1
|
Chaves-Filho AJM, Soares MVR, Jucá PM, Oliveira TDQ, Clemente DCDS, Monteiro CEDS, Silva FGO, de Aquino PEA, Macedo DS. Doxycycline reversal of amphetamine-induced mania-like behavior is related to adjusting brain monoamine abnormalities and antioxidant effects in primary hippocampal neurons. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6017-6035. [PMID: 38386042 DOI: 10.1007/s00210-024-03009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Mania is associated with disturbed dopaminergic transmission in frontotemporal regions. D-amphetamine (AMPH) causes increased extracellular DA levels, considered an acknowledged mania model in rodents. Doxycycline (DOXY) is a second-generation tetracycline with promising neuroprotective properties. Here, we tested the hypothesis that DOXY alone or combined with Lithium (Li) could reverse AMPH-induced mania-like behavioral alterations in mice by the modulation of monoamine levels in brain areas related to mood regulation, as well as cytoprotective and antioxidant effects in hippocampal neurons. Male Swiss mice received AMPH or saline intraperitoneal (IP) injections for 14 days. Between days 8-14, mice receive further IP doses of DOXY, Li, or their combination. For in vitro studies, we exposed hippocampal neurons to DOXY in the presence or absence of AMPH. DOXY alone or combined with Li reversed AMPH-induced risk-taking behavior and hyperlocomotion. DOXY also reversed AMPH-induced hippocampal and striatal hyperdopaminergia. In AMPH-exposed hippocampal neurons, DOXY alone and combined with Li presented cytoprotective and antioxidant effects, while DOXY+Li also increased the expression of phospho-Ser133-CREB. Our results add novel evidence for DOXY's ability to reverse mania-like features while revealing that antidopaminergic activity in some brain areas, such as the hippocampus and striatum, as well as hippocampal cytoprotective effects may account for this drug's antimanic action. This study provides additional rationale for designing clinical trials investigating its potential as a mood stabilizer agent.
Collapse
Affiliation(s)
- Adriano José Maia Chaves-Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Michele Verde-Ramo Soares
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Paloma Marinho Jucá
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Tatiana de Queiroz Oliveira
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Dino Cesar da Silva Clemente
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Carlos Eduardo da Silva Monteiro
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisca Géssica Oliveira Silva
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Pedro Everson Alexandre de Aquino
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), São Paulo, Brazil.
| |
Collapse
|
2
|
Ullah I, Wang X, Li H. Novel and experimental therapeutics for the management of motor and non-motor Parkinsonian symptoms. Neurol Sci 2024; 45:2979-2995. [PMID: 38388896 DOI: 10.1007/s10072-023-07278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND : Both motor and non-motor symptoms of Parkinson's disease (PD) have a substantial detrimental influence on the patient's quality of life. The most effective treatment remains oral levodopa. All currently known treatments just address the symptoms; they do not completely reverse the condition. METHODOLOGY In order to find literature on the creation of novel treatment agents and their efficacy for PD patients, we searched PubMed, Google Scholar, and other online libraries. RESULTS According to the most recent study on Parkinson's disease (PD), a great deal of work has been done in both the clinical and laboratory domains, and some current scientists have even been successful in developing novel therapies for PD patients. CONCLUSION The quality of life for PD patients has increased as a result of recent research, and numerous innovative medications are being developed for PD therapy. In the near future, we will see positive outcomes regarding PD treatment.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Song RX, Miao HT, Jia SY, Li WG, Liu JZ, Zhang W, Xing BR, Zhao JY, Zhang LM, Li XM. Hemorrhagic Shock and Resuscitation Causes Excessive Dopaminergic Signaling in the mPFC and Cognitive Dysfunction. Mol Neurobiol 2024; 61:3899-3910. [PMID: 38041715 DOI: 10.1007/s12035-023-03804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
Peri-operative hemorrhagic shock and resuscitation (HSR), a severe traumatic stress, is closely associated with post-operative anxiety, depression, and cognitive dysfunction, subsequently causing a serious burden on families and society. Following the co-release of corticotropin-releasing factor and catecholamine, traumatic stress activates dopaminergic neurons, increasing the addictive behavior and neurocognitive impairment risks. This study investigates the association between cognitive dysfunction and dopaminergic neurons in the mPFC under HSR conditions. This study established an HSR model by bleeding and re-transfusion in the mice. After HSR exposure, a dopamine D1 receptor antagonist, SKF-83566, was administered intraperitoneally for three consecutive days. Novel object recognition (NOR), conditioned fearing (FC), and conditioned place preference (CPP) were used to assess cognitive changes 16 days after HSR exposure. Local field potential (LFP) in the mPFC was also investigated during the novel object exploration. Compared with the mice exposed to sham, there was a significant decrease in the object recognition index, a reduction in context- and tone-related freezing time, an increase in CPP values, a downregulation of β-power but upregulation of γ-power in the mPFC in the mice exposed to HSR. Moreover, the mice exposed to HSR showed significantly upregulated TH-positive cell number, cleaved caspase-1- and TH-positive cells, and interleukin (IL)-1β/18 expression in the mPFC compared with sham; SKF-83566 could partially reverse these alternations. The HSR caused excessive dopaminergic signaling and cognitive dysfunction in the mPFC, a condition that might be ameliorated using a dopamine D1 receptor inhibitor.
Collapse
Affiliation(s)
- Rong-Xin Song
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Hui-Tao Miao
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Shi-Yan Jia
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Wen-Guang Li
- Graduate School, Hebei Medical University, Shijiazhuang, China
| | - Ji-Zhen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao-Rui Xing
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Jian-Yong Zhao
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Li-Min Zhang
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China.
| | - Xiao-Ming Li
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China.
| |
Collapse
|
4
|
Rautela K, Kumar A, Rana SK, Jugran AK, Bhatt ID. Distribution, Chemical Constituents and Biological Properties of Genus Malaxis. Chem Biodivers 2024; 21:e202301830. [PMID: 38289898 DOI: 10.1002/cbdv.202301830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
The genus Malaxis (family Orchidaceae), comprises nearly 183 species available across the globe. The plants of this genus have long been employed in traditional medical practices because of their numerous biological properties, like the treatment of infertility, hemostasis, burning sensation, bleeding diathesis, fever, diarrhea, dysentery, febrifuge, tuberculosis, etc. Various reports highlight their phytochemical composition and biological activities. However, there is a lack of systematic review on the distribution, phytochemistry, and biological properties of this genus. Hence, this study aims to conduct a thorough and critical review of Malaxis species, covering data published from 1965 to 2022 with nearly 90 articles. Also, it examines different bioactive compounds, their chemistry, and pharmacotherapeutics as well as their traditional uses. A total of 189 unique compounds, including the oil constituents were recorded from Malaxis species. The highest active ingredients were obtained from Malaxis acuminata (103) followed by Malaxis muscifera (49) and Malaxis rheedei (33). In conclusion, this review offers an overview of the current state of knowledge on Malaxis species and highlights prospects for future research projects on them. Additionally, it recommends the promotion of domestication studies for rare medicinal orchids like Malaxis and the prompt implementation of conservation measures.
Collapse
Affiliation(s)
- Kalpana Rautela
- G. B. Pant National Institute of Himalayan Environment, Garhwal Regional Centre, Upper Bhaktiyana, Srinagar-246174, Uttarakhand, India
| | - Ashish Kumar
- G. B. Pant National Institute of Himalayan Environment, Garhwal Regional Centre, Upper Bhaktiyana, Srinagar-246174, Uttarakhand, India
| | - Suresh K Rana
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263643, India
| | - Arun K Jugran
- G. B. Pant National Institute of Himalayan Environment, Garhwal Regional Centre, Upper Bhaktiyana, Srinagar-246174, Uttarakhand, India
| | - Indra D Bhatt
- G. B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263643, India
| |
Collapse
|
5
|
Cakmak U. Phytochemical analyses by LC-HRMS, FTIR spectral analysis, antioxidant, antidiabetic and antityrosinase activity of Crataegus orientalis Pall. ex M. Bieb fruit extracted with various solvents. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3767-3775. [PMID: 38284463 DOI: 10.1002/jsfa.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Crataegus orientalis Pall. ex M. Bieb fruit (COPMB) is extensively used as a source of various products in the medicinal-aromatic field and holds the potential for erosion control, ornamental purposes, food source, and economic benefits for forest villagers from its fruits. This study aims to determine the chemical components and biological activities of extracts prepared from COPMB using different solvents. RESULTS The present work was designed to define the antioxidant activity [phosphomolybdenum (total antioxidant capacity), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric ion-reducing antioxidant capacity (CUPRAC) and metal chelating activity (MCA)], phytochemical screening analysis, enzyme inhibitor (α-amylase, α-glucosidase and tyrosinase) potential, and liquid chromatography-high resolution mass spectrometry (LC-HRMS) secondary metabolite profiling in different extracts of COPMB. The results of LC-HRMS revealed that fumaric acid was the main phenolic compound in all extracts. Among the extracts, ethyl acetate extract has the highest phytochemical and antioxidant properties [total phenolic content (TPC): 32.5 mg GAE/g, total flavonoid content (TFC): 12.2 mg QE/g, ABTS: 213.0 mg TE/g; CUPRAC: 126.0 mg TE/g, MCA: 145.0 mg EDTA/g; FRAP: 122.8 mg TE/g; TAC: 2.8 mmol TE/g]. Ethyl acetate and methanol extracts are more effective in α-amylase (0.27 ± 0.01 mg/mL; 0.12 ± 0.00 mg/mL), α-glucosidase (0.63 ± 0.02 mg/mL; 0.77 ± 0.02 mg/mL) and tyrosinase (0.03 ± 0.00 mg/mL; 0.03 ± 0.00 mg/mL) enzyme inhibition potentials compared to standard acarbose (0.75 ± 0.02 mg/mL for α-amylase; 1.11 ± 0.03 mg/mL for α-glucosidase) and kojic acid (0.04 ± 0.00 mg/mL). CONCLUSION The findings from this study suggest that COPMB could serve as a valuable source of natural agents for the food and pharmaceutical industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ummuhan Cakmak
- Faculty of Science, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
6
|
Xue J, Tao K, Wang W, Wang X. What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease? Int J Mol Sci 2024; 25:1641. [PMID: 38338925 PMCID: PMC10855787 DOI: 10.3390/ijms25031641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| |
Collapse
|
7
|
Vallucci M, Boutin JA, Janda E, Blandel F, Musgrove R, Di Monte D, Ferry G, Michel PP, Hirsch EC. The specific NQO2 inhibitor, S29434, only marginally improves the survival of dopamine neurons in MPTP-intoxicated mice. J Neural Transm (Vienna) 2024; 131:1-11. [PMID: 37851107 DOI: 10.1007/s00702-023-02709-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Over the years, evidence has accumulated on a possible contributive role of the cytosolic quinone reductase NQO2 in models of dopamine neuron degeneration induced by parkinsonian toxin, but most of the data have been obtained in vitro. For this reason, we asked the question whether NQO2 is involved in the in vivo toxicity of MPTP, a neurotoxin classically used to model Parkinson disease-induced neurodegeneration. First, we show that NQO2 is expressed in mouse substantia nigra dopaminergic cell bodies and in human dopaminergic SH-SY5Y cells as well. A highly specific NQO2 inhibitor, S29434, was able to reduce MPTP-induced cell death in a co-culture system of SH-SY5Y cells with astrocytoma U373 cells but was inactive in SH-SY5Y monocultures. We found that S29434 only marginally prevents substantia nigra tyrosine hydroxylase+ cell loss after MPTP intoxication in vivo. The compound produced a slight increase of dopaminergic cell survival at day 7 and 21 following MPTP treatment, especially with 1.5 and 3 mg/kg dosage regimen. The rescue effect did not reach statistical significance (except for one experiment at day 7) and tended to decrease with the 4.5 mg/kg dose, at the latest time point. Despite the lack of robust protective activity of the inhibitor of NQO2 in the mouse MPTP model, we cannot rule out a possible role of the enzyme in parkinsonian degeneration, particularly because it is substantially expressed in dopaminergic neurons.
