1
|
Seo HJ, Na TW, Lee SH, Kim HJ, Hong S, Cho H. Target and non-target analytical method for potential hazardous substances in livestock and pet hair using liquid- and gas chromatography quadrupole time-of-flight mass spectrometry. J Chromatogr A 2023; 1705:464170. [PMID: 37390765 DOI: 10.1016/j.chroma.2023.464170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/02/2023]
Abstract
Extraction using acetonitrile and water and quadrupole time-of-flight mass spectrometry (LC and GC-QTOF/MS) techniques were used to screen for potential hazardous substances in livestock and pet hair. In addition, LC-MS/MS and GC-MS/MS techniques were used for verification of the analytical method and quantitative analysis of pesticides, veterinary drugs, mycotoxins and antioxidants in hair. Optimized sample preparation involves extracting 0.05 g of sample with 0.6 mL of ACN and 0.4 mL of distilled water. In addition, the two layers were separated by adding 0.1 g of NaCl. Then, both the ACN and water layers were analyzed by LC-TOF/MS, and the ACN layer was analyzed by GC-TOF/MS. Most of the matrix effects of livestock and pet hair were less than 50%, but some matrices and components showed high results, so matrix matching correction was applied for more precise quantification. Method validation was performed for 394 constituents (293 pesticides, 93 veterinary drugs, 6 mycotoxins and 2 preservatives) in dog, cat, cow and pig hair and chicken and duck feathers. All components showed good linearity (r2 ≥0.98) in the developed assay. The quantification limit of all compounds was set at 0.02 mg/kg, which is the lowest level that satisfies the recovery rate standard. The recovery experiment was repeated 8 times at 3 concentrations. Most of the components were extracted with the ACN layer, and the recovery rate was 63.35-119.98%. In order to confirm the efficiency of extracting harmful substances from actual samples, 30 hairs of livestock and pets were screened.
Collapse
Affiliation(s)
- Hyung-Ju Seo
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea.
| | - Tae Woong Na
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea.
| | - Seung Hwa Lee
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea.
| | - Ho Jin Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea.
| | - Sunghie Hong
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea.
| | - Hyunjeong Cho
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea.
| |
Collapse
|
2
|
Guo C, Yan H, Liu W, Xiang P, Di B, Shen M. Liquid chromatography with tandem mass spectrometric method for determination of 425 drugs and poisons in dried blood spots and application to forensic cases. Forensic Toxicol 2023; 41:241-248. [PMID: 36719526 DOI: 10.1007/s11419-023-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
PURPOSE An analytical method using liquid chromatography with tandem mass spectrometry (LC-MS/MS) was established and validated for screening 425 drugs and poisons in dried blood spots (DBSs). METHODS Blood (20 μL) was spotted on Whatman FTA™ classic card to prepare DBS sample, then extracted with 150 μL methanol and analyzed by LC-MS/MS using a multiple reaction monitoring method. RESULTS The limit of detection of the compounds were 0.1-10 ng/mL. The values for recovery and matrix effect were 40.3-114.9% and 40.2-118.4%, respectively. This method was successfully applied to DBS samples from 105 humans suspected of drug poisoning, which was stored for 3-5 years at room temperature. Thirty-three kinds of drugs, including benzodiazepines, antipsychotics, antidepressants, antipyretic analgesics, non-steroidal anti-inflammatory drugs, antibiotics, antiepileptic drugs, new psychoactive drugs were confirmed in 102 cases, while no compound was detected in the other 3 cases. Estazolam, a benzodiazepine widely used in clinical practice as a sedative, hypnotic, and anti-anxiety drug, was the most frequently detected substance, occurring in 34.2% of the cases. CONCLUSIONS Most drugs in DBS could still be detected after storage for 3-5 years, but ambroxol, zopiclone, carbofuran, chlorpyrifos, and valproic acid were not detectable after 3-5 years of storage at room temperature. The components measured in DBS were consistent with those measured in whole blood at the collection time, thereby confirming that DBS samples have the advantage of stable storage at room temperature.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, 1347 Guangfu Xi Road, Shanghai, 200063, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Hui Yan
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, 1347 Guangfu Xi Road, Shanghai, 200063, China
| | - Wei Liu
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, 1347 Guangfu Xi Road, Shanghai, 200063, China
| | - Ping Xiang
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, 1347 Guangfu Xi Road, Shanghai, 200063, China
| | - Bin Di
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Min Shen
- Department of Forensic Toxicology, Academy of Forensic Science, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, 1347 Guangfu Xi Road, Shanghai, 200063, China.
| |
Collapse
|
3
|
Heinsvig PJ, Noble C, Dalsgaard PW, Mardal M. Forensic drug screening by liquid chromatography hyphenated with high-resolution mass spectrometry (LC-HRMS). Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Rubicondo J, Scuffi L, Pietrosemoli L, Mineo M, Terranova F, Bartucca M, Trignano C, Bertol E, Vaiano F. A New Multi-Analyte LC-MS-MS Screening Method for the Detection of 120 NPSs and 49 Drugs in Hair. J Anal Toxicol 2023; 46:e262-e273. [PMID: 36453750 DOI: 10.1093/jat/bkac093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/03/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Liquid chromatography coupled with mass spectrometry (LC-MS) has been increasingly used for screening purposes in forensic toxicology. High versatility and low time/resource consumption are the main advantages of this technology. Numerous multi-analyte methods have been validated in order to face the analytical challenge of new psychoactive substances (NPSs). However, forensic toxicologists must focus the attention also on "classical" NPSs and medicines, such as benzodiazepines (BDZs) and prescription opioids. In this paper, a new method for the simultaneous detection of 169 substances (120 NPSs and 49 other drugs) in hair by LC-MS-MS is described. After the decontamination of hair samples with dichloromethane, a 20-mg aliquot of the sample was mixed with 1 mL of methanol (MeOH; 0.1% of formic acid) and then sonicated at room temperature for 2 h. The mixture was then dried under nitrogen stream and reconstituted with 100 µL of MeOH. LC separation was achieved with a 100-mm-long C18 column in 35 min, and mass acquisition was performed in dynamic multiple reaction monitoring mode and in positive ionization. The analysis results were very sensitive, with the limit of quantification ranging from 0.07 to 10.0 pg/mg. Accuracy and precision were always within the acceptable criteria. Matrix effect and recovery rate ranges were from -21.3 to + 21.9% and from 75.0 to 99.3%, respectively. The new method was successfully applied in a preliminary study on the prevalence of NPSs, BDZs and other substances in case of driving license issuance. In 14% of cases, BDZs/antidepressants (mainly trