1
|
Zhao M, Li Q, Chai Y, Rong R, He L, Zhang Y, Cui H, Xu H, Zhang X, Wang Z, Yuan S, Chen M, He C, Zhang H, Qin L, Hu R, Zhang X, Zhuang W, Li B. An anti-CD19-exosome delivery system navigates the blood-brain barrier for targeting of central nervous system lymphoma. J Nanobiotechnology 2025; 23:173. [PMID: 40045315 PMCID: PMC11881385 DOI: 10.1186/s12951-025-03238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND High-dose methotrexate (HD-MTX) serves as the cornerstone of central nervous system lymphoma (CNSL) treatment, but its efficacy is limited due to low blood-brain barrier (BBB) penetration and adverse effects. This study is focused on an exosome-based drug delivery approach aimed at enhancing BBB permeability, thereby reducing the required dosage of methotrexate (MTX) while ensuring specific targeting of CNSL. METHODS Human adipose-derived mesenchymal stem cells (hAMSCs) were modified with a lentiviral vector encoding anti-CD19, incorporated into exosomes characterized by colloidal gold immunoelectron microscopy and Nano flow cytometry. MTX loaded into anti-CD19-Exos via co-incubation, assessed for loading and encapsulation efficiencies using HPLC. In vitro BBB model constructed using hCMEC/D3 and astrocytes to investigate BBB permeability. In vivo efficacy of anti-CD19-Exo-MTX evaluated in intracranial CNSL models using MRI. Biodistribution tracked with DiR-labeled exosomes, drug concentration in CSF measured by HPLC. LC-MS/MS identified and characterized exosomal proteins analyzed using GO Analysis. Neuroprotective effects of exosomal proteins assessed with TUNEL and Nissl staining on hippocampal neurons in CNSL models. Liver and kidney pathology, blood biochemical markers, and complete blood count evaluated exosomal protein effects on organ protection and MTX-induced myelosuppression. RESULTS We generated anti-CD19-Exo derived from hAMSCs. These adapted exosomes effectively encapsulated MTX, enhancing drug accessibility within lymphoma cells and sustained intracellular accumulation over an extended period. Notably, anti-CD19-Exo-MTX interacted with cerebrovascular endothelial cells and astrocytes of the BBB, leading to endocytosis and facilitating the transportation of MTX across the barrier. Anti-CD19-Exo-MTX outperformed free MTX in vitro, exhibiting a more potent lymphoma-suppressive effect (P < 0.05). In intracranial orthotopic CNSL models, anti-CD19-Exo-MTX exhibited a significantly reduced disease burden compared to both the MTX and Exo-MTX groups, along with prolonged overall survival (P < 0.05). CSF drug concentration analysis demonstrated enhanced stability and longer-lasting drug levels for anti-CD19-Exo-MTX. Anti-CD19-Exo-MTX exhibited precise CNSL targeting with no organ toxicity. Notably, our study highlighted the functional potential of reversal effect of hAMSCs-exosomes on MTX-induced neurotoxicity, hepatic and renal impairment, and myelosuppression. CONCLUSIONS We present anti-CD19-Exo-MTX as a promising exosome-based drug delivery platform that enhances BBB permeability and offers specific targeting for effective CNSL treatment with reduced adverse effects.
Collapse
Affiliation(s)
- Meifang Zhao
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Qi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Yali Chai
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China
| | - Rong Rong
- Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lexin He
- Suzhou Sano Precision Medicine Ltd., Suzhou, China
| | - Yuchen Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Hongxia Cui
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Hao Xu
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Xinyun Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Zhiming Wang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Shushu Yuan
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Menglu Chen
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Chuan He
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Han Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Linlin Qin
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China
| | - Ruijing Hu
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China
| | - Xinyuan Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Basic Medical Sciences, Soochow University, Ren Ai Road 199, Suzhou, 215123, China.
| | - Bingzong Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, San Xiang Road 1055, Suzhou, 215006, China.
| |
Collapse
|
2
|
Li Y, Xu Y, Su W, Xu J, Ye Z, Wang Z, Liu Q, Chen F. Exploring the immuno-nano nexus: A paradigm shift in tumor vaccines. Biomed Pharmacother 2025; 184:117897. [PMID: 39921945 DOI: 10.1016/j.biopha.2025.117897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Tumor vaccines have become a crucial strategy in cancer immunotherapy. Challenges of traditional tumor vaccines include inadequate immune activation and low efficacy of antigen delivery. Nanoparticles, with their tunable properties and versatile functionalities, have redefined the landscape of tumor vaccine design. In this review, we outline the multifaceted roles of nanoparticles in tumor vaccines, ranging from their capacity as delivery vehicles to their function as immunomodulatory adjuvants capable of stimulating anti-tumor immunity. We discuss how this innovative approach significantly boosts antigen presentation by leveraging tailored nanoparticles that facilitate efficient uptake by antigen-presenting cells. These nanoparticles have been meticulously designed to overcome biological barriers, ensuring optimal delivery to lymph nodes and effective interaction with the immune system. Overall, this review highlights the transformative power of nanotechnology in redefining the principles of tumor vaccines. The intent is to inform more efficacious and precise cancer immunotherapies. The integration of these advanced nanotechnological strategies should unlock new frontiers in tumor vaccine development, enhancing their potential to elicit robust and durable anti-tumor immunity.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yike Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenwen Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jia Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zifei Ye
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhuoyi Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Qihui Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Fangfang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
3
|
Bresinsky M, Goepferich A. Control of biomedical nanoparticle distribution and drug release in vivo by complex particle design strategies. Eur J Pharm Biopharm 2025; 208:114634. [PMID: 39826847 DOI: 10.1016/j.ejpb.2025.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The utilization of targeted nanoparticles as a selective drug delivery system is a powerful tool to increase the amount of active substance reaching the target site. This can increase therapeutic efficacy while reducing adverse drug effects. However, nanoparticles face several challenges: upon injection, the immediate adhesion of plasma proteins may mask targeting ligands, thereby diminishing the target cell selectivity. In addition, opsonization can lead to premature clearance and the widespread presence of receptors or enzymes limits the accuracy of target cell recognition. Nanoparticles may also suffer from endosomal entrapment, and controlled drug release can be hindered by premature burst release or insufficient particle retention at the target site. Various strategies have been developed to address these adverse events, such as the implementation of switchable particle properties, regulating the composition of the formed protein corona, or using click-chemistry based targeting approaches. This has resulted in increasingly complex particle designs, raising the question of whether this development actually improves the therapeutic efficacy in vivo. This review provides an overview of the challenges in targeted drug delivery and explores potential solutions described in the literature. Subsequently, appropriate strategies for the development of nanoparticular drug delivery concepts are discussed.
Collapse
Affiliation(s)
- Melanie Bresinsky
- Department of Pharmaceutical Technology, University of Regensburg 93053 Regensburg, Bavaria, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg 93053 Regensburg, Bavaria, Germany.
| |
Collapse
|
4
|
Kim KR, Lee AS, Heo HR, Park SY, Kim CS. Bioinspired synthesis of virus-like particle-templated thin silica-layered nanocages with enhanced biocompatibility and cellular uptake as drug delivery carriers. Colloids Surf B Biointerfaces 2025; 247:114418. [PMID: 39642678 DOI: 10.1016/j.colsurfb.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
The bioinspired synthesis of virus-like silica nanoparticles in biomedical applications makes it possible to utilize the cellular delivery capabilities of viruses while minimizing the cytotoxicity of inorganic silica. In this study, we developed a diatom-inspired method for synthesizing silica-layered nanocages utilizing R5 peptide-functionalized virus-like particles (VLPs). R5 peptides were genetically inserted into the F-G loop of human papillomavirus 16 L1 proteins (HPV16 L1-R5). HPV16 L1-R5 was self-assembled into VLPs under an acidic pH similar to native ones and exhibited ∼65 % drug encapsulation efficiency. The HPV16 L1-R5 VLP@silica nanocages (SiNPs) were synthesized through diatom-inspired silicification of HPV16 L1-R5 VLPs via intermolecular interaction of the R5 peptide and polyol. HPV16L1-R5 VLP@SiNPs displayed uniform, monodisperse particles with approximately 10 nm silica layer compared to HPV16 L1-R5 VLPs. HPV16 L1-R5 VLP@SiNPs showed high biocompatibility at high concentrations, unlike commercial mesoporous SiNPs. Furthermore, the virus-like HPV16 L1-R5 VLP@SiNPs resulted in approximately 2.5-fold increased cellular uptake efficiency compared to commercial mesoporous SiNPs. These results suggest that the thin silica layer on HPV16 L1-R5 VLPs retains cellular delivery capacity while reducing cytotoxicity. Our strategy presents an innovative method for synthesizing virus-like nanoparticles in biomedical applications, enhancing cellular delivery capacity and biocompatibility.
Collapse
Affiliation(s)
- Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ae Sol Lee
- Graduate School of Chemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea.
| | - Chang Sup Kim
- Graduate School of Chemical Engineering, Dongguk University, Seoul 04620, Republic of Korea; Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
5
|
Li M, Liu Z, Peng D, Liu Y, Cheng L, Chen B, Liu J. Multifunctional porous organic polymer-based hybrid nanoparticles for sonodynamically enhanced cuproptosis and synergistic tumor therapy. Acta Biomater 2025:S1742-7061(25)00144-8. [PMID: 39993518 DOI: 10.1016/j.actbio.2025.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Cuproptosis has gained significant attention among different cell death pathways in cancer therapy, which relies on the excessive accumulation of Cu2+ in mitochondria of tumor cells. Nevertheless, the high levels of glutathione in tumor microenvironment chelates with Cu2+ and thereby reducing its cytotoxicity. In this study, we designed core-shell porous organic polymers (POPs) nanoparticles to deliver and accumulate Cu2+ in tumor cells for enhanced cuproptosis. The porous organic polymers, containing bipyridine structural units, were synthesized on the aminated silica template, followed by the coordination of Cu2+ and the loading of artesunate (ART) as the sonosensitizer, yielding the Cu/ART@Hpy nanoparticles. In the acidic tumor microenvironment, the nanoparticles realized pH-responsive release of Cu2+. Meanwhile, the generation of ROS under ultrasound irradiation depleted intracellular glutathione, leading to the increased intracellular accumulation of Cu2+ for cuproptosis and triggering multiple cell death mechanisms for sonodynamically enhanced tumor therapy. Our study highlights the potential of the porous organic polymer as a platform for cuproptosis and synergistic tumor therapy. STATEMENT OF SIGNIFICANCE: Cuproptosis is induced by the excessive accumulation of Cu²⁺ within the mitochondria of tumor cells. However, the high level of glutathione in the tumor microenvironment can chelate Cu²⁺, thereby reducing the therapeutic efficacy. In this study, we developed the core-shell structured Cu/ART@Hpy nanoparticles for pH-responsive delivery of Cu²⁺. Under ultrasound irradiation, the generated reactive oxygen species deplete intracellular glutathione, enhancing Cu²⁺ accumulation for cuproptosis and activating multiple cell death pathways. The Cu/ART@Hpy nanoparticles enable sonodynamically enhanced cuproptosis, achieving synergistic tumor therapy.
Collapse
Affiliation(s)
- Meiting Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Zhuoyin Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Dan Peng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Lili Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, PR China.
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
6
|
Neupane R, Malla S, Karthikeyan C, Asbhy CR, Boddu SHS, Jayachandra Babu R, Tiwari AK. Endocytic highways: Navigating macropinocytosis and other endocytic routes for precision drug delivery. Int J Pharm 2025; 673:125356. [PMID: 39956408 DOI: 10.1016/j.ijpharm.2025.125356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/22/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Drug molecules can reach intracellular targets by different mechanisms, such as passive diffusion, active transport, and endocytosis. Endocytosis is the process by which cells engulf extracellular material by forming a vesicle and transporting it into the cells. In addition to its biological functions, endocytosis plays a vital role in the internalization of the therapeutic molecules. Clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis are the most researched routes in the field of drug delivery. In addition to conventional small therapeutic molecules, the use of nanoformulations and large molecules, such as nucleic acids, peptides, and antibodies, have broadened the field of drug delivery. Although the majority of small therapeutic molecules can enter cells via passive diffusion, large molecules, and advanced targeted delivery systems, such as nanoparticles, are internalized by the endocytic route. Therefore, it is imperative to understand the characteristics of the endocytic routes in greater detail to design therapeutic molecules or formulations for successful delivery to the intracellular targets. This review highlights the prospects and limitations of the major endocytic routes for drug delivery, with a major emphasis on macropinocytosis. Since macropinocytosis is a non-selective uptake of extracellular matrix, the selective induction of macropinocytosis, using compounds that induce macropinocytosis and modulate macropinosome trafficking pathways, could be a potential approach for the intracellular delivery of diverse therapeutic modalities. Furthermore, we have summarized the characteristics associated with the formulations or drug carriers that can affect the endocytic routes for cellular internalization. The techniques that are used to study the intracellular uptake processes of therapeutic molecules are briefly discussed. Finally, the major limitations for intracellular targeting, endo-lysosomal degradation, and different approaches that have been used in overcoming these limitations, are highlighted in this review.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA
| | - Chandrabose Karthikeyan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, India
| | - Charles R Asbhy
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY 10049, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, AL 36849, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
7
|
Kim EH, Wahl K, Guelfi E, Lee D. Engineering the physical characteristics of biomaterials for innate immune-mediated cancer immunotherapy. J Control Release 2025; 378:814-830. [PMID: 39719214 DOI: 10.1016/j.jconrel.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
It has recently been recognized that the physical characteristics of biomaterials - such as size, structure, shape, charge, mechanical strength, hydrophobicity, and multivalency - regulate immunological functions in innate immune cells. In immuno-oncology applications, biomaterials are engineered with distinct physical properties to achieve desired innate immune responses. In this review, we discuss how physical characteristics influence effector functions and innate immune signaling pathways in distinct innate immune cell subtypes. We highlight how physical properties of biomaterials impact phagocytosis regulation, biodistribution, and innate immune cell targeting. We outline the recent advances in physical engineering of biomaterials that directly or indirectly induce desired innate immune responses for cancer immunotherapy. Lastly, we discuss the challenges in current biomaterial approaches that need to be addressed to improve clinical applicability.
Collapse
Affiliation(s)
- Eun-Hye Kim
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Katelyn Wahl
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Erica Guelfi
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - DaeYong Lee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Tafti MF, Fayyaz Z, Aghamollaei H, Jadidi K, Faghihi S. Drug delivery strategies to improve the treatment of corneal disorders. Heliyon 2025; 11:e41881. [PMID: 39897787 PMCID: PMC11783021 DOI: 10.1016/j.heliyon.2025.e41881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Anterior eye disorders including dry eye syndrome, keratitis, chemical burns, and trauma have varying prevalence rates in the world. Classical dosage forms based-topical ophthalmic drugs are popular treatments for managing corneal diseases. However, current dosage forms of ocular drugs can be associated with major challenges such as the short retention time in the presence of ocular barriers. Developing alternative therapeutic methods is required to overcome drug bioavailability from ocular barriers. Nanocarriers are major platforms and promising candidates for the administration of ophthalmic drugs in an adjustable manner. This paper briefly introduces the advantages, disadvantages, and characteristics of delivery systems for the treatment of corneal diseases. Additionally, advanced technologies such as 3D printing are being considered to fabricate ocular drug carriers and determine drug dosages for personalized treatment. This comprehensive review is gathered through multiple databases such as Google Scholar, PubMed, and Web of Science. It explores information around "ocular drug delivery systems'', "nano-based drug delivery systems'', "engineered nanocarriers'', and "advanced technologies to fabricate personalized drug delivery systems''.
Collapse
Affiliation(s)
- Mahsa Fallah Tafti
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Zeinab Fayyaz
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| |
Collapse
|
9
|
de La Taille T, Sarfati P, Aid R, Fournier L, Pavon-Djavid G, Chaubet F, Chauvierre C. Microemulsion-Inspired Polysaccharide Nanoparticles for an Advanced Targeted Thrombolytic Treatment. ACS NANO 2025; 19:2944-2960. [PMID: 39772506 DOI: 10.1021/acsnano.4c17049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Among cardiovascular diseases, thrombotic diseases such as ischemic heart disease and acute ischemic strokes are the most lethal, responsible by themselves for a quarter of worldwide deaths. While surgical treatments exist, they may not be used in all situations, and systemic thrombolytic drug injection, such as recombinant tissue plasminogen activators (rtPA), often remains necessary, despite serious limitations including short therapeutic window, severe side effects, and failure to address the complex nature of thrombi. This prompted intense research into alternative thrombolytics or delivery methods, including nanomedicine. However, most nanoparticles face issues of stability, biocompatibility, or synthesis robustness; among them, polymeric nanoparticles, though usually versatile and biocompatible, sometimes lack robustness and may involve toxic or complex synthesis. Here, we present polysaccharide hydrogel nanoparticles designed with an improved microemulsion-based approach that allowed a critical size reduction from microparticles to 315 nm nanoparticles. They were decorated with fucoidan, a sulfated polysaccharide capable of high affinity binding to P-selectin, a thrombi biomarker. These nanoparticles exhibited good stability, adequate size, biocompatibility, and targeting capacity and could be loaded with two different drugs, rtPA (fibrin degradation) or DNase I (degradation of neutrophil extracellular traps, or NETs), to exert thrombolysis. Notably, improved synergic thrombolysis was demonstrated on NET-containing thrombi, while in vivo thrombolysis shed light into improved thrombolysis of rtPA-loaded nanoparticles at 50 and 10% the recommended dose without secondary embolization. These safe, robust, and easy-to-make nanoparticles could provide effective delivery strategies for thrombolytic treatments while demonstrating the potential of polysaccharide nanoparticles as drug-delivery agents.
Collapse
Affiliation(s)
- Thibault de La Taille
- UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), Université Paris Cité, Université Sorbonne Paris Nord, F-75018 Paris, France
| | - Pierre Sarfati
- UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), Université Paris Cité, Université Sorbonne Paris Nord, F-75018 Paris, France
| | - Rachida Aid
- UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), Université Paris Cité, Université Sorbonne Paris Nord, F-75018 Paris, France
- UMS 34, Fédération de Recherche en Imagerie Multi-Modalité (FRIM), Université Paris Cité, F-75018 Paris, France
| | - Louise Fournier
- UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), Université Paris Cité, Université Sorbonne Paris Nord, F-75018 Paris, France
| | - Graciela Pavon-Djavid
- UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), Université Paris Cité, Université Sorbonne Paris Nord, F-75018 Paris, France
| | - Frédéric Chaubet
- UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), Université Paris Cité, Université Sorbonne Paris Nord, F-75018 Paris, France
| | - Cédric Chauvierre
- UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), Université Paris Cité, Université Sorbonne Paris Nord, F-75018 Paris, France
| |
Collapse
|
10
|
Yang J, Wang W, Huang S, Guo D, Yu L, Qiao W, Zhang X, Han Z, Song B, Xu X, Wu Z, Dordick JS, Zhang F, Xu H, Qiao M. Production, Characterization, and Application of Hydrophobin-Based IR780 Nanoparticles for Targeted Photothermal Cancer Therapy and Advanced Near-Infrared Imaging. Adv Healthc Mater 2025; 14:e2402311. [PMID: 39543440 DOI: 10.1002/adhm.202402311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/29/2024] [Indexed: 11/17/2024]
Abstract
As a promising approach for breast cancer treatment, photothermal therapy (PTT) features high spatial selectivity, noninvasiveness, and minimal drug resistance. IR780 (a near-infrared fluorescent dye) serves as an effective photosensitizer in PTT cancer therapy. However, the clinical application of IR780 in PTT has been hindered by its poor water solubility and unstable photostability. In this study, a genetically engineered dual-functional fusion protein tLyP-1-MGF6 is successfully constructed and expressed, which presents a novel use of hydrophobin MGF6 for its amphiphilicity combined with the tumor-penetrating peptide tLyP-1 to create an innovative carrier for IR780. These results show this fusion protein serving as a biodegradable and biocompatible carrier, significantly improves the water solubility of IR780 when formulated into nanoparticles. These studies demonstrate that the IR780@tLyP-1-MGF6 nanoparticles significantly enhance tumor targeting and photothermal therapeutic efficacy in comparison with control in vitro and in vivo. These advancements highlight the potential of the unique combination hydrophobin-based IR780 delivery system as a multifunctional nanoplatform for integrated imaging and targeted photothermal treatment of breast cancer.
Collapse
Affiliation(s)
- Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- School of Life Science, Shanxi University, Shanxi, 030000, P. R. China
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wenjun Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Dingyi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Long Yu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Wanjin Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Xu Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiqiang Han
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaoting Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jonathan S Dordick
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- School of Life Science, Shanxi University, Shanxi, 030000, P. R. China
| |
Collapse
|
11
|
Lemasson O, Briançon S, Bourgeaux V, Guichard M, Valour JP, Moret GA, Bourgeois S. Are Nanostructured Lipid Carriers (NLC) better than Solid Lipid Nanoparticles (SLN) for delivering abiraterone acetate through the gastrointestinal tract? Int J Pharm 2024; 667:124869. [PMID: 39490790 DOI: 10.1016/j.ijpharm.2024.124869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Abiraterone acetate (AbA) is a progesterone derivative indicated for the treatment of metastatic prostate cancer. This BCS (Biopharmaceutics Classification System) Class IV molecule has an extremely poor oral bioavailability (<10 %), notably due to its very low water solubility and intestinal permeability. Among the few existing galenic strategies to improve AbA's oral bioavailability, lipid nanoparticles such as Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) are relevant nanovectors. The objective of this study is to develop and compare SLN and NLC for oral delivery of abiraterone acetate. Both SLN and NLC are biocompatible, biodegradable and produced by high pressure homogenization (HPH), an ecological-friendly manufacturing process, organic solvent-free and easily scalable. The HPH process allowed the formation of AbA-loaded SLN and NLC with particle size lower than 160 nm and high encapsulation efficiencies. The addition of a liquid lipid significantly reduced the mean diameter of the nanoparticles, reflecting the greater benefit of the NLC formulation compared to SLN. Both SLN and NLC formulations offered an important protection of AbA in intestinal media, with a better stability for NLC. When encapsulated in SLN or NLC, the AbA is strongly retained by the nanoparticles, whatever the dissolution medium, which means that both formulas are able to protect and retain the drug in the intestinal tract, right up to its delivery to the enterocytes surface. High concentrations of nanoparticles were administered without cytotoxicity, especially for the NLC, which provides a real added value in terms of biocompatibility with Caco-2 cells. Finally, the nanoparticles were able to penetrate into enterocytes by the transcellular route, demonstrating an intense cellular internalization.
Collapse
Affiliation(s)
- Oksana Lemasson
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Stéphanie Briançon
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon, F-69008 Lyon, France
| | - Vanessa Bourgeaux
- Skyepharma Production SAS, 55 rue du Montmurier, F-38070 Saint-Quentin-Fallavier, France
| | - Marion Guichard
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon, F-69008 Lyon, France
| | - Jean-Pierre Valour
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Géraldine Agusti Moret
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Sandrine Bourgeois
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon, F-69008 Lyon, France.
| |
Collapse
|
12
|
Zhang X, Zhang Y, Rong X, Tang C, Liu H, Yue L, Su R, Wang Y, Qi W. Alkylated RALA-Derived Peptides for Efficient Gene Delivery. Biomacromolecules 2024; 25:8046-8057. [PMID: 39535929 DOI: 10.1021/acs.biomac.4c01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
RALA is an amphipathic cationic peptide demonstrated to be a low-toxicity and high-efficiency delivery platform for the systemic delivery of nucleic acid therapeutics. This work reports three RALA-derived peptides modified with N-terminal palmitic acid, engineered through amino acid substitutions and truncated sequences. All three peptides have good nucleic acid encapsulation, release and uptake, biocompatibility, and endolysosome escape. The siRNA transfection efficiency is about 90%, and the silencing rate of GA (C16-GLFWHHHARLARALARHLARALRA) exceeds that of lipofectamine 2000 (siRNA concentration = 50 nM). Truncating the peptide chain while retaining a certain amount of arginine ensures an effective particle size. Replacing glutamic acid with three histidines ensures an effective zeta potential and accelerates the endosome escape process through the proton sponge phenomenon. Introducing phenylalanine enhances the carrier-cell interaction. We believe that they are powerful carriers of siRNA therapy and may have good application prospects in treating various diseases.
Collapse
Affiliation(s)
- Xuelin Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yexi Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Chuanmei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Huiye Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Lei Yue
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
- Beyonpep Biotechnology Limited, Tianjin 300110, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| |
Collapse
|
13
|
Öztürk K, Kaplan M, Çalış S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int J Pharm 2024; 666:124799. [PMID: 39369767 DOI: 10.1016/j.ijpharm.2024.124799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Nanotechnology has brought about a significant revolution in drug delivery, and research in this domain is increasingly focusing on understanding the role of nanoparticle (NP) characteristics in drug delivery efficiency. First and foremost, we center our attention on the size of nanoparticles. Studies have indicated that NP size significantly influences factors such as circulation time, targeting capabilities, and cellular uptake. Secondly, we examine the significance of nanoparticle shape. Various studies suggest that NPs of different shapes affect cellular uptake mechanisms and offer potential advantages in directing drug delivery. For instance, cylindrical or needle-like NPs may facilitate better cellular uptake compared to spherical NPs. Lastly, we address the importance of nanoparticle charge. Zeta potential can impact the targeting and cellular uptake of NPs. Positively charged NPs may be better absorbed by negatively charged cells, whereas negatively charged NPs might perform more effectively in positively charged cells. This review provides essential insights into understanding the role of nanoparticles in drug delivery. The properties of nanoparticles, including size, shape, and charge, should be taken into consideration in the rational design of drug delivery systems, as optimizing these characteristics can contribute to more efficient targeting of drugs to the desired tissues. Thus, research into nanoparticle properties will continue to play a crucial role in the future of drug delivery.
Collapse
Affiliation(s)
- Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye
| | - Meryem Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye; Department of Pharmaceutical Technology, Faculty of Pharmacy, Süleyman Demirel University, 32260 Isparta, Türkiye
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Türkiye.
| |
Collapse
|
14
|
Cimino C, Zingale E, Bonaccorso A, Musumeci T, Carbone C, Pignatello R. From Preformulative Design to In Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 1: Design, Characterization, and Preliminary In Vitro Studies. Mol Pharm 2024; 21:6034-6061. [PMID: 39441703 DOI: 10.1021/acs.molpharmaceut.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ocular pathologies are widely diffused worldwide, and their effective treatment, combined with a high patient compliance, is sometimes challenging to achieve due to the barriers of the eye; in this context, the use of nanoparticles for topical ophthalmic application could represent a successful strategy. Aiming to develop nanoplatforms with potential clinical applications, great attention has to be paid to their features, in relation to the route of administration and to the pharmacopoeial requirements. This review (part 1) thus embraces the preliminary steps of nanoparticle development and characterization. At the beginning, the main barriers of the eye and the different administration routes are resumed, followed by a general description of the advantages of the employment of nanoparticles for ocular topical administration. Subsequently, the preformulative steps are discussed, deepening the choice of raw materials and determining the quantitative composition. Then, a detailed report of the physicochemical and technological characterization of nanoparticles is presented, analyzing the most relevant tests that should be performed on nanoparticles to verify their properties and the requisites (both mandatory and suggested) demanded by regulatory agencies. In conclusion, some preliminary noncellular in vitro evaluation methods are described. Studies from in vitro cellular assays to in vivo tests will be discussed in a separate (part 2) review paper. Hence, this overview aims to offer a comprehensive tool to guide researchers in the choice of the most relevant studies to develop a nanoplatform for ophthalmic drug administration.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
15
|
Qiao JX, Guo DY, Tian H, Wang ZP, Fan QQ, Tian Y, Sun J, Zhang XF, Zou JB, Cheng JX, Luan F, Zhai BT. Research progress of paclitaxel nanodrug delivery system in the treatment of triple-negative breast cancer. Mater Today Bio 2024; 29:101358. [PMID: 39677523 PMCID: PMC11638641 DOI: 10.1016/j.mtbio.2024.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by the loss or low expression of estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR). Due to the lack of clear therapeutic targets, paclitaxel (PTX) is often used as a first-line standard chemotherapy drug for the treatment of high-risk and locally advanced TNBC. PTX is a diterpenoid alkaloid extracted and purified from Taxus plants, functioning as an anticancer agent by inducing and promoting tubulin polymerization, inhibiting spindle formation in cancer cells, and preventing mitosis. However, its clinical application is limited by low solubility and high toxicity. Nanodrug delivery system (NDDS) is one of the feasible methods to improve the water solubility of PTX and reduce side effects. In this review, we summarize the latest advancements in PTX-targeted NDDS, as well as its combination with other codelivery therapies for TNBC treatment. NDDS includes passive targeting, active targeting, stimuli-responsive, codelivery, and multimode strategies. These systems have good prospects in improving the bioavailability of PTX, enhancing tumor targeting, reducing toxicity, controlling drug release, and reverse tumor multidrug resistance (MDR). This review provides valuable insights into the clinical development and application of PTX-targeted NDDS in the treatment of TNBC.
Collapse
Affiliation(s)
- Jia-xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Department of Pharmacy, National Old Pharmacist Inheritance Studio, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Zhan-peng Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Qiang-qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Bing-tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| |
Collapse
|
16
|
Patel S, Salaman SD, Kapoor DU, Yadav R, Sharma S. Latest developments in biomaterial interfaces and drug delivery: challenges, innovations, and future outlook. Z NATURFORSCH C 2024:znc-2024-0208. [PMID: 39566511 DOI: 10.1515/znc-2024-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
An ideal drug carrier system should demonstrate optimal payload and release characteristics, thereby ensuring prolonged therapeutic index while minimizing adverse effects. The field of drug delivery has undergone significant advancements, particularly within the last two decades, owing to the revolutionary impact of biomaterials. The use of biomaterials presents significant due to their biocompatibility and biodegradability, which must be addressed in order to achieve effective drug delivery. The properties of the biomaterial and its interface are primarily influenced by their physicochemical attributes, physiological barriers, cellular trafficking, and immunomodulatory effects. By attuning these barriers, regulating the physicochemical properties, and masking the immune system's response, the bio interface can be effectively modulated, leading to the development of innovative supramolecular structures with enhanced effectiveness. With a comprehensive understanding of these technologies, there is a growing demand for repurposing existing drugs for new therapeutic indications within this space. This review aims to provide a substantial body of evidence showcasing the productiveness of biomaterials and their interface in drug delivery, as well as methods for mitigating and modulating barriers and physicochemical properties along with an examination of future prospects in this field.
Collapse
Affiliation(s)
- Saraswati Patel
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Samsi D Salaman
- Apollo College of Pharmacy, Mevaloorkuppam, Kanchipuram, 602105, Tamil Nadu, India
| | - Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Sardar Baug, Station Road, 394601 Bardoli, Gujarat, India
| | - Richa Yadav
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, P.O., Rajasthan, 304022, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, P.O., Rajasthan, 304022, India
| |
Collapse
|
17
|
Puvvada N, Shaik MAS, Samanta D, Shaw M, Mondal I, Basu R, Bhattacharya A, Pathak A. Biocompatible fluorescent carbon nanoparticles as nanocarriers for targeted delivery of tamoxifen for regression of Breast carcinoma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124721. [PMID: 38943755 DOI: 10.1016/j.saa.2024.124721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Breast cancer (BC) is the most common malignancy among females worldwide, and its high metastasis rates are the leading cause of death just after lung cancer. Currently, tamoxifen (TAM) is a hydrophobic anticancer agent and a selective estrogen modulator (SERM), approved by the FDA that has shown potential anticancer activity against BC, but the non-targeted delivery has serious side effects that limit its ubiquitous utility. Therefore, releasing anti-cancer drugs precisely to the tumor site can improve efficacy and reduce the side effects on the body. Nanotechnology has emerged as one of the most important strategies to solve the issue of overdose TAM toxicity, owing to the ability of nano-enabled formulations to deliver desirable quantity of TAM to cancer cells over a longer period of time. In view of this, use of fluorescent carbon nanoparticles in targeted drug delivery holds novel promise for improving the efficacy, safety, and specificity of TAM therapy. Here, we synthesized biocompatible carbon nanoparticles (CNPs) using chitosan molecules without any toxic surface passivating agent. Synthesized CNPs exhibit good water dispersibility and emit intense blue fluorescence upon excitation (360 nm source). The surface of the CNPs has been functionalized with folate using click chemistry to improve the targeted drug uptake by the malignant cell. The pH difference between cancer and normal cells was successfully exploited to trigger TAM release at the target site. After six hours of incubation, CNPs released ∼ 74 % of the TAM drug in acidic pH. In vitro, studies have also demonstrated that after treatment with the synthesized CNPs, significant inhibition of the tumor growth could be achieved.
Collapse
Affiliation(s)
- Nagaprasad Puvvada
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India; Department of Chemistry, School of Advanced Sciences, VIT-AP University, Vijayawada, Andhra Pradesh 522237, India
| | - Md Abdus Salam Shaik
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Dipanjan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manisha Shaw
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Imran Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Rajarshi Basu
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Angana Bhattacharya
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
18
|
Gómez-González E, Caro C, Núñez NO, González-Mancebo D, Urbano-Gámez JD, García-Martín ML, Ocaña M. Sodium lanthanide tungstate-based nanoparticles as bimodal contrast agents for in vivo high-field MRI and CT imaging. J Mater Chem B 2024; 12:11123-11133. [PMID: 39268755 DOI: 10.1039/d4tb01157k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Research on high-field magnetic resonance imaging (HF-MRI) has been increased in recent years, aiming to improve diagnosis accuracy by increasing the signal-to-noise ratio and hence image quality. Conventional contrast agents (CAs) have important limitations for HF-MRI, with the consequent need for the development of new CAs. Among them, the most promising alternatives are those based on Dy3+ or Ho3+ compounds. Notably, the high atomic number of lanthanide cations would bestow a high capability for X-ray attenuation to such Dy or Ho-based compounds, which would also allow them to be employed as CAs for X-ray computed tomography (CT). In this work, we have prepared uniform NaDy(WO4)2 and NaHo(WO4)2 nanoparticles (NPs), which were dispersible under conditions that mimic the physiological media and were nontoxic for cells, meeting the main requirements for their use in vivo. Both NPs exhibited satisfactory magnetic relaxivities at 9.4 T, thus making them a promising alternative to clinical CAs for HF-MRI. Furthermore, after their intravenous administration in tumor-bearing mice, both NPs exhibited significant accumulation inside the tumor at 24 h, attributable to passive targeting by the enhanced permeability and retention (EPR) effect. Therefore, our NPs are suitable for the detection of tumors through HF-MRI. Finally, NaDy(WO4)2 NPs showed a superior X-ray attenuation capability than iohexol (commercial CT CA), which, along with their high r2 value, makes them suitable as the dual-probe for both HF-MRI and CT imaging, as demonstrated by in vivo experiments conducted using healthy mice.