Collapse
Affiliation(s)
- Maeva Vallucci
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, INSERM, CNRS, Paris, France
| | - Jean A Boutin
- Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Univ Rouen Normandie, Inserm, NorDiC, UMR 1239, 76000, Rouen, France.
| | - Elzbieta Janda
- Department of Health Sciences, Campus Germaneto, Magna Graecia University, 88100, Catanzaro, Italy
| | - Florence Blandel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, INSERM, CNRS, Paris, France
| | - Ruth Musgrove
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Donato Di Monte
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gilles Ferry
- Institut de R&D, Servier Paris-Saclay, 91190, Gif-Sur-Yvette, France
- Gilles Ferry Consulting, Les Issambres, France
| | - Patrick P Michel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, INSERM, CNRS, Paris, France
| | - Etienne C Hirsch
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, INSERM, CNRS, Paris, France
| |
Collapse
|
8
|
Ricci V, de Berardis D, Martinotti G, Maina G. Neurotrophic Factors in Cannabis-induced Psychosis: An Update. Curr Top Med Chem 2024; 24:1757-1772. [PMID: 37644743 DOI: 10.2174/1568026623666230829152150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Cannabis is the most widely used illicit substance. Numerous scientific evidence confirm the strong association between cannabis and psychosis. Exposure to cannabis can induce the development of psychosis and schizophrenia in vulnerable individuals. However, the neurobiological processes underlying this relationship are unknown. Neurotrophins are a class of proteins that serve as survival factors for central nervous system (CNS) neurons. In particular, Nerve Growth Factor (NGF) plays an important role in the survival and function of cholinergic neurons while Brain Derived Neurotrophic Factor (BDNF) is involved in synaptic plasticity and the maintenance of midbrain dopaminergic and cholinergic neurons. Glial Cell Derived Neurotrophic Factor (GDNF) promotes the survival of midbrain dopaminergic neurons and Neuregulin 1 (NrG- 1) contributes to glutamatergic signals regulating the N-methyl-D-aspartate (NMDA). They have a remarkable influence on the neurons involved in the Δ-9-THC (tethra-hydro-cannabinol) action, such as dopaminergic and glutamatergic neurons, and can play dual roles: first, in neuronal survival and death, and, second, in activity-dependent plasticity. METHODS In this brief update, reviewing in a narrative way the relevant literature, we will focus on the effects of cannabis on this class of proteins, which may be implicated, at least in part, in the mechanism of the psychostimulant-induced neurotoxicity and psychosis. CONCLUSION Since altered levels of neurotrophins may participate in the pathogenesis of psychotic disorders which are common in drug users, one possible hypothesis is that repeated cannabis exposure can cause psychosis by interfering with neurotrophins synthesis and utilization by CNS neurons.
Collapse
Affiliation(s)
- Valerio Ricci
- Psychiatric Service for Diagnosis and Treatment, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Turin, Italy
| | - Domenico de Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4, 64100, Teramo, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
| | - Giuseppe Maina
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Italy
| |
Collapse
|
9
|
Singh NK, Singh A, Mayank. Nuclear Factor Kappa B: A Nobel Therapeutic Target of FlavonoidsAgainst Parkinson's Disease. Comb Chem High Throughput Screen 2024; 27:2062-2077. [PMID: 38243959 DOI: 10.2174/0113862073295568240105025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024]
Abstract
Parkinson's disease (PD), the most common brain-related neurodegenerative disorder, is comprised of several pathophysiological mechanisms, such as mitochondrial dysfunction, neuroinflammation, aggregation of misfolded alpha-synuclein, and synaptic loss in the substantia nigra pars compacta region of the midbrain. Misfolded alpha-synuclein, originating from damaged neurons, triggers a series of signaling pathways in both glial and neuronal cells. Activation of such events results in the production and expression of several proinflammatory cytokines via the activation of the nuclear factor κB (NF-κB) signaling pathway. Consequently, this cascade of events worsens the neurodegenerative processes, particularly in conditions, such as PD and synucleinopathies. Microglia, astrocytes, and neurons are just a few of the many cells and tissues that express the NF-κB family of inducible types of transcription factors. The dual role of NF-κB activation can be crucial for neuronal survival, although the classical NF-κB pathway is important for controlling the generation of inflammatory mediators during neuroinflammation. Modulating NF-κB-associated pathways through the selective action of several agents holds promise for mitigating dopaminergic neuronal degeneration and PD. Several naturally occurring compounds in medicinal plants can be an effective treatment option in attenuating PD-associated dopaminergic neuronal loss via selectively modifying the NF-κB-mediated signaling pathways. Recently, flavonoids have gained notable attention from researchers because of their remarkable anti-neuroinflammatory activity and significant antioxidant properties in numerous neurodegenerative disorders, including PD. Several subclasses of flavonoids, including flavones, flavonols, isoflavones, and anthocyanins, have been evaluated for neuroprotective effects against in vitro and in vivo models of PD. In this aspect, the present review highlights the pathological role of NF-κB in the progression of PD and investigates the therapeutic potential of natural flavonoids targeting the NF-κB signaling pathway for the prevention and management of PD-like manifestations with a comprehensive list for further reference. Available facts strongly support that bioactive flavonoids could be considered in food and/or as lead pharmacophores for the treatment of neuroinflammation-mediated PD. Furthermore, natural flavonoids having potent pharmacological properties could be helpful in enhancing the economy of countries that cultivate medicinal plants yielding bioactive flavonoids on a large scale.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Mayank
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| |
Collapse
|
10
|
Zhou ZD, Yi LX, Wang DQ, Lim TM, Tan EK. Role of dopamine in the pathophysiology of Parkinson's disease. Transl Neurodegener 2023; 12:44. [PMID: 37718439 PMCID: PMC10506345 DOI: 10.1186/s40035-023-00378-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
A pathological feature of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and decreased dopamine (DA) content in the substantia nigra pars compacta in PD brains. DA is the neurotransmitter of dopaminergic neurons. Accumulating evidence suggests that DA interacts with environmental and genetic factors to contribute to PD pathophysiology. Disturbances of DA synthesis, storage, transportation and metabolism have been shown to promote neurodegeneration of dopaminergic neurons in various PD models. DA is unstable and can undergo oxidation and metabolism to produce multiple reactive and toxic by-products, including reactive oxygen species, DA quinones, and 3,4-dihydroxyphenylacetaldehyde. Here we summarize and highlight recent discoveries on DA-linked pathophysiologic pathways, and discuss the potential protective and therapeutic strategies to mitigate the complications associated with DA.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Ling Xiao Yi
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Dennis Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tit Meng Lim
- Department of Biological Science, National University of Singapore, Singapore, 119077, Singapore
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
11
|
Yang YN, Zhang MQ, Yu FL, Han B, Bao MY, Yan-He, Li X, Zhang Y. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: A promising therapeutic target. Biochem Pharmacol 2023; 215:115717. [PMID: 37516277 DOI: 10.1016/j.bcp.2023.115717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Neurodegenerative disorders (NDDs) are characterized by progressive loss of selectively vulnerable neuronal populations and myelin sheath, leading to behavioral and cognitive dysfunction that adversely affect the quality of life. Identifying novel therapies that attenuate the progression of NDDs would be of significance. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a widely expressed transcriptional regulator, modulates the expression of genes engaged in mitochondrial biosynthesis, metabolic regulation, and oxidative stress (OS). Emerging evidences point to the strong connection between PGC-1α and NDDs, suggesting its positive impaction on the progression of NDDs. Therefore, it is urgent to gain a deeper and broader understanding between PGC-1α and NDDs. To this end, this review presents a comprehensive overview of PGC-1α, including its basic characteristics, the post-translational modulations, as well as the interacting transcription factors. Secondly, the pathogenesis of PGC-1α in various NDDs, such as Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD) is briefly discussed. Additionally, this study summarizes the underlying mechanisms that PGC-1α is neuroprotective in NDDs via regulating neuroinflammation, OS, and mitochondrial dysfunction. Finally, we briefly outline the shortcomings of current NDDs drug therapy, and summarize the functions and potential applications of currently available PGC-1α modulators (activator or inhibitors). Generally, this review updates our insight of the important role of PGC-1α on the development of NDDs, and provides a promising therapeutic target/ drug for the treatment of NDDs.
Collapse
Affiliation(s)
- Ya-Na Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mao-Qing Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Feng-Lin Yu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Bing Han
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ming-Yue Bao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yan-He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
12
|
Sajjad N, Ahmad MS, Mahmood RT, Tariq M, Asad MJ, Irum S, Andleeb A, Riaz A, Ahmed D. Purification and characterization of novel isoforms of the polyphenol oxidase from Malus domestica fruit pulp. PLoS One 2023; 18:e0276041. [PMID: 37624797 PMCID: PMC10456193 DOI: 10.1371/journal.pone.0276041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Polyphenol oxidases (PPOs), belong to the group of oxidoreductases that are copper containing enzymes and are responsible for plant browning. PPOs are extensively distributed in plant kingdom and can oxidize wide range of aromatic compounds of industrial importance. The aim of this study was purification and characterization of PPO isoforms from the fruit pulp of Golden delicious apple. High performance liquid chromatography was used to purify the two novel isoforms of PPO and further their molecular weights (45 and 28 kDa) were determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified isoforms have optimum pH (6.5), optimum temperature (40°C), the Vmax (4.45 μM/min) and Km (74.21 mM) with catechol substrate. The N-terminal microsequences of both PPO isoforms were determined using a pulse liquid protein sequencer and found to be AKITFHG (28 kDa) and APGGG (45 kDa). Polyphenol oxidases are efficiently used in the pharmaceutical, paper and pulp, textiles and food industries. Recently, the PPOs have been used for bioremediation and in the development of biosensors.
Collapse
Affiliation(s)
- Naila Sajjad
- University Institute of Biochemistry and Biotechnology (UIBB) & National Center of Industrial Biotechnology (NCffigIB) Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - M. Sheeraz Ahmad
- University Institute of Biochemistry and Biotechnology (UIBB) & National Center of Industrial Biotechnology (NCffigIB) Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Raja Tahir Mahmood
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur AJK, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur AJK, Pakistan
| | - Muhammad Javaid Asad
- University Institute of Biochemistry and Biotechnology (UIBB) & National Center of Industrial Biotechnology (NCffigIB) Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Shamaila Irum
- Department of Zoology, University of Gujrat, Gujrat, Pakistan
| | - Anisa Andleeb
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur AJK, Pakistan
| | - Abid Riaz
- Department of Plant Pathology, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Dawood Ahmed
- Department of Medical Laboratory Technology, University of Haripur, Haripur, KP, Pakistan
| |
Collapse
|
13
|
Yoo J, Han J, Lim MH. Transition metal ions and neurotransmitters: coordination chemistry and implications for neurodegeneration. RSC Chem Biol 2023; 4:548-563. [PMID: 37547459 PMCID: PMC10398360 DOI: 10.1039/d3cb00052d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Neurodegeneration is characterized by a disturbance in neurotransmitter-mediated signaling pathways. Recent studies have highlighted the significant role of transition metal ions, including Cu(i/ii), Zn(ii), and Fe(ii/iii), in neurotransmission, thereby making the coordination chemistry of neurotransmitters a growing field of interest in understanding signal dysfunction. This review outlines the physiological functions of transition metal ions and neurotransmitters, with the metal-binding properties of small molecule-based neurotransmitters and neuropeptides. Additionally, we discuss the structural and conformational changes of neurotransmitters induced by redox-active metal ions, such as Cu(i/ii) and Fe(ii/iii), and briefly describe the outcomes arising from their oxidation, polymerization, and aggregation. These observations have important implications for neurodegeneration and emphasize the need for further research to develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
14
|
França TCL, Muniz-Santos R, Caetano LC, Souza GHMF, Goulart HF, Assis M, Bottino A, Bassini A, Santana AEG, Prado ES, Cameron LC. A sportomics soccer investigation unveils an exercise-induced shift in tyrosine metabolism leading to hawkinsinuria. Front Nutr 2023; 10:1169188. [PMID: 37384105 PMCID: PMC10296188 DOI: 10.3389/fnut.2023.1169188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Tyrosine metabolism has an intense role in the synthesis of neurotransmitters. Our study used an untargeted, sportomics-based analysis of urine samples to investigate changes in metabolism during a soccer match in 30 male junior professional soccer players. Samples were collected before and after the match and analyzed using liquid chromatography and mass spectrometry. Results showed significant changes in tyrosine metabolism. Exercise caused a downregulation of the homogentisate metabolites 4-maleylacetoacetate and succinylacetone to 20% (p = 4.69E-5) and 16% (p = 4.25E-14), respectively. 4-Hydroxyphenylpyruvate, a homogentisate precursor, was found to be upregulated by 26% (p = 7.20E-3). The concentration of hawkinsin and its metabolite 4-hydroxycyclohexyl acetate increased ~six-fold (p = 1.49E-6 and p = 9.81E-6, respectively). Different DOPA metabolism pathways were also affected by exercise. DOPA and dopaquinone increased four-to six-fold (p = 5.62E-14 and p = 4.98E-13, respectively). 3-Methoxytyrosine, indole-5,6-quinone, and melanin were downregulated from 1 to 25%, as were dopamine and tyramine (decreasing to up to 5% or 80%; p= 5.62E-14 and p = 2.47E-2, respectively). Blood TCO2 decreased as well as urinary glutathione and glutamate (40% and 10% respectively) associated with a two-fold increase in pyroglutamate. Our study found unexpected similarities between exercise-induced changes in metabolism and the inherited disorder Hawkinsinuria, suggesting a possible transient condition called exercise-induced hawkinsinuria (EIh). Additionally, our research suggests changes in DOPA pathways may be involved. Our findings suggest that soccer exercise could be used as a model to search for potential countermeasures in Hawkinsinuria and other tyrosine metabolism disorders.
Collapse
Affiliation(s)
- Thássia Casado Lima França
- Laboratory for Research in Physical Exercise and Metabolism, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Renan Muniz-Santos
- Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Carlos Caetano
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Henrique Fonseca Goulart
- Research Laboratory on Natural Resources, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcio Assis
- Youth Soccer Teams, Fluminense Football Club, Rio de Janeiro, Brazil
| | - Altamiro Bottino
- Health and Performance Center/Soccer Professional Team, Sociedade Esportiva Palmeiras, São Paulo, Brazil
| | - Adriana Bassini
- Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Eduardo Seixas Prado
- Laboratory for Research in Physical Exercise and Metabolism, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L. C. Cameron
- Laboratory of Protein Biochemistry, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Chakrabarti S, Bisaglia M. Oxidative Stress and Neuroinflammation in Parkinson's Disease: The Role of Dopamine Oxidation Products. Antioxidants (Basel) 2023; 12:antiox12040955. [PMID: 37107329 PMCID: PMC10135711 DOI: 10.3390/antiox12040955] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative condition affecting more than 1% of people over 65 years old. It is characterized by the preferential degeneration of nigrostriatal dopaminergic neurons, which is responsible for the motor symptoms of PD patients. The pathogenesis of this multifactorial disorder is still elusive, hampering the discovery of therapeutic strategies able to suppress the disease's progression. While redox alterations, mitochondrial dysfunctions, and neuroinflammation are clearly involved in PD pathology, how these processes lead to the preferential degeneration of dopaminergic neurons is still an unanswered question. In this context, the presence of dopamine itself within this neuronal population could represent a crucial determinant. In the present review, an attempt is made to link the aforementioned pathways to the oxidation chemistry of dopamine, leading to the formation of free radical species, reactive quinones and toxic metabolites, and sustaining a pathological vicious cycle.
