1
|
Hosseini S, Rahsepar S, Naghipour S, Elyasi S. Is oral nano-curcumin formulation a safe and effective measure for preventing cisplatin-induced nephrotoxicity in cancer patients? Anticancer Drugs 2024; 35:859-866. [PMID: 39017207 DOI: 10.1097/cad.0000000000001639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Nephrotoxicity is one of the most important complications in cancer patients under treatment with cisplatin-containing regimens. Curcumin, as the most important active component of Curcuma longa, is an antioxidant and anti-inflammatory compound. In this clinical trial, we assessed the preventive effect of nano-curcumin oral formulation against cisplatin-induced nephrotoxicity in cancer patients. In this triple-blind clinical trial 30 cancer patients on cisplatin were randomly included in the treatment group, receiving nano-curcumin 40 mg capsules ( n = 15) or the placebo group ( n = 15) twice a day during four chemotherapy courses. Kidney function was measured at the beginning of the study and then at the end of each course of chemotherapy. There was no significant difference in acute kidney injury occurrence rate and creatinine and blood urine nitrogen serum levels between the treatment and placebo groups at the end of each chemotherapy course ( P value >0.05). Just at the end of the first course, the difference was close to significant ( P = 0.055). We also found no difference in mortality and recurrence rate in an average 30-month follow-up. Nano-curcumin in the prescribed dose and duration was not effective in preventing cisplatin-induced nephrotoxicity in cancer patients in comparison with the placebo. Further studies with larger sample size using different doses and duration of nano-curcumin are recommended.
Collapse
Affiliation(s)
- Sare Hosseini
- Cancer Research Center, Mashhad University of Medical Sciences,
- Department of Radiation Oncology, Faculty of Medicine, Mashhad University of Medical Sciences
| | - Sara Rahsepar
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences, Mashhad, Iran
| | - Sara Naghipour
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Famurewa AC, George MY, Ukwubile CA, Kumar S, Kamal MV, Belle VS, Othman EM, Pai SRK. Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity-a review of literature evidence. Biometals 2024:10.1007/s10534-024-00637-7. [PMID: 39347848 DOI: 10.1007/s10534-024-00637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki, Ebonyi, Nigeria.
- Centre for Natural Products Discovery, School of P harmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cletus A Ukwubile
- Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri, Bama Road, Maiduguri, Borno, Nigeria
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mehta V Kamal
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vijetha S Belle
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Cancer Therapy Research Center, Department of Biochemistry-I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, BiocenterWürzburg, Germany
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
3
|
Liu L, Kapralov M, Ashton M. Plant-derived compounds as potential leads for new drug development targeting COVID-19. Phytother Res 2024; 38:1522-1554. [PMID: 38281731 DOI: 10.1002/ptr.8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
COVID-19, which was first identified in 2019 in Wuhan, China, is a respiratory illness caused by a virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although some patients infected with COVID-19 can remain asymptomatic, most experience a range of symptoms that can be mild to severe. Common symptoms include fever, cough, shortness of breath, fatigue, loss of taste or smell and muscle aches. In severe cases, complications can arise including pneumonia, acute respiratory distress syndrome, organ failure and even death, particularly in older adults or individuals with underlying health conditions. Treatments for COVID-19 include remdesivir, which has been authorised for emergency use in some countries, and dexamethasone, a corticosteroid used to reduce inflammation in severe cases. Biological drugs including monoclonal antibodies, such as casirivimab and imdevimab, have also been authorised for emergency use in certain situations. While these treatments have improved the outcome for many patients, there is still an urgent need for new treatments. Medicinal plants have long served as a valuable source of new drug leads and may serve as a valuable resource in the development of COVID-19 treatments due to their broad-spectrum antiviral activity. To date, various medicinal plant extracts have been studied for their cellular and molecular interactions, with some demonstrating anti-SARS-CoV-2 activity in vitro. This review explores the evaluation and potential therapeutic applications of these plants against SARS-CoV-2. This review summarises the latest evidence on the activity of different plant extracts and their isolated bioactive compounds against SARS-CoV-2, with a focus on the application of plant-derived compounds in animal models and in human studies.
Collapse
Affiliation(s)
- Lingxiu Liu
- Faculty of Medical Sciences, School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, UK
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Maxim Kapralov
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Mark Ashton
- Faculty of Medical Sciences, School of Pharmacy, Newcastle University, Newcastle-Upon-Tyne, UK
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle-Upon-Tyne, UK
| |
Collapse
|
4
|
Kazak F, Deveci MZY, Akçakavak G. Eucalyptol alleviates cisplatin-induced kidney damage in rats. Drug Chem Toxicol 2024; 47:172-179. [PMID: 36514998 DOI: 10.1080/01480545.2022.2156530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
This study was aimed to explore the therapeutic effect of eucalyptol on cisplatin induced kidney damage in Wistar albino rats. The animals were divided into four groups: sham (S), eucalyptol (E), cisplatin (C), and cisplatin + eucalyptol (CE) randomly, six animals in each group. Groups C and CE were received cisplatin (12 mg/kg, a single dose, intraperitoneally (i.p.)). Groups E and CE were treated with eucalyptol (100 mg/kg, for seven days, orally). The blood samples and kidney tissues were collected following sacrification and analyzed histopathologically and biochemically. Histopathological results revealed tubular degeneration and necrosis, inflammatory cell infiltration, tubular lumen dilatation, enlargement of bowman's space and hyaline cast were significantly irregular in the group C than group S. However, eucalyptol treatment (CE) modulated the alterations in the group C. Serum levels of blood urea nitrogen (BUN) and creatinine (CRE) were considerably higher in the group C compared to the other groups. There was no significant difference among the other groups statistically (except group C) in terms of BUN and CRE values. Eucalyptol treatment (at 100 mg/kg, for seven days) decreased the cisplatin induced increase in serum BUN and CRE levels and restored the reduced Vit C level and CAT activity of kidneys caused by cisplatin. Thus, eucalyptol's antioxidative, nephroprotective, and curative effects indicated the potential for future drug development.
Collapse
Affiliation(s)
- Filiz Kazak
- Department of Biochemistry, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Antakya, Turkey
| | - Mehmet Zeki Yılmaz Deveci
- Department of Surgery, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Antakya, Turkey
- Laboratory Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Gökhan Akçakavak
- Department of Pathology, Faculty of Veterinary Medicine, Bozok University, Yozgat, Turkey
| |
Collapse
|
5
|
KARA Ö, KİLİTCİ A, DAĞLIOĞLU G. Resveratrolün sıçan böbreğinde cisplatine bağlı hasar üzerindeki koruyucu etkisi. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1086261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: The aim of this study was to evaluate the protective effect of resveratrol on cisplatin induced damage in rat kidney.
Materials and Methods: 30 female Wistar-Albino rats were allocated to form three groups: In group 1 (control group), 1 mL of 0.9% NaCl (saline) was administered intraperitoneally for 3 days. In group 2 (cisplatin group), 7.5 mg / kg intraperitoneal cisplatin was given for 3 days. In group 3 (cisplatin + resveratrol group) 7.5 mg / kg cisplatin and 10 mg / kg resveratrol were given via intraperitoneal route. Right kidneys were surgically extirpated in all groups. Malondialdehyde (MDA) levels and activities of catalase (CAT) and superoxide dismutase (SOD) were measured in both blood and tissues. Also, toxicity markers such as vascular congestion, hemorrhage, tubule degeneration and glomerular damage were assessed by examining the slides prepared from kidney tissue with microscopy.
Results: Tissue damage was significantly higher in group 2 than other groups. The MDA levels were significantly higher and the activities of SOD, and CAT were lower in group 2 than other groups.
Conclusion: According to our short term findings, resveratrol might be an effective molecule to prevent the harmful effect of cisplatin in rat kidney.
Collapse
Affiliation(s)
- Özlem KARA
- Kirsehir Ahi Evran University School of Medicine, Department of Histology and Embryology
| | - Asuman KİLİTCİ
- DUZCE UNIVERSITY, SCHOOL OF MEDICINE, DEPARTMENT OF SURGICAL MEDICAL SCIENCES, DEPARTMENT OF PATHOLOGY
| | - Gülçin DAĞLIOĞLU
- 3 Cukurova University Training and Research Hospital, Clinic of Biochemistry
| |
Collapse
|
6
|
Selenium Status in Diet Affects Nephrotoxicity Induced by Cisplatin in Mice. Antioxidants (Basel) 2022; 11:antiox11061141. [PMID: 35740039 PMCID: PMC9220181 DOI: 10.3390/antiox11061141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Cisplatin is one of the most active chemotherapy drugs to treat solid tumors. However, it also causes various side effects, especially nephrotoxicity, in which oxidative stress plays critical roles. Our previous studies found that cisplatin selectively inhibited selenoenzyme thioredoxin reductase1 (TrxR1) in the kidney at an early stage and, subsequently, induced the activation of Nrf2. However, the effects of selenium on cisplatin-induced nephrotoxicity are still unclear. In this study, we established mice models with different selenium intake levels to explore the effects of selenoenzyme activity changes on cisplatin-induced nephrotoxicity. Results showed that feeding with a selenium-deficient diet sensitize the mice to cisplatin-induced damage, whereas selenium supplementation increased the activities of selenoenzymes TrxR and glutathione peroxidase (GPx), changed the renal cellular redox environment to a reduced state, and exhibited protective effects. These results demonstrated the correlation of selenoenzymes with cisplatin-induced side effects and provided a basis for the potential approach to alleviate cisplatin-induced renal injury.