Collapse
Affiliation(s)
- Elisabet Gómez-González
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Carlos Caro
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, C/Severo Ochoa, 35, 29590 Malaga, Spain
| | - Nuria O Núñez
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Daniel González-Mancebo
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Jesús D Urbano-Gámez
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, C/Severo Ochoa, 35, 29590 Malaga, Spain
| | - Maria L García-Martín
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, C/Severo Ochoa, 35, 29590 Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Manuel Ocaña
- Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
19
|
Subhasri D, Leena MM, Moses JA, Anandharamakrishnan C. Factors affecting the fate of nanoencapsulates post administration. Crit Rev Food Sci Nutr 2024; 64:11949-11973. [PMID: 37599624 DOI: 10.1080/10408398.2023.2245462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Nanoencapsulation has found numerous applications in the food and nutraceutical industries. Micro and nanoencapsulated forms of bioactives have proven benefits in terms of stability, release, and performance in the body. However, the encapsulated ingredient is often subjected to a wide range of processing conditions and this is followed by storage, consumption, and transit along the gastrointestinal tract. A strong understanding of the fate of nanoencapsulates in the biological system is mandatory as it provides valuable insights for ingredient selection, formulation, and application. In addition to their efficacy, there is also the need to assess the safety of ingested nanoencapsulates. Given the rising research and commercial focus of this subject, this review provides a strong focus on their interaction factors and mechanisms, highlighting their prospective biological fate. This review also covers various approaches to studying the fate of nanoencapsulates in the body. Also, with emphasis on the overall scope, the need for a new advanced integrated common methodology to evaluate the fate of nanoencapsulates post-administration is discussed.
Collapse
Affiliation(s)
- D Subhasri
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirappalli, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
- CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Ministry of Science and Technology, Government of India, Industrial Estate PO, Thiruvananthapuram, INDIA
| |
Collapse
|
20
|
Cheng R, Wang S. Cell-mediated nanoparticle delivery systems: towards precision nanomedicine. Drug Deliv Transl Res 2024; 14:3032-3054. [PMID: 38615157 PMCID: PMC11445310 DOI: 10.1007/s13346-024-01591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/15/2024]
Abstract
Cell-mediated nanoparticle delivery systems (CMNDDs) utilize cells as carriers to deliver the drug-loaded nanoparticles. Unlike the traditional nanoparticle drug delivery approaches, CMNDDs take the advantages of cell characteristics, such as the homing capabilities of stem cells, inflammatory chemotaxis of neutrophils, prolonged blood circulation of red blood cells, and internalization of macrophages. Subsequently, CMNDDs can easily prolong the blood circulation, cross biological barriers, such as the blood-brain barrier and the bone marrow-blood barrier, and rapidly arrive at the diseased areas. Such advantageous properties make CMNDDs promising delivery candidates for precision targeting. In this review, we summarize the recent advances in CMNDDs fabrication and biomedical applications. Specifically, ligand-receptor interactions, non-covalent interactions, covalent interactions, and internalization are commonly applied in constructing CMNDDs in vitro. By hitchhiking cells, such as macrophages, red blood cells, monocytes, neutrophils, and platelets, nanoparticles can be internalized or attached to cells to construct CMNDDs in vivo. Then we highlight the recent application of CMNDDs in treating different diseases, such as cancer, central nervous system disorders, lung diseases, and cardiovascular diseases, with a brief discussion about challenges and future perspectives in the end.
Collapse
Affiliation(s)
- Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
| |
Collapse
|
21
|
Tantawy MA, Elsabbagh HM, Saleh NM. Modified release, enriched biocompatibility, and enhanced oral bioavailability as precious features of nitrofurantoin-loaded polymeric nanoparticles. J Drug Deliv Sci Technol 2024; 101:106130. [DOI: 10.1016/j.jddst.2024.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
Tong J, Wang Z, Zhang J, Gao R, Liu X, Liao Y, Guo X, Wei Y. Advanced Applications of Nanomaterials in Atherosclerosis Diagnosis and Treatment: Challenges and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58072-58099. [PMID: 39432384 DOI: 10.1021/acsami.4c13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Atherosclerosis-induced coronary artery disease is a major cause of cardiovascular mortality. Clinically, conservative treatment strategies for atherosclerosis still focus on lifestyle interventions and the use of lipid-lowering and anticoagulant medications. Despite achieving some therapeutic effects, these approaches are limited by low bioavailability, long intervention periods, and significant side effects. With the advancement of nanotechnology, nanomaterials have demonstrated extraordinary potential in the biomedical field. Their excellent biocompatibility, surface modifiability, and high targeting capability not only enable efficient diagnosis of plaque progression but also allow precise drug delivery within atherosclerotic plaques, significantly enhancing drug bioavailability and reducing systemic side effects. Here, we systematically review the current research progress of nanomaterials in the field of atherosclerosis to summarize not only the types of nanomaterials but also their applications in both the diagnosis and treatment of atherosclerosis. Notably, in the context of plaque therapy, we provide a comprehensive overview of current nanomaterial applications based on their targeted therapeutic systems for different cell types within plaques. Additionally, we address the persistent challenge of clinical translation of nanomaterials by summarizing current issues and providing directions for innovation and improvement in nanomaterial design. Overall, we believe that this review systematically summarizes the applications and challenges of biomedical nanomaterials in atherosclerosis diagnosis and therapy, thereby offering insights and references for the development of therapeutic materials for atherosclerosis.
Collapse
Affiliation(s)
- Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangfei Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
23
|
Song Y, Liu H, Zhao N, Chen J, Zhang X, Zhang H, Wu T, Ruan H, Qu G. Bovine serum albumin-Camptothecin nanoparticles for RNAs packaging to improve the prognosis of Cancer. Int J Biol Macromol 2024; 282:136997. [PMID: 39476892 DOI: 10.1016/j.ijbiomac.2024.136997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024]
Abstract
xRNAs have received a lot of attention for their potential in targeted therapy. This study aims to construct nanoparticles using bovine serum albumin (BSA) and Camptothecin to improve the bioavailability and targeting of drugs through RNA packaging, thereby improving the prognosis of cancer patients. The phacoemulsification method was used to synthesize BSA-CPT-NPs, and the single factor orthogonal design method was used to optimize the process. The cytotoxicity of nanoparticles to cancer cells and their effect on intracellular RNA expression were evaluated in vitro. The results showed that the formation of BSA-Camptothecin nanoparticles was uniform, and the drug loading and RNA encapsulation efficiency reached a high level. Cell experiments showed that the nanoparticle significantly inhibited the proliferation of cancer cells and enhanced the anti-tumor effect by regulating the expression of xRNAs. The study confirmed the potential of BSA-Camptothecin nanoparticles packaged by RNA to improve the efficiency and targeting of drug delivery, and future research will focus on further exploring its feasibility in clinical applications for cancer therapy.
Collapse
Affiliation(s)
- Yun Song
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & international Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Hui Liu
- Department of Hainan Key Laboratory for Research and Transformation of Tropical Brain Science, & Department of Anatomy, Hainan Medical University, Haikou, Hainan Province, China
| | - Nannan Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University & Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Jiao Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & international Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Xiaoming Zhang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education & international Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Hongyang Zhang
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Tao Wu
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR China.
| | - Guoxin Qu
- Department of Orthopedic Surgery,The First Affiliated Hospital of Hainan Medical University & Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
24
|
Rathore SS, Leno Jenita JJ, Dotherabandi M. A systematic review on hyaluronic acid coated nanoparticles: recent strategy in breast cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-42. [PMID: 39429014 DOI: 10.1080/09205063.2024.2416293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Hyaluronic acid, a non-sulphated glycosaminoglycan has attracted its usage in the management of breast cancer. Drug-loaded nanoparticles with hyaluronic acid surface modifications show potential as a promising method for targeting and delivering drugs to the tumor site. The aim of this study was to conduct a systematic review of articles and assess the impact of hyaluronic acid coated nanoparticles on breast cancer. The various database were used for this comprehensive review. The inclusion and exclusion criteria were selected according to the PRISMA guidelines. Studies associated with characterization, in vitro, and in vivo studies were collected and subjected for further analysis. According to the inclusion criteria, 41 literature were selected for analysis. From all the studies, it was observed that the nanoparticles coated with hyaluronic acid produced better particle size, shape, zeta potential, increased in vitro cytotoxicity, cellular uptake, cell apoptosis, and anti-tumor effect in vivo. Research has shown that hyaluronic acid exhibits a higher affinity for CD44 receptors, resulting in enhanced targeted nanoparticle activity on cancer cells while sparing normal cells.
Collapse
Affiliation(s)
- Seema S Rathore
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| | - J Josephine Leno Jenita
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| | - Manjula Dotherabandi
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
25
|
Tarab-Ravski D, Stotsky-Oterin L, Elisha A, Kundoor GR, Ramishetti S, Hazan-Halevy I, Haas H, Peer D. The future of genetic medicines delivered via targeted lipid nanoparticles to leukocytes. J Control Release 2024; 376:286-302. [PMID: 39401676 DOI: 10.1016/j.jconrel.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Genetic medicines hold vast therapeutic potential, offering the ability to silence or induce gene expression, knock out genes, and even edit DNA fragments. Applying these therapeutic modalities to leukocytes offers a promising path for treating various conditions yet overcoming the obstacles of specific and efficient delivery to leukocytes remains a major bottleneck in their clinical translation. Lipid nanoparticles (LNPs) have emerged as the leading delivery system for nucleic acids due to their remarkable versatility and ability to improve their in vivo stability, pharmacokinetics, and therapeutic benefits. Equipping LNPs with targeting moieties can promote their specific cellular uptake and internalization to leukocytes, making targeted LNPs (tLNPs) an inseparable part of developing leukocyte-targeted gene therapy. However, despite the significant advancements in research, genetic medicines for leukocytes using targeted delivery approaches have not been translated into the clinic yet. Herein, we discuss the important aspects of designing tLNPs and highlight the considerations for choosing an appropriate bioconjugation strategy and targeting moiety. Furthermore, we provide our insights on limiting challenges and identify key areas for further research to advance these exciting therapies for patient care.
Collapse
Affiliation(s)
- Dana Tarab-Ravski
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Elisha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Govinda Reddy Kundoor
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | | | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Heinrich Haas
- NeoVac Ltd. 127 Olympic Ave., OX14 4SA, Milton Park, Oxfordshire, UK; Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
26
|
Lee YH, Chen CS. Carcinomembrane-Camouflaged Perfluorochemical Dual-Layer Nanopolymersomes Bearing Indocyanine Green and Camptothecin Effectuate Targeting Photochemotherapy of Cancer. ACS Biomater Sci Eng 2024; 10:6332-6343. [PMID: 39264032 PMCID: PMC11480933 DOI: 10.1021/acsbiomaterials.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Photochemotherapy has been recognized as a promising combinational modality for cancer treatment. However, difficulties such as off-target drug delivery, systemic toxicity, and the hypoxic nature of the tumor microenvironment remain hindrances to its application. To overcome these challenges, cancer cell membrane camouflaged perfluorooctyl bromide (PFOB) dual-layer nanopolymersomes bearing indocyanine green (ICG) and camptothecin (CPT), named MICFNS, were developed in this study, and melanoma was exploited as the model for MICFNS manufacture and therapeutic application. Our data showed that MICFNS were able to stabilize both ICG and CPT in the nanocarriers and can be quickly internalized by B16F10 cells due to melanoma membrane-mediated homology. Upon NIR irradiation, MICFNS can trigger hyperthermia and offer enhanced singlet oxygen production due to the incorporation of PFOB. With ≥10/2.5 μM ICG/CPT, MICFNS + NIR can provide comparable in vitro cancericidal effects to those caused by using an 8-fold higher dose of encapsulated CPT alone. Through the animal study, we further demonstrated that MICFNS can be quickly brought to tumors and have a longer retention time than those of free agents in vivo. Moreover, the MICFNS with 40/10 μM ICG/CPT in combination with 30 s NIR irradiation can successfully inhibit tumor growth without systemic toxicity in mice within the 14 day treatment. We speculate that such an antitumoral effect was achieved by phototherapy followed by chemotherapy, a two-stage tumoricidal process performed by MICFNS. Taken together, we anticipate that MICFNS, a photochemotherapeutic nanoplatform, has high potential for use in clinical anticancer treatment.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department
of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan R.O.C
- Department
of Chemical and Materials Engineering, National
Central University, Taoyuan
City 32001, Taiwan R.O.C
| | - Cai-Sin Chen
- Department
of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan R.O.C
| |
Collapse
|
27
|
Tran UT, Kitami T. Chemical screens for particle-induced macrophage death identifies kinase inhibitors of phagocytosis as targets for toxicity. J Nanobiotechnology 2024; 22:621. [PMID: 39396993 PMCID: PMC11472441 DOI: 10.1186/s12951-024-02885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Nanoparticles are increasingly being used in medicine, cosmetics, food, and manufacturing. However, potential toxicity may limit the use of newly engineered nanoparticles. Prior studies have identified particle characteristics that are predictive of toxicity, although the mechanisms responsible for toxicity remain largely unknown. Nanoparticle treatment in cell culture, combined with high-throughput chemical screen allows for systematic perturbations of thousands of molecular targets against potential pathways of toxicity. The resulting data matrix, called chemical compendium, can provide insights into the mechanism of toxicity as well as help classify nanoparticles based on toxicity pathway. RESULTS We performed unbiased screens of 1280 bioactive chemicals against a panel of four particles, searching for inhibitors of macrophage toxicity. Our hit compounds clustered upon inhibitors of kinases involved in phagocytosis, including focal adhesion kinase (FAK), with varying specificity depending on particles. Interestingly, known inhibitors of cell death including NLRP3 inflammasome inhibitor were unable to suppress particle-induced macrophage death for many of the particles. By searching for upstream receptors of kinases, we identified Cd11b as one of the receptors involved in recognizing a subset of particles. We subsequently used these hit compounds and antibodies to further characterize a larger panel of particles and identified hydrodynamic size as an important particle characteristic in Cd11b-mediated particle uptake and toxicity. CONCLUSIONS Our chemical compendium and workflow can be expanded across cell types and assays to characterize the toxicity mechanism of newly engineered nanoparticles. The data in their current form can also be analyzed to help design future high-throughput screening for nanoparticle toxicity.