Collapse
Affiliation(s)
- Sasanka Chakrabarti
- Department of Biochemistry and Central Research Laboratory, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala 133207, India
| | - Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35121 Padova, Italy
| |
Collapse
|
16
|
Miyazaki I, Asanuma M. Multifunctional Metallothioneins as a Target for Neuroprotection in Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12040894. [PMID: 37107269 PMCID: PMC10135286 DOI: 10.3390/antiox12040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by motor symptoms based on a loss of nigrostriatal dopaminergic neurons and by non-motor symptoms which precede motor symptoms. Neurodegeneration accompanied by an accumulation of α-synuclein is thought to propagate from the enteric nervous system to the central nervous system. The pathogenesis in sporadic PD remains unknown. However, many reports indicate various etiological factors, such as oxidative stress, inflammation, α-synuclein toxicity and mitochondrial impairment, drive neurodegeneration. Exposure to heavy metals contributes to these etiopathogenesis and increases the risk of developing PD. Metallothioneins (MTs) are cysteine-rich metal-binding proteins; MTs chelate metals and inhibit metal-induced oxidative stress, inflammation and mitochondrial dysfunction. In addition, MTs possess antioxidative properties by scavenging free radicals and exert anti-inflammatory effects by suppression of microglial activation. Furthermore, MTs recently received attention as a potential target for attenuating metal-induced α-synuclein aggregation. In this article, we summarize MTs expression in the central and enteric nervous system, and review protective functions of MTs against etiopathogenesis in PD. We also discuss neuroprotective strategies for the prevention of central dopaminergic and enteric neurodegeneration by targeting MTs. This review highlights multifunctional MTs as a target for the development of disease-modifying drugs for PD.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
17
|
Arslan ME, Türkez H, Sevim Y, Selvitopi H, Kadi A, Öner S, Mardinoğlu A. Costunolide and Parthenolide Ameliorate MPP+ Induced Apoptosis in the Cellular Parkinson's Disease Model. Cells 2023; 12:cells12070992. [PMID: 37048065 PMCID: PMC10093699 DOI: 10.3390/cells12070992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Monoamine oxidase B (MAO-B) is an enzyme that metabolizes several chemicals, including dopamine. MAO-B inhibitors are used in the treatment of Parkinson's Disease (PD), and the inhibition of this enzyme reduces dopamine turnover and oxidative stress. The absence of dopamine results in PD pathogenesis originating from decreased Acetylcholinesterase (AChE) activity and elevated oxidative stress. Here, we performed a molecular docking analysis for the potential use of costunolide and parthenolide terpenoids as potential MAO-B inhibitors in the treatment of PD. Neuroprotective properties of plant-originated costunolide and parthenolide terpenoids were investigated in a cellular PD model that was developed by using MPP+ toxicity. We investigated neuroprotection mechanisms through the analysis of oxidative stress parameters, acetylcholinesterase activity and apoptotic cell death ratios. Our results showed that 100 µg/mL and 50 µg/mL of costunolide, and 50 µg/mL of parthenolide applied to the cellular disease model ameliorated the cytotoxicity caused by MPP+ exposure. We found that acetylcholinesterase activity assays exhibited that terpenoids could ameliorate and restore the enzyme activity as in negative control levels. The oxidative stress parameter analyses revealed that terpenoid application could enhance antioxidant levels and decrease oxidative stress in the cultures. In conclusion, we reported that these two terpenoid molecules could be used in the development of efficient treatment strategies for PD patients.
Collapse
Affiliation(s)
- Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Yasemin Sevim
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Harun Selvitopi
- Department of Mathematics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Abdurrahim Kadi
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Sena Öner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
18
|
Costa VM, Capela JP, Bastos ML, Remião F, Varner KJ, Duarte JA, Carvalho F. Study of the potential toxicity of adrenaline to neurons, using the SH-SY5Y human cellular model. BRAZ J PHARM SCI 2023; 59. [DOI: 10.1590/s2175-97902023e20467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Affiliation(s)
| | - João Paulo Capela
- University of Porto, Portugal; Universidade Fernando Pessoa, Portugal
| | | | | | | | | | | |
Collapse
|
19
|
Freyberg Z, Gittes GK. Roles of Pancreatic Islet Catecholamine Neurotransmitters in Glycemic Control and in Antipsychotic Drug-Induced Dysglycemia. Diabetes 2023; 72:3-15. [PMID: 36538602 PMCID: PMC9797319 DOI: 10.2337/db22-0522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/24/2022] [Indexed: 12/24/2022]
Abstract
Catecholamine neurotransmitters dopamine (DA) and norepinephrine (NE) are essential for a myriad of functions throughout the central nervous system, including metabolic regulation. These molecules are also present in the pancreas, and their study may shed light on the effects of peripheral neurotransmission on glycemic control. Though sympathetic innervation to islets provides NE that signals at local α-cell and β-cell adrenergic receptors to modify hormone secretion, α-cells and β-cells also synthesize catecholamines locally. We propose a model where α-cells and β-cells take up catecholamine precursors in response to postprandial availability, preferentially synthesizing DA. The newly synthesized DA signals in an autocrine/paracrine manner to regulate insulin and glucagon secretion and maintain glycemic control. This enables islets to couple local catecholamine signaling to changes in nutritional state. We also contend that the DA receptors expressed by α-cells and β-cells are targeted by antipsychotic drugs (APDs)-some of the most widely prescribed medications today. Blockade of local DA signaling contributes significantly to APD-induced dysglycemia, a major contributor to treatment discontinuation and development of diabetes. Thus, elucidating the peripheral actions of catecholamines will provide new insights into the regulation of metabolic pathways and may lead to novel, more effective strategies to tune metabolism and treat diabetes.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - George K. Gittes
- Division of Pediatric Surgery, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
20
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
21
|
Benabbes R, Ouahhoud S, Moueqqit M, Addi M, Hano C, Delporte C, Nacoulma AP, Megalizzi V. The Major Stilbene Compound Accumulated in the Roots of a Resistant Variety of Phoenix dactylifera L. Activates Proteasome for a Path in Anti-Aging Strategy. Cells 2022; 12:cells12010071. [PMID: 36611864 PMCID: PMC9818208 DOI: 10.3390/cells12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The main objective of the present study is to estimate, through differential analysis, various biological activities of total phenolics content in alcoholic extracts of three date palm varieties sensitive or resistant to Fusarium oxysporum. sp Albidinis. Here, stilbene products with antioxidant and bioactive capacities were evidenced in resistant variety Taabdount (TAAR). Furthermore, the methanolic fraction of the TAAR-resistant date palm variety contains a significant product, determined by LC-MS/MS and 1H, 13C NMR, belonging to the family of hydroxystilbenes, which exhibits antioxidant capacities, inhibits the mushroom tyrosinase activity, and activates and exerts a protective effect on hypochlorite-induced damage in 20S proteasome of human dermal fibroblast aged cells. Altogether, the present results indicate that hydroxystilbene present in resistant Phoenix dactylifera L. should be studied to understand the way that the stilbene could exert anti-aging ability.
Collapse
Affiliation(s)
- Redouane Benabbes
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
| | - Sabir Ouahhoud
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
| | - Mohammed Moueqqit
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
| | - Mohamed Addi
- Laboratory of Improvement of Agricultural Production, Biotechnology and Environment, Department of Biology, Faculty of Sciences, Université Mohamed Premier, Oujda 60000, Morocco
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Orleans University, CEDEX 2, 45067 Orléans, France
- Correspondence:
| | - Cédric Delporte
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Brussels, Belgium
| | - Aminata P. Nacoulma
- The Unit Pharmacognosy, Bioanalysis & Drug Discovery (PBDD), Department of Drug Research and Development, Faculty of Pharmacy, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Brussels, Belgium
| | - Véronique Megalizzi
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Brussels, Belgium
- The Unit Pharmacognosy, Bioanalysis & Drug Discovery (PBDD), Department of Drug Research and Development, Faculty of Pharmacy, Université Libre de Bruxelles, Bvd du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
22
|
A. HP, Diwakar L, Ravindranath V. Protein Glutathionylation and Glutaredoxin: Role in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11122334. [PMID: 36552543 PMCID: PMC9774553 DOI: 10.3390/antiox11122334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis and progression of many neurodegenerative disorders including Parkinson's disease and Alzheimer's disease. One of the major enzyme systems involved in the defense against reactive oxygen species are the tripeptide glutathione and oxidoreductase glutaredoxin. Glutathione and glutaredoxin system are very important in the brain because of the oxidative modification of protein thiols to protein glutathione mixed disulfides with the concomitant formation of oxidized glutathione during oxidative stress. Formation of Pr-SSG acts as a sink in the brain and is reduced back to protein thiols during recovery, thus restoring protein functions. This is unlike in the liver, which has a high turnover of glutathione, and formation of Pr-SSG is very minimal as liver is able to quickly quench the prooxidant species. Given the important role glutathione and glutaredoxin play in the brain, both in normal and pathologic states, it is necessary to study ways to augment the system to help maintain the protein thiol status. This review details the importance of glutathione and glutaredoxin systems in several neurodegenerative disorders and emphasizes the potential augmentation of this system as a target to effectively protect the brain during aging.
Collapse
Affiliation(s)
- Haseena P. A.
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Vijayalakshmi Ravindranath
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
- Correspondence: ; Tel.: +91-80-22933433; Fax: +91-80-23603323
| |
Collapse
|
23
|
Access to new phosphonate- and imidazolidine-benzopyrimidinone derivatives as antityrosinase and anti-acetylcholinesterase agents: Design, synthesis and molecular docking. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
New synthetic quinaldine conjugates: Assessment of their anti-cholinesterase, anti-tyrosinase and cytotoxic activities, and molecular docking analysis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Hurben AK, Tretyakova NY. Role of Protein Damage Inflicted by Dopamine Metabolites in Parkinson's Disease: Evidence, Tools, and Outlook. Chem Res Toxicol 2022; 35:1789-1804. [PMID: 35994383 PMCID: PMC10225972 DOI: 10.1021/acs.chemrestox.2c00193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dopamine is an important neurotransmitter that plays a critical role in motivational salience and motor coordination. However, dysregulated dopamine metabolism can result in the formation of reactive electrophilic metabolites which generate covalent adducts with proteins. Such protein damage can impair native protein function and lead to neurotoxicity, ultimately contributing to Parkinson's disease etiology. In this Review, the role of dopamine-induced protein damage in Parkinson's disease is discussed, highlighting the novel chemical tools utilized to drive this effort forward. Continued innovation of methodologies which enable detection, quantification, and functional response elucidation of dopamine-derived protein adducts is critical for advancing this field. Work in this area improves foundational knowledge of the molecular mechanisms that contribute to dopamine-mediated Parkinson's disease progression, potentially assisting with future development of therapeutic interventions.
Collapse
Affiliation(s)
- Alexander K. Hurben
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Gori SS, Thomas AG, Pal A, Wiseman R, Ferraris DV, Gao RD, Wu Y, Alt J, Tsukamoto T, Slusher BS, Rais R. D-DOPA Is a Potent, Orally Bioavailable, Allosteric Inhibitor of Glutamate Carboxypeptidase II. Pharmaceutics 2022; 14:pharmaceutics14102018. [PMID: 36297453 PMCID: PMC9608075 DOI: 10.3390/pharmaceutics14102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Glutamate carboxypeptidase-II (GCPII) is a zinc-dependent metalloenzyme implicated in numerous neurological disorders. The pharmacophoric requirements of active-site GCPII inhibitors makes them highly charged, manifesting poor pharmacokinetic (PK) properties. Herein, we describe the discovery and characterization of catechol-based inhibitors including L-DOPA, D-DOPA, and caffeic acid, with sub-micromolar potencies. Of these, D-DOPA emerged as the most promising compound, with good metabolic stability, and excellent PK properties. Orally administered D-DOPA yielded high plasma exposures (AUCplasma = 72.7 nmol·h/mL) and an absolute oral bioavailability of 47.7%. Unfortunately, D-DOPA brain exposures were low with AUCbrain = 2.42 nmol/g and AUCbrain/plasma ratio of 0.03. Given reports of isomeric inversion of D-DOPA to L-DOPA via D-amino acid oxidase (DAAO), we evaluated D-DOPA PK in combination with the DAAO inhibitor sodium benzoate and observed a >200% enhancement in both plasma and brain exposures (AUCplasma = 185 nmol·h/mL; AUCbrain = 5.48 nmol·h/g). Further, we demonstrated GCPII target engagement; orally administered D-DOPA with or without sodium benzoate caused significant inhibition of GCPII activity. Lastly, mode of inhibition studies revealed D-DOPA to be a noncompetitive, allosteric inhibitor of GCPII. To our knowledge, this is the first report of D-DOPA as a distinct scaffold for GCPII inhibition, laying the groundwork for future optimization to obtain clinically viable candidates.
Collapse
Affiliation(s)
- Sadakatali S. Gori
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Arindom Pal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Robyn Wiseman
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dana V. Ferraris
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Run-duo Gao
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Takashi Tsukamoto
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Correspondence: (B.S.S.); (R.R.)
| | - Rana Rais
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Correspondence: (B.S.S.); (R.R.)
| |
Collapse
|
27
|
İlgün S, Karatoprak GŞ, Polat DÇ, Şafak EK, Yıldız G, Küpeli Akkol E, Sobarzo-Sánchez E. Phytochemical Composition and Biological Activities of Arctium minus (Hill) Bernh.: A Potential Candidate as Antioxidant, Enzyme Inhibitor, and Cytotoxic Agent. Antioxidants (Basel) 2022; 11:antiox11101852. [PMID: 36290576 PMCID: PMC9598467 DOI: 10.3390/antiox11101852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
Arctium minus (Hill) Bernh. (Asteraceae), which has a wide distribution area in Turkey, is a medicinally important plant. Eighty percent methanol extracts of the leaf, flower head, and root parts of A. minus were prepared and their sub-fractions were obtained. Spectrophotometric and chromatographic (high-performance liquid chromatography) techniques were used to assess the phytochemical composition. The extracts were evaluated for antioxidant activity by diphenyl-2-picrylhydrazil radical (DPPH●), 2,2′-Azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS●+) radical scavenging, and β-carotene linoleic acid bleaching assays. Furthermore, the extracts were subjected to α-amylase, α-glucosidase, lipoxygenase, and tyrosinase enzyme inhibition tests. The cytotoxic effects of extracts were investigated on MCF-7 and MDA-MB-231 breast cancer cell lines. The richest extract in terms of phenolic compounds was identified as the ethyl acetate sub-fraction of the root extract (364.37 ± 7.18 mgGAE/gextact). Furthermore, chlorogenic acid (8.855 ± 0.175%) and rutin (8.359 ± 0.125%) were identified as the primary components in the leaves’ ethyl acetate sub-fraction. According to all methods, it was observed that the extracts with the highest antioxidant activity were the flower and leaf ethyl acetate fractions. Additionally, ABTS radical scavenging activity of roots’ ethyl acetate sub-fraction (2.51 ± 0.09 mmol/L Trolox) was observed to be as effective as that of flower and leaf ethyl acetate fractions at 0.5 mg/mL. In the β-carotene linoleic acid bleaching assay, leaves’ methanol extract showed the highest antioxidant capacity (1422.47 ± 76.85) at 30 min. The enzyme activity data showed that α-glucosidase enzyme inhibition of leaf dichloromethane extract was moderately high, with an 87.12 ± 8.06% inhibition value. Lipoxygenase enzyme inhibition was weakly detected in all sub-fractions. Leaf methanol extract, leaf butanol, and root ethyl acetate sub-fractions showed 99% tyrosinase enzyme inhibition. Finally, it was discovered that dichloromethane extracts of leaves, roots, and flowers had high cytotoxic effects on the MDA-MB-231 cell line, with IC50 values of 21.39 ± 2.43, 13.41 ± 2.37, and 10.80 ± 1.26 µg/mL, respectively. The evaluation of the plant extracts in terms of several bioactivity tests revealed extremely positive outcomes. The data of this study, in which all parts of the plant were investigated in detail for the first time, offer promising results for future research.
Collapse
Affiliation(s)
- Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Derya Çiçek Polat
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Esra Köngül Şafak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Gülsüm Yıldız
- Department of Pharmacognosy, Faculty of Pharmacy, Van Yüzüncü Yıl University, Van 65080, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-0312-202-3185 (E.K.A.); +90-569-5397-2783 (E.S.-S.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 1783, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-0312-202-3185 (E.K.A.); +90-569-5397-2783 (E.S.-S.)
| |
Collapse
|
28
|
Ultrasonic-Assisted Synthesis of Benzofuran Appended Oxadiazole Molecules as Tyrosinase Inhibitors: Mechanistic Approach through Enzyme Inhibition, Molecular Docking, Chemoinformatics, ADMET and Drug-Likeness Studies. Int J Mol Sci 2022; 23:ijms231810979. [PMID: 36142889 PMCID: PMC9500974 DOI: 10.3390/ijms231810979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Furan-oxadiazole structural hybrids belong to the most promising and biologically active classes of oxygen and nitrogen containing five member heterocycles which have expanded therapeutic scope and potential in the fields of pharmacology, medicinal chemistry and pharmaceutics. A novel series 5a-j of benzofuran-oxadiazole molecules incorporating S-alkylated amide linkage have been synthesized using ultrasonic irradiation and screened for bacterial tyrosinase inhibition activity. Most of the synthesized furan-oxadiazole structural motifs exhibited significant tyrosinase inhibition activity in the micromolar range, with one of the derivatives being more potent than the standard drug ascorbic acid. Among the tested compounds, the scaffold 5a displayed more tyrosinase inhibition efficacy IC50 (11 ± 0.25 μM) than the ascorbic acid IC50 (11.5 ± 0.1 μM). Compounds 5b, 5c and 5d efficiently inhibited bacterial tyrosinase with IC50 values in the range of 12.4 ± 0.0-15.5 ± 0.0 μM. The 2-fluorophenylacetamide containing furan-oxadiazole compound 5a may be considered as a potential lead for tyrosinase inhibition with lesser side effects as a skin whitening and malignant melanoma anticancer agent.
Collapse
|
29
|
Esmer Yİ, Çınar E, Başaran E. Design, Docking, Synthesis and Biological Evaluation of Novel Nicotinohydrazone Derivatives as Potential Butyrylcholinesterase Enzyme Inhibitor. ChemistrySelect 2022. [DOI: 10.1002/slct.202202771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuf İslam Esmer
- Department of Chemistry Graduate Education Institute Batman University 72060 Batman Turkey
| | - Ercan Çınar
- Department of Nursing, Faculty of Health Sciences Batman University 72060 Batman Turkey
| | - Eyüp Başaran
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences Batman University 72060 Batman Turkey
| |
Collapse
|
30
|
Development of Stilbenoid and Chalconoid Analogues as Potent Tyrosinase Modulators and Antioxidant Agents. Antioxidants (Basel) 2022; 11:antiox11081593. [PMID: 36009312 PMCID: PMC9404961 DOI: 10.3390/antiox11081593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
A number of stilbenoid and chalconoid derivatives were prepared by straightforward methods, and their ability to modulate tyrosinase activity and to scavenge free radicals were evaluated in vitro. The cell-free in vitro evaluation revealed two diarylpropanes, 24 and 25, as potent tyrosinase inhibitors, whereas diarylpropenoic acids seemed to enhance the enzymatic activity. An in silico evaluation of the binding affinity of the selected compounds with the crystal structure of tyrosinase was also conducted in order to obtain better insight into the mechanism. Representative synthetic compounds with inhibitory and activating properties were further evaluated in melanoma cell lines B16F1 and B16F10 for their ability to moderate tyrosinase activity and affect melanin production. Dihydrostilbene analogues I and II, exhibited a stronger anti-melanogenic effect than kojic acid through the inhibition of cellular tyrosinase activity and melanin formation, while diarylpropanoic acid 44 proved to be a potent melanogenic factor, inducing cellular tyrosinase activity and melanin formation. Moreover, the antioxidant evaluation disclosed two analogues (29 and 11) with significant free-radical-scavenging activity (12.4 and 20.3 μM), which were 10- and 6-fold more potent than ascorbic acid (122.1 μΜ), respectively.
Collapse
|
31
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
32
|
Scutellaria baicalensis and its constituents baicalin and baicalein as antidotes or protective agents against chemical toxicities: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1297-1329. [PMID: 35676380 DOI: 10.1007/s00210-022-02258-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Scutellaria baicalensis (SB), also known as the Chinese skullcap, has a long history of being used in Chinese medicine to treat a variety of conditions ranging from microbial infections to metabolic syndrome and malignancies. Numerous studies have reported that treatment with total SB extract or two main flavonoids found in its root and leaves, baicalin (BA) and baicalein (BE), can prevent or alleviate the detrimental toxic effects of exposure to various chemical compounds. It has been shown that BA and BE are generally behind the protective effects of SB against toxicants. This paper aimed to review the protective and therapeutic effects of SB and its main components BA and BE against chemical compounds that can cause intoxication after acute or chronic exposure and seriously affect different vital organs including the brain, heart, liver, and kidneys. In this review paper, we had a look into a total of 221 in vitro and in vivo studies from 1995 to 2021 from the scientific databases PubMed, Scopus, and Web of Science which reported protective or therapeutic effects of BA, BE, or SB against drugs and chemicals that one might be exposed to on a professional or accidental basis and compounds that are primarily used to simulate disease models. In conclusion, the protective effects of SB and its flavonoids can be mainly attributed to increase in antioxidants enzymes, inhibition of lipid peroxidation, reduction of inflammatory cytokines, and suppression of apoptosis pathway.
Collapse
|
33
|
Muddapu VRJ, Vijayakumar K, Ramakrishnan K, Chakravarthy VS. A Multi-Scale Computational Model of Levodopa-Induced Toxicity in Parkinson's Disease. Front Neurosci 2022; 16:797127. [PMID: 35516806 PMCID: PMC9063169 DOI: 10.3389/fnins.2022.797127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/15/2022] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is caused by the progressive loss of dopaminergic cells in substantia nigra pars compacta (SNc). The root cause of this cell loss in PD is still not decisively elucidated. A recent line of thinking has traced the cause of PD neurodegeneration to metabolic deficiency. Levodopa (L-DOPA), a precursor of dopamine, used as a symptom-relieving treatment for PD, leads to positive and negative outcomes. Several researchers inferred that L-DOPA might be harmful to SNc cells due to oxidative stress. The role of L-DOPA in the course of the PD pathogenesis is still debatable. We hypothesize that energy deficiency can lead to L-DOPA-induced toxicity in two ways: by promoting dopamine-induced oxidative stress and by exacerbating excitotoxicity in SNc. We present a systems-level computational model of SNc-striatum, which will help us understand the mechanism behind neurodegeneration postulated above and provide insights into developing disease-modifying therapeutics. It was observed that SNc terminals are more vulnerable to energy deficiency than SNc somas. During L-DOPA therapy, it was observed that higher L-DOPA dosage results in increased loss of terminals in SNc. It was also observed that co-administration of L-DOPA and glutathione (antioxidant) evades L-DOPA-induced toxicity in SNc neurons. Our proposed model of the SNc-striatum system is the first of its kind, where SNc neurons were modeled at a biophysical level, and striatal neurons were modeled at a spiking level. We show that our proposed model was able to capture L-DOPA-induced toxicity in SNc, caused by energy deficiency.
Collapse
Affiliation(s)
| | - Karthik Vijayakumar
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | | | - V. Srinivasa Chakravarthy
- Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- *Correspondence: V. Srinivasa Chakravarthy
| |
Collapse
|
34
|
Carving the senescent phenotype by the chemical reactivity of catecholamines: An integrative review. Ageing Res Rev 2022; 75:101570. [PMID: 35051644 DOI: 10.1016/j.arr.2022.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
Abstract
Macromolecules damaged by covalent modifications produced by chemically reactive metabolites accumulate in the slowly renewable components of living bodies and compromise their functions. Among such metabolites, catecholamines (CA) are unique, compared with the ubiquitous oxygen, ROS, glucose and methylglyoxal, in that their high chemical reactivity is confined to a limited set of cell types, including the dopaminergic and noradrenergic neurons and their direct targets, which suffer from CA propensities for autoxidation yielding toxic quinones, and for Pictet-Spengler reactions with carbonyl-containing compounds, which yield mitochondrial toxins. The functions progressively compromised because of that include motor performance, cognition, reward-driven behaviors, emotional tuning, and the neuroendocrine control of reproduction. The phenotypic manifestations of the resulting disorders culminate in such conditions as Parkinson's and Alzheimer's diseases, hypertension, sarcopenia, and menopause. The reasons to suspect that CA play some special role in aging accumulated since early 1970-ies. Published reviews address the role of CA hazardousness in the development of specific aging-associated diseases. The present integrative review explores how the bizarre discrepancy between CA hazardousness and biological importance could have emerged in evolution, how much does the chemical reactivity of CA contribute to the senescent phenotype in mammals, and what can be done with it.
Collapse
|
35
|
Improvement of non-motor and motor behavioral alterations associated with Parkinson-like disease in Drosophila melanogaster: comparative effects of treatments with hesperidin and L-dopa. Neurotoxicology 2022; 89:174-183. [DOI: 10.1016/j.neuro.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022]
|
36
|
Tao Y, Chen R, Fan Y, Liu G, Wang M, Wang S, Li L. Interaction mechanism of pelargonidin against tyrosinase by multi-spectroscopy and molecular docking. J Mol Recognit 2022; 35:e2955. [PMID: 35076992 DOI: 10.1002/jmr.2955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/12/2022]
Abstract
The interaction mechanism of pelargonidin (PG) with tyrosinase was investigated by multi-spectroscopy and molecular docking. As a result, PG had strong inhibitory activity on tyrosinase with the IC50 value of 41.94×10-6 mol·L-1 . The inhibition type of PG against tyrosinase was determined as a mixed mode. Meanwhile, the fluorescence of tyrosinase was quenched statically by PG, and accompanied by non-radiative energy transfer. The three-dimensional (3-D) fluorescence, ultraviolet-visible spectroscopy (UV-Vis) and circular dichroism spectroscopies (CD) indicated that PG decreased the hydrophobicity of the micro-environment around tryptophan (Trp) and tyrosine (Tyr), which resulted in the conformational change of tyrosinase. In addition, fluorescence and molecular docking analysis indicated that PG bound to tyrosinase via hydrogen bonds (H-bonds) and van der Waals force (vdW force). We herein recommended that PG might be a potential candidate drug for the treatment of melanin-related diseases.
Collapse
Affiliation(s)
- Yanzhou Tao
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Rongda Chen
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Yangyang Fan
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Guiming Liu
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Meizi Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Suqing Wang
- The College of Chemistry, Changchun Normal University, Changchun, China
| | - Li Li
- The College of Chemistry, Changchun Normal University, Changchun, China
| |
Collapse
|
37
|
Alhassen S, Senel M, Alachkar A. Surface Plasmon Resonance Identifies High-Affinity Binding of l-DOPA to Siderocalin/Lipocalin-2 through Iron-Siderophore Action: Implications for Parkinson's Disease Treatment. ACS Chem Neurosci 2022; 13:158-165. [PMID: 34939797 DOI: 10.1021/acschemneuro.1c00693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
l-3,4-Dihydroxyphenylalanine (l-DOPA), the dopamine precursor, remains the frontline treatment for Parkinson's disease (PD). With the treatment progress, l-DOPA efficacy decreases, necessitating higher and more frequent doses, with higher risks of dyskinesia. l-DOPA chelates iron through its catechol group, forming the l-DOPA:Fe complex; however, the fate of this complex is unknown. Catechol siderophore-like compounds are known to bind siderocalin (Scn)/lipocalin-2 to form stable siderophore:Fe:Scn complexes. Scn is upregulated in PD patients' substantia nigra and may play a role in PD pathophysiology. Therefore, in this study, we used the surface plasmon resonance (SPR) technique to examine the binding properties of l-DOPA to Scn. We found that l-DOPA formed a stable complex with Scn in the presence of Fe3+. Our analysis of the binding properties of l-DOPA precursors and metabolites indicates that the catechol group is necessary but not sufficient to form a stable complex with Scn. Finally, the affinity constant (Kd) of DOPA:Fe3+ binding with Scn (0.8 μM) was lower than l-DOPA plasma peak concentrations in l-DOPA preparations in the past six decades. Our results speculate a significant role for the l-DOPA-Scn complex in the decreased bioavailability of l-DOPA with the progress of PD.
Collapse
Affiliation(s)
- Sammy Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California─Irvine, Irvine, California 92697, United States
| | - Mehmet Senel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California─Irvine, Irvine, California 92697, United States
- Department of Biochemistry, Faculty of Pharmacy, Biruni University, Istanbul 34010, Turkey
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California─Irvine, Irvine, California 92697, United States
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California─Irvine, Irvine, California 92697, United States
- UC Irvine Center for the Neurobiology of Learning and Memory, University of California─Irvine, Irvine, California 92697, United States
| |
Collapse
|
38
|
|
39
|
Lee KE, Bharadwaj S, Sahoo AK, Yadava U, Kang SG. Determination of tyrosinase-cyanidin-3-O-glucoside and (-/+)-catechin binding modes reveal mechanistic differences in tyrosinase inhibition. Sci Rep 2021; 11:24494. [PMID: 34969954 PMCID: PMC8718538 DOI: 10.1038/s41598-021-03569-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Tyrosinase, exquisitely catalyzes the phenolic compounds into brown or black pigment, inhibition is used as a treatment for dermatological or neurodegenerative disorders. Natural products, such as cyanidin-3-O-glucoside and (-/+)-catechin, are considered safe and non-toxic food additives in tyrosinase inhibition but their ambiguous inhibitory mechanism against tyrosinase is still elusive. Thus, we presented the mechanistic insights into tyrosinase with cyanidin-3-O-glucoside and (-/+)-catechin using computational simulations and in vitro assessment. Initial molecular docking results predicted ideal docked poses (- 9.346 to - 5.795 kcal/mol) for tyrosinase with selected flavonoids. Furthermore, 100 ns molecular dynamics simulations and post-simulation analysis of docked poses established their stability and oxidation of flavonoids as substrate by tyrosinase. Particularly, metal chelation via catechol group linked with the free 3-OH group on the unconjugated dihydropyran heterocycle chain was elucidated to contribute to tyrosinase inhibition by (-/+)-catechin against cyanidin-3-O-glucoside. Also, predicted binding free energy using molecular mechanics/generalized Born surface area for each docked pose was consistent with in vitro enzyme inhibition for both mushroom and murine tyrosinases. Conclusively, (-/+)-catechin was observed for substantial tyrosinase inhibition and advocated for further investigation for drug development against tyrosinase-associated diseases.
Collapse
Affiliation(s)
- Kyung Eun Lee
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Gyeongbuk, Korea.
- Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Gyeongbuk, Korea.
| | - Shiv Bharadwaj
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Gyeongbuk, Korea.
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic.
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, 211015, Uttar Pradesh, India.
| | - Umesh Yadava
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India.
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Gyeongbuk, Korea.
| |
Collapse
|
40
|
Insights on the Inhibitory Power of Flavonoids on Tyrosinase Activity: A Survey from 2016 to 2021. Molecules 2021; 26:molecules26247546. [PMID: 34946631 PMCID: PMC8705159 DOI: 10.3390/molecules26247546] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
Tyrosinase is a multifunctional copper-containing oxidase enzyme that initiates melanin synthesis in humans. Excessive accumulation of melanin pigments or the overexpression of tyrosinase may result in skin-related disorders such as aging spots, wrinkles, melasma, freckles, lentigo, ephelides, nevus, browning and melanoma. Nature expresses itself through the plants as a source of phytochemicals with diverse biological properties. Among these bioactive compounds, flavonoids represent a huge natural class with different categories such as flavones, flavonols, isoflavones, flavan-3-ols, flavanones and chalcones that display antioxidant and tyrosinase inhibitor activities with a diversity of mechanistic approaches. In this review, we explore the role of novel or known flavonoids isolated from different plant species and their participation as tyrosinase inhibitors reported in the last five years from 2016 to 2021. We also discuss the mechanistic approaches through the different studies carried out on these compounds, including in vitro, in vivo and in silico computational research. Information was obtained from Google Scholar, PubMed, and Science Direct. We hope that the updated comprehensive data presented in this review will help researchers to develop new safe, efficacious, and effective drug or skin care products for the prevention of and/or protection against skin-aging disorders.
Collapse
|
41
|
Hurben AK, Erber LN, Tretyakova NY, Doran TM. Proteome-Wide Profiling of Cellular Targets Modified by Dopamine Metabolites Using a Bio-Orthogonally Functionalized Catecholamine. ACS Chem Biol 2021; 16:2581-2594. [PMID: 34726906 PMCID: PMC9872492 DOI: 10.1021/acschembio.1c00629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Selective death of midbrain dopaminergic neurons is a hallmark pathology of Parkinson's disease (PD), but the molecular mechanisms that initiate the cascade of events resulting in neurodegeneration in PD remain unclear. Compelling evidence suggests that dysregulation of dopamine (DA) induces neuronal stress and damage responses that are operative processes in striatal degeneration preceding PD-like symptoms. Improper DA sequestration to vesicles raises cytosolic DA levels, which is rapidly converted into electrophilic dopaquinone species (DQs) that react readily with protein nucleophiles forming covalent modifications that alter the native structure and function of proteins. These so-called DA-protein adducts (DPAs) have been reported to play a role in neurotoxicity, and their abundance with respect to neurodegeneration has been linked to clinical and pathological features of PD that suggest that they play a causal role in PD pathogenesis. Therefore, characterizing DPAs is a critical first step in understanding the susceptibility of midbrain dopaminergic neurons during PD. To help achieve this goal, we report here a novel DA-mimetic (DAyne) containing a biorthogonal alkyne handle that exhibits a reactivity profile similar to DA in aqueous buffers. By linking DPAs formed with DAyne to a fluorescent reporter molecule, DPAs were visualized in fixed cells and within lysates. DAyne enabled global mapping of cellular proteins affected by DQ modification and their bioactive pathways through enrichment. Our proteomic profiling of DPAs in neuronal SH-SY5Y cells indicates that proteins susceptible to DPA formation are extant throughout the proteome, potentially influencing several diverse biological pathways involved in PD such as endoplasmic reticulum (ER) stress, cytoskeletal instability, proteotoxicity, and clathrin function. We validated that a protein involved in the ER stress pathway, protein disulfide isomerase 3 (PDIA3), which was enriched in our chemoproteomic analysis, is functionally inhibited by DA, providing evidence that dysregulated cellular DA may induce or exacerbate ER stress. Thus, DAyne provided new mechanistic insights into DA toxicity that may be observed during PD by enabling characterization of DPAs generated reproducibly at physiologically relevant quinone exposures. We anticipate our design and application of this reactivity-based probe will be generally applicable for clarifying mechanisms of metabolic quinone toxicity.
Collapse
Affiliation(s)
- Alexander K. Hurben
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Luke N. Erber
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Todd M. Doran
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Shan FY, Fung KM, Zieneldien T, Kim J, Cao C, Huang JH. Examining the Toxicity of α-Synuclein in Neurodegenerative Disorders. Life (Basel) 2021; 11:life11111126. [PMID: 34833002 PMCID: PMC8621244 DOI: 10.3390/life11111126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Neurodegenerative disorders are complex disorders that display a variety of clinical manifestations. The second-most common neurodegenerative disorder is Parkinson’s disease, and the leading pathological protein of the disorder is considered to be α-synuclein. Nonetheless, α-synuclein accumulation also seems to result in multiple system atrophy and dementia with Lewy bodies. In order to obtain a more proficient understanding in the pathological progression of these synucleinopathies, it is crucial to observe the post-translational modifications of α-synuclein and the conformations of α-synuclein, as well as its role in the dysfunction of cellular pathways. Abstract α-synuclein is considered the main pathological protein in a variety of neurodegenerative disorders, such as Parkinson’s disease, multiple system atrophy, and dementia with Lewy bodies. As of now, numerous studies have been aimed at examining the post-translational modifications of α-synuclein to determine their effects on α-synuclein aggregation, propagation, and oligomerization, as well as the potential cellular pathway dysfunctions caused by α-synuclein, to determine the role of the protein in disease progression. Furthermore, α-synuclein also appears to contribute to the fibrilization of tau and amyloid beta, which are crucial proteins in Alzheimer’s disease, advocating for α-synuclein’s preeminent role in neurodegeneration. Due to this, investigating the mechanisms of toxicity of α-synuclein in neurodegeneration may lead to a more proficient understanding of the timeline progression in neurodegenerative synucleinopathies and could thereby lead to the development of potent targeted therapies.
Collapse
Affiliation(s)
- Frank Y. Shan
- Department of Anatomic Pathology, Baylor Scott & White Medical Center, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Correspondence: (F.Y.S.); (T.Z.)
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Medical Center, University of Oklahoma, Norman, OK 73019, USA;
| | - Tarek Zieneldien
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
- Correspondence: (F.Y.S.); (T.Z.)
| | - Janice Kim
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Medical Center, College of Medicine, Texas A&M University, Temple, TX 76508, USA;
| |
Collapse
|
43
|
Sun M, Cao Y, Sun Q, Ren X, Hu J, Sun Z, Duan J. Exposure to polydopamine nanoparticles induces neurotoxicity in the developing zebrafish. NANOIMPACT 2021; 24:100353. [PMID: 35559812 DOI: 10.1016/j.impact.2021.100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/15/2023]
Abstract
Currently, the potential applications of polydopamine (PDA) nanoparticles in the biomedical field are being extensively studied, such as cell internalization, biocompatible surface modification, biological imaging, nano-drug delivery, cancer diagnosis, and treatment. However, the subsequent toxicological response to PDA nanoparticles, especially on nervous system damage was still largely unknown. In this regard, the evaluation of the neurotoxicity of PDA nanoparticles was performed in the developing zebrafish larvae. Results of the transmission electron microscope (TEM), diameter analysis, 1H NMR, and thermogravimetric analysis (TGA) indicated that PDA nanoparticles had high stability without any depolymerization; the maximum non-lethal dose (MNLD) and LD10 of PDA nanoparticles for zebrafish were determined to be 0.5 mg/mL and 4 mg/mL. Pericardial edema and uninflated swim bladders were observed in zebrafish larvae after exposure to PDA nanoparticles. At a concentration higher than MNLD, the fluorescence images manifested that the PDA nanoparticles could inhibit the axonal growth of peripheral motor neurons in zebrafish, which might affect the movement distances and speed, disturb the movement trace, finally resulting in impaired motor function. However, in further investigating the mechanism of PDA nanoparticles-induced neurotoxicity in zebrafish larvae, we did not find apoptosis of central neurocytes. Our data suggested that PDA nanoparticles might trigger neurotoxicity in zebrafish, which could provide an essential clue for the safety assessment of PDA nanoparticles.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junjie Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
44
|
Suzzi S, Ahrendt R, Hans S, Semenova SA, Chekuru A, Wirsching P, Kroehne V, Bilican S, Sayed S, Winkler S, Spieß S, Machate A, Kaslin J, Panula P, Brand M. Deletion of lrrk2 causes early developmental abnormalities and age-dependent increase of monoamine catabolism in the zebrafish brain. PLoS Genet 2021; 17:e1009794. [PMID: 34516550 PMCID: PMC8459977 DOI: 10.1371/journal.pgen.1009794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/23/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
LRRK2 gain-of-function is considered a major cause of Parkinson's disease (PD) in humans. However, pathogenicity of LRRK2 loss-of-function in animal models is controversial. Here we show that deletion of the entire zebrafish lrrk2 locus elicits a pleomorphic transient brain phenotype in maternal-zygotic mutant embryos (mzLrrk2). In contrast to lrrk2, the paralog gene lrrk1 is virtually not expressed in the brain of both wild-type and mzLrrk2 fish at different developmental stages. Notably, we found reduced catecholaminergic neurons, the main target of PD, in specific cell populations in the brains of mzLrrk2 larvae, but not adult fish. Strikingly, age-dependent accumulation of monoamine oxidase (MAO)-dependent catabolic signatures within mzLrrk2 brains revealed a previously undescribed interaction between LRRK2 and MAO biological activities. Our results highlight mzLrrk2 zebrafish as a tractable tool to study LRRK2 loss-of-function in vivo, and suggest a link between LRRK2 and MAO, potentially of relevance in the prodromic stages of PD.
