance, and hyperandrogenism may cause inflammation in PCOS through different mechanisms. Antioxidants, omega-3, and dietary fiber, which are the main components of the Mediterranean diet, may be effective in reducing this inflammation in PCOS. (Created with BioRender.com).
Collapse
Affiliation(s)
- Merve Esra Çıtar Dazıroğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara, Turkey.
| | - Nilüfer Acar Tek
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara, Turkey
| |
Collapse
|
19
|
Vaez S, Parivr K, Amidi F, Rudbari NH, Moini A, Amini N. Quercetin and polycystic ovary syndrome; inflammation, hormonal parameters and pregnancy outcome: A randomized clinical trial. Am J Reprod Immunol 2023; 89:e13644. [PMID: 36317442 DOI: 10.1111/aji.13644] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
PROBLEM Women with PCOS have a reduced total antioxidant level in addition to higher oxidative stress. Quercetin is a flavonol-type antioxidant that may be found in many foods. Does quercetin affect inflammatory and hormonal factors and clinical outcomes in PCOS patients? METHOD OF STUDY Seventy-two women with PCOS were randomly allocated to one of two intervention groups, and each received a daily dosage of 500 mg of Quercetin for the intervention group or a placebo for the control group for a period of 40 days from the start of the menstrual cycle until the day of ovulation. Serum levels of IL-6, TNF-alpha, LH, FSH, and AMH were measured using ELISA. In addition, oocyte and embryo grade before IVF and pregnancy rate have been examined. RESULTS LH levels reduce significantly in the quercetin group (4.351.62 at baseline to 3.061.43 after 3 months) (p = .029). The results indicated that Quercetin significantly decreased TNF alpha levels in comparison to the pretest (p = .008). Following capsule administration, IL-6 levels significantly decreased in the quercetin group (p = .001). Except for Δ LH, ΔIL6, and ΔFSH, there was no significant difference in any of the hormones and inflammations parameter changes. CONCLUSION Quercetin consumption causes improvement in oocyte and embryo grade and the pregnancy rate in PCOS patients. As a result, regular consumption of Quercetin has been shown to decrease inflammatory and LH parameters, making it beneficial for the management of PCOS and related diseases.
Collapse
Affiliation(s)
- Sima Vaez
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivr
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Hayati Rudbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ashraf Moini
- Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran.,Department of Gynecology and Obstetrics, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Luo ED, Jiang HM, Chen W, Wang Y, Tang M, Guo WM, Diao HY, Cai NY, Yang X, Bian Y, Xing SS. Advancements in lead therapeutic phytochemicals polycystic ovary syndrome: A review. Front Pharmacol 2023; 13:1065243. [PMID: 36699064 PMCID: PMC9868606 DOI: 10.3389/fphar.2022.1065243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases in women of reproductive age and features complex pathological symptoms and mechanisms. Existing medical treatments have, to some extent, alleviated the deterioration of PCOS. However, these strategies only temporarily control symptoms, with a few side effects and no preventive effect. Phytochemicals extracted from medicinal herbs and plants are vital for discovering novel drugs. In recent years, many kinds of research have proven that phytochemicals isolated from traditional Chinese medicine (TCM) and medicinal plants show significant potential in preventing, alleviating, and treating PCOS. Nevertheless, compared to the abundance of experimental literature and minimal specific-topic reviews related to PCOS, there is a lack of systematic reviews to summarize these advancements in this promising field. Under this background, we systematically document the progress of bioactive phytochemicals from TCM and medicinal plants in treating PCOS, including flavonoids, polyphenols, and alkaloids. According to the literature, these valuable phytochemicals demonstrated therapeutic effects on PCOS supported by in vivo and in vitro experiments, mainly depending on anti-inflammatory, antioxidation, improvement of hormone disorder and insulin resistance (IR), and alleviation of hyperinsulinemia. Based on the current progress, future research directions should emphasize 1) exploring bioactive phytochemicals that potentially mediate bone metabolism for the treatment of PCOS; 2) improving unsatisfactory bioavailability by using advanced drug delivery systems such as nanoparticles and antibody-conjugated drugs, as well as a chemical modification; 3) conducting in-depth research on the pathogenesis of PCOS to potentially impact the gut microbiota and its metabolites in the evolution of PCOS; 4) revealing the pharmacological effects of these bioactive phytochemicals on PCOS at the genetic level; and 5) exploring the hypothetical and unprecedented functions in regulating PCOS by serving as proteolysis-targeting chimeras and molecular glues compared with traditional small molecule drugs. In brief, this review aims to provide detailed mechanisms of these bioactive phytochemicals and hopefully practical and reliable insight into clinical applications concerning PCOS.
Collapse
Affiliation(s)
- Er-Dan Luo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hai-Mei Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Chen
- Traditional Chinese Medicine Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Mi Tang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen-Mei Guo
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao-Yang Diao
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ning-Yuan Cai
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Chengdu, China
| | - Sha-Sha Xing
- GCP Institution, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
22
|
Su YN, Wang MJ, Yang JP, Wu XL, Xia M, Bao MH, Ding YB, Feng Q, Fu LJ. Effects of Yulin Tong Bu formula on modulating gut microbiota and fecal metabolite interactions in mice with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1122709. [PMID: 36814581 PMCID: PMC9939769 DOI: 10.3389/fendo.2023.1122709] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a common endocrine disorder characterized by hyperandrogenism, ovarian dysfunction and polycystic ovarian morphology. Gut microbiota dysbiosis and metabolite are associated with PCOS clinical parameters. Yulin Tong Bu formula (YLTB), a traditional Chinese medicine formula, has been recently indicated to be capable of ameliorating polycystic ovary symptoms and correcting abnormal glucose metabolism. However, the therapeutic mechanism of YLTB on PCOS has not been fully elucidated. METHODS A pseudo sterile mouse model was established during this four-day acclimatization phase by giving the animals an antibiotic cocktail to remove the gut microbiota. Here, the therapeutic effects of YLTB on PCOS were investigated using dehydroepiandrosterone plus high-fat diet-induced PCOS mice model. Female prepuberal mice were randomly divided into three groups; namely, the control group, PCOS group and YLTB (38.68 g·kg-1·day-1) group. To test whether this effect is associated with the gut microbiota, we performed 16S rRNA sequencing studies to analyze the fecal microbiota of mice. The relationships among metabolites, gut microbiota, and PCOS phenotypes were further explored by using Spearman correlation analysis. Then, the effect of metabolite ferulic acid was then validated in PCOS mice. RESULTS Our results showed that YLTB treatment ameliorated PCOS features (ovarian dysfunction, delayed glucose clearance, decreased insulin sensitivity, deregulation of glucolipid metabolism and hormones, etc.) and significantly attenuated PCOS gut microbiota dysbiosis. Spearman correlation analysis showed that metabolites such as ferulic acid and folic acid are negatively correlated with PCOS clinical parameters. The effect of ferulic acid was similar to that of YLTB. In addition, the bacterial species such as Bacteroides dorei and Bacteroides fragilis were found to be positively related to PCOS clinical parameters, using the association study analysis. CONCLUSION These results suggest that YLTB treatment systematically regulates the interaction between the gut microbiota and the associated metabolites to ameliorate PCOS, providing a solid theoretical basis for further validation of YLTB effect on human PCOS trials.
Collapse
Affiliation(s)
- Ya-Nan Su
- Department of Herbal Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Mei-Jiao Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Physiology, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jun-Pu Yang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiang-Lu Wu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Min Xia
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Mei-Hua Bao
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Qian Feng
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Gynecology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Department of Obstetrics and Gynecology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Li-Juan Fu, ; Qian Feng,
| | - Li-Juan Fu
- Department of Herbal Medicine, Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, School of traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
- *Correspondence: Li-Juan Fu, ; Qian Feng,
| |
Collapse
|
23
|
Amirkhizi F, Khalese-Ranjbar B, Mansouri E, Hamedi-Shahraki S, Asghari S. Correlations of selenium and selenoprotein P with asymmetric dimethylarginine and lipid profile in patients with polycystic ovary syndrome. J Trace Elem Med Biol 2023; 75:127101. [PMID: 36395675 DOI: 10.1016/j.jtemb.2022.127101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is associated with an increased risk of cardiovascular diseases (CVD). Accumulating evidence has suggested that selenium (Se) is of importance for optimal function of the cardiovascular system. This study aimed to investigate the associations of selenium and selenoprotein P (SePP) with asymmetric dimethylarginine (ADMA) and lipid profile in women with PCOS. METHODS In this cross-sectional study, 125 females aged 18-45 years diagnosed with PCOS were recruited. An interviewer-administered questionnaire was applied to gather the relevant demographic characteristics, detailed clinical information, and lifestyle habits of participants. Fasting blood samples were obtained to measure biochemical parameters. Serum concentrations of total testosterone, sex hormone-binding globulin (SHBG), ADMA, and lipid profiles as well as anthropometric measurements were assessed across tertiles of serum Se and SePP concentrations. RESULTS There was a positive correlation between serum Se and SePP concentrations (r = 0.434, p < 0.001). Serum Se level was inversely correlated with ADMA (r = -0.21, p = 0.025) and TG (r = -0.17, p = 0.041) concentrations. There were also inverse correlations between SePP and ADMA (r = -0.34, p < 0.001), TG (r = -0.21, p = 0.019), and oxidized low density lipoprotein (ox-LDL) (r = -0.25, p = 0.007) levels. No significant relationship was found between serum Se and SePP concentrations with total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), apolipoprotein-A1 (Apo-A1), apolipoprotein-B (Apo-B100), total testosterone, SHBG, and free androgen index as well as anthropometric parameters (All p > 0.05). CONCLUSION The present study found that Se and SePP levels were inversely correlated with ADMA and TG concentrations as well as ox-LDL levels.
Collapse
Affiliation(s)
- Farshad Amirkhizi
- Department of Nutrition, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Banafshe Khalese-Ranjbar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Mansouri
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Hamedi-Shahraki
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Ma C, Xiang Q, Song G, Wang X. Quercetin and polycystic ovary syndrome. Front Pharmacol 2022; 13:1006678. [PMID: 36588716 PMCID: PMC9800798 DOI: 10.3389/fphar.2022.1006678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disease, and results to opsomenorrhea or amenorrhea, hairy, acne, acanthosis, infertility, abortion. In the long term, PCOS may also increase the risk of endometrial cancer, diabetes, hypertension, dyslipidemia and other diseases. Till now there is no specific drug for PCOS due to the unclearness of the cause and pathogenesis, as current treatments for PCOS only target certain symptoms. Quercetin (QUR) is a flavonoid drug widely found in Chinese herbal medicines, fruits, leaves, vegetables, seeds and plants roots. Studies on other diseases have found that QUR has anti-oxidant, anti-inflammatory, anti-insulin resistance, anti-cancer and other effects. Some studies have shown that serum testosterone (T), luteinizing hormone (LH), the LH/follicule-stimulating hormone (FSH) ratio, fasting glucose, fasting insulin, HOMA-IR and lipid levels are reduced in PCOS patients with QUR treatment. However, the mechanisms of QUR in PCOS patients have not been completely elucidated. In this review, we retrospect the basic characteristics of QUR, and in vitro studies, animal experiments and clinical trials of QUR and plant extracts containing QUR in the treatment of PCOS. We also summarized the effects and mechanism of QUR in ovarian cells in vitro and PCOS model rats, the changes in relevant parameters after QUR administration in PCOS patients, and its potentially therapeutic applications.
Collapse
Affiliation(s)
- Congshun Ma
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China,Department of Reproductive Medicine Center, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Qianru Xiang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Nutrition and Food Hygiene, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ge Song
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China,Department of Reproductive Medicine Center, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China,*Correspondence: Ge Song, ; Xuefei Wang,
| | - Xuefei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Ge Song, ; Xuefei Wang,
| |
Collapse
|
25
|
Effect of green cardamom on the expression of genes implicated in obesity and diabetes among obese women with polycystic ovary syndrome: a double blind randomized controlled trial. GENES & NUTRITION 2022; 17:17. [PMID: 36522620 PMCID: PMC9753872 DOI: 10.1186/s12263-022-00719-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine disease in which related to obesity, metabolic disorders and is considered as one of the main causes of infertility in women. This trial was investigated the effects of green cardamom on the expression of genes implicated in obesity and diabetes among obese women with PCOS. METHODS One hundred ninety-four PCOS women were randomly divided two groups: intervention (n = 99; 3 g/day green cardamom) and control groups (n = 95). All of them were given low calorie diet. Anthropometric, glycemic and androgen hormones were assessed before and after 16-week intervention. The reverse transcription-polymerase chain reaction (RT-PCR) method was used to measure fat mass and obesity-associated (FTO), peroxisome proliferative activating receptor- (PPAR-), carnitine palmitoyltransferase 1A (CPT1A), acetyl-CoA carboxylase beta (ACAB), leptin receptor (LEPR), ghrelin, and lamin A/C (LAMIN) genes expression in each group. RESULTS Anthropometric indices were significantly decreased after intervention in both two studied groups. Glycemic indices and androgen hormones were significantly improved in the intervention group compared to the control group. The expression levels of FTO, CPT1A, LEPR, and LAMIN were significantly downregulated compared to control group (P < 0.001), as well as, PPAR-y was significantly upregulated in the intervention group after intervention with green cardamom compared to control group (P < 0.001). CONCLUSION This current study showed that the administration of green cardamom is a beneficial approach for improving anthropometric, glycemic, and androgen hormones, as well as obesity and diabetes genes expression in PCOS women under the low-calorie diet. TRIAL REGISTRATION This trial was registered with the Iranian Clinical Trials Registry (registration number: IRCT20200608047697N1). 1 August, 2020; https://www.irct.ir/trial/48748.
Collapse
|
26
|
Wang R, Miao C, Chen Y, Zhao Y, Yang L, Cheng W, Zhang Q. Antioxidant supplements relieve insulin resistance but do not improve lipid metabolism in women with polycystic ovary syndrome: a meta-analysis of randomized clinical trials. Gynecol Endocrinol 2022; 38:1047-1059. [PMID: 36437750 DOI: 10.1080/09513590.2022.2148648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective: The effect of antioxidant supplements on glucose metabolism and lipid profiles in polycystic ovary syndrome (PCOS) remains controversial. This systematic review and meta-analysis aimed to evaluate whether antioxidant supplements improve glucose metabolism and lipid profiles in women with PCOS to provide optimal nutritional supplement advice in clinical practice. Methods: The search was conducted across multiple medical databases from inception to January 1, 2022 and performed following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. A random effects model was used to calculate the overall effects. Results: Eighteen trials (1113 participants) were included. Antioxidant supplements significantly improved insulin resistance (95% CI, -0.62, -0.30; p < 0.00001; I2 =48%), fasting insulin (95% CI, -0.80, -0.44; p < 0.00001; I2 = 48%), and fasting plasma glucose (95% CI, -0.54, -0.21; p < 0.00001; I2 = 38%) in patients with PCOS. However, antioxidant supplements were found to not improve most indices of lipid profiles in PCOS except triglyceride. Conclusions: Antioxidant supplements are an effective intervention for relieving insulin resistance but do not significantly improve lipid metabolism in women with PCOS.
Collapse
Affiliation(s)
- Ruye Wang
- Department of TCM Gynecology, Hangzhou TCM hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyun Miao
- Department of TCM Gynecology, Hangzhou TCM hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Chen
- Department of TCM Gynecology, Hangzhou TCM hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Department of TCM Gynecology, Hangzhou TCM hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuqing Yang
- Department of TCM Gynecology, Hangzhou TCM hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Cheng
- Department of Orthopedics, Hangzhou TCM hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou,China
| | - Qin Zhang
- Department of TCM Gynecology, Hangzhou TCM hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
27
|
Popiolek-Kalisz J. The Impact of Dietary Flavonols on Central Obesity Parameters in Polish Adults. Nutrients 2022; 14:nu14235051. [PMID: 36501081 PMCID: PMC9739955 DOI: 10.3390/nu14235051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Central obesity is defined as the excessive fat tissue located in abdominal region accompanied by systemic inflammation, which drives to cardiovascular disease. Flavonols are antioxidative agents present in food. The aim of this study was investigating the relationship between dietary flavonols intake and central obesity. Methods and results: 80 participants (40 central obese and 40 healthy controls) were administered a food frequency questionnaire dedicated to flavonols intake assessment. Body composition was measured with bioelectrical impedance analysis. The analysis showed significant differences between central obese participants and healthy controls in total flavonol (p = 0.005), quercetin (p = 0.003), kaempferol (p = 0.04) and isorhamnetin (p < 0.001) habitual intake. Among central obese participants, there was a moderate inverse correlation between fat mass (FM) and total flavonol (R = −0.378; 95% CI: −0.620 to −0.071; p = 0.02), quercetin (R = −0.352; 95% CI: −0.601 to −0.041; p = 0.03), kaempferol (R = −0.425; 95% CI: −0.653 to −0.127; p = 0.01) and myricetin intake (R = −0.352; 95% CI: −0.601 to −0.041; p = 0.03). BMI was inversely correlated with total flavonol (R = −0.330; 95% CI: −0.584 to −0.016; p = 0.04) and quercetin intake (R = −0.336; 95% CI: −0.589 to −0.023; p = 0.04). Waist circumference was inversely correlated with total flavonol (R = −0.328; 95% CI: −0.586 to −0.009; p = 0.04), quercetin (R = −0.322; 95% CI: −0.582 to −0.002; p = 0.048) and myricetin intake (R = −0.367; 95% CI: −0.615 to −0.054; p = 0.02). Among flavonols’ dietary sources, there was an inverse correlation between black tea consumption and FM (R: −0.511; 95% CI: −0.712 to −0.233; p < 0.001) and between coffee and waist circumference (R: −0.352; 95% CI: −0.604 to −0.036; p = 0.03) in central obese participants. Conclusions: The higher flavonol intake could play a protective role in abdominal obesity development. What is more, total and selected flavonol dietary intakes are inversely correlated with the parameters used for obesity assessment in central obese participants. The habitual consumption of products rich in flavonols, mainly tea and coffee, could possibly have a preventive role in abdominal obesity development.
Collapse
Affiliation(s)
- Joanna Popiolek-Kalisz
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, ul. Chodzki 7, 20-093 Lublin, Poland;
- Department of Cardiology, Cardinal Wyszynski Hospital in Lublin, al. Krasnicka 100, 20-718 Lublin, Poland
| |
Collapse
|
28
|
Wu PY, Tan X, Wang M, Zheng X, Lou JH. Selenium supplementation for polycystic ovary syndrome: a meta-analysis of randomized controlled trials. Gynecol Endocrinol 2022; 38:928-934. [PMID: 36050880 DOI: 10.1080/09513590.2022.2118709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Introduction: The efficacy of selenium supplementation was elusive for polycystic ovary syndrome. This meta-analysis aimed to explore the efficacy of selenium supplementation for polycystic ovary syndrome. Methods: PubMed, EMbase, Web of science, EBSCO, Cochrane library database, CNKI, Chongqing VIP database and Wanfang databases have been searched through July 2022 and we included randomized controlled trials (RCTs) reporting the effect of selenium supplementation versus placebo in patients with polycystic ovary syndrome. Results: Five RCTs were included in the meta-analysis. Compared with placebo group for polycystic ovary syndrome, selenium supplementation was associated with significantly reduced total testosterone (SMD=-0.42; 95% CI=-0.78 to -0.06; p = 0.02) and cholesterol (SMD=-0.71; 95% CI=-1.41 to -0.02; p = 0.04), but revealed no remarkable influence on SHBG (SMD=-0.52; 95% CI=-1.29 to 0.25; p = 0.19), triglyceride (SMD=-1.45; 95% CI=-3.62 to 0.73; p = 0.19), LDL (SMD=-0.17; 95% CI=-0.72 to 0.37; p = 0.53), FPG (SMD=-0.95; 95% CI=-3.72 to 1.82; p = 0.50) or HOMA-IR (SMD=-0.51; 95% CI=-3.79 to 2.77; p = 0.76). Conclusions: Selenium supplementation may be able to improve the metabolic response for polycystic ovary syndrome, and this finding should be interpreted with caution.
Collapse
Affiliation(s)
- Pei-Yu Wu
- Department of VIP, Chongqing General Hospital, Chongqing, China
| | - Xianzu Tan
- Department of VIP, Chongqing General Hospital, Chongqing, China
| | - Min Wang
- Department of VIP, Chongqing General Hospital, Chongqing, China
| | - Xiangqing Zheng
- Department of VIP, Chongqing General Hospital, Chongqing, China
| | - Jin-He Lou
- Department of Health Management Center, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
29
|
Li W, Liu C, Yang Q, Zhou Y, Liu M, Shan H. Oxidative stress and antioxidant imbalance in ovulation disorder in patients with polycystic ovary syndrome. Front Nutr 2022; 9:1018674. [PMID: 36386912 PMCID: PMC9650267 DOI: 10.3389/fnut.2022.1018674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/07/2022] [Indexed: 07/30/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease that is characterized by oligo-ovulation or anovulation, hyperandrogenism, and polycystic ovaries observed using ultrasound with high clinical heterogeneity. At present, the etiology of PCOS is not clear but is thought to be related to genetic, metabolic, endocrine and environmental factors. Hyperandrogenism interacts with insulin resistance and overweight/obesity, forming a vicious cycle of mutual promotion and participating in the occurrence and progression of PCOS. Oxidative stress (OS) refers to the imbalance between the oxidation system and antioxidation system in the human body, which is associated with the occurrence and development of various diseases. Recent studies have shown that OS may be closely related to ovulation disorders in PCOS, and antioxidants can improve the oxidative stress state of PCOS. However, previous studies did not examine the effect of the interaction between OS and hyperandrogenism, insulin resistance or overweight/obesity on ovulation disorders in PCOS. This article reviews the interaction between OS and hyperandrogenism, insulin resistance and overweight/obesity; the effects of OS, hyperandrogenism, insulin resistance and overweight/obesity on ovulation disorders in PCOS; and the application of antioxidants in PCOS.
Collapse
Affiliation(s)
- Wenqian Li
- Department of Reproductive Medicine, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Chang Liu
- Department of Reproductive Medicine, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Qingmei Yang
- Department of Reproductive Medicine, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ying Zhou
- Department of Reproductive Medicine, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Min Liu
- Department of Reproductive Medicine, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Hongying Shan
- Department of Reproductive Medicine, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- Department of Obstetrics and Gynecology, Reproductive Medical Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
30
|
Shi YQ, Wang Y, Zhu XT, Yin RY, Ma YF, Han H, Han YH, Zhang YH. The Application of Complementary and Alternative Medicine in Polycystic Ovary Syndrome Infertility. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5076306. [PMID: 36248406 PMCID: PMC9568292 DOI: 10.1155/2022/5076306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a lifelong reproductive endocrine disease, which is the most common cause of anovular infertility. Modern medicine mainly treats infertile patients with PCOS by improving living habits, ovulation induction therapy, and assisted reproductive technology (ART), but the effect is not satisfied. Complementary alternative medicine (CAM) has conspicuous advantages in the treatment of PCOS infertility due to its good clinical efficacy, wide mechanism of action, and no obvious adverse reactions, but its safety and effectiveness in the treatment of PCOS infertility have not been proved. Based on the existing clinical and experimental studies, this paper looks for the therapeutic effect and the mechanism behind it, and explores the safety and effectiveness of its treatment in PCOS infertility, in order to provide reference for future clinical treatment and experimental research.