Collapse
Affiliation(s)
- Uyen Thi Tran
- Laboratory for Metabolic Networks, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Cell and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Toshimori Kitami
- Laboratory for Metabolic Networks, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| |
Collapse
|
28
|
Qamar W, Gulia S, Athar M, Ahmad R, Imam MT, Chandra P, Singh BP, Haque R, Hassan MI, Rahman S. An insight into impact of nanomaterials toxicity on human health. PeerJ 2024; 12:e17807. [PMID: 39364370 PMCID: PMC11448750 DOI: 10.7717/peerj.17807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/03/2024] [Indexed: 10/05/2024] Open
Abstract
In recent years, advances in nanotechnology have significantly influenced electronics manufacturing, industrial processes, and medical research. Various industries have seen a surge in the use of nanomaterials. However, several researchers have raised the alarm about the toxicological nature of nanomaterials, which appear to be quite different from their crude forms. This altered nature can be attributed to their unique physicochemical profile. They can adversely affect human health and the environment. Nanomaterials that have been released into the environment tend to accumulate over time and can cause a significant impact on the ecosystem and organisms with adverse health effects. Increased use of nanoparticles has led to increased human exposure in their daily lives, making them more vulnerable to nanoparticle toxicity. Because of their small size, nanomaterials can readily cross biological membranes and enter cells, tissues, and organs. Therefore, the effect of nanomaterials on the human environment is of particular concern. The toxicological effects of nanomaterials and their mechanisms of action are being researched worldwide. Technological advances also support monitoring new nanomaterials marketed for industrial and household purposes. It is a challenging area because of the exceptional physicochemical properties of nanomaterials. This updated review focuses on the diverse toxicological perspective of nanomaterials. We have discussed the use of different types of nanoparticles and their physiochemical properties responsible for toxicity, routes of exposure, bio-distribution, and mechanism of toxicity. The review also includes various in vivo and in vitro methods of assessing the toxicity of nanomaterials. Finally, this review will provide a detailed insight into nano material-induced toxicological response, which can be beneficial in designing safe and effective nanoparticles.
Collapse
Affiliation(s)
- Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shweta Gulia
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Mohammad Athar
- Department of Medical Genetics, Umm Al-Qura University, Makkah, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Bhupendra Pratap Singh
- Department of Environmental Studies, Deshbandhu College, University of Delhi, New Delhi, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
29
|
Papadopoulou P, Arias-Alpizar G, Weeda P, Poppe T, van Klaveren N, Slíva T, Aschmann D, van Os W, Zhang Y, Moradi MA, Sommerdijk N, Campbell F, Kros A. Structure-function relationship of phase-separated liposomes containing diacylglycerol analogues. Biomater Sci 2024; 12:5023-5035. [PMID: 39177657 DOI: 10.1039/d4bm00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The composition and morphology of lipid-based nanoparticles can influence their overall in vivo behavior. Previously, we demonstrated that phase separation in liposomes composed of DSPC and a diacylglycerol lipid analogue (DOaG) drives the in vivo biodistribution towards a specific subset of endothelial cells in zebrafish embryos. In the absence of traditional targeting functionalities (e.g., antibodies, ligands), this selectivity is mediated solely by the unique liposome morphology and composition, characterized by a DOaG-rich lipid droplet within the DSPC-rich phospholipid bilayer. The phase separation is induced due to the geometry of DOaG lipid and its ability to create non-bilayer phases in lipid membranes. To investigate the underlying principles of phase separation and to optimize the liposome colloidal stability, we performed a structure-function relationship study by synthesizing a library of DOaG analogues with varying molecular properties, such as the number, length and sn-position of the acyl chains, as well as the degree of saturation or carbonyl substituents. We assessed the ability of these lipid analogues to assemble into phase-separated liposomes and studied their morphology, colloidal stability, and in vivo biodistribution in zebrafish embryos. We found that analogues containing unsaturated, medium length (C16-C18) fatty acids were required to obtain colloidally stable, phase-separated liposomes with cell-specific biodistribution patterns. Moreover, we observed that using the pure DOaG isomer, with acyl chains at the sn-1,3 positions, leads to more colloidally stable liposomes than when a mixture of sn-1,2 and sn-1,3 isomers is used. Similarly, we observed that incorporating a DOaG analogue with fatty tails shorter than DSPC, as well as PEGylation, endows liposomes with long term stability while retaining cell-selective biodistribution. Diacylglycerols are known to promote fusion, lipid polymorphism, signaling and protein recruitment on lipid membranes. In this study, we showed that diacylglycerol derivatives can induce phase separation in liposomes, unlocking the potential for cell-specific targeting in vivo. We believe that these findings can be the foundation for future use of diacylglycerols in lipid-based nanomedicines and could lead to the development of novel targeted delivery strategies.
Collapse
Affiliation(s)
- Panagiota Papadopoulou
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Gabriela Arias-Alpizar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Pim Weeda
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Thijs Poppe
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Niels van Klaveren
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Tomas Slíva
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Dennis Aschmann
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Winant van Os
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Yun Zhang
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Mohammad-Amin Moradi
- Materials and Interface Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
30
|
Stevens CA, Sevarika B, Wilson BK, Wang CM, Cárcamo-Oyarce G, Degen G, Kassis T, Lehr CM, Carrier R, Ribbeck K, Prud'homme RK. A Strategic Blend of Stabilizing Polymers to Control Particle Surface Charge for Enhanced Mucus Transport and Cell Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613453. [PMID: 39345382 PMCID: PMC11429750 DOI: 10.1101/2024.09.17.613453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mucus layers, viscoelastic gels abundant in anionic mucin glycoproteins, obstruct therapeutic delivery across all mucosal surfaces. We found that strongly positively charged nanoparticles (NPs) rapidly adsorb a mucin protein corona in mucus, impeding cell binding and uptake. To overcome this, we developed mucus-evading, cell-adhesive (MECS) NPs with variable surface charge using Flash NanoPrecipitation, by blending a neutral poly(ethylene glycol) (PEG) corona for mucus transport with a small amount, 5 wt%, of polycationic dimethylaminoethyl methacrylate (PDMAEMA) for increased cell targeting. In vitro experiments confirmed rapid mucus penetration and binding to epithelial cells by MECS NPs, suggesting a breakthrough in mucosal drug delivery.
Collapse
Affiliation(s)
- Corey A Stevens
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Boris Sevarika
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Brian K Wilson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Chia-Ming Wang
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115
| | - Gerardo Cárcamo-Oyarce
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - George Degen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Timothy Kassis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Claus Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Rebecca Carrier
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| |
Collapse
|
31
|
Wang J, Brugnoli B, Foglietta F, Andreana I, Longo G, Dinarelli S, Girasole M, Serpe L, Arpicco S, Francolini I, Di Meo C, Matricardi P. Tuning stiffness of hyaluronan-cholesterol nanogels by mussel-inspired dopamine-Fe 3+ coordination: Preparation and properties evaluation. Int J Biol Macromol 2024; 280:135553. [PMID: 39276885 DOI: 10.1016/j.ijbiomac.2024.135553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
In the evolving field of nanomedicine, tailoring the mechanical properties of nanogels to fine-tune their biological performance is a compelling avenue of research. This work investigates an innovative method for modulating the stiffness of hyaluronan-cholesterol (HACH) nanogels, an area that remains challenging. By grafting dopamine (DOPA) onto the HA backbone, characterized through UV, 1H NMR, and FT-IR analyses, we synthesized a novel polymer that spontaneously forms nanogels in aqueous environments. These HACH-DOPA nanogels are characterized by their small size (~170 nm), negative charge (around -32 mV), high stability, efficient drug encapsulation, and potent antioxidant activities (measured by ABTS test). Leveraging mussel-inspired metal coordination chemistry, the DOPA moieties enable stiffness modulation of the nanogels through catechol-Fe3+ interactions. This modification leads to increased crosslinking and, consequently, nanogels with a significantly increased stiffness, as measured by atomic force microscopy (AFM), with the formation of the HACH-DOPA@Fe3+ complex being pH-dependent and reversible. The cytocompatibility was evaluated via WST-1 cell proliferation assays on HUVEC and HDF cell lines, showing no evident cytotoxicity. Furthermore, the modified nanogels demonstrated enhanced cellular uptake, suggesting their substantial potential for intracellular drug delivery applications, a hypothesis supported by confocal microscopy assays. This work not only provides valuable insight into modulating nanogel stiffness but also advances new nanosystems for promising biomedical applications.
Collapse
Affiliation(s)
- Ju Wang
- Departments of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Benedetta Brugnoli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Federica Foglietta
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria, 9, 10125, Turin, Italy
| | - Ilaria Andreana
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria, 9, 10125, Turin, Italy
| | - Giovanni Longo
- Institute for the Structure of the Matter (ISM), Italian National Research Council (CNR), Via del fosso del Cavaliere 100, 00133, Rome, Italy
| | - Simone Dinarelli
- Institute for the Structure of the Matter (ISM), Italian National Research Council (CNR), Via del fosso del Cavaliere 100, 00133, Rome, Italy
| | - Marco Girasole
- Institute for the Structure of the Matter (ISM), Italian National Research Council (CNR), Via del fosso del Cavaliere 100, 00133, Rome, Italy
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria, 9, 10125, Turin, Italy
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria, 9, 10125, Turin, Italy
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Chiara Di Meo
- Departments of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Pietro Matricardi
- Departments of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy.
| |
Collapse
|
32
|
Mejía SP, López D, Cano LE, Muñoz JD, Orozco J, Naranjo TW. Antifungal efficacy and immunomodulatory effect of PLGA nanoparticle-encapsulated itraconazole in histoplasmosis in vivo model. J Mycol Med 2024; 34:101494. [PMID: 38908332 DOI: 10.1016/j.mycmed.2024.101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/03/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Histoplasma capsulatum is the etiological agent of histoplasmosis, the most common endemic pulmonary mycosis. Itraconazole (ITZ) is the choice for mild disease and a step-down therapy in severe and disseminated clinical presentations. Drug encapsulation into nanoparticles (NPs) is an alternative to improve drug solubility and bioavailability, reducing undesirable interactions and drug degradation and reaching the specific therapeutic target with lower doses. OBJECTIVE evaluate the antifungal and immunomodulatory effect of ITZ encapsulated into poly(lactic-co-glycolic acid) (PLGA) NPs, administrated orally and intraperitoneally in an in vivo histoplasmosis model. RESULTS After intranasal infection and treatment of animals with encapsulated ITZ by intraperitoneal and oral route, fungal burden control, biodistribution, immune response, and histopathology were evaluated. The results showed that the intraperitoneal administered and encapsulated ITZ has an effective antifungal effect, significantly reducing the Colony-Forming-Units (CFU) after the first doses and controlling the infection dissemination, with a higher concentration in the liver, spleen, and lung compared to the oral treatment. In addition, it produced a substantial immunomodulatory effect on pro- and anti-inflammatory cytokines and immune cell infiltrates confirmed by histopathology. CONCLUSIONS Overall, results suggest a synergistic effect of the encapsulated drug and the immunomodulatory effect contributing to infection control, preventing their dissemination.
Collapse
Affiliation(s)
- Susana P Mejía
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellin 050010, Colombia; Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), UdeA, UPB, UdeS, Cra 72A #78b-141, Altamira, Medellin 050036, Colombia
| | - Daniela López
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), UdeA, UPB, UdeS, Cra 72A #78b-141, Altamira, Medellin 050036, Colombia
| | - Luz Elena Cano
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), UdeA, UPB, UdeS, Cra 72A #78b-141, Altamira, Medellin 050036, Colombia
| | - Julián D Muñoz
- Quiron Pathobiology Research Group. Faculty of Agricultural Sciences University of Antioquia, Cl. 73 #73A-79, Medellín 050036, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellin 050010, Colombia
| | - Tonny W Naranjo
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), UdeA, UPB, UdeS, Cra 72A #78b-141, Altamira, Medellin 050036, Colombia; School of Health Sciences, Universidad Pontificia Bolivariana, Cl. 78b #72A - 109, Medellín 050036, Colombia.
| |
Collapse
|
33
|
Kurtuldu F, Mutlu N, Friedrich RP, Beltrán AM, Liverani L, Detsch R, Alexiou C, Galusek D, Boccaccini AR. Gallium-containing mesoporous nanoparticles influence in-vitro osteogenic and osteoclastic activity. BIOMATERIALS ADVANCES 2024; 162:213922. [PMID: 38878645 DOI: 10.1016/j.bioadv.2024.213922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Mesoporous silica nanoparticles were synthesized using a microemulsion-assisted sol-gel method, and calcium, gallium or a combination of both, were used as dopants. The influence of these metallic ions on the physicochemical properties of the nanoparticles was investigated by scanning and transmission electron microscopy, as well as N2 adsorption-desorption methods. The presence of calcium had a significant impact on the morphology and textural features of the nanoparticles. The addition of calcium increased the average diameter of the nanoparticles from 80 nm to 150 nm, while decreasing their specific surface area from 972 m2/g to 344 m2/g. The nanoparticles of all compositions were spheroidal, with a disordered mesoporous structure. An ion release study in cell culture medium demonstrated that gallium was released from the nanoparticles in a sustained manner. In direct contact with concentrations of up to 100 μg/mL of the nanoparticles, gallium-containing nanoparticles did not exhibit cytotoxicity towards pre-osteoblast MC3T3-E1 cells. Moreover, in vitro cell culture tests revealed that the addition of gallium to the nanoparticles enhanced osteogenic activity. Simultaneously, the nanoparticles disrupted the osteoclast differentiation of RAW 264.7 macrophage cells. These findings suggest that gallium-containing nanoparticles possess favorable physicochemical properties and biological characteristics, making them promising candidates for applications in bone tissue regeneration, particularly for unphysiological or pathological conditions such as osteoporosis.
Collapse
Affiliation(s)
- Fatih Kurtuldu
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nurshen Mutlu
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Seville, Spain
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; DGS S.p.A., 00142 Rome, Italy
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Dušan Galusek
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Joint Glass Centre of the IIC SAS, TnUAD and FChFT STU, FunGlass, 911 50 Trenčín, Slovakia.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
| |
Collapse
|
34
|
Chavan DD, Bhosale RR, Thorat VM, Shete AS, Patil SJ, Tiwari DD. Recent Advances in the Development and Utilization of Nanoparticles for the Management of Malignant Solid Tumors. Cureus 2024; 16:e70312. [PMID: 39469411 PMCID: PMC11513206 DOI: 10.7759/cureus.70312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The purpose of nanotechnology-based drug delivery systems or novel drug delivery systems is to improve the effectiveness of therapy, and their promising properties have led to their increasing significance in the management of cancer. The researchers have primarily focused on designing novel nanocarriers, like nanoparticles (NPs), that can effectively deliver drugs to target cells and respond specifically to conditions particular to cancer. Whether passive or active targeting, these nanocarriers can deliver therapeutic cargoes to the tumor site to release the drug from the drug delivery systems. The purpose of this study is to provide recent scientific literature and key findings to researchers as well as the scientific community from the medical and pharmaceutical domains by reporting current advancements in the development of NPs for the treatment of different malignant solid tumors, such as colorectal, pancreatic, prostate, and cervical cancer.
Collapse
Affiliation(s)
- Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Amol S Shete
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| |
Collapse
|
35
|
Alimohammadvand S, Kaveh Zenjanab M, Mashinchian M, Shayegh J, Jahanban-Esfahlan R. Recent advances in biomimetic cell membrane-camouflaged nanoparticles for cancer therapy. Biomed Pharmacother 2024; 177:116951. [PMID: 38901207 DOI: 10.1016/j.biopha.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
The emerging strategy of biomimetic nanoparticles (NPs) via cellular membrane camouflage holds great promise in cancer therapy. This scholarly review explores the utilization of cellular membranes derived from diverse cellular entities; blood cells, immune cells, cancer cells, stem cells, and bacterial cells as examples of NP coatings. The camouflaging strategy endows NPs with nuanced tumor-targeting abilities such as self-recognition, homotypic targeting, and long-lasting circulation, thus also improving tumor therapy efficacy overall. The comprehensive examination encompasses a variety of cell membrane camouflaged NPs (CMCNPs), elucidating their underlying targeted therapy mechanisms and delineating diverse strategies for anti-cancer applications. Furthermore, the review systematically presents the synthesis of source materials and methodologies employed in order to construct and characterize these CMCNPs, with a specific emphasis on their use in cancer treatment.
Collapse
Affiliation(s)
- Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kaveh Zenjanab
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Mashinchian
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Shayegh
- Department of Microbiology, Faculty of Veterinary and Agriculture, Islamic Azad University, Shabestar branch, Shabestar, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Stern NB, Shrestha B, Porter T. A Facile Approach to Producing Liposomal J-Aggregates of Indocyanine Green with Diagnostic and Therapeutic Potential. ADVANCED THERAPEUTICS 2024; 7:2400042. [PMID: 39132131 PMCID: PMC11308451 DOI: 10.1002/adtp.202400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Indexed: 08/13/2024]
Abstract
Liposomal J-Aggregates of Indocyanine Green (L-JA) can serve as a biocompatible and biodegradable nanoparticle for photoacoustic imaging and photothermal therapy. When compared to monomeric IcG, L-JA are characterized by longer circulation, improved photostability, elevated absorption at longer wavelengths, and increased photoacoustic signal generation. However, the documented methods for production of L-JA vary widely. We developed an approach to efficiently form IcG J-aggregates (IcG-JA) directly in liposomes at elevated temperatures. Aggregating within fully formed liposomes ensures particle uniformity and allows for control of J-aggregate size. L-JA have unique properties compared to IcG. L-JA provide significant contrast enhancement in photoacoustic images for up to 24 hours after injection, while IcG and unencapsulated IcG-JA are cleared within an hour. L-JA allow for more accurate photoacoustic-based sO2 estimation and particle tracking compared to IcG. Furthermore, photothermal heating of L-JA with an 852nm laser is demonstrated to be more effective at lower laser powers than conventional 808nm lasers for the first time. The presented technique offers an avenue for formulating a multi-faceted contrast agent for photoacoustic imaging and photothermal therapy that offers significant advantages over other conventional agents.
Collapse
|
37
|
Abal-Sanisidro M, De Luca M, Roma S, Ceraolo MG, de la Fuente M, De Monte L, Protti MP. Anakinra-Loaded Sphingomyelin Nanosystems Modulate In Vitro IL-1-Dependent Pro-Tumor Inflammation in Pancreatic Cancer. Int J Mol Sci 2024; 25:8085. [PMID: 39125655 PMCID: PMC11312284 DOI: 10.3390/ijms25158085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Pancreatic cancer is a very aggressive disease with a dismal prognosis. The tumor microenvironment exerts immunosuppressive activities through the secretion of several cytokines, including interleukin (IL)-1. The IL-1/IL-1 receptor (IL-1R) axis is a key regulator in tumor-promoting T helper (Th)2- and Th17-type inflammation. Th2 cells are differentiated by dendritic cells endowed with Th2-polarizing capability by the thymic stromal lymphopoietin (TSLP) that is secreted by IL-1-activated cancer-associated fibroblasts (CAFs). Th17 cells are differentiated in the presence of IL-1 and other IL-1-regulated cytokines. In pancreatic cancer, the use of a recombinant IL-1R antagonist (IL1RA, anakinra, ANK) in in vitro and in vivo models has shown efficacy in targeting the IL-1/IL-1R pathway. In this study, we have developed sphingomyelin nanosystems (SNs) loaded with ANK (ANK-SNs) to compare their ability to inhibit Th2- and Th17-type inflammation with that of the free drug in vitro. We found that ANK-SNs inhibited TSLP and other pro-tumor cytokines released by CAFs at levels similar to ANK. Importantly, inhibition of IL-17 secretion by Th17 cells, but not of interferon-γ, was significantly higher, and at lower concentrations, with ANK-SNs compared to ANK. Collectively, the use of ANK-SNs might be beneficial in reducing the effective dose of the drug and its toxic effects.
Collapse
Affiliation(s)
- Marcelina Abal-Sanisidro
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain;
- University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029 Madrid, Spain
| | - Michele De Luca
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefania Roma
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Grazia Ceraolo
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain;
- University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029 Madrid, Spain
- DIVERSA Technologies S.L., Edificio Emprendia, Campus Sur, 15782 Santiago de Compostela, Spain
| | - Lucia De Monte
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Pia Protti
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
38
|
Sarfati P, De La Taille T, Portioli C, Spanò R, Lalatonne Y, Decuzzi P, Chauvierre C. REVIEW: "ISCHEMIC STROKE: From Fibrinolysis to Functional Recovery" Nanomedicine: emerging approaches to treat ischemic stroke. Neuroscience 2024; 550:102-113. [PMID: 38056622 DOI: 10.1016/j.neuroscience.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Stroke is responsible for 11% of all deaths worldwide, the majority of which are caused by ischemic strokes, thus making the need to urgently find safe and effective therapies. Today, these can be cured either by mechanical thrombectomy when the thrombus is accessible, or by intravenous injection of fibrinolytics. However, the latter present several limitations, such as potential severe side effects, few eligible patients and low rate of partial and full recovery. To design safer and more effective treatments, nanomedicine appeared in this medical field a few decades ago. This review will explain why nanoparticle-based therapies and imaging techniques are relevant for ischemic stroke management. Then, it will present the different nanoparticle types that have been recently developed to treat this pathology. It will also study the various targeting strategies used to bring nanoparticles to the stroke site, thereby limiting side effects and improving the therapeutic efficacy. Finally, this review will present the few clinical studies testing nanomedicine on stroke and discuss potential causes for their scarcity.
Collapse
Affiliation(s)
- Pierre Sarfati
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France
| | - Thibault De La Taille
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France
| | - Corinne Portioli
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Yoann Lalatonne
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F-93009 Bobigny, France
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Cédric Chauvierre
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France.
| |
Collapse
|
39
|
Almurshedi AS, Almarshad SN, Bukhari SI, Aldosari BN, Alhabardi SA, Alkathiri FA, Saleem I, Aldosar NS, Zaki RM. A Novel Inhalable Dry Powder to Trigger Delivery of Voriconazole for Effective Management of Pulmonary Aspergillosis. Pharmaceutics 2024; 16:897. [PMID: 39065594 PMCID: PMC11280232 DOI: 10.3390/pharmaceutics16070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a fatal fungal infection with a high mortality rate. Voriconazole (VCZ) is considered a first-line therapy for IPA and shows efficacy in patients for whom other antifungal treatments have been unsuccessful. The objective of this study was to develop a high-potency VCZ-loaded liposomal system in the form of a dry-powder inhaler (DPI) using the spray-drying technique to convert liposomes into a nanocomposite microparticle (NCMP) DPI, formulated using a thin-film hydration technique. The physicochemical properties, including size, morphology, entrapment efficiency, and loading efficiency, of the formulated liposomes were evaluated. The NCMPs were then examined to determine their drug content, production yield, and aerodynamic size. The L3NCMP was formulated using a 1:1 lipid/L-leucine ratio and was selected for in vitro studies of cell viability, antifungal activity, and stability. These formulated inhalable particles offer a promising approach to the effective management of IPA.
Collapse
Affiliation(s)
- Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Sarah N. Almarshad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Basmah N. Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Samiah A. Alhabardi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Fai A. Alkathiri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.N.A.); (S.I.B.); (B.N.A.); (S.A.A.); (F.A.A.)
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Noura S. Aldosar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef 62514, Egypt
| |
Collapse
|
40
|
Guo H, Mukwaya V, Wu D, Xiong S, Dou H. Acid-Responsive Decomposable Nanomedicine Based on Zeolitic Imidazolate Frameworks for Near-Infrared Fluorescence Imaging/Chemotherapy Combined Tumor Theranostics. Pharmaceutics 2024; 16:823. [PMID: 38931943 PMCID: PMC11207643 DOI: 10.3390/pharmaceutics16060823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) nanoparticles (NPs) are gaining traction in tumor theranostics for their effectiveness in encapsulating both imaging agents and therapeutic drugs. While typically, similar hydrophilic molecules are encapsulated in either pure aqueous or organic environments, few studies have explored co-encapsulation of chemotherapeutic drugs and imaging agents with varying hydrophilicity and, consequently, constructed multifunctional ZIF-8 composite NPs for acid-responsive, near-infrared fluorescence imaging/chemotherapy combined tumor theranostics. Here, we present a one-pot method for the synthesis of uniform Cy5.5&DOX@ZIF-8 nanoparticles in mixed solvents, efficiently achieving simultaneous encapsulation of hydrophilic doxorubicin (DOX) and hydrophobic Cyanine-5.5 (Cy5.5). Surface decoration with dextran (Dex) enhanced colloidal stability and biocompatibility. The method significantly facilitated co-loading of Cy5.5 dyes and DOX drugs, endowing the composite NPs with notable fluorescent imaging capabilities and pH-responsive chemotherapy capacities. In vivo near-infrared fluorescence (NIRF) imaging in A549 tumor-bearing mice demonstrated significant accumulation of Cy5.5 at tumor sites due to enhanced permeability and retention (EPR) effects, with fluorescence intensities approximately 48-fold higher than free Cy5.5. Enhanced therapeutic efficiency was observed in composite NPs compared to free DOX, validating tumor-targeted capability. These findings suggest ZIF-8-based nanomedicines as promising platforms for multifunctional tumor theranostics.
Collapse
Affiliation(s)
| | | | | | | | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Zhang H, Xing C, Yan B, Lei H, Guan Y, Zhang S, Kang Y, Pang J. Paclitaxel Overload Supramolecular Oxidative Stress Nanoamplifier with a CDK12 Inhibitor for Enhanced Cancer Therapy. Biomacromolecules 2024; 25:3685-3702. [PMID: 38779908 DOI: 10.1021/acs.biomac.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Combination therapy has emerged as a promising approach for treating tumors, although there is room for improvement. This study introduced a novel strategy that combined the enhancement of apoptosis, ferroptosis, and DNA damage to improve therapeutic outcomes for prostate cancer. Specifically, we have developed a supramolecular oxidative stress nanoamplifier, which was comprised of β-cyclodextrin, paclitaxel, and ferrocene-poly(ethylene glycol). Paclitaxel within the system disrupted microtubule dynamics, inducing G2/M phase arrest and apoptosis. Concurrently, ferrocene utilized hydrogen peroxide to generate toxic hydroxyl radicals in cells through the Fenton reaction, triggering a cascade of reactive oxygen species expansion, reduction of glutathione levels, lipid peroxidation, and ferroptosis. The increased number of hydroxyl radicals and the inhibitory effect of THZ531 on DNA repair mechanisms exacerbated DNA damage within tumor cells. As expected, the supramolecular nanoparticles demonstrated excellent drug delivery ability to tumor cells or tissues, exhibited favorable biological safety in vivo, and enhanced the killing effect on prostate cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Chengyuan Xing
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Binyuan Yan
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Hanqi Lei
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yupeng Guan
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
42
|
Zhao G, Wang Y, Fan Z, Xiong J, Ertas YN, Ashammakhi N, Wang J, Ma T. Nanomaterials in crossroad of autophagy control in human cancers: Amplification of cell death mechanisms. Cancer Lett 2024; 591:216860. [PMID: 38583650 DOI: 10.1016/j.canlet.2024.216860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Cancer is the result of genetic abnormalities that cause normal cells to grow into neoplastic cells. Cancer is characterized by several distinct features, such as uncontrolled cell growth, extensive spreading to other parts of the body, and the ability to resist treatment. The scientists have stressed the development of nanostructures as novel therapeutic options in suppressing cancer, in response to the emergence of resistance to standard medicines. One of the specific mechanisms with dysregulation during cancer is autophagy. Nanomaterials have the ability to specifically carry medications and genes, and they can also enhance the responsiveness of tumor cells to standard therapy while promoting drug sensitivity. The primary mechanism in this process relies on autophagosomes and their fusion with lysosomes to break down the components of the cytoplasm. While autophagy was initially described as a form of cellular demise, it has been demonstrated to play a crucial role in controlling metastasis, proliferation, and treatment resistance in human malignancies. The pharmacokinetic profile of autophagy modulators is poor, despite their development for use in cancer therapy. Consequently, nanoparticles have been developed for the purpose of delivering medications and autophagy modulators selectively and specifically to the cancer process. Furthermore, several categories of nanoparticles have demonstrated the ability to regulate autophagy, which plays a crucial role in defining the biological characteristics and response to therapy of tumor cells.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - Zhongru Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye; Department of Biomedical Engineering, Erciyes University, Kayseri, 39039, Türkiye.
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jianfeng Wang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Ting Ma
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
43
|
Souri M, Golzaryan A, Soltani M. Charge-Switchable nanoparticles to enhance tumor penetration and accumulation. Eur J Pharm Biopharm 2024; 199:114310. [PMID: 38705311 DOI: 10.1016/j.ejpb.2024.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Nanoparticle-based drug delivery systems hold potential in chemotherapy, but their limited accumulation in tumor tissues hinders effective drug concentration for combating tumor growth. Hence, altering the physicochemical properties of nanoparticles, particularly their surface charge, can enhance their performance. This study utilized a computational model to explore a nanoparticle drug delivery system capable of dynamically adjusting its surface charge. In the model, nanoparticles in the bloodstream were assigned a neutral or positive charge, which, upon reaching the tumor microenvironment, switched to a neutral or negative charge, and releasing chemotherapy drugs into the extracellular space. Results revealed that circulating nanoparticles with a positive surface charge, despite having a shorter circulation and high clearance rate compared to their neutral counterparts, could accumulate significantly in the tissue due to their high transvascular rate. After extravasation, neutralized surface-charged nanoparticles tended to accumulate only near blood microvessels due to their low diffusion rate, resulting in substantial released drug drainage back into the bloodstream. On the other hand, nanoparticles with a negative surface charge in the tumor's extracellular space, due to the reduction of nano-bio interactions, were able to penetrate deeper into the tumor, and increasing drug bioavailability by reducing the volume of drained drugs. Furthermore, the analysis suggested that burst drug release yields a higher drug concentration than sustained drug release, however their creation of bioavailability dependent on nanoparticle accumulation in the tissue. The study's findings demonstrate the potential of this delivery system and offer valuable insights for future research in this area.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Aryan Golzaryan
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| |
Collapse
|
44
|
Wu H, Li B, Shao J, Kong Q. Tumor-oriented and chemo-photothermal nanoplatform capable of sensitizing chemotherapy and ferroptosis against osteosarcoma metastasis. Int J Biol Macromol 2024; 269:132019. [PMID: 38729498 DOI: 10.1016/j.ijbiomac.2024.132019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
The clinical use of chemotherapy for refractory osteosarcoma (OS) is limited due to its multiorgan toxicity. To overcome this challenge, new dosage forms and combination treatments, such as phototherapy, are being explored to improve targeted delivery and cytocompatibility of chemotherapeutic agents. In addition, inducing ferroptosis in iron-rich tumors could be a promising strategy to enhance OS therapy. In this study, a novel formulation was developed using natural biological H-ferritin (HFn) encapsulating the photosensitizer IR-780 and the chemotherapy drug gemcitabine (Gem) for OS-specific targeted therapy (HFn@Gem/IR-780 NPs). HFn@Gem/IR-780 NPs were designed to specifically bind and internalize into OS cells by interacting with transferrin receptor 1 (TfR1) which is overexpressed on the surface of OS cell membranes. The Gem and IR-780 were then released responsively under mildly acidic conditions in tumors. HFn@Gem/IR-780 NPs achieved cascaded antitumor therapeutic efficacy through the combination of chemotherapy and phototherapy under near-infrared irradiation in vitro and in vivo. Importantly, HFn@Gem/IR-780 NPs demonstrated excellent safety profile with significantly decreased drug exposure to normal organs, indicating its potential for reducing systemic toxicity. Thus, utilizing HFn as a vehicle to encapsulate highly effective antitumor drugs provides a promising approach for the treatment of OS metastasis and relapse.
Collapse
Affiliation(s)
- Hongzi Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Orthopedics, Karamay Central Hospital of Xinjiang, Karamay 834000, China.