Collapse
|
7
|
In Vitro and In Vivo Cardioprotective Effects of Curcumin against Doxorubicin-Induced Cardiotoxicity: A Systematic Review. JOURNAL OF ONCOLOGY 2022; 2022:7277562. [PMID: 35237323 PMCID: PMC8885194 DOI: 10.1155/2022/7277562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
Objective This study aimed to review the potential chemoprotective effects of curcumin against the doxorubicin-induced cardiotoxicity. Methods According to the PRISMA guideline, a comprehensive systematic search was performed in different electronic databases (Web of Science, PubMed, and Scopus) up to July 2021. One hundred and sixty-four studies were screened in accordance with a predefined set of inclusion and exclusion criteria. Eighteen eligible articles were finally included in the current systematic review. Results According to the in vitro and in vivo findings, it was found that doxorubicin administration leads to decreased cell survival, increased mortality, decreased bodyweight, heart weight, and heart to the bodyweight ratio compared to the control groups. However, curcumin cotreatment demonstrated an opposite pattern in comparison with the doxorubicin-treated groups alone. Other findings showed that doxorubicin significantly induces biochemical changes in the cardiac cells/tissue. Furthermore, the histological changes on the cardiac tissue were observed following doxorubicin treatment. Nevertheless, for most of the cases, these biochemical and histological changes mediated by doxorubicin were reversed near to control groups following curcumin coadministration. Conclusion It can be mentioned that coadministration of curcumin alleviates the doxorubicin-induced cardiotoxicity. Curcumin exerts these cardioprotective effects through different mechanisms of antioxidant, antiapoptosis, and anti-inflammatory. Since the finding presented in this systematic review are based on in vitro and in vivo studies, suggesting the use of curcumin in cancer patients as a cardioprotector agent against cardiotoxicity mediated by doxorubicin requires further clinical studies.
Collapse
|
8
|
Abadi AJ, Mirzaei S, Mahabady MK, Hashemi F, Zabolian A, Hashemi F, Raee P, Aghamiri S, Ashrafizadeh M, Aref AR, Hamblin MR, Hushmandi K, Zarrabi A, Sethi G. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother Res 2021; 36:189-213. [PMID: 34697839 DOI: 10.1002/ptr.7305] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is a phytochemical isolated from Curcuma longa with potent tumor-suppressor activity, which has shown significant efficacy in pre-clinical and clinical studies. Curcumin stimulates cell death, triggers cycle arrest, and suppresses oncogenic pathways, thereby suppressing cancer progression. Cisplatin (CP) stimulates DNA damage and apoptosis in cancer chemotherapy. However, CP has adverse effects on several organs of the body, and drug resistance is frequently observed. The purpose of the present review is to show the function of curcumin in decreasing CP's adverse impacts and improving its antitumor activity. Curcumin administration reduces ROS levels to prevent apoptosis in normal cells. Furthermore, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs. Curcumin and its nanoformulations can reduce the hepatoxicity, neurotoxicity, renal toxicity, ototoxicity, and cardiotoxicity caused by CP. Notably, curcumin potentiates CP cytotoxicity via mediating cell death and cycle arrest. Besides, curcumin suppresses the STAT3 and NF-ĸB as tumor-promoting pathways, to enhance CP sensitivity and prevent drug resistance. The targeted delivery of curcumin and CP to tumor cells can be mediated nanostructures. In addition, curcumin derivatives are also able to reduce CP-mediated side effects, and increase CP cytotoxicity against various cancer types.
Collapse
Affiliation(s)
- Asal Jalal Abadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fardin Hashemi
- School of Rehabilitation, Department of Physical Therapy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Tuzla, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Vice President at Translational Sciences, Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey.,Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Singh D, Chaudhary D, Kumar V, Verma A. Amelioration of diethylnitrosamine (DEN) induced renal oxidative stress and inflammation by Carissa carandas embedded silver nanoparticles in rodents. Toxicol Rep 2021; 8:636-645. [PMID: 33850732 PMCID: PMC8039534 DOI: 10.1016/j.toxrep.2021.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Inflammation and oxidative stress are the main factors ascribed with interruption in the process of renal tissue impairment. The toxicity of different types of nitrosamine is well recognized in animals and humans. Administration of the smallest quantities of diethylnitrosamine or dimethylnitrosamine either orally or parenterally results into renal damage. Therapeutic effects of phytofabricated silver nanoparticles of Carissa carandas aqueous extract has been scrutinised in current study for the assessment of renal cancer activity in animal model. METHODOLOGY Phytofabricated silver nanoparticles were characterized by using different instrumentation. Nephroprotective activity of silver nanoparticles at different doses was evaluated against N-diethylnitrosamine (200 mg/kg b.w., intraperitoneal) in animal model. Serum and renal homogenate were taken to evaluate the renal toxicity markers, oxidative stress, and antioxidant parameter, proinflammatory cytokines and histopathological study. RESULT Significant outcomes of silver nanoparticles in dose dependent manner down regulated the elevated serum marker, tumour marker enzymes and histopathology observation of repaired tissue assured the renal cancer activity in animals. In addition, profile of enzymatic and non-enzymatic antioxidant, proinflammatory cytokines and tumour promotion marker also favours the anticancer property of silver nanoparticles. CONCLUSION The data of current study reveals silver nanoparticles ameliorates renal oxidative stress and carcinogenesis which was induced by N-diethylnitrosamine and accredited to antioxidant and anticancer activities of phytofabricated nanoparticles by biological approach.
Collapse
Key Words
- ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
- AgNO3, silver nitrate
- AgNPs, silver nanoparticles
- BUN, blood urea nitrogen
- CC, carissa carandas
- CCAgNPs, silver nanoparticles of carissa carandas aqueous extract
- CDNB, 1-chloro-2,4-dinitrobenzene
- Carissa carandas embedded silver nanoparticles
- DEN, diethylnitrosamine
- DLS, dynamic light scattering
- DMN, dimethylnitrosamine
- DMSO, dimethyl sulphoxide
- FE-SEM, field emission scanning electron microscopy
- GGT, gamma glutamyl transpeptidase
- GGT, γ-glutamyl transpeptidase activity
- GPx, glutathione peroxidase
- GR, glutathione reductase activity
- GSH, glutathione
- GST, glutathione –S- Transferase
- H2O2, hydrogen peroxide
- IAEC, institutional animal ethical committee
- LDH, lactate dehydrogenase
- MDA, malondialdehyde
- NF-κB pathway
- NPs, nanoparticles
- ODC, ornithine decarboxylase
- ROS, reactive oxygen species
- Renal carcinoma
- SOD, superoxide dismutase
- XO, xanthine oxidase
Collapse
Affiliation(s)
- Deepika Singh
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Deepak Chaudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Amita Verma
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| |
Collapse
|
10
|
Gökçe AB, Eren B, Sağir D, Yilmaz BD. Inhibition of acrolein-induced apoptosis by the antioxidant selenium. Toxicol Ind Health 2021; 36:84-92. [PMID: 32279646 DOI: 10.1177/0748233720909043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the effects of a potent antioxidant, selenium, on apoptosis induced by acrolein, a cytotoxic and genotoxic environmental pollutant, were investigated by immunohistochemical and electron microscopic methods. One hundred adult male Wistar albino rats were used in the study. The rats were divided into four main groups: control, acrolein, selenium, and acrolein + selenium. The animals in the experimental groups were given 1 mg/kg/day selenium and 4 mg/kg/day acrolein daily for 7 days by gavage. After drug administration, each group was divided into subgroups according to the time they were to be euthanized: 12th hour, 1st, 2nd, 3rd, and 5th day. The rats in each group at the determined time were euthanized and their livers were removed. Routine histological procedures were performed for light and electron microscopy examinations. After applying the Terminal Deoxynucleotidyl Transferase dUTP nick end labeling assay on the liver sections, apoptotic index values were calculated. Comparing the liver sections of the rats in the acrolein group and the control group, acrolein was found to cause a significant increase in the apoptotic index. The apoptotic index values of the acrolein + selenium group decreased compared to the acrolein group. In the electron microscopic examinations, apoptotic findings were observed in the liver tissues of the rats given acrolein, such as chromatin condensation in the nucleus of hepatocytes, dilatations in the perinuclear space, and cytoplasmic vacuolization. These apoptotic findings were not observed in the acrolein + selenium group after the 12th hour. These findings show that selenium may potentially be useful as a protective agent for people exposed to acrolein.
Collapse
Affiliation(s)
- Ayşe Başardı Gökçe
- Biology Department, Faculty of Arts and Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Banu Eren
- Biology Department, Faculty of Arts and Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Dilek Sağir
- Nursing Department, Health School, Sinop University, Sinop, Turkey
| | | |
Collapse
|
11
|
Zaazaa AM, Motelp BAAE, Aniss NND. Potential Protective Role of Rutin and Alpha-lipoic Acid Against Cisplatin-induced Nephrotoxicity in Rats. Pak J Biol Sci 2020; 22:361-371. [PMID: 31930824 DOI: 10.3923/pjbs.2019.361.371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Cisplatin-induced nephrotoxicity is a serious complication that restricts its utilization in cancer treatment. Rutin and alpha-lipoic acid have antioxidant effectiveness, anti-inflammatory efficacy and prevent oxidative stress. Therefore, the current study planned to investigate the potential defensive impacts of rutin and alpha-lipoic acid on cisplatin-induced renal damage in rats. MATERIALS AND METHODS Fifty-six adult male Wistar albino rats were randomly divided into seven groups. Rats of group 1: Treated with saline as the control. Group 2: Orally received rutin daily for 2 weeks. Group 3: Rats were orally administered with alpha-lipoic acid (ALA) daily for 2 weeks. Group 4: Rats were intraperitoneal (i.p.) injected with cisplatin to develop the acute renal injury. Group 5: Rats injected with cisplatin then treated orally with RT. Group 6: Rats were injected i.p., with cisplatin then treated orally with ALA. Group 7: Rats injected with cisplatin then treated orally with RT and ALA daily for 2 weeks. RESULTS The cisplatin administration to rats induced nephrotoxicity associated with a significant increase in serum urea, creatinine, albumin and significantly reduce haemoglobin and red blood cells count. The animal treated with cisplatin showed a significant increase in the level of renal malondialdehyde associated with reduction in the levels of glutathione-s-transferase, glutathione reductase and catalase compared to control group. Moreover, cisplatin treated group recorded significant increase in nuclear factor kappa B, IL-6 and p53 levels compared to control group. Additionally, histopathological examination showed that cisplatin-induced interstitial congestion, focal mononuclear cell inflammatory, cell infiltrate and acute tubular injury. In correlation with the cisplatin group, Rutin and alpha-lipoic acid ameliorated cisplatin-induction increase in serum urea, creatinine, albumin, oxidative stress and inflammation were observed. Moreover, rutin and alpha-lipoic acid showed an enhancement in haematological and histopathological structures. CONCLUSION These results indicated that rutin and alpha-lipoic acid showed a protective effect against cisplatin-induced nephrotoxicity in rats.
Collapse
|
12
|
Sadeghi H, Mansourian M, Panahi Kokhdan E, Salehpour Z, Sadati I, Abbaszadeh-Goudarzi K, Asfaram A, Doustimotlagh AH. Antioxidant and protective effect of Stachys pilifera Benth against nephrotoxicity induced by cisplatin in rats. J Food Biochem 2020; 44:e13190. [PMID: 32155675 DOI: 10.1111/jfbc.13190] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/04/2020] [Accepted: 01/30/2020] [Indexed: 11/26/2022]
Abstract
The aim of current study was to assess the antioxidant and renoprotective effects of Stachys pilifera Benth (S.P.B.) hydroalcoholic extract on nephrotoxicity induced with cisplatin (CP). Adult rats with bodyweight of 180-220 g were divided into five groups (n = 7) treated as follows: group 1, control; group 2, CP; group 3, pretreatment with S.P.B. before CP; group 4, posttreatment with S.P.B. after CP; and, group 5, S.P.B. extract. A single dose of CP (7 mg/kg) was intraperitoneally injected on the fifth day and hydroalcoholic extract of S.P.B. (500 mg kg-1 day-1 ) was orally administered. The levels of oxidative stress markers, biochemical tests, and histopathological staining were assayed in serum and renal tissue. Also, the chemical composition of S.P.B. extract was determined by GC-MS analysis. The main compositions of S.P.B. extract identified by GC-MS analysis, were hexadeca-2,6,10,14-tetraen-1-ol, 3,7,11,16-tetramethyl (24.77%), thymol (14.1%), and linolenic acid (13.4%). In groups treated and pretreated with S.P.B., blood urea nitrogen, creatinine, malondialdehyde, and nitric oxide metabolite in serum as well as malondialdehyde and protein carbonyl content of kidney tissues were significantly decreased in comparison to CP group; in contrast, total thiol group showed a significant increase in treated group as compared to CP group. Furthermore, histological investigation indicated that treatment with S.P.B. improved renal damages induced by CP. The current study showed that S.P.B. hydroalcoholic extract improved the biochemical parameters and kidney function as well as restored antioxidant activity in CP-induced nephrotoxicity. However, it needs more investigations to define the mechanism of S.P.B. action. PRACTICAL APPLICATIONS: In different regions of Iran, Stachys is demonstrated by 34 species, out of which 13 are endemic, one of these endemic species is Stachys pilifera Benth (S.P.B.). The oil of S.P.B. is mainly consisted of cis-chrysanthenyl acetate, cis-chrysanthenol, spathulenol, β-caryophyllene, linalool, and terpinen-4-ol. Moreover, phytochemical studies have shown the presence of compounds such as diterpenes, phenylethanoid glycosides, saponins, terpenoides, and flavonoids in Stachys species. The aerial parts of S.P.B. are consumed as herbal tea to treat several disorders, for example, infections, asthma, and rheumatoid arthritis in Iranian folk medicine. The aim of current study was to evaluate the antioxidant and protective effects of S.P.B. hydroalcoholic extract on nephrotoxicity induced with cisplatin (CP). The current study showed that S.P.B. hydroalcoholic extract improved the biochemical parameters and kidney function as well as restored antioxidant activity in CP-induced nephrotoxicity. However, it needs more researches to define the mechanism of S.P.B. action.
Collapse
Affiliation(s)
- Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahboubeh Mansourian
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Zeinab Salehpour
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Iman Sadati
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | |
Collapse
|
13
|
Wang Y, Wang X, Zhang L, Huang Y, Bi L, Lv C, Chen L. A ratiometric fluorescent probe for detecting the endogenous biological signaling molecule superoxide anion and bioimaging during tumor treatment. J Mater Chem B 2020; 8:1017-1025. [PMID: 31934713 DOI: 10.1039/c9tb02453k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor resistance and drug-induced nephrotoxicity pose great challenges to the clinical treatment of tumors, and they also limit the clinical application of oncology drugs. Finding an effective adjuvant, which can sensitize tumor treatment, is an effective method for tumor treatment. Here, we developed a ratiometric fluorescent probe, TP-Tfs, for superoxide anion (O2˙-) detection in living cells and in vivo during the process of tumor treatment for the first time. TP-Tfs with simple synthesis steps and high yields can detect O2˙- sensitively and selectively, and the detection limit was determined to be 37 nM. Using TP-Tfs, we found that cis-diaminodichloroplatinum(ii) (DDP) was effective in treating tumors by inducing O2˙- burst. Curcumin (cum) can sensitize tumor treatment effectively by inducing more severe O2˙- burst. These results indicated that the probe TP-Tfs was a promising candidate for drug screening and tumor treatment evaluation.
Collapse
Affiliation(s)
- Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Li Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Liyan Bi
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and School of Pharmacy, Binzhou Medical University, Yantai 264003, China and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China and Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
14
|
Zhang Z, Xin G, Zhou G, Li Q, Veeraraghavan VP, Krishna Mohan S, Wang D, Liu F. Green synthesis of silver nanoparticles from Alpinia officinarum mitigates cisplatin-induced nephrotoxicity via down-regulating apoptotic pathway in rats. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3212-3221. [PMID: 31359793 DOI: 10.1080/21691401.2019.1645158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The rhizome of A. officinarum possesses immense pharmaceutical properties like antioxidant, anti-inflammatory, antiapoptotic, anticancer activities. The foremost downside of herbal-based drugs is their poor bioavailability, to trounce this we synthesized a herbal based silver nanodrug with Alpinia officinarum rhizome extract and assessed its effect against the cisplatin-induced nephrotoxicity in in vivo model. The A. officinarum biosynthesized silver nanoparticles (AG-AO) were characterized using UV-Spec, FTIR, XRD, TEM and SAED analysis. The antioxidant and the nephroprotective property of biosynthesized AG-AO nanoparticles were assessed by estimating the levels of kidney biomarkers, cytokine, inflammatory markers, free radicals and antioxidants induced in control and experimental. Antiapoptotic effect of AG-AO nanoparticles were evaluated by measuring the levels of apoptotic proteins in control and experimental rats. Further, it is confirmed with histopathological analysis of kidney tissue with haematoxylin and eosin staining. Our physical analysis confirms the biosynthesized silver nanoparticles by A. officinarum and it satisfies the qualities of potent nanoparticles to be used for medication. Our biochemical, molecular and histopathological results confirm the antioxidant, antiapoptotic, anti-inflammatory properties of AG-AO. Overall our results authentically confirm AG-AO is a potent nephroprotective drug, which can be a supplementary drug to prevent cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zhiping Zhang
- a Department of Nephrology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Guangda Xin
- a Department of Nephrology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Guangyu Zhou
- a Department of Nephrology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Qianyu Li
- a Department of Nephrology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Vishnu Priya Veeraraghavan
- b Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University , Chennai , India
| | - Surapaneni Krishna Mohan
- c Department of Medical Biochemistry, College of Applied Medical Sciences - Jubail (CAMSJ), Imam Abdulrahman Bin Faisal University , Al Jubail , Kingdom of Saudi Arabia (KSA)
| | - Dayu Wang
- d Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Feng Liu
- a Department of Nephrology, China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| |
Collapse
|
15
|
Ghelani H, Razmovski-Naumovski V, Chang D, Nammi S. Chronic treatment of curcumin improves hepatic lipid metabolism and alleviates the renal damage in adenine-induced chronic kidney disease in Sprague-Dawley rats. BMC Nephrol 2019; 20:431. [PMID: 31752737 PMCID: PMC6873446 DOI: 10.1186/s12882-019-1621-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background Chronic kidney disease (CKD), including nephrotic syndrome, is a major cause of cardiovascular morbidity and mortality. The literature indicates that CKD is associated with profound lipid disorders due to the dysregulation of lipoprotein metabolism which progresses kidney disease. The objective of this study is to evaluate the protective effects of curcumin on dyslipidaemia associated with adenine-induced chronic kidney disease in rats. Methods Male SD rats (n = 29) were divided into 5 groups for 24 days: normal control (n = 5, normal diet), CKD control (n = 6, 0.75% w/w adenine-supplemented diet), CUR 50 (n = 6, 50 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), CUR 100 (n = 6, 100 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet), and CUR 150 (n = 6, 150 mg/kg/day curcumin + 0.75% w/w adenine-supplemented diet). The serum and tissue lipid profile, as well as the kidney function test, were measured using commercial diagnostic kits. Results The marked rise in total cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, triglycerides and free fatty acids in serum, as well as hepatic cholesterol, triglyceride and free fatty acids of CKD control rats were significantly protected by curcumin co-treatment (at the dose of 50, 100 and 150 mg/kg). Furthermore, curcumin significantly increased the serum high-density lipoprotein (HDL) cholesterol compared to the CKD control rats but did not attenuate the CKD-induced weight retardation. Mathematical computational analysis revealed that curcumin significantly reduced indicators for the risk of atherosclerotic lesions (atherogenic index) and coronary atherogenesis (coronary risk index). In addition, curcumin improved kidney function as shown by the reduction in proteinuria and improvement in creatinine clearance. Conclusion The results provide new scientific evidence for the use of curcumin in CKD-associated dyslipidaemia and substantiates the traditional use of curcumin in preventing kidney damage.
Collapse
Affiliation(s)
- Hardik Ghelani
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Valentina Razmovski-Naumovski
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia.,South Western Sydney Clinical School School of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dennis Chang
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia.,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia. .,NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia.
| |
Collapse
|
16
|
Motaharinia J, Panahi Y, Barreto GE, Beiraghdar F, Sahebkar A. Efficacy of curcumin on prevention of drug-induced nephrotoxicity: A review of animal studies. Biofactors 2019; 45:690-702. [PMID: 31246346 DOI: 10.1002/biof.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/31/2019] [Indexed: 11/10/2022]
Abstract
Drug-induced nephrotoxicity is a frequent serious adverse effect, contributing to morbidity and increased healthcare utilization. Prevention or reversal is key. Curcumin has useful biological features that include antioxidant, anti-inflammatory, and anticancer properties. This review covers aspects of curcumin in relation to prevention of drug-induced nephrotoxicity: dosage and schedule, effect on kidney biomarkers and histological changes, and mechanisms of curcumin's protective effects. Despite success in some animal models, human studies and clinical administration of curcumin for nephroprotection remains limited due to difficulty in achieving therapeutic levels following oral administration and in determining the optimal dosing schedule. Lack of sufficient evidence from animal studies, coupled with low systemic bioavailability, continues to limit the utilization of curcumin in addressing and controlling drug-induced nephrotoxicity. Therefore, human studies are required to fully assess and validate the therapeutic potential of curcumin.
Collapse
Affiliation(s)
- Javad Motaharinia
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Fatemeh Beiraghdar
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Ilghami R, Barzegari A, Mashayekhi MR, Letourneur D, Crepin M, Pavon-Djavid G. The conundrum of dietary antioxidants in cancer chemotherapy. Nutr Rev 2019; 78:65-76. [DOI: 10.1093/nutrit/nuz027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Although chemotherapy succeeds in reducing tumor burden, the efficacy is limited due to acquired drug resistance and often irreparable side effects. Studies show that antioxidants may influence the response to chemotherapy and its side effects, although their use remains controversial. The evidence shows that some chemo-drugs induce oxidative stress and lead to normal tissue apoptosis and the entry of cancer cells to a dormant G0 state. Through the suppression of oxidative stress, antioxidants could protect normal cells and bring the tumor out of dormancy so as to expose it to chemotherapies. This review is focused on the redox biology of cancer/normal cells and association of reactive oxygen species with drug resistance, cancer dormancy, and side effects. To this end, evidence from cellular, animal, and clinical studies is provided to better understand the conundrum of dietary antioxidants in cancer chemotherapy.
Collapse
Affiliation(s)
- Roghayeh Ilghami
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Abolfazl Barzegari
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Mohammad Reza Mashayekhi
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Didier Letourneur
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Michel Crepin
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| | - Graciela Pavon-Djavid
- R. Ilghami and M. R. Mashayekhi are with the Department of Genetics, Faculty of Basic Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran. A. Barzegari is with the Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. D. Letourneur, M. Crepin, and G. Pavon-Djavid are with the INSERM U1148, Laboratory for Vascular Translational Science, C
| |
Collapse
|
18
|
Effect of cisplatin on pancreas and testies in Wistar rats: biochemical parameters and histology. Heliyon 2019; 5:e02247. [PMID: 31453403 PMCID: PMC6700420 DOI: 10.1016/j.heliyon.2019.e02247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/16/2019] [Accepted: 08/05/2019] [Indexed: 01/28/2023] Open
Abstract
Objective To investigate effect of cisplatin on biochemical parameter and histology of pancreas and testis in Wistar rats. Material and methods Single dose cisplatin (10 mg/kg) was injected by intraperitoneal route in Wistar rats. Blood was withdrawn on 7th day from cisplatin treated rats by retro-orbital sinus for biochemical estimation. Further rats were scarified and dissected out their pancreases and testes for estimation of antioxidant enzymes and histopathological study. Results The cisplatin-treated group showed a significantly (P < 0.01) increased blood glucose level, Glycosylated hemoglobin in blood on the 7th day as compared to the control group. Whereas cisplatin-treated group showed significantly (p < 0.001) increased lipid peroxidation and decreased reduced glutathione, superoxide dismutase, catalase in pancreatic and testicular tissue as compared to the control group. Histopathological sections of the pancreatic tissue showed marked vasoconstriction and micro infiltration were observed however testicular tissue showed degeneration in some somniferous tubules and also greatly depleted of germ cells in cisplatin treated group. Conclusion These findings demonstrated that the cisplatin could be induced diabetes and testicular toxicity due to their free radical mediated oxidative stress.
Collapse
|
19
|
Saifi MA, Sangomla S, Khurana A, Godugu C. Protective Effect of Nanoceria on Cisplatin-Induced Nephrotoxicity by Amelioration of Oxidative Stress and Pro-inflammatory Mechanisms. Biol Trace Elem Res 2019; 189:145-156. [PMID: 30047078 DOI: 10.1007/s12011-018-1457-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/19/2018] [Indexed: 12/11/2022]
Abstract
Cisplatin (CP) is one of the most important anticancer compounds with its therapeutic usefulness in diverse types of solid cancer. However, its use is limited due to nephrotoxicity induced by it. Oxidative stress is an effective participant which contributes actively to pathogenesis of CP-induced nephrotoxicity. Nanoparticle form of a rare earth metal cerium, also known as nanoceria (NC), has come up as a potential antioxidant and anti-inflammatory agent. In the present study, administration of CP in Swiss mice resulted in reduction of body weight, increased oxidative stress and pro-inflammatory cytokine levels including IL-6 and TNF-α along with alteration in normal histological architecture of kidney. On the contrary, NC (0.2 and 2 mg/kg i.p.) ameliorated nephrotoxicity of CP which was evident by reduction in levels of renal injury markers in plasma, i.e., creatinine and blood urea nitrogen. NC ameliorated oxidative stress by showing a reduction in levels of malondialdehyde and increased levels of endogenous antioxidants reduced glutathione and catalase. Further, NC treatment also reduced the levels of pro-inflammatory cytokines. Furthermore, protective effect of NC was also corroborated by histopathological studies wherein, kidneys from CP group showed altered tissue structure after acute as well as chronic exposure of CP while the tissues from treated groups showed absence of alterations in kidney histology. The results from present study suggested that oxidative stress and pro-inflammatory cytokines play a central role in pathogenesis of CP-induced nephrotoxicity and NC provides protection from CP-induced nephrotoxicity due to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Swetha Sangomla
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
20
|
Ali BH, Marrif H, Noureldayem SA, Bakheit AO, Blunden G. Some Biological Properties of Curcumin: A Review. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600100613] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Curcumin (diferuloyl methane), a small-molecular weight compound isolated from the roots of Curcuma longa L. (family Zingiberaceae), has been used traditionally for centuries in Asia for medicinal, culinary and other purposes. A large number of in vitro and in vivo studies in both animals and man have indicated that curcumin has strong antioxidant, anti-carcinogenic, anti-inflammatory, anti-angiogenic, antispasmodic, antimicrobial, anti-parasitic and other activities. The mechanisms of some of these actions have recently been intensively investigated. Curcumin inhibits the promotion/ progression stage of carcinogenesis by induction of apoptosis and the arrest of cancer cells in the S, G2/M cell cycle phase. The compound inhibits the activity of growth factor receptors. The anti-inflammatory properties of curcumin are mediated through their effects on cytokines, lipid mediators, eicosanoids and proteolytic enzymes. Curcumin scavenges the superoxide radical, hydrogen peroxide and nitric oxide, and inhibits lipid peroxidation. These actions may be the basis for many of its pharmacological and therapeutic properties. Curcumin is a nutraceutical of low toxicity, which has been used successfully in a number of medical conditions that include cataracts, cystic fibrosis, and prostate and colon cancers.
Collapse
Affiliation(s)
- Badreldin H. Ali
- Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Oman
| | - Husnia Marrif
- Toxicology Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| | | | - Amel O. Bakheit
- College of Veterinary Medicine and Animal Production, SUST, Sudan
| | - Gerald Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
21
|
Mercantepe F, Mercantepe T, Topcu A, Yılmaz A, Tumkaya L. Protective effects of amifostine, curcumin, and melatonin against cisplatin-induced acute kidney injury. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:915-931. [DOI: 10.1007/s00210-018-1514-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
|
22
|
El-Kashef DH, Sharawy MH. Venlafaxine mitigates cisplatin-induced nephrotoxicity via down-regulating apoptotic pathway in rats. Chem Biol Interact 2018; 290:110-118. [PMID: 29852128 DOI: 10.1016/j.cbi.2018.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/11/2018] [Accepted: 05/28/2018] [Indexed: 10/16/2022]
Abstract
The antidepressant venlafaxine, a norepinephrine and serotonin reuptake inhibitor, is recently identified for its anti-inflammatory role against many experimental models. In this study, the effect of venlafaxine against cisplatin-induced nephrotoxicity and bladder rings hypersensitivity towards acetylcholine were explored. Single injection of cisplatin (7 mg/kg, ip) in Sprague-Dawley rats instigated nephrotoxicity evidenced by hindering renal function (changes in kidney/body weight ratio, serum creatinine, BUN, albumin and urinary total protein levels which were supported by histopathology). In addition, cisplatin caused a profound oxidative stress, inflammation and apoptosis. Treatment with venlafaxine (50 mg/kg, po) managed to alleviate the nephrotoxicity indices and rehabilitate the antioxidant parameters (MDA, GSH, SOD and CAT) in addition to retaining NOx levels to the normal levels. Moreover, venlafaxine caused a decline in LDH and NF-κB levels supporting its anti-inflammatory effect. Additionally, the antiapoptotic effect was demonstrated by increasing Bcl-2, suppressing p53 and Bax renal levels, decreasing caspase-3 expression and by flow cytometry (annexin V and PI) that showed an increase in viable cells and a decrease in early apoptotic and necrotic cells. Furthermore, venlafaxine ameliorated bladder rings hyperreactivity to acetylcholine and improved histopathologic findings. In brief, venlafaxine ameliorated nephrotoxicity and bladder rings hyperreactivity caused by cisplatin through acting as an antioxidant, anti-inflammatory and antiapoptotic agent.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
23
|
Fan Y, Chen H, Peng H, Huang F, Zhong J, Zhou J. Molecular Mechanisms of Curcumin Renoprotection in Experimental Acute Renal Injury. Front Pharmacol 2017; 8:912. [PMID: 29311922 PMCID: PMC5733093 DOI: 10.3389/fphar.2017.00912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
As a highly perfused organ, the kidney is especially sensitive to ischemia and reperfusion. Ischemia-reperfusion (IR)-induced acute kidney injury (AKI) has a high incidence during the perioperative period in the clinic and is an important link in ischemic acute renal failure (IARF). Therefore, IR-induced AKI has important clinical significance and it is necessary to explore to develop drugs to prevent and alleviate IR-induced AKI. Curcumin [diferuloylmethane, 1,7-bis(4-hydroxy-3-methoxiphenyl)-1,6-heptadiene-3,5-dione)] is a polyphenol compound derived from Curcuma longa (turmeric) and was shown to have a renoprotective effect on ischemia-reperfusion injury (IRI) in a previous study. However, the specific mechanisms underlying the protective role of curcumin in IR-induced AKI are not completely understood. APPL1 is a protein coding gene that has been shown to be involved in the crosstalk between the adiponectin-signaling and insulin-signaling pathways. In the study, to investigate the molecular mechanisms of curcumin effects in kidney ischemia/reperfusion model, we observed the effect of curcumin in experimental models of IR-induced AKI and we found that curcumin treatment significantly increased the expression of APPL1 and inhibited the activation of Akt after IR treatment in the kidney. Our in vitro results showed that apoptosis of renal tubular epithelial cells was exacerbated with hypoxia-reoxygenation (HR) treatment compared to sham control cells. Curcumin significantly decreased the rate of apoptosis in renal tubular epithelial cells with HR treatment. Moreover, knockdown of APPL1 activated Akt and subsequently aggravated apoptosis in HR-treated renal tubular epithelial cells. Conversely, inhibition of Akt directly reversed the effects of APPL1 knockdown. In summary, our study demonstrated that curcumin mediated upregulation of APPL1 protects against ischemia reperfusion induced AKI by inhibiting Akt phosphorylation.
Collapse
Affiliation(s)
- Youling Fan
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, The Eighth People's Hospital of Guangzhou, Guangzhou, China
| | - Huihua Peng
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, China
| | - Fang Huang
- Department of Anesthesiology, Panyu Central Hospital, Guangzhou, China
| | - Jiying Zhong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Jun Zhou
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
24
|
Bami E, Ozakpınar OB, Ozdemir-Kumral ZN, Köroglu K, Ercan F, Cirakli Z, Sekerler T, Izzettin FV, Sancar M, Okuyan B. Protective effect of ferulic acid on cisplatin induced nephrotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:105-111. [PMID: 28704751 DOI: 10.1016/j.etap.2017.06.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/26/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Erliasa Bami
- Clinical Pharmacy Department, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | | | | | - Kutay Köroglu
- Department of Histology and Embryology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology and Embryology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Zeynep Cirakli
- Biochemistry Department, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Turgut Sekerler
- Department of Biochemistry, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Fikret Vehbi Izzettin
- Clinical Pharmacy Department, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Mesut Sancar
- Clinical Pharmacy Department, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Betul Okuyan
- Clinical Pharmacy Department, Marmara University, Faculty of Pharmacy, Istanbul, Turkey.
| |
Collapse
|
25
|
Oliveira VA, Favero G, Stacchiotti A, Giugno L, Buffoli B, de Oliveira CS, Lavazza A, Albanese M, Rodella LF, Pereira ME, Rezzani R. Acute mercury exposition of virgin, pregnant, and lactating rats: Histopathological kidney and liver evaluations. ENVIRONMENTAL TOXICOLOGY 2017; 32:1500-1512. [PMID: 27726300 DOI: 10.1002/tox.22370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
This work investigated the effects of mercury chloride (HgCl2 ) acute exposure on virgin, pregnant and lactating rats by determination of renal and hepatic morphological and ultrastructural parameters and the expression of oxidative stress and stress tolerance markers, due to kidney and liver are the organs that more accumulate inorganic mercury. Adult Wistar rats virgin (90 days old), pregnant (18th gestation day) and lactating (7th lactation day) were injected once with HgCl2 (5 mg/kg) or saline (controls). We observed that HgCl2 exposure of virgin rats caused significant inflammatory infiltration and severe morphological variations, like glomeruli atrophy, dilatation of Bowman's capsule, tubular degeneration and hepatocytes alteration. Moreover, virgin rats presented mitochondrial modification, important oxidative stress and increase in stress tolerance proteins at both kidney and liver level, compared with virgin controls. In detail, virgin rats exposed to HgCl2 presented significantly elevated level of inducible nitric oxide synthase, heat shock protein 27 and glucose regulated proteins 75 expressions at both renal tubular and hepatocytes level, respect untreated virgin rats. Interestingly, pregnant and lactating rats exposed to HgCl2 presented weak renal and liver morphological alterations, showing weak inflammatory infiltration and no significant difference in structural mitochondrial transmembrane protein, oxidative stress markers and stress tolerance proteins expressions respect controls (virgin, pregnant and lactating rats). Although, both control and HgCl2 -exposed pregnant and lactating rats showed renal glomeruli greater in diameter respect virgin rats. In conclusion, we believe that virgin rats are more sensitive to HgCl2 toxicity respect pregnant and lactating rats. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1500-1512, 2017.
Collapse
Affiliation(s)
- Vitor Antunes Oliveira
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Alessandra Stacchiotti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia, Italy
| | - Lorena Giugno
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
| | - Barbara Buffoli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia, Italy
| | - Claudia Sirlene de Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Antonio Lavazza
- OIE Reference Laboratory for RHD, Istituto Zooprofilattico Sperimentale della Lombardia e Emilia Romagna, Brescia, Italy
| | - Massimo Albanese
- Department of Oral and Maxillofacial Surgery, University of Verona, Verona, Italy
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia, Italy
| | - Maria Ester Pereira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, Brescia, 25123, Italy
- Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia, Italy
| |
Collapse
|
26
|
WITHDRAWN: Protective effect of Emblica officinalis fruit extract on cisplatin-induced nephrotoxicity in female rats. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bfopcu.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Lee IC, Ko JW, Park SH, Shin NR, Shin IS, Kim YB, Kim JC. Ameliorative effects of pine bark extract on cisplatin-induced acute kidney injury in rats. Ren Fail 2017; 39:363-371. [PMID: 28178874 PMCID: PMC6014499 DOI: 10.1080/0886022x.2017.1282871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Objective: This study investigated the dose–response effects of pine bark extract (PBE, pycnogenol®) on oxidative stress-mediated apoptotic changes induced by cisplatin (Csp) in rats. Materials and methods: The ameliorating potential of PBE was evaluated after orally administering PBE at doses of 10 or 20 mg/kg for 10 days. Acute kidney injury was induced by a single intraperitoneal injection of Csp at 7 mg/kg on test day 5. Results: Csp treatment caused acute kidney injury manifested by elevated levels of serum blood urea nitrogen (BUN) and creatinine (CRE) with corresponding histopathological changes, including degeneration of tubular epithelial cells, hyaline casts in the tubular lumen, and inflammatory cell infiltration (interstitial nephritis). Csp also induced significant apoptotic changes in renal tubular cells. In addition, Csp treatment induced high levels of oxidative stress, as evidenced by an increased level of malondialdehyde, depletion of the reduced glutathione (GSH) content, and decreased activities of glutathione S-transferase, superoxide dismutase, and catalase in kidney tissues. On the contrary, PBE treatment lowered BUN and CRE levels and effectively attenuated histopathological alterations and apoptotic changes induced by Csp. Additionally, treatment with PBE suppressed lipid peroxidation, prevented depletion of GSH, and enhanced activities of the antioxidant enzymes in kidney tissue. Conclusions: These results indicate that PBE has a cytoprotective effect against oxidative stress-mediated apoptotic changes caused by Csp in the rat kidney, which may be attributed to both increase of antioxidant enzyme activities and inhibition of lipid peroxidation.
Collapse
Affiliation(s)
- In-Chul Lee
- a BK21 Plus Team , College of Veterinary Medicine, Chonnam National University , Gwangju , Republic of Korea
| | - Je-Won Ko
- a BK21 Plus Team , College of Veterinary Medicine, Chonnam National University , Gwangju , Republic of Korea
| | - Sung-Hyeuk Park
- a BK21 Plus Team , College of Veterinary Medicine, Chonnam National University , Gwangju , Republic of Korea
| | - Na-Rae Shin
- a BK21 Plus Team , College of Veterinary Medicine, Chonnam National University , Gwangju , Republic of Korea
| | - In-Sik Shin
- a BK21 Plus Team , College of Veterinary Medicine, Chonnam National University , Gwangju , Republic of Korea
| | - Yun-Bae Kim
- b College of Veterinary Medicine, Chungbuk National University , Cheongju , Republic of Korea
| | - Jong-Choon Kim
- a BK21 Plus Team , College of Veterinary Medicine, Chonnam National University , Gwangju , Republic of Korea
| |
Collapse
|
28
|
Efficacy of safranal to cisplatin-induced nephrotoxicity. Biochem J 2017; 474:1195-1203. [DOI: 10.1042/bcj20160971] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate the effects of safranal on cisplatin-induced nephrotoxicity and oxidative stress in rats. Adult male Sprague–Dawley rats were randomly divided into five groups. The control group received physiological saline; animals in Group 2 received only safranal and in Group 3 received only cisplatin; 5 days of safranal treatment was performed following administration of cisplatin for the animals in Group 4; 5 days of safranal pretreatment was applied to the animals in Group 5 before administration of cisplatin. Cisplatin (7 mg/kg) was intraperitoneally injected as a single dose and safranal (200 mg/kg) was administered by gavage. Biochemical and histopathological methods were utilized for evaluation of the nephrotoxicity. The concentrations of creatinine and urea in plasma and levels of malondialdehyde (MDA) and glutathione (GSH) as well as total antioxidant status (TAS) and total oxidant status (TOS) were determined in kidney tissue. Administration of cisplatin to rats induced a marked renal failure, characterized with a significant increase in plasma creatinine and urea concentrations. MDA and TOS levels of rats that received cisplatin alone were not significantly different compared with those of the control group, but GSH and TAS levels in the only cisplatin-administered group were significantly decreased. Safranal administration produced amelioration in biochemical indices of nephrotoxicity in both plasma and kidney tissues when compared with the only cisplatin-administered group, pretreatment with safranal being more effective. As a result, safranal treatment might have a protective effect against cisplatin-induced nephrotoxicity and oxidative stress in rat.
Collapse
|
29
|
The Anti-Inflammatory and Antioxidant Effects of Curcumin in Middle Ear Infection. J Craniofac Surg 2017; 27:e494-7. [PMID: 27380582 DOI: 10.1097/scs.0000000000002810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AIM To investigate and analyze the anti-inflammatory and antioxidant efficacy of curcumin in experimentally induced middle ear infection. METHOD Twenty-four Wistar albino rats with otomicroscopic examination findings within normal limits were included in the study. Study groups were established after Streptococcus pneumoniae was inoculated into the middle ear cavity of all rats. No medication was administered to Group 1, the control group. Group 2 was administered 50 mg/kg/day amoxicillin intraperitoneally. Group 3 was administered 50 mg/kg/day amoxicillin together with 30 mg/kg/day curcumin intraperitoneally. Blood specimens and temporal bones were collected on the 10th day of medication from the 22 rats in which acute otitis media developed. Serum glutathione peroxidase and superoxide dismutase activities and malondialdehyde levels were measured. Inflammatory cell infiltration, vascular proliferation, and epithelial proliferation were assessed histopathologically in middle ear mucosa specimens, and the results were compared among the groups. RESULTS Malondialdehyde levels in the group given curcumin were significantly lower than those of the control group, while serum glutathione peroxidase activity was also lower compared to that of the control group. No significant difference was observed among the groups in terms of superoxide dismutase activity. Although there were no significant findings in terms of histopathological data, epithelial proliferation in the groups receiving antibiotherapy was suppressed compared to the control group. Similarly, curcumin was observed to have a positive effect on inflammatory cell infiltration. No significant changes were observed in terms of vascular proliferation. CONCLUSION With its wide and safe dose range, curcumin represents grounds for optimism in terms of anti-inflammatory treatment in acute otitis media.
Collapse
|
30
|
Singh A, Arvinda S, Singh S, Suri J, Koul S, Mondhe DM, Singh G, Vishwakarma R. IN0523 (Urs-12-ene-3α,24β-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity. Toxicol Appl Pharmacol 2017; 318:8-15. [DOI: 10.1016/j.taap.2017.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 12/21/2022]
|
31
|
Scasso F, Sprio AE, Canobbio L, Scanarotti C, Manini G, Berta GN, Bassi AM. Dietary supplementation of coenzyme Q10 plus multivitamins to hamper the ROS mediated cisplatin ototoxicity in humans: A pilot study. Heliyon 2017; 3:e00251. [PMID: 28239674 PMCID: PMC5318271 DOI: 10.1016/j.heliyon.2017.e00251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/18/2017] [Accepted: 02/08/2017] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress exerts major role in the pathogenesis of side effects of many antineoplastic drugs, including ototoxicity of cisplatin. In particular, increased levels of reactive oxygen species (ROS) represent one of the molecular mechanisms underlying the apoptosis of different types of hearing cells. Antioxidants and ROS scavengers may thus represent potential therapeutic options to prevent platinum-associated ototoxicity. The aim of this preliminary case-control study was to explore the efficacy of a dietary antioxidant supplement, in order to hamper the occurrences of ototoxicity in patients undergoing cisplatin chemotherapy. As results, a significant protection against cochlear toxic damage was demonstrated in patients who took the antioxidant supplement, which furthermore prevented the occurrence of hearing disorders and tinnitus. These clinical evidences were corroborated by the oxidative status of patients. After cisplatin chemotherapy, the plasma derivatives of reactive oxygen metabolites (d-ROMs) content rapidly increased in control patients, but it was maintained in those under dietary supplementation, likely because of a higher anti-ROMs potential. Indeed, an increment in rapid anti-ROMs was detected in supplemented patients, though no differences were highlighted in terms of slow anti-ROMs. In conclusion, in this preliminary report we demonstrated the feasibility of a dietary antioxidant supplementation in order to prevent the cisplatin induced hearing damage.
Collapse
Affiliation(s)
- Felice Scasso
- Department of Otorhinolaryngology, P.A. Micone Hospital, ASL n. 3 Genovese, Genoa - Sestri Ponente, Italy
| | - Andrea Elio Sprio
- Department of Clinical and Biological Sciences, Pharmacological Unit, University of Turin, c/o Ospedale San Luigi Gonzaga, Orbassano (TO), Italy
| | - Luciano Canobbio
- Medical Oncology Department, P.A. Micone Hospital, ASL n. 3 Genovese, Genoa - Sestri Ponente, Italy
| | - Chiara Scanarotti
- Department of Experimental Medicine (DIMES) - General Pathology Sect. University of Genoa, Genoa, Italy
| | | | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, Pharmacological Unit, University of Turin, c/o Ospedale San Luigi Gonzaga, Orbassano (TO), Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES) - General Pathology Sect. University of Genoa, Genoa, Italy
| |
Collapse
|
32
|
Nematbakhsh M, Pezeshki Z, Eshraghi Jazi F, Mazaheri B, Moeini M, Safari T, Azarkish F, Moslemi F, Maleki M, Rezaei A, Saberi S, Dehghani A, Malek M, Mansouri A, Ghasemi M, Zeinali F, Zamani Z, Navidi M, Jilanchi S, Shirdavani S, Ashrafi F. Cisplatin-Induced Nephrotoxicity; Protective Supplements and Gender Differences. Asian Pac J Cancer Prev 2017; 18:295-314. [PMID: 28345324 PMCID: PMC5454720 DOI: 10.22034/apjcp.2017.18.2.295] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cisplatin (CDDP) has been widely used as a chemotherapeutic agent for solid tumors. The most common side effect of CDDP is nephrotoxicity, and many efforts have been made in the laboratory and the clinic to employ candidate adjuvants to CDDP to minimize this adverse influence. Many synthetic and herbal antioxidants as well as trace elements have been investigated for this purpose in recent years and a variety of positive and negative results have been yielded. However, no definitive supplement has so far been proposed to prevent CDDP-induced nephrotoxicity; however, this condition is gender related and the sex hormone estrogen may protect the kidney against CDDP damage. In this review, the results of research related to the effect of different synthetic and herbal antioxidants supplements are presented and discussed with suggestions included for future work.
Collapse
Affiliation(s)
- Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran. *
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mahmoodnia L, Mohammadi K, Masumi R. Ameliorative effect of lycopene effect on cisplatin-induced nephropathy in patient. J Nephropathol 2017; 6:144-149. [PMID: 28975094 PMCID: PMC5607975 DOI: 10.15171/jnp.2017.25] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/02/2017] [Indexed: 01/17/2023] Open
Abstract
Background:
Nephrotoxicity is one of the most important limitations of cisplatin-based chemotherapies which associated with many complications and high mortality rate.
Objectives:
To investigate the effect of lycopene on cisplatin-induced nephrotoxicity in patients with cancer.
Patients and Methods:
In this double-blind, randomized clinical trial, 120 patients were randomly assigned to two groups, case (treated with lycopene + standard regimen of kidney injury prevention) and control (treated with only the standard regimen of kidney injury prevention). Lycopene was orally taken from 24 hours before to 72 hours after cisplatin administration. Blood urea nitrogen (BUN), serum creatinine (Cr), and glomerular filtration rate (GFR) were measured and recorded. The data were analyzed using SPSS.
Results:
Changes in Cr were not significantly different between the two groups (P = 0.131). However, a significant decreasing trend was seen in GFR during the study, which was more marked in the control group (P = 0.004). BUN significantly decreased during the study (P = 0.002), and a significant decrease of BUN on the day three in both groups was seen (P = 0.001). However, BUN increased in the case group on the day 21 of treatment. The corresponding increase was less marked in the control group.
Conclusions:
Lycopene can be considered a useful adjuvant therapy to decrease the complications due to cisplatin-induced nephrotoxicity in patients with cancer.
Collapse
Affiliation(s)
- Leila Mahmoodnia
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Keivan Mohammadi
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rohollah Masumi
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
34
|
Samarghandian S, Azimi-Nezhad M, Farkhondeh T, Samini F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed Pharmacother 2017; 87:223-229. [PMID: 28061405 DOI: 10.1016/j.biopha.2016.12.105] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/15/2016] [Accepted: 12/26/2016] [Indexed: 01/09/2023] Open
Abstract
Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues.
Collapse
Affiliation(s)
- Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Mohsen Azimi-Nezhad
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Department of Immunogenetics, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Samini
- Department of Neurosurgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Khan RA, Alkreathy HM, Saboorshah A, Ahmed M, Khan S. Protective effects of Trifolium alexandrinum L. against lung injury induced by environmental toxin CCl 4 in experimental rats. Food Nutr Res 2016; 60:30433. [PMID: 27834184 PMCID: PMC5102104 DOI: 10.3402/fnr.v60.30433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In Pakistan numerous medicinal floras has used in the treatment of various human ailments. Among them Trifolium alexandrinum L. is traditionally used in the curing of disease. Presently we designed to ascertain the protective role of Trifolium alexandrinum methanolic extracts (TAME) against carbon tetrachloride (CCl4)-induced lung injury and oxidative stress in rats. METHODS Exposure to CCl4 induces oxidative stress and causes tissue damage by the induction of CCl4 free radicals. Twenty-four male albino rats were divided equally into four groups. Rats in group I had free access to drinking water and laboratory food. Group II was treated with 1 ml/kg body weight (b.w.) CCl4 (30% in olive oil). Groups III and IV rats were fed (p.o.) 200 mg/kg b.w. TAME and 50 mg/kg b.w. silymarin after 24 h of CCl4 treatment for 2 weeks. RESULTS Administration of CCl4 caused a significant (p<0.01) decrease in the activities of antioxidant enzymes (catalase, peroxidase, glutathione peroxidase, glutathione-S-transferase), and glutathione contents were decreased; however, thiobarbituric acid-reactive substances were increased (p<0.01). The alterations caused by CCl4 were significantly (p<0.01) reversed toward control levels by supplementation of TAME and silymarin. CONCLUSION These results suggest that in rats TAME and silymarin could protect the lungs against CCl4-induced oxidative damage.
Collapse
Affiliation(s)
- Rahmat Ali Khan
- Department of Biotechnology, Faculty of Biological Sciences, University of Science and Technology Bannu, Khyber Pakhtunkhwa, Pakistan;
| | | | - Abdus Saboorshah
- Department of Biotechnology, Faculty of Biological Sciences, University of Science and Technology Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Mushtaq Ahmed
- Department of Biotechnology, Faculty of Biological Sciences, University of Science and Technology Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
36
|
Dugbartey GJ, Peppone LJ, de Graaf IAM. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology 2016; 371:58-66. [PMID: 27717837 DOI: 10.1016/j.tox.2016.10.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/03/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023]
Abstract
Cisplatin is currently one of the most widely-used chemotherapeutic agents against various malignancies. Its clinical application is limited, however, by inherent renal and cardiac toxicities and other side effects, of which the underlying mechanisms are only partly understood. Experimental studies show cisplatin generates reactive oxygen species, which impair the cell's antioxidant defense system, causing oxidative stress and potentiating injury, thereby culminating in kidney and heart failure. Understanding the molecular mechanisms of cisplatin-induced renal and cardiac toxicities may allow clinicians to prevent or treat this problem better and may also provide a model for investigating drug-induced organ toxicity in general. This review discusses some of the major molecular mechanisms of cisplatin-induced renal and cardiac toxicities including disruption of ionic homeostasis and energy status of the cell leading to cell injury and cell death. We highlight clinical manifestations of both toxicities as well as (novel)biomarkers such as kidney injury molecule-1 (KIM-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). We also present some current treatment challenges and propose potential protective strategies including combination therapy with novel pharmacological compounds that might mitigate or prevent these toxicities, which include the use of hydrogen sulfide.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
| | - Luke J Peppone
- Department of Surgery, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY, United States
| | - Inge A M de Graaf
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
37
|
Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4320374. [PMID: 27774117 PMCID: PMC5059613 DOI: 10.1155/2016/4320374] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/23/2016] [Indexed: 11/17/2022]
Abstract
Cisplatin (CSP) is a chemotherapeutic agent commonly used to treat a variety of malignancies. The major setback with CSP treatment is that its clinical efficacy is compromised by its induction of organ toxicity, particular to the kidneys and ears. Despite the significant strides that have been made in understanding the mechanisms underlying CSP-induced renal toxicity, advances in developing renoprotective strategies are still lacking. In addition, the renoprotective approaches described in the literature reveal partial amelioration of CSP-induced renal toxicity, stressing the need to develop potent combinatorial/synergistic agents for the mitigation of renal toxicity. However, the ideal renoprotective adjuvant should not interfere with the anticancer efficacy of CSP. In this review, we have discussed the progress made in utilizing plant-derived agents (phytochemicals) to combat CSP-induced nephrotoxicity in preclinical studies. Furthermore, we have also presented strategies to utilize phytochemicals as prototypes for the development of novel renoprotective agents for counteracting chemotherapy-induced renal damage.
Collapse
|
38
|
Aksoy A, Karaoglu A, Akpolat N, Naziroglu M, Ozturk T, Karagoz ZK. Protective Role of Selenium and High Dose Vitamin E against Cisplatin - Induced Nephrotoxicty in Rats. Asian Pac J Cancer Prev 2016; 16:6877-82. [PMID: 26514460 DOI: 10.7314/apjcp.2015.16.16.6877] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cisplatin (CDDP) is one of the most active cytotoxic agents in the treatment of cancer. We investigated the effect of selenium (Se) with high dose vitamin E (VE) administration to prevent CDDP-induced nephrotoxicity in rats. MATERIALS AND METHODS In this study, 40 female Wistar rats were randomly divided into five equal groups. The first group, which served as the control, was administered physiological saline (2.5 cc/day, 5 days) intraperitoneally (IP), while group A was administered cisplatin (6 mg/kg BW/ single dose) plus physiological saline IP. Groups B, C, D received IP five doses of Se (1.5 mg/kg BW), and a high dose of VE (1000 mg/kg BW) (Se-VE) in combination before, simultaneously, and after CDDP, respectively. The rats were sacrificed five days after CDDP administration. Plasma malondialdehide (MDA), glutathione peroxidase (GSH-Px), reduced glutathione (GSH), catalase, urea, creatinine levels, renal histopathological changes were measured. RESULTS The histopathological injury score, plasma levels of MDA, urea, creatinine were found to increase in group A compared to the control (p<0.05), while plasma levels of GSH-Px, GSH and catalase decreased (p<0.05). In contrast, plasma levels of MDA decreased (p<0.05) in groups B, C, D, which were treated with Se- VE, whereas levels of GSH-Px, GSH were found to increase only for group D (p<0.05). Plasma urea, creatinine levels improved in the treatment groups compared to group A (p<0.001). Histopathological changes caused by CDDP were also significantly improved after Se-VE treatment (p<0.05). CONCLUSIONS Oxidative stress increases with CDDP-induced nephrotoxicity in rats. Se-VE supplementation might thus play a role in the prevention of CDDP-induced nephrotoxicity in patients.
Collapse
Affiliation(s)
- Asude Aksoy
- Department of Medical Oncology, Medical Faculty, Firat University, Turkey E-mail :
| | | | | | | | | | | |
Collapse
|
39
|
Ko JL, Tsai CH, Liu TC, Lin MY, Lin HL, Ou CC. Differential effects of grape juice on gastric emptying and renal function from cisplatin-induced acute adverse toxicity. Hum Exp Toxicol 2016; 35:808-17. [DOI: 10.1177/0960327115607079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Grape skin and seeds contain large amounts of phytochemicals such as polyphenols, resveratrol, and proanthocyanidins, which possess antioxidant activities. Cisplatin is widely used in the treatment of cancer. High doses of cisplatin have also been known to produce acute adverse effects. The aim of this study was to investigate the protective effects of antioxidant properties of whole grape juice (with skin and seeds) on cisplatin-induced acute gastrointestinal tract disorders and nephrotoxicity in Wistar rats. Gastric emptying is significantly increased in whole grape juice-pretreated rats when compared to cisplatin treatment alone. The expression of ghrelin mRNA of stomach is increased in rats with whole grape juice. However, pretreatment with whole grape juice did not reduce renal function markers in acute renal toxicity. No significant changes were recorded in the oxidative stress/antioxidant status parameters of any study group. In contrast, pretreatment with whole grape juice slightly improved tubular cell vacuolization, tubular dilatation, and cast formation in renal tubules. These results show that consumption of whole grape juice induces somewhat beneficial effects in preventing cisplatin-mediated dyspepsia but does not offer protection against cisplatin-induced acute renal toxicity.
Collapse
Affiliation(s)
- J-L Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - C-H Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - T-C Liu
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - M-Y Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - H-L Lin
- Department of Horticulture, National Chung Hsing University, Taichung, Taiwan
| | - C-C Ou
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan, Republic of China
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan, Republic of China
| |
Collapse
|
40
|
Khafaga AF, Bayad AE. Ginkgo biloba Extract Attenuates Hematological Disorders, Oxidative Stress and Nephrotoxicity Induced by Single or Repeated Injection Cycles of Cisplatin in rats: Physiological and Pathological Studies. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajas.2016.235.246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Fahmi ANA, Shehatou GSG, Shebl AM, Salem HA. Febuxostat exerts dose-dependent renoprotection in rats with cisplatin-induced acute renal injury. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:819-30. [DOI: 10.1007/s00210-016-1258-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
|
42
|
Jamshidzadeh A, Heidari R, Golzar T, Derakhshanfar A. Effect ofEisenia foetidaExtract against Cisplatin-Induced Kidney Injury in Rats. J Diet Suppl 2016; 13:551-9. [DOI: 10.3109/19390211.2015.1124163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Ansar S, Iqbal M. Protective effect of diallylsulphide against mercuric chloride-induced hepatic injury in rats. Hum Exp Toxicol 2016; 35:1305-1311. [PMID: 26825963 DOI: 10.1177/0960327116629723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study was undertaken to evaluate the effect of diallylsulphide (DAS) against mercuric chloride (HgCl2)-induced oxidative stress in rat livers. Rats were randomly divided into four groups of six rats each and exposed to HgCl2 (50 mg/kg/body weight (b.w.)) intraperitoneally and/or DAS (200 mg/kg/b.w.) by gavage. HgCl2 administration enhanced alanine aminotransferase (AST) and aspartate aminotransferase (ALT) levels (p < 0.05) with reduction in the levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). However, treatment with DAS markedly attenuated HgCl2-induced biochemical alterations in liver and serum transaminases (AST and ALT; p < 0.05). Further, biochemical results were confirmed by histopathological changes as compared to HgCl2-intoxicated rats. Histopathology of liver also showed that administration of DAS significantly reduced the damage generated by HgCl2 The present study suggests that DAS shows antioxidant activity and plays a protective role against mercury-induced oxidative damage in the rat livers.
Collapse
Affiliation(s)
- S Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - M Iqbal
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu Sabah, Malaysia
| |
Collapse
|
44
|
Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G. Mitochondria: a new therapeutic target in chronic kidney disease. Nutr Metab (Lond) 2015; 12:49. [PMID: 26612997 PMCID: PMC4660721 DOI: 10.1186/s12986-015-0044-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022] Open
Abstract
Cellular metabolic changes during chronic kidney disease (CKD) may induce higher production of oxygen radicals that play a significant role in the progression of renal damage and in the onset of important comorbidities. This condition seems to be in part related to dysfunctional mitochondria that cause an increased electron "leakage" from the respiratory chain during oxidative phosphorylation with a consequent generation of reactive oxygen species (ROS). ROS are highly active molecules that may oxidize proteins, lipids and nucleic acids with a consequent damage of cells and tissues. To mitigate this mitochondria-related functional impairment, a variety of agents (including endogenous and food derived antioxidants, natural plants extracts, mitochondria-targeted molecules) combined with conventional therapies could be employed. However, although the anti-oxidant properties of these substances are well known, their use in clinical practice has been only partially investigated. Additionally, for their correct utilization is extremely important to understand their effects, to identify the correct target of intervention and to minimize adverse effects. Therefore, in this manuscript, we reviewed the characteristics of the available mitochondria-targeted anti-oxidant compounds that could be employed routinely in our nephrology, internal medicine and renal transplant centers. Nevertheless, large clinical trials are needed to provide more definitive information about their use and to assess their overall efficacy or toxicity.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Alessandra Dalla Gassa
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Paola Tomei
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| |
Collapse
|
45
|
Mendonça LM, Machado CDS, Teixeira CCC, Freitas LAPD, Bianchi MLP, Antunes LMG. Comparative study of curcumin and curcumin formulated in a solid dispersion: Evaluation of their antigenotoxic effects. Genet Mol Biol 2015; 38:490-8. [PMID: 26537603 PMCID: PMC4763312 DOI: 10.1590/s1415-475738420150046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/28/2015] [Indexed: 01/20/2023] Open
Abstract
Curcumin (CMN) is the principal active component derived from the rhizome of
Curcuma longa (Curcuma longa L.). It is a
liposoluble polyphenolic compound that possesses great therapeutic potential. Its
clinical application is, however, limited by the low concentrations detected
following oral administration. One key strategy for improving the solubility and
bioavailability of poorly water-soluble drugs is solid dispersion, though it is not
known whether this technique might influence the pharmacological effects of CMN.