Collapse
Affiliation(s)
- Yu-Qian Shi
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Ting Zhu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui-Yang Yin
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi-Fu Ma
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Han Han
- The First Clinical Hospital affiliated to Harbin Medical University, Harbin, China
| | - Yan-Hua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue-Hui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
31
|
Derosa G, D'Angelo A, Maffioli P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Phytother Res 2022; 36:3709-3765. [PMID: 35912631 PMCID: PMC9804244 DOI: 10.1002/ptr.7564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 01/05/2023]
Abstract
Dysglycemia is a disease state preceding the onset of diabetes and includes impaired fasting glycemia and impaired glucose tolerance. This review aimed to collect and analyze the literature reporting the results of clinical trials evaluating the effects of selected nutraceuticals on glycemia in humans. The results of the analyzed trials, generally, showed the positive effects of the nutraceuticals studied alone or in association with other supplements on fasting plasma glucose and post-prandial plasma glucose as primary outcomes, and their efficacy in improving insulin resistance as a secondary outcome. Some evidences, obtained from clinical trials, suggest a role for some nutraceuticals, and in particular Berberis, Banaba, Curcumin, and Guar gum, in the management of prediabetes and diabetes. However, contradictory results were found on the hypoglycemic effects of Morus, Ilex paraguariensis, Omega-3, Allium cepa, and Trigonella faenum graecum, whereby rigorous long-term clinical trials are needed to confirm these data. More studies are also needed for Eugenia jambolana, as well as for Ascophyllum nodosum and Fucus vesiculosus which glucose-lowering effects were observed when administered in combination, but not alone. Further trials are also needed for quercetin.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Angela D'Angelo
- Department of Internal Medicine and TherapeuticsUniversity of PaviaPaviaItaly
- Laboratory of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and DyslipidemiasUniversity of PaviaPaviaItaly
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and AtherosclerosisFondazione IRCCS Policlinico San MatteoPaviaItaly
- Italian Nutraceutical Society (SINut)BolognaItaly
| |
Collapse
|
32
|
Trends in Gliosis in Obesity, and the Role of Antioxidants as a Therapeutic Alternative. Antioxidants (Basel) 2022; 11:antiox11101972. [PMID: 36290695 PMCID: PMC9598641 DOI: 10.3390/antiox11101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity remains a global health problem. Chronic low-grade inflammation in this pathology has been related to comorbidities such as cognitive alterations that, in the long term, can lead to neurodegenerative diseases. Neuroinflammation or gliosis in patients with obesity and type 2 diabetes mellitus has been related to the effect of adipokines, high lipid levels and glucose, which increase the production of free radicals. Cerebral gliosis can be a risk factor for developing neurodegenerative diseases, and antioxidants could be an alternative for the prevention and treatment of neural comorbidities in obese patients. AIM Identify the immunological and oxidative stress mechanisms that produce gliosis in patients with obesity and propose antioxidants as an alternative to reducing neuroinflammation. METHOD Advanced searches were performed in scientific databases: PubMed, ProQuest, EBSCO, and the Science Citation index for research on the physiopathology of gliosis in obese patients and for the possible role of antioxidants in its management. CONCLUSION Patients with obesity can develop neuroinflammation, conditioned by various adipokines, excess lipids and glucose, which results in an increase in free radicals that must be neutralized with antioxidants to reduce gliosis and the risk of long-term neurodegeneration.
Collapse
|
33
|
da Costa PCT, de Souza EL, Lacerda DC, Cruz Neto JPR, de Sales LCS, Silva Luis CC, Pontes PB, Cavalcanti Neto MP, de Brito Alves JL. Evidence for Quercetin as a Dietary Supplement for the Treatment of Cardio-Metabolic Diseases in Pregnancy: A Review in Rodent Models. Foods 2022; 11:foods11182772. [PMID: 36140900 PMCID: PMC9497971 DOI: 10.3390/foods11182772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Quercetin supplementation during pregnancy and lactation has been linked to a lower risk of maternal cardio-metabolic disorders such as gestational diabetes mellitus (GDM), dyslipidemia, preeclampsia, attenuation of malnutrition-related conditions, and gestational obesity in animal studies. Pre-clinical studies have shown that maternal supplementation with quercetin reduces cardio-metabolic diseases in dams and rodents’ offspring, emphasizing its role in modifying phenotypic plasticity. In this sense, it could be inferred that quercetin administration during pregnancy and lactation is a viable strategy for changing cardio-metabolic parameters throughout life. Epigenetic mechanisms affecting the AMP-activated protein kinase (AMPK), nuclear factor-kappa B (NF-κB), and phosphoinositide 3-kinase (PI3 K) pathways could be associated with these changes. To highlight these discoveries, this review outlines the understanding from animal studies investigations about quercetin supplementation and its capacity to prevent or decrease maternal and offspring cardio-metabolic illnesses and associated comorbidities.
Collapse
Affiliation(s)
- Paulo César Trindade da Costa
- Postgraduation Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Evandro Leite de Souza
- Postgraduation Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Diego Cabral Lacerda
- Postgraduation Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | | | | | - Cristiane Cosmo Silva Luis
- Postgraduation Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Paula Brielle Pontes
- Postgraduation Program in Neuropsychiatry and Health Sciences Behavior, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marinaldo Pacífico Cavalcanti Neto
- Integrated Laboratory of Morphofunctional Sciences, Institute of Biodiversity and Sustainability (NUPEM), Federal University of Rio de Janeiro, Macaé 21941-901, Brazil
| | - José Luiz de Brito Alves
- Postgraduation Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, Brazil
- Correspondence: or ; Tel./Fax: +55-81-998-455-485
| |
Collapse
|
34
|
Wu M, Zhang J, Gu R, Dai F, Yang D, Zheng Y, Tan W, Jia Y, Li B, Cheng Y. The role of Sirtuin 1 in the pathophysiology of polycystic ovary syndrome. Eur J Med Res 2022; 27:158. [PMID: 36030228 PMCID: PMC9419382 DOI: 10.1186/s40001-022-00746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common multifactor heterogeneous endocrine and metabolic disease in women of childbearing age. PCOS is a group of clinical syndromes characterized by reproductive disorders, metabolic disorders, and mental health problems that seriously impact the physical and mental health of patients. At present, new studies suggest that human evolution leads to the body changes and the surrounding environment mismatch adaptation, but the understanding of the disease is still insufficient, the pathogenesis is still unclear. Sirtuin 1 (SIRT1), a member of the Sirtuin family, is expressed in various cells and plays a crucial role in cell energy conversion and physiological metabolism. Pathophysiological processes such as cell proliferation and apoptosis, autophagy, metabolism, inflammation, antioxidant stress and insulin resistance play a crucial role. Moreover, SIRT1 participates in the pathophysiological processes of oxidative stress, autophagy, ovulation disturbance and insulin resistance, which may be a vital link in the occurrence of PCOS. Hence, the study of the role of SIRT1 in the pathogenesis of PCOS and related complications will contribute to a more thorough understanding of the pathogenesis of PCOS and supply a basis for the treatment of patients.