Collapse
Affiliation(s)
- Stefano Suzzi
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Reiner Ahrendt
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Stefan Hans
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Svetlana A. Semenova
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Avinash Chekuru
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Paul Wirsching
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Volker Kroehne
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Saygın Bilican
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Shady Sayed
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Sandra Spieß
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Anja Machate
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Jan Kaslin
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Pertti Panula
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michael Brand
- Center for Molecular and Cellular Bioengineering (CMCB), Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
45
|
Das A, Ashraf MW, Banik BK. Thione Derivatives as Medicinally Important Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences College of Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
| | - Muhammad Waqar Ashraf
- Department of Mathematics and Natural Sciences College of Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences College of Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
| |
Collapse
|
46
|
Dairy consumption and physical fitness tests associated with fecal microbiome in a Chinese cohort. MEDICINE IN MICROECOLOGY 2021. [DOI: 10.1016/j.medmic.2021.100038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
47
|
Toxic Feedback Loop Involving Iron, Reactive Oxygen Species, α-Synuclein and Neuromelanin in Parkinson's Disease and Intervention with Turmeric. Mol Neurobiol 2021; 58:5920-5936. [PMID: 34426907 DOI: 10.1007/s12035-021-02516-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a movement disorder associated with severe loss of mainly dopaminergic neurons in the substantia nigra. Pathological hallmarks include Lewy bodies, and loss of neuromelanin, due to degeneration of neuromelanin-containing dopaminergic neurons. Despite being described over 200 years ago, the etiology of PD remains unknown. Here, we highlight the roles of reactive oxygen species (ROS), iron, alpha synuclein (α-syn) and neuromelanin in a toxic feedback loop culminating in neuronal death and spread of the disease. Dopaminergic neurons are particularly vulnerable due to decreased antioxidant concentration with aging, constant exposure to ROS and presence of neurotoxic compounds (e.g. ortho-quinones). ROS and iron increase each other's levels, creating a state of oxidative stress. α-Syn aggregation is influenced by ROS and iron but also increases ROS and iron via its induced mitochondrial dysfunction and ferric-reductase activity. Neuromelanin's binding affinity is affected by increased ROS and iron. Furthermore, during neuronal death, neuromelanin is degraded in the extracellular space, releasing its bound toxins. This cycle of events continues to neighboring neurons in the form of a toxic loop, causing PD pathology. The increase in ROS and iron may be an important target for therapies to disrupt this toxic loop, and therefore diets rich in certain 'nutraceuticals' may be beneficial. Turmeric is an attractive candidate, as it is known to have anti-oxidant and iron chelating properties. More studies are needed to test this theory and if validated, this would be a step towards development of lifestyle-based therapeutic modalities to complement existing PD treatments.
Collapse
|
48
|
Asanuma M, Miyazaki I. Glutathione and Related Molecules in Parkinsonism. Int J Mol Sci 2021; 22:ijms22168689. [PMID: 34445395 PMCID: PMC8395390 DOI: 10.3390/ijms22168689] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Glutathione (GSH) is the most abundant intrinsic antioxidant in the central nervous system, and its substrate cysteine readily becomes the oxidized dimeric cystine. Since neurons lack a cystine transport system, neuronal GSH synthesis depends on cystine uptake via the cystine/glutamate exchange transporter (xCT), GSH synthesis, and release in/from surrounding astrocytes. Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), a detoxifying master transcription factor, is expressed mainly in astrocytes and activates the gene expression of various phase II drug-metabolizing enzymes or antioxidants including GSH-related molecules and metallothionein by binding to the antioxidant response element (ARE) of these genes. Accumulating evidence has shown the involvement of dysfunction of antioxidative molecules including GSH and its related molecules in the pathogenesis of Parkinson’s disease (PD) or parkinsonian models. Furthermore, we found several agents targeting GSH synthesis in the astrocytes that protect nigrostriatal dopaminergic neuronal loss in PD models. In this article, the neuroprotective effects of supplementation and enhancement of GSH and its related molecules in PD pathology are reviewed, along with introducing new experimental findings, especially targeting of the xCT-GSH synthetic system and Nrf2–ARE pathway in astrocytes.
Collapse
|
49
|
Post-treatments of polydopamine coatings influence cellular response. Colloids Surf B Biointerfaces 2021; 207:111972. [PMID: 34364251 DOI: 10.1016/j.colsurfb.2021.111972] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Polydopamine (PDA) is the final oxidation product of dopamine or other catecholamines. Since the first reports of PDA coatings starting around 2007, these coatings have been widely studied as a versatile and inexpensive one-step coating option for biomaterial functionalization. The coating attach to a wide range of materials and can subsequently be modified with biomolecules or nanoparticles. However, as a strong candidate for biomaterial research and even clinical use, it is important to unravel the changes in physico-chemical properties and the cell-PDA interaction as a function of heat sterilization procedures and shelf storage periods. Four groups were examined in this study: titanium (Ti), PDA-coated Ti samples and PDA-coated Ti samples either stored for up to two weeks at room temperature or heated at 121 °C for 24 h, respectively. We used X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Water contact angle (WCA) to characterize chemical composition and surface properties of the groups. Cell adhesion and proliferation was examined by three different cell types: human primary dermal fibroblasts (hDF), human epidermal keratinocytes (HaCaTs) and a murine preosteoblastic cell line (MC3T3-E1), respectively. Cells were cultured on PDA coated samples for 4 h, 3 days and 5 days. Both thermal treatment of PDA at 121℃ for 24 h and storage of the samples for 2 weeks increased the amount of quinone groups at the surface and decreased the amount of primary amine groups as detected by XPS and ToF-SIMS. Even though these surface reactions increased the WCA of the PDA coating, we found that the post-treatments increased cell proliferation for both hDFs, HaCaTs and MC3T3-E1 s as compared to pristine PDA. This emphasizes the importance of post-treatment and shelf-time for PDA coatings.
Collapse
|
50
|
Buck SA, De Miranda BR, Logan RW, Fish KN, Greenamyre JT, Freyberg Z. VGLUT2 Is a Determinant of Dopamine Neuron Resilience in a Rotenone Model of Dopamine Neurodegeneration. J Neurosci 2021; 41:4937-4947. [PMID: 33893220 PMCID: PMC8260163 DOI: 10.1523/jneurosci.2770-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive dopamine (DA) neuron loss in the SNc. In contrast, DA neurons in the VTA are relatively protected from neurodegeneration, but the underlying mechanisms for this resilience remain poorly understood. Recent work suggests that expression of the vesicular glutamate transporter 2 (VGLUT2) selectively impacts midbrain DA neuron vulnerability. We investigated whether altered DA neuron VGLUT2 expression determines neuronal resilience in rats exposed to rotenone, a mitochondrial complex I inhibitor and toxicant model of PD. We discovered that VTA/SNc DA neurons that expressed VGLUT2 are more resilient to rotenone-induced DA neurodegeneration. Surprisingly, the density of neurons with detectable VGLUT2 expression in the VTA and SNc increases in response to rotenone. Furthermore, dopaminergic terminals within the NAc, where the majority of VGLUT2-expressing DA neurons project, exhibit greater resilience compared with DA terminals in the caudate/putamen. More broadly, VGLUT2-expressing terminals are protected throughout the striatum from rotenone-induced degeneration. Together, our data demonstrate that a distinct subpopulation of VGLUT2-expressing DA neurons are relatively protected from rotenone neurotoxicity. Rotenone-induced upregulation of the glutamatergic machinery in VTA and SNc neurons and their projections may be part of a broader neuroprotective mechanism. These findings offer a putative new target for neuronal resilience that can be manipulated to prevent toxicant-induced DA neurodegeneration in PD.SIGNIFICANCE STATEMENT Environmental exposures to pesticides contribute significantly to pathologic processes that culminate in Parkinson's disease (PD). The pesticide rotenone has been used to generate a PD model that replicates key features of the illness, including dopamine neurodegeneration. To date, longstanding questions remain: are there dopamine neuron subpopulations resilient to rotenone; and if so, what are the molecular determinants of this resilience? Here we show that the subpopulation of midbrain dopaminergic neurons that express the vesicular glutamate transporter 2 (VGLUT2) are more resilient to rotenone-induced neurodegeneration. Rotenone also upregulates VGLUT2 more broadly in the midbrain, suggesting that VGLUT2 expression generally confers increased resilience to rotenone. VGLUT2 may therefore be a new target for boosting neuronal resilience to prevent toxicant-induced DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Briana R De Miranda
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, 02118
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine, 04609
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - J Timothy Greenamyre
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| |
Collapse
|