Thus, in this study, we aimed to evaluate the antioxidant and antigenotoxic effects
of CMN formulated in a solid dispersion (CMN SD) compared to unmodified CMN delivered
to Wistar rats. Cisplatin (cDDP) was used as the damage-inducing agent in these
evaluations. The comet assay results showed that CMN SD was not able to reduce the
formation of cDDP-DNA crosslinks, but it decreased the formation of micronuclei
induced by cDDP and attenuated cDDP-induced oxidative stress. Furthermore, at a dose
of 50 mg/kg b.w. both CMN SD and unmodified CMN increased the expression of
Tp53 mRNA. Our results showed that CMN SD did not alter the
antigenotoxic effects observed for unmodified CMN and showed effects similar to those
of unmodified CMN for all of the parameters evaluated. In conclusion, CMN SD
maintained the protective effects of unmodified CMN with the advantage of being
chemically water soluble, with maximization of absorption in the gastrointestinal
tract. Thus, the optimization of the physical and chemical properties of CMN SD may
increase the potential for the therapeutic use of curcumin.
Collapse
Affiliation(s)
- Leonardo Meneghin Mendonça
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla da Silva Machado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristiane Cardoso Correia Teixeira
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Alexandre Pedro de Freitas
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Lourdes Pires Bianchi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lusânia Maria Greggi Antunes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
46
|
Verma PK, Raina R, Sultana M, Singh M, Kumar P. Total antioxidant and oxidant status of plasma and renal tissue of cisplatin-induced nephrotoxic rats: protection by floral extracts of Calendula officinalis Linn. Ren Fail 2015; 38:142-50. [PMID: 26513373 DOI: 10.3109/0886022x.2015.1103585] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study was aimed to determine the total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) of plasma and renal tissue in cisplatin (cDDP) induced nephrotoxic rats and its protection by treatments with floral extracts of Calendula officinalis Linn. Treatment with cDDP elevated (p < 0.05) the levels of blood urea nitrogen, creatinine (CR), TOS, OSI and malondialdehyde (MDA) but lowered (p < 0.05) total plasma proteins, TAS, total thiols (TTH), blood glutathione (GSH) and antioxidant enzymes compared to the control group. Pre- and post-treatments of ethanolic floral extract of C. officinalis along with cDDP restored (p > 0.05) CR, albumin, TOS, GSH and activities of antioxidant enzymes in blood and renal tissue. Ethanolic extract treatments reduced (p < 0.05) MDA level in renal tissue without restoring the erythrocyte MDA level following cDDP treatment. These observations were further supported by the histopathological findings in renal tissue. Observations of the present study have shown that treatments with ethanolic floral extract of C. officinalis protect cDDP induced nephrotoxicity by restoring antioxidant system of the renal tissue.
Collapse
Affiliation(s)
- Pawan Kumar Verma
- a Division of Veterinary Pharmacology & Toxicology , Division of Pharmacology, FVSC & AH, Sher-e-Kashmir University of Agricultural Sciences & Technology - Jammu , RS Pura, Jammu, Jammu & Kashmir , India
| | - Rajinder Raina
- b Division of Veterinary Pharmacology and Toxicology , Faculty of Veterinary Sciences and Animal Husbandry , RS Pura, Jammu, Jammu & Kashmir , India
| | - Mudasir Sultana
- c Division of Veterinary Pharmacology and Toxicology , Faculty of Veterinary Sciences and Animal Husbandry , RS Pura, Jammu, Jammu & Kashmir , India
| | - Maninder Singh
- d Division of Veterinary Public Health and Epidemiology , Faculty of Veterinary Sciences and Animal Husbandry , RS Pura, Jammu, Jammu & Kashmir , India , and
| | - Pawan Kumar
- e Division of Pathology , Indian Veterinary Research Institute , Izatnagar, Bareilly, Uttar Pradesh , India
| |
Collapse
|
47
|
Cagin YF, Erdogan MA, Sahin N, Parlakpinar H, Atayan Y, Polat A, Vardi N, Yildiz A, Tanbek K. Protective Effects of Apocynin on Cisplatin-induced Hepatotoxicity in Rats. Arch Med Res 2015; 46:517-26. [DOI: 10.1016/j.arcmed.2015.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/20/2015] [Indexed: 01/12/2023]
|
48
|
Boroushaki MT, Rajabian A, Farzadnia M, Hoseini A, Poorlashkari M, Taghavi A, Dolati K, Bazmandegan G. Protective effect of pomegranate seed oil against cisplatin-induced nephrotoxicity in rat. Ren Fail 2015; 37:1338-43. [PMID: 26288026 DOI: 10.3109/0886022x.2015.1073496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Clinical use of cisplatin is limited by its nephrotoxicity. Cisplatin-induced nephrotoxicity is associated with an increase in oxidative stress, leading ultimately to kidney dysfunction. The aim of this study was to investigate the effect of pomegranate seed oil against nephrotoxicity induced by cisplatin in adult rats. METHODS Animals were divided into four groups. Group I received corn oil (1 mL/kg). Group II received cisplatin (8 mg/kg). Group III and IV received pomegranate seed oil (PSO) 0.4 mL/kg and 0.8 mL/kg one hour before cisplatin injection for 3 days, respectively. Blood samples were collected by cardiac puncture and used for measuring urea and creatinine concentration. Twenty-hour urine samples were collected to measure protein and glucose concentration. The right kidney fixed in formalin for histological examination and the left kidney was homogenized for measurement of malondialdehyde and total sulfhydryl groups. RESULTS A significant elevation of serum creatinine, urea, urinary glucose, protein concentrations, and non-significant decrease in total thiol content and increase in MDA level in kidney homogenates were observed in cisplatin-treated rats. Also cisplatin reduced animal's body weight. Mild-to-moderate tubular cell necrosis, hyaline casts, and vascular congestion were observed in group II. PSO pre-treatment significantly decreased urinary protein, glucose, and serum creatinine concentration. PSO also caused a decrease in serum urea, renal MDA, and increase in thiol content, but the level of these parameters were not significant. CONCLUSION The present results suggest that PSO is an effective agent for the prevention of cisplatin-induced renal dysfunction and oxidative damage in rat.
Collapse
Affiliation(s)
- Mohammad Taher Boroushaki
- a Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran .,b Department of Pharmacology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Arezoo Rajabian
- b Department of Pharmacology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mehdi Farzadnia
- c Cancer Molecular Pathology Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Azar Hoseini
- a Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mojdeh Poorlashkari
- d Department of Pathology, Faculty of Medicine , Rafsanjan University of Medical Sciences , Rafsanjan , Iran , and
| | - Amin Taghavi
- e Faculty of Medicine , Rafsanjan University of Medical Sciences , Rafsanjan , Iran
| | - Karim Dolati
- b Department of Pharmacology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Gholamreza Bazmandegan
- b Department of Pharmacology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
49
|
Polat N, Ciftci O, Cetin A, Yılmaz T. Toxic effects of systemic cisplatin on rat eyes and the protective effect of hesperidin against this toxicity. Cutan Ocul Toxicol 2015; 35:1-7. [PMID: 25594252 DOI: 10.3109/15569527.2014.999080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT In the present study, cisplatin (CP) induced eye toxicity and the beneficial effect of hesperidin (HP) was investigated. METHODS Twenty-eight rats were equally divided into four groups; the first group was kept as control. In the second and third group, CP and HP were given at the doses of 7 mg/kg and 50 mg/kg/d, respectively. In the fourth group, CP and HP were given together at the same doses. Tissue samples were collected on day 14 of CP treatment. RESULTS The results demonstrated that CP caused a significant increase in thiobarbituric acid reactive substances (TBARS) levels and decrease of glutathione levels and antioxidant enzyme activity (catalase, superoxide dismutase and glutathione peroxidase) in eye tissues compared to other groups, HP prevented these effects of CP. Besides, CP led to histopathological damage in the retina and cornea. On the other hand, HP treatment prevented histopathological effects of CP. CONCLUSION CP had severe dose-limiting toxic effects and HP treatment can be beneficial against the toxic ocular effects of CP. Thus, it appears that co-administration of HP with CP may be a useful approach to attenuate the negative effects of CP on the eye.
Collapse
Affiliation(s)
| | | | - Aslı Cetin
- c Department of Histology and Embryology, Faculty of Medicine , University of Inonu , Malatya , Turkey
| | | |
Collapse
|
50
|
Ugur S, Ulu R, Dogukan A, Gurel A, Yigit IP, Gozel N, Aygen B, Ilhan N. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren Fail 2015; 37:332-6. [PMID: 25594614 DOI: 10.3109/0886022x.2014.986005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The polyphenol curcumin has several pharmacological effects, including antioxidant, anti-inflammatory and anti-cancer features. In this study, we evaluated the effects of curcumin in cisplatin-induced nephrotoxicity in rats. Male Wistar rats were divided into four groups: (1) control; (2) cisplatin (7 mg/kg body weight, intraperitoneal as a single dose); (3) curcumin (100 mg/kg via gavage, for 10 days); and (4) cisplatin and curcumin. The cisplatin-treated rats exhibited kidney injury manifested by increased serum urea and creatinine (p<0.05). The kidney tissue from the cisplatin treated rats also exhibited a significant increase in the malondialdehyde (MDA) levels (p<0.05). The treatment with curcumin prevented a rise in the serum urea, creatinine and MDA levels when compared to the control group kidneys (p<0.05). The analysis the nicotinamide phosphoribosyltransferase (NAMPT) and sirtuin (SIRT) proteins (SIRT1, SIRT3 and SIRT4), which play important roles in the resistance to stress and the modulation of the threshold of cell death, showed similar trends (p<0.05). In the cisplatin-only treated rats, the induced renal injury decreased the levels of the NAMPT and SIRT proteins. Conversely, the curcumin increased the levels of the NAMPT and SIRT proteins in the cisplatin-treated rats (p<0.05). These data suggest that curcumin can potentially be used to reduce chemotherapy-induced nephrotoxicity, thereby enhancing the therapeutic window of cisplatin.
Collapse
Affiliation(s)
- Sıddık Ugur
- Department of Nephrology, Medical Faculty, Firat University , Elazig , Turkey and
| | | | | | | | | | | | | | | |
Collapse
|