Collapse
Affiliation(s)
- Mali Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yifan Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Bingshu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
35
|
Chen T, Jia F, Yu Y, Zhang W, Wang C, Zhu S, Zhang N, Liu X. Potential Role of Quercetin in Polycystic Ovary Syndrome and Its Complications: A Review. Molecules 2022; 27:molecules27144476. [PMID: 35889348 PMCID: PMC9325244 DOI: 10.3390/molecules27144476] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common multisystem disease with reproductive, metabolic and psychological abnormalities. It is characterized by a high prevalence rate in women of childbearing age and highly heterogeneous clinical manifestations, which seriously harm women’s physical and mental health. Quercetin (QUR) is a natural compound of flavonoids found in a variety of foods and medicinal plants. It can intervene with the pathologic process of PCOS from multiple targets and channels and has few adverse reactions. It is mentioned in this review that QUR can improve ovulation disorder, relieve Insulin resistance (IR), reduce androgen, regulate lipid metabolism, regulate gut microbiota and improve vascular endothelial function, which is of great significance in the treatment of PCOS.
Collapse
Affiliation(s)
- Tong Chen
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fan Jia
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yue Yu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wufan Zhang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chaoying Wang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shiqin Zhu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nana Zhang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinmin Liu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Correspondence:
| |
Collapse
|
36
|
Hu X, Li X, Deng P, Zhang Y, Liu R, Cai D, Xu Q, Jiang X, Sun J, Bai W. The consequence and mechanism of dietary flavonoids on androgen profiles and disorders amelioration. Crit Rev Food Sci Nutr 2022; 63:11327-11350. [PMID: 35796699 DOI: 10.1080/10408398.2022.2090893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Androgen is a kind of steroid hormone that plays a vital role in reproductive system and homeostasis of the body. Disrupted androgen balance serves as the causal contributor to a series of physiological disorders and even diseases. Flavonoids, as an extremely frequent family of natural polyphenols, exist widely in plants and foods and have received great attention when considering their inevitable consumption and estrogen-like effects. Mounting evidence illustrates that flavonoids have a propensity to interfere with androgen synthesis and metabolism, and also have a designated improvement effect on androgen disorders. Therefore, flavonoids were divided into six subclasses based on the structural feature in this paper, and the literature about their effects on androgens published in the past ten years was summarized. It could be concluded that flavonoids have the potential to regulate androgen levels and biological effects, mainly by interfering with the hypothalamic-pituitary-gonadal axis, androgen synthesis and metabolism, androgen binding with its receptors and membrane receptors, and antioxidant effects. The faced challenges about androgen regulation by flavonoids masterly include target mechanism exploration, individual heterogeneity, food matrixes interaction, and lack of clinical study. This review also provides a scientific basis for nutritional intervention using flavonoids to improve androgen disorder symptoms.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
- Key Laboratory for Bio-Based Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, PR China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Qingjie Xu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, PR China
| |
Collapse
|
37
|
Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, Asemi Z. Quercetin: an effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr 2022; 63:9163-9186. [PMID: 35468007 DOI: 10.1080/10408398.2022.2067825] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various studies, especially in recent years, have shown that quercetin has beneficial therapeutic effects in various human diseases, including diabetes. Quercetin has significant anti-diabetic effects and may be helpful in lowering blood sugar and increasing insulin sensitivity. Quercetin appears to affect many factors and signaling pathways involved in insulin resistance and the pathogenesis of type 2 of diabetes. TNFα, NFKB, AMPK, AKT, and NRF2 are among the factors that are affected by quercetin. In addition, quercetin can be effective in preventing and ameliorating the diabetic complications, including diabetic nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy, and affects the key mechanisms involved in the pathogenesis of these complications. These positive effects of quercetin may be related to its anti-inflammatory and anti-oxidant properties. In this article, after a brief review of the pathogenesis of insulin resistance and type 2 diabetes, we will review the latest findings on the anti-diabetic effects of quercetin with a molecular perspective. Then we will review the effects of quercetin on the key mechanisms of pathogenesis of diabetes complications including nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy. Finally, clinical trials investigating the effect of quercetin on diabetes and diabetes complications will be reviewed.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, China
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Mostafa Vaghari-Tabari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
38
|
Zhang YY, Ma JX, Zhu YT, Wang YX, Chen WQ, Sun X, Zhang W, Wang CY, Ding CF. Investigation of the mechanisms and experimental verification of Cuscuta-Salvia in the treatment of polycystic ovary syndrome (PCOS) via network pharmacology. J Ovarian Res 2022; 15:40. [PMID: 35379295 PMCID: PMC8978390 DOI: 10.1186/s13048-022-00964-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disease associated with reproduction. The Cuscuta-Salvia formula has been widely used to treat for PCOS in clinic. However, its chemical and pharmacological properties remain unclear. We identified the active components and related targets of Cuscuta-Salvia using UHPLC-ESI-Q-TOF-MS and TCMSP database. Disease targets were obtained from the DisGeNET and GeneCards databases. Subsequently, common targets between Cuscuta-Salvia and PCOS were identified using a Venn diagram. PPI network was established. Core genes were selected using a Cytoscape software plugin. GO and KEGG enrichment analyses were performed for common targets using the "pathview" package in R. Several core targets were verified using molecular and Immunological methods. By combining UHPLC-ESI-Q-TOF-MS with a network pharmacology study, 14 active components and a total of 80 common targets were obtained. Ten core genes were regulated by Cuscuta-Salvia in PCOS, including IL6, AKT1, VEGFA, TP53, TNF, MAPK1, JUN, EGF, CASP3, and EGFR. GO results showed that cellular response to drugs, response to oxygen levels, response lipopolysaccharides, and response to molecule of bacterial origin in BP category; membrane, transcription regulator complex, nuclear chromatin, postsynaptic membrane, and vesicle lumen in CC category; DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, DNA-binding transcription activator activity, RNA polymerase II-specific, DNA-binding transcription activator activity, and cytokine receptor binding in MF terms. The KEGG enrichment pathway was mainly involved in the PI3K - Akt, MAPK, TNF, IL-17 signalling pathways, and in cellular senescence. Furthermore, the results of the experimental study showed that Cuscuta-Salvia ameliorated the pathological changes in the ovaries, liver and adipose tissue. And it improved the expressions of the genes or proteins. Our results demonstrate that Cuscuta-Salvia may provide a novel pharmacological basis in an experimental model of PCOS by regulating gene expression. This study provides a basis for future research and clinical applications.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian-Xiong Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yi-Xuan Wang
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Wang-Qiang Chen
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Xin Sun
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Wei Zhang
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Chen-Ye Wang
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Cai-Fei Ding
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China.
| |
Collapse
|
39
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Autophagy as a molecular target of quercetin underlying its protective effects in human diseases. Arch Physiol Biochem 2022; 128:200-208. [PMID: 31564166 DOI: 10.1080/13813455.2019.1671458] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy, known as a "self-eating" process, is associated with degradation of aged or damaged components and organelles. Generally, autophagy is a survival mechanism that provides energy during nutritional deprivation. This mechanism plays a remarkable role during the physiological condition by maintaining homeostasis and energy balance and several pathological conditions, particularly neurological disorders. Due to the critical role of autophagy in cancer, much attention has been made in the regulation of autophagy using both naturally occurring and synthetic drugs. Quercetin is a plant-derived chemical belonging to the family of flavonoids. Quercetin has valuable biological and therapeutic effects such as anti-tumor, antioxidant, anti-inflammatory, anti-diabetic, hepatoprotective, and cardioprotective. At the present review, we first provide an introduction about quercetin and autophagy with its related molecular pathways. We also describe how quercetin modulates autophagy mechanism to exert its therapeutic effects.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of basic science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Science, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
40
|
Yao J, Zhang Y, Zhao J, Wang XZ, Lin YP, Sun L, Lu QY, Fan GJ. Efficacy of flavonoids-containing supplements on insulin resistance and associated metabolic risk factors in overweight and obese subjects: a systematic review and meta-analysis of 25 randomized controlled trials. Front Endocrinol (Lausanne) 2022; 13:917692. [PMID: 35937836 PMCID: PMC9355558 DOI: 10.3389/fendo.2022.917692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Obesity is becoming a global epidemic. Flavonoids, with anti-inflammatory and antioxidative functions, are proposed to treat insulin resistance (IR) in obese subjects. We aimed to evaluate the effectiveness and safety of flavonoids-containing supplements on IR and associated metabolic risk factors in overweight and obese participants. METHODS Randomized controlled trials (RCTs) involving flavonoids-containing supplements used to treat overweight and obese subjects with results of IR, other associated metabolic risk factors, and adverse effects published were retrieved from 5 electronic databases from the year of inception to January 2, 2022. RESULTS Twenty-five RCTs (n = 1950) were included. Pooled results demonstrated that HOMA-IR in the group receiving flavonoids-containing supplements significantly decreased versus the control group (WMD = -0.132, 95% CI: -0.236 to -0.027, p = 0.013). Subgroup analyses showed that HOMA-IR in the subgroup receiving flavonoid-containing mixtures significantly decreased (WMD = -0.25, 95% CI: -0.43 to -0.06, p = 0.008), whereas such result was not found in the singly-used flavonoids subgroup (WMD = -0.08, 95% CI: -0.20 to 0.05, p = 0.240). In addition, QUICKI in the experimental group had an increasing trend compared to that in the control group (WMD = 0.01, 95% CI: -0.00 to 0.02, p = 0.065). For secondary outcomes, FBG, FBI, TC, TG, SBP, weight, BMI, and WHR in the group receiving flavonoids-containing supplements dropped significantly compared to those in the controls (WMD = -0.05, 95% CI: -0.08 to -0.02, p = 0.002; WMD = -0.58, 95% CI: -1.04 to -0.12, p = 0.014; WMD = -0.04, 95% CI: -0.06 to -0.03, p < 0.001; WMD = -0.04, 95% CI: -0.05 to -0.03, p < 0.001; WMD = -2.01, 95% CI: -3.17 to -0.86, p = 0.001; WMD = -0.29, 95% CI: -0.49 to -0.09, p = 0.004; WMD = -0.10 95% CI: -0.17 to -0.04, p = 0.003; WMD = -0.10, 95% CI: -0.01 to -0.00, p = 0.015; respectively). Adverse reactions did not differ between the group receiving flavonoids-containing supplements and the control group (RR = 0.97, 95% CI: 0.62 to 1.52, p = 0.905). CONCLUSION This study showed that flavonoids-containing supplements may be efficacious and safe in improving IR and associated metabolic risk factors in overweight and obese participants. Nevertheless, doubt over the findings remains because limited RCTs per type of flavonoids-containing supplement were investigated, and many of the RCTs had a small sample size. Therefore, the findings must be validated in future research. SYSTEMATIC REVIEW REGISTRATION https://inplasy.com/inplasy-2022-2-0011/, identifier INPLASY202220011.
Collapse
Affiliation(s)
- Jia Yao
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yuan Zhang
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jia Zhao
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian-Zhe Wang
- School of Second Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Ping Lin
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lu Sun
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qi-Yun Lu
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guan-Jie Fan
- Department of Endocrinology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Guan-Jie Fan,
| |
Collapse
|
41
|
Mahmoud AA, Elfiky AM, Abo-Zeid FS. The anti-androgenic effect of quercetin on hyperandrogenism and ovarian dysfunction induced in a dehydroepiandrosterone rat model of polycystic ovary syndrome. Steroids 2022; 177:108936. [PMID: 34752810 DOI: 10.1016/j.steroids.2021.108936] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a multi-factorial endocrine disorder associated with hyperandrogenism. Dehydroepiandrosterone (DHEA) administration to prepubertal rats stimulates androgen biosynthesis and generation of the PCOS model. The present study aimed to evaluate the anti-androgenic effects of quercetin (Q) in comparison with metformin (MET) on hyperandrogenism and ovarian dysfunction in a DHEA-induced PCOS rat model. After induction of PCOS, female rats were allocated into six groups with 7 rats in each group: normal control; PCOS (DHEA), MET (25 mg/kg, oral administration), Q (25 mg/kg, oral administration), DHEA + MET (25 mg/kg, oral administration), and DHEA + Q (25 mg/kg, oral administration) for 28 days. MET and Q individually reduced body weight, serum free testosterone (T) and luteinizing hormone (LH), and LH/follicle-stimulating hormone (FSH) ratio in the PCOS rats. Both treatments elevated estradiol (E2) level, ovarian aromatase protein content, and E2/free T ratio in the PCOS rats. Additionally, MET and Q increased preantral, antral, and preovulatory follicles and corpora lutea counts, while both treatments decreased atretic follicle count and eliminated the formation of cysts in the PCOS rats. MET and Q reduced ovarian Bax and elevated Bcl-2 protein abundance in the PCOS rats. Our study revealed that Q is as effective as MET in reducing hyperandrogenism via decreasing free T level and improving hypothalamic-pituitary-ovarian axis function. The results suggest that MET and Q may enhance E2 concentration, ovarian aromatase protein content, folliculogenesis, and decrease atresia via attenuation of hyperandrogenism in PCOS rats.
Collapse
Affiliation(s)
- Asmaa A Mahmoud
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Asmaa M Elfiky
- Environmental and Occupational Medicine Department, Environmental Research Division, National Research Center, Cairo, Egypt
| | - Faten S Abo-Zeid
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
42
|
Chen Y, Chai X, Zhao Y, Yang X, Zhong C, Feng Y. Investigation of the Mechanism of Zishen Yutai Pills on Polycystic Ovary Syndrome: A Network Pharmacology and Molecular Docking Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6843828. [PMID: 34956381 PMCID: PMC8702313 DOI: 10.1155/2021/6843828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/30/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Zishen Yutai Pills (ZSYTP) is a prescription based on traditional Chinese medicine used to treat kidney-deficient pattern in traditional Chinese medicine. It is also widely used clinically for the treatment of polycystic ovary syndrome (PCOS) with positive results. This study aims to explore the potential pharmacological mechanism of ZSYTP for the treatment of PCOS by a network pharmacology approach. METHODS Compounds were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine and TCM Database@ Taiwan, and the corresponding targets were retrieved from PubChem, Swiss Target Prediction, STITCH, and DrugBank. Meanwhile, PCOS targets were retrieved from the GeneCards database, the Online Mendelian Inheritance in Man database, National Center for Biotechnology Information Database, and DrugBank. Subsequently, multiple network construction and gene enrichment analyses were conducted with Cytoscape 3.8.2 software. Based on the previous results in the study, molecular docking simulations were done. RESULTS 205 active compounds and 478 ZSYTP target genes were obtained after screening by ADME consideration. 1881 disease-related targets were obtained after removing duplicates. 148 intersection target genes between drug and disease targets were isolated. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes analysis highlighted multiple gene functions and different signaling pathways to treat PCOS. Further molecular docking demonstrated the practicality of in vivo action of ZSYTP to a certain extent. CONCLUSIONS It is possible that the pharmacological effect of ZSYTP on PCOS is linked to the hypoxia-inducible factor 1 (HIF-1) signaling pathway, improving insulin resistance, the variation on gene expression such as RNA splicing, and regulation of mRNA metabolic process. This study paves the way for further research investigating its mechanisms.
Collapse
Affiliation(s)
- Yingyin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinyi Chai
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinqian Yang
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Caiting Zhong
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yihui Feng
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Gynecology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
43
|
Liu F, Sirisena S, Ng K. Efficacy of flavonoids on biomarkers of type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2021:1-27. [PMID: 34842001 DOI: 10.1080/10408398.2021.2009761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A systematic review and meta-analysis of 28 randomized controlled trials (RCTs) to assess the efficacy of flavonoids intake on key biomarkers related to Type 2 diabetes mellitus was conducted. The mean difference (MD) with 95% confidence intervals (95% CI) was pooled using a random-effects model. Significant reduction in fasting glucose (MD: -0.22, 95% CI: -0.34 to -0.09, p = 0.0013), hemoglobin A1c (HbA1c) (MD: -0.26, 95% CI: -0.46 to -0.05, p = 0.021), homeostasis model assessment of insulin resistance (HOMA-IR) (MD: -0.40, 95% CI: -0.66 to -0.15, p = 0.0039), triglyceride (TG) (MD: -0.13, 95% CI: -0.21 to -0.05, p = 0.002), total cholesterol (TC) (MD: -0.14, 95% CI: -0.21 to -0.08, p = 0.0002), and low density lipoprotein-C (LDL-C) (MD: -0.15; 95% CI: -0.24 to -0.07, p = 0.0009) were observed in intervention group compare to placebo at the end of trial. Moreover, flavonoid intake had negative but non-significant effect on insulin (MD: -0.46), 2 h-postprandial glucose (2 h-PPG) (MD: -0.22), homeostasis model assessment of β-cell function (HOMA-β) (MD: -2.81), and insignificantly increased high-density lipoprotein-C (HDL-C) (MD: 0.03). In conclusion, flavonoid intake has modest but statistically significant benefits in glucose metabolism, insulin sensitivity, and lipid metabolism, especially for significantly lowing fasting blood glucose, HOMA-IR, HbA1c, TG, TC, and LDL-C.
Collapse
Affiliation(s)
- Fanling Liu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Sameera Sirisena
- Department of Chemical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC, Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
44
|
Protective Effects of Dietary Supplement Spirulina (Spirulina platensis) against Toxically Impacts of Monosodium Glutamate in Blood and Behavior of Swiss mouse. SEPARATIONS 2021. [DOI: 10.3390/separations8110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Well-known monosodium glutamate (E-621, MSG), originally used as a food flavor enhancer, was approved approximately in all countries, but the toxicity versus the safety of (MSG) are still unclear due to variable scientific toxicological reports. Moreover, it was reported to trigger elevated frequencies of nausea and headaches in humans and provide deleterious effects on laboratory animals. The objectives of the present study were to (i) estimate the possible toxic effects of the food additive MSG (ii) and the ameliorating protective effects of the dietary supplement spirulina (Spirulina platensis) on the biochemical parameters of blood and the damage produced in organs of Swiss mice after applying a supplementary daily dose of MSG for 4 weeks. (2) Methods: The present study was conducted on 20 mature Swiss mice, which were randomly organized into four groups of five Swiss mice. The treatments were (I) the control group, in which Swiss mice were fed only animal feed and drinking water; group II MSG1, which received 1 mL of MSG; group III MSG0.5, which was treated with 0.5 mL of MSG; and (IV) the group MSGS, which was treated with 1 mL of monosodium glutamate and 1 mL of spirulina (aiming to reduce the MSG toxicity). (3) Results: At the end of the experiment, Swiss mice treated with MSG demonstrated a passiveness regarding behavioral aspects. As we hypothesized, the parameters of the spirulina group reached similar values to the control group, and no histopathological observations have been found. Altogether, our findings evidenced that monosodium glutamate leads to histopathological changes in Swiss mice kidneys and caused important modifications for all biochemical parameters of the blood serum. Noticeably, the potential protective effect of Spirulina platensis was proved and was described by using the FTIR spectroscopy technique. (4) Conclusions: A diet rich in antioxidants and other plant-derived bioactive compounds may provide healthy nutrition, alleviating the potential side effects of some food additives.
Collapse
|
45
|
Gharaei R, Mahdavinezhad F, Samadian E, Asadi J, Ashrafnezhad Z, Kashani L, Amidi F. Antioxidant supplementations ameliorate PCOS complications: a review of RCTs and insights into the underlying mechanisms. J Assist Reprod Genet 2021; 38:2817-2831. [PMID: 34689247 PMCID: PMC8609065 DOI: 10.1007/s10815-021-02342-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most important gynecological disorders of women in the age of reproduction. Different hormonal and inflammatory cross-talks may play in the appearance of its eventual complications as a leading cause of infertility. Excessive production of reactive oxygen species over the power of the antioxidant system as oxidative stress is known to contribute to a variety of diseases like PCOS. Thus, the utilization of antioxidants can be efficient in preventing or assistant in treating these diseases. In this review, we describe the clinical trial studies that have examined the efficiency of antioxidant strategies against PCOS and the possible underlying mechanisms. The investigations presented here lead us to consider that targeting oxidative stress pathways is probably a powerful promising therapeutic approach towards PCOS. There is preparatory evidence of the effectiveness of antioxidant interventions in ameliorating some of the PCOS complications, including metabolic and hormonal disorders. Due to limited data and relatively few clinical trials, many of these interventions need further investigation before they can be considered effective agents for routine clinical use.
Collapse
Affiliation(s)
- Roghaye Gharaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Mahdavinezhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Samadian
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zhaleh Ashrafnezhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ladan Kashani
- Department of Obstetrics and Gynecology, School of Medicine, Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Roshanravan N, Askari SF, Fazelian S, Ayati MH, Namazi N. The roles of quercetin in diabetes mellitus and related metabolic disorders; special focus on the modulation of gut microbiota: A comprehensive review. Crit Rev Food Sci Nutr 2021:1-14. [PMID: 34620011 DOI: 10.1080/10408398.2021.1983765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quercetin is a dietary flavonoid that can affect the balance between anti-oxidant defense system and oxidative stress. A number of studies showed the positive effects of quercetin on diabetes mellitus and related metabolic disorders through different pathways such as gut flora. However, findings are conflicting. In addition, it seems no studies have summarized all potential mechanisms of quercetin in diabetes mellitus, so far. Therefore, the aims of the present comprehensive review were to provide an overview on biological and biochemical characteristics of quercetin and investigate the effect of quercetin on diabetes mellitus and related metabolic disorders by focusing on its effects on the modulation of gut microbiota. For this purpose, findings of In vitro, animal studies, clinical trials, and review studies with the English language published until January 2021 were summarized. They were identified through electronic databases (PubMed, Scopus, and Cochrane Library) and Google Scholar. Findings showed that quercetin can be an effective component for improving glycemic status and other metabolic disorders related to diabetes mellitus based on In vitro and animal studies. However, environmental factors, food processing and using nanoformulations can affect its efficacy in human studies. Several potential mechanisms, including the modulation of gut flora are proposed for its actions. However, due to limited clinical trials and contradictory findings, more high-quality clinical trials are needed to make a decision on the efficacy of supplementation with quercetin as a complementary therapy for the management of diabetes mellitus, metabolic disorders, and modulating gut flora.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sayyedeh Fatemeh Askari
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Siavash Fazelian
- Clinical Research Development Unit, Ayatollah Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Hossein Ayati
- School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Mihanfar A, Nouri M, Roshangar L, Khadem-Ansari MH. Ameliorative effects of fisetin in letrozole-induced rat model of polycystic ovary syndrome. J Steroid Biochem Mol Biol 2021; 213:105954. [PMID: 34298098 DOI: 10.1016/j.jsbmb.2021.105954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND The present study was conducted to investigate the therapeutic effects of a potent polyphenol, fisetin, on the letrozole-induced rat model of polycystic ovary syndrome (PCOS). METHODOLOGY Twenty-four female Wistar rats (42 days old) were divided into four groups: control group (received carboxy methylcellulose (CMC 0.5 %)), PCOS group treated with letrozole (1 mg/kg), fisetin group received same dose of letrozole + fisetin (10 mg/kg), and metformin group received same dose of letrozole + metformin (300 mg/kg). At the end of the experiment, biochemical (glucose, lipid profile) and hormonal (insulin, testosterone, estradiol, and progesterone) parameters were analyzed. Histological examinations of ovaries were also conducted by hematoxylin and eosin (H&E) staining. Real-time polymerase chain reaction (PCR) and western blotting were carried out for cytochrome P450 17A1 (CYP17A1), sirtuin-1 (SIRT1), and 5' AMP-activated protein kinase (AMPK) gene expression in the ovaries. Furthermore, enzymatic activities of antioxidants including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the ovaries were analyzed by colorimetric method. RESULTS Letrozole administration resulted in a remarkable abnormality in biochemical and hormonal parameters. Fisetin normalized levels of glucose, lipid profile, homeostatic model assessment for insulin resistance (HOMA-IR), testosterone, estradiol, and progesterone. Moreover, fisetin increased expression levels of SIRT1 and AMPK, and decreased expression level of CYP17A1 in the ovaries. Additionally, fisetin showed protective effect by enhancing antioxidant activities of CAT, SOD, and GPx depleted secondary to induction of PCOS. Fisetin effects were comparable to metformin, as the standard drug used for treatment of PCOS. CONCLUSION Our results showed that, fisetin treatment caused significant alleviating effects by restoring PCOS-induced alterations in the key genes involved in energy homeostasis and antioxidant enzymes, suggesting that it may have a key role in combating with PCOS.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
48
|
Aoi W, Iwasa M, Marunaka Y. Metabolic functions of flavonoids: From human epidemiology to molecular mechanism. Neuropeptides 2021; 88:102163. [PMID: 34098453 DOI: 10.1016/j.npep.2021.102163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Dietary flavonoid intake is associated with the regulation of nutrient metabolism in the living body. Observational and cohort studies have reported a negative association between flavonoid intake and the risk of metabolic and cardiovascular diseases. Several intervention trials in humans have also supported the benefits of dietary flavonoids. In experimental studies using animal models, a daily diet rich in typical flavonoids such as catechins, anthocyanin, isoflavone, and quercetin was shown to improve whole-body energy expenditure, mitochondrial activity, and glucose tolerance. For some flavonoids, molecular targets for the metabolic modulations have been suggested. Although the effect of flavonoids on neurons has been unclear, several flavonoids have been shown to regulate thermogenesis and feeding behavior through modulating autonomic and central nervous systems. Based on epidemiological and experimental studies, this review summarizes the evidence on the metabolic benefits of flavonoids and their potential mechanism of action in metabolic regulation.
Collapse
Affiliation(s)
- Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.
| | - Masayo Iwasa
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan; Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan; Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; International Research Center for Food Nutrition and Safety, College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
49
|
The Potential Effect of Rhizoma coptidis on Polycystic Ovary Syndrome Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5577610. [PMID: 34306142 PMCID: PMC8282388 DOI: 10.1155/2021/5577610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022]
Abstract
Background Rhizoma coptidis (RC) showed a significant effect on PCOS, but its mechanism in PCOS remains unclear. Methods The components of RC were searched by TCMSP. The Smiles number of the active ingredients was queried through PubChem, and the predicted targets were obtained from the SwissTargetPrediction database. The DrugBank, GeneCards, and DisGeNET databases were retrieved to acquire the related targets of PCOS. Then, the network of compound-target was constructed. The core targets were analyzed using protein-protein interaction (PPI) analysis, and the binding activities were verified by molecular docking. The enriched pathways of key targets were examined by GO and KEGG. Results 13 components and 250 targets of RC on PCOS were screened. The core network was filtered based on topological parameters, and the key components were palmatine, berberine, berberrubine, quercetin, and epiberberine. The key targets included DRD2, SLC6A4, CDK2, DPP4, ESR1, AKT2, PGR, and AKT1. Molecular docking displayed that the active ingredients of RC had good binding activities with potential targets of PCOS. After enrichment analysis, 30 functional pathways were obtained, including neuroactive ligand-receptor interaction, dopaminergic synapse, and cAMP signaling pathway. Conclusion In summary, this study clarified the potential effect of RC on PCOS, which is helpful to provide references for clinical practice. It is also conducive to the secondary development of RC and its monomer components.
Collapse
|
50
|
Ruskovska T, Budić-Leto I, Corral-Jara KF, Ajdžanović V, Arola-Arnal A, Bravo FI, Deligiannidou GE, Havlik J, Janeva M, Kistanova E, Kontogiorgis C, Krga I, Massaro M, Miler M, Milosevic V, Morand C, Scoditti E, Suárez M, Vauzour D, Milenkovic D. Systematic Bioinformatic Analyses of Nutrigenomic Modifications by Polyphenols Associated with Cardiometabolic Health in Humans-Evidence from Targeted Nutrigenomic Studies. Nutrients 2021; 13:2326. [PMID: 34371836 PMCID: PMC8308901 DOI: 10.3390/nu13072326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiometabolic disorders are among the leading causes of mortality in the human population. Dietary polyphenols exert beneficial effects on cardiometabolic health in humans. Molecular mechanisms, however, are not completely understood. Aiming to conduct in-depth integrative bioinformatic analyses to elucidate molecular mechanisms underlying the protective effects of polyphenols on cardiometabolic health, we first conducted a systematic literature search to identify human intervention studies with polyphenols that demonstrate improvement of cardiometabolic risk factors in parallel with significant nutrigenomic effects. Applying the predefined inclusion criteria, we identified 58 differentially expressed genes at mRNA level and 5 miRNAs, analyzed in peripheral blood cells with RT-PCR methods. Subsequent integrative bioinformatic analyses demonstrated that polyphenols modulate genes that are mainly involved in the processes such as inflammation, lipid metabolism, and endothelial function. We also identified 37 transcription factors that are involved in the regulation of polyphenol modulated genes, including RELA/NFKB1, STAT1, JUN, or SIRT1. Integrative bioinformatic analysis of mRNA and miRNA-target pathways demonstrated several common enriched pathways that include MAPK signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, focal adhesion, or PPAR signaling pathway. These bioinformatic analyses represent a valuable source of information for the identification of molecular mechanisms underlying the beneficial health effects of polyphenols and potential target genes for future nutrigenetic studies.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia; (T.R.); (M.J.)
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| | - Karla Fabiola Corral-Jara
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
| | - Vladimir Ajdžanović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (V.A.); (M.M.); (V.M.)
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-A.); (F.I.B.); (M.S.)
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-A.); (F.I.B.); (M.S.)
| | - Georgia-Eirini Deligiannidou
- Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.-E.D.); (C.K.)
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences, 16521 Prague, Czech Republic;
| | - Milkica Janeva
- Faculty of Medical Sciences, Goce Delcev University, 2000 Stip, North Macedonia; (T.R.); (M.J.)
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Christos Kontogiorgis
- Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.-E.D.); (C.K.)
| | - Irena Krga
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (M.M.); (E.S.)
| | - Marko Miler
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (V.A.); (M.M.); (V.M.)
| | - Verica Milosevic
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia; (V.A.); (M.M.); (V.M.)
| | - Christine Morand
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy; (M.M.); (E.S.)
| | - Manuel Suárez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-A.); (F.I.B.); (M.S.)
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK;
| | - Dragan Milenkovic
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (I.K.); (C.M.)
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|