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jichun Shao
- The Second Affiliated Hospital of Chengdu Medical College, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, National Nuclear Corporation 416 Hospital, Chengdu 610051, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
45
|
Ponomareva N, Brezgin S, Karandashov I, Kostyusheva A, Demina P, Slatinskaya O, Bayurova E, Silachev D, Pokrovsky VS, Gegechkori V, Khaydukov E, Maksimov G, Frolova A, Gordeychuk I, Zamyatnin Jr. AA, Chulanov V, Parodi A, Kostyushev D. Swelling, Rupture and Endosomal Escape of Biological Nanoparticles Per Se and Those Fused with Liposomes in Acidic Environment. Pharmaceutics 2024; 16:667. [PMID: 38794330 PMCID: PMC11126099 DOI: 10.3390/pharmaceutics16050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Biological nanoparticles (NPs), such as extracellular vesicles (EVs), exosome-mimetic nanovesicles (EMNVs) and nanoghosts (NGs), are perspective non-viral delivery vehicles for all types of therapeutic cargo. Biological NPs are renowned for their exceptional biocompatibility and safety, alongside their ease of functionalization, but a significant challenge arises when attempting to load therapeutic payloads, such as nucleic acids (NAs). One effective strategy involves fusing biological NPs with liposomes loaded with NAs, resulting in hybrid carriers that offer the benefits of both biological NPs and the capacity for high cargo loads. Despite their unique parameters, one of the major issues of virtually any nanoformulation is the ability to escape degradation in the compartment of endosomes and lysosomes which determines the overall efficiency of nanotherapeutics. In this study, we fabricated all major types of biological and hybrid NPs and studied their response to the acidic environment observed in the endolysosomal compartment. In this study, we show that EMNVs display increased protonation and swelling relative to EVs and NGs in an acidic environment. Furthermore, the hybrid NPs exhibit an even greater response compared to EMNVs. Short-term incubation of EMNVs in acidic pH corresponding to late endosomes and lysosomes again induces protonation and swelling, whereas hybrid NPs are ruptured, resulting in the decline in their quantities. Our findings demonstrate that in an acidic environment, there is enhanced rupture and release of vesicular cargo observed in hybrid EMNVs that are fused with liposomes compared to EMNVs alone. This was confirmed through PAGE electrophoresis analysis of mCherry protein loaded into nanoparticles. In vitro analysis of NPs colocalization with lysosomes in HepG2 cells demonstrated that EMNVs mostly avoid the endolysosomal compartment, whereas hybrid NPs escape it over time. To conclude, (1) hybrid biological NPs fused with liposomes appear more efficient in the endolysosomal escape via the mechanism of proton sponge-associated scavenging of protons by NPs, influx of counterions and water, and rupture of endo/lysosomes, but (2) EMNVs are much more efficient than hybrid NPs in actually avoiding the endolysosomal compartment in human cells. These results reveal biochemical differences across four major types of biological and hybrid NPs and indicate that EMNVs are more efficient in escaping or avoiding the endolysosomal compartment.
Collapse
Affiliation(s)
- Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.K.); (A.K.); (V.C.); (D.K.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.K.); (A.K.); (V.C.); (D.K.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.K.); (A.K.); (V.C.); (D.K.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.K.); (A.K.); (V.C.); (D.K.)
| | - Polina Demina
- Institute of Physics, Technology, and Informational Systems, Moscow Pedagogical State University, Malaya Pirogovskaya St. 1, 119435 Moscow, Russia; (P.D.); (E.K.)
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova Sq. 1, 123182 Moscow, Russia
| | - Olga Slatinskaya
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.S.); (G.M.)
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia; (E.B.); (I.G.)
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia;
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vadim S. Pokrovsky
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
- Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
- Department of Biochemistry, People’s Friendship University, 117198 Moscow, Russia
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
| | - Evgeny Khaydukov
- Institute of Physics, Technology, and Informational Systems, Moscow Pedagogical State University, Malaya Pirogovskaya St. 1, 119435 Moscow, Russia; (P.D.); (E.K.)
- National Research Centre “Kurchatov Institute”, Akademika Kurchatova Sq. 1, 123182 Moscow, Russia
| | - Georgy Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.S.); (G.M.)
| | - Anastasia Frolova
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia; (E.B.); (I.G.)
| | - Andrey A. Zamyatnin Jr.
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vladimir Chulanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.K.); (A.K.); (V.C.); (D.K.)
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (I.K.); (A.K.); (V.C.); (D.K.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia; (V.S.P.); (A.F.); (A.A.Z.J.); (A.P.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
46
|
Huang Z, Li X, Yu D, Wang H, Chun C, Zhao Y. Efferocytosis-Inspired Biomimetic Nanoplatform for Targeted Acute Lung Injury Therapy. Adv Healthc Mater 2024; 13:e2304304. [PMID: 38306647 DOI: 10.1002/adhm.202304304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Acute lung injury (ALI) is a serious inflammatory disease that causes impairment of pulmonary function. Phenotypic modulation of macrophage in the lung using fibroblast growth factor 21 (FGF21) may be a potential strategy to alleviate lung inflammation. Consequently, achieving specific delivery of FGF21 to the inflamed lung and subsequent efficient FGF21 internalization by macrophages within the lung becomes critical for effective ALI treatment. Here, an apoptotic cell membrane-coated zirconium-based metal-organic framework UiO-66 is reported for precise pulmonary delivery of FGF21 (ACM@U-FGF21) whose design is inspired by the process of efferocytosis. ACM@U-FGF21 with apoptotic signals is recognized and internalized by phagocytes in the blood and macrophages in the lung, and then the intracellular ACM@U-FGF21 can inhibit the excessive secretion of pro-inflammatory cytokines by these cells to relieve the inflammation. Utilizing the homologous targeting properties inherited from the source cells and the spontaneous recruitment of immune cells to inflammatory sites, ACM@U-FGF21 can accumulate preferentially in the lung after injection. The results prove that ACM@U-FGF21 effectively reduces inflammatory damage to the lung by modulating lung macrophage polarization and suppressing the excessive secretion of pro-inflammatory cytokines by activated immune cells. This study demonstrates the usefulness of efferocytosis-inspired ACM@U-FGF21 in the treatment of ALI.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Xinze Li
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Dedong Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hengcai Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Changju Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| |
Collapse
|
47
|
Li L, Soyhan I, Warszawik E, van Rijn P. Layered Double Hydroxides: Recent Progress and Promising Perspectives Toward Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306035. [PMID: 38501901 PMCID: PMC11132086 DOI: 10.1002/advs.202306035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 03/20/2024]
Abstract
Layered double hydroxides (LDHs) have been widely studied for biomedical applications due to their excellent properties, such as good biocompatibility, degradability, interlayer ion exchangeability, high loading capacity, pH-responsive release, and large specific surface area. Furthermore, the flexibility in the structural composition and ease of surface modification of LDHs makes it possible to develop specifically functionalized LDHs to meet the needs of different applications. In this review, the recent advances of LDHs for biomedical applications, which include LDH-based drug delivery systems, LDHs for cancer diagnosis and therapy, tissue engineering, coatings, functional membranes, and biosensors, are comprehensively discussed. From these various biomedical research fields, it can be seen that there is great potential and possibility for the use of LDHs in biomedical applications. However, at the same time, it must be recognized that the actual clinical translation of LDHs is still very limited. Therefore, the current limitations of related research on LDHs are discussed by combining limited examples of actual clinical translation with requirements for clinical translation of biomaterials. Finally, an outlook on future research related to LDHs is provided.
Collapse
Affiliation(s)
- Lei Li
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Irem Soyhan
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Eliza Warszawik
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| | - Patrick van Rijn
- Department of Biomedical EngineeringUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
- W. J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenUniversity Medical Center GroningenA. Deusinglaan 1Groningen, AV9713The Netherlands
| |
Collapse
|
48
|
Hatami H, Rahiman N, Mohammadi M. Oligonucleotide based nanogels for cancer therapeutics. Int J Biol Macromol 2024; 267:131401. [PMID: 38582467 DOI: 10.1016/j.ijbiomac.2024.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Oligonucleotide-based nanogels, as nascent biomaterials, possess several unique functional, structural, and physicochemical features with excellent drug-loading capacity and high potential for cancer gene therapy. Ongoing studies utilizing oligonucleotide-based nanogels hold great promise, as these cutting-edge nanoplatforms can be elegantly developed with predesigned oligonucleotide sequences and complementary strands which are self-assembled or chemically crosslinked leading to the development of nanogels with predictable shape and tunable size with the desired functional properties. Current paper provides a summary of the properties, preparation methods, and applications of oligonucleotide-based nanogels in cancer therapy. The review is focused on both conventional and modified forms of oligonucleotide-based nanogels, including targeted nanogels, smart release nanogels (responsive to stimuli such as pH, temperature, and enzymes), as well as nanogels used for gene delivery. Their application in cancer immunotherapy and vaccination, photodynamic therapy, and diagnostic applications when combined with other nanoparticles is further discussed. Despite emerging designs in the development of oligonucleotide based nanogels, this field of study is still in its infancy, and clinical translation of these versatile nano-vehicles might face challenges. Hence, extensive research must be performed on in vivo behavior of such platforms determining their biodistribution, biological fate, and acute/subacute toxicity.
Collapse
Affiliation(s)
- Hooman Hatami
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Singh A, Lofts A, Krishnan R, Campea M, Chen L, Wan Y, Hoare T. The effect of comb length on the in vitro and in vivo properties of self-assembled poly(oligoethylene glycol methacrylate)-based block copolymer nanoparticles. NANOSCALE ADVANCES 2024; 6:2487-2498. [PMID: 38694467 PMCID: PMC11059560 DOI: 10.1039/d3na01156a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/19/2024] [Indexed: 05/04/2024]
Abstract
Comb copolymer analogues of poly(lactic acid)-polyethylene glycol block copolymers (PLA-b-PEG) offer potential to overcome the inherent chemistry and stability limitations of their linear block copolymer counterparts. Herein, we examine the differences between P(L)LA10K-b-PEG10K and linear-comb copolymer analogues thereof in which the linear PEG block is replaced by poly(oligo(ethylene glycol) methacrylate) (POEGMA) blocks with different side chain (comb) lengths but the same overall molecular weight. P(L)LA10K-b-POEGMA47510K and P(L)LA10K-b-POEGMA200010K block copolymers were synthesized via activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) and fabricated into self-assembled nanoparticles using flash nanoprecipitation via confined impinging jet mixing. Linear-comb copolymer analogues based on PLA-b-POEGMA yielded smaller but still well-controlled nanoparticle sizes (88 ± 2 nm and 114 ± 1 nm respectively compared to 159 ± 2 nm for P(L)LA10K-b-PEG10K nanoparticles) that exhibited improved colloidal stability relative to linear copolymer-based nanoparticles over a 15 day incubation period while maintaining comparably high cytocompatibility, although the comb copolymer analogues had somewhat lower loading capacity for doxorubicin hydrochloride. Cell spheroid studies showed that the linear-comb copolymers promoted enhanced tumor transport and thus cell killing compared to conventional linear block copolymers. In vivo studies showed all NP types could passively accumulate within implanted CT26 tumors but with different accumulation profiles, with P(L)LA10K-b-POEGMA200010K NPs showing continuous accumulation throughout the full 24 h monitoring period whereas tumor accumulation of P(L)LA10K-b-POEGMA47510K NPs was significant only between 8 h and 24 h. Overall, the linear-comb copolymer analogues exhibited superior stability, biodistribution, spheroid penetration, and inherent tunability over linear NP counterparts.
Collapse
Affiliation(s)
- Andrew Singh
- Department of Chemical Engineering, McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L7 Canada
| | - Andrew Lofts
- Department of Chemical Engineering, McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L7 Canada
| | - Ramya Krishnan
- Department of Pathology and Molecular Medicine, McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L7 Canada
| | - Matthew Campea
- Department of Chemical Engineering, McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L7 Canada
| | - Lan Chen
- Department of Pathology and Molecular Medicine, McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L7 Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L7 Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University 1280 Main St. W. Hamilton Ontario L8S 4L7 Canada
| |
Collapse
|
50
|
Korangath P, Jin L, Yang CT, Healy S, Guo X, Ke S, Grüttner C, Hu C, Gabrielson K, Foote J, Clarke R, Ivkov R. Iron Oxide Nanoparticles Inhibit Tumor Progression and Suppress Lung Metastases in Mouse Models of Breast Cancer. ACS NANO 2024; 18:10509-10526. [PMID: 38564478 PMCID: PMC11025112 DOI: 10.1021/acsnano.3c12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-β (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.
Collapse
Affiliation(s)
- Preethi Korangath
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Lu Jin
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Chun-Ting Yang
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Sean Healy
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Xin Guo
- Department
of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Suqi Ke
- Department
of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer
Centre, School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21231, United States
| | | | - Chen Hu
- Department
of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer
Centre, School of Medicine, Johns Hopkins
University, Baltimore, Maryland 21231, United States
| | - Kathleen Gabrielson
- Department
of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Jeremy Foote
- Department
of Microbiology, School of Medicine, University
of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Robert Clarke
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Robert Ivkov
- Department
of Radiation Oncology and Molecular Radiation Sciences, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department
of Oncology, Sidney Kimmel Comprehensive Cancer Centre, School of
Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department
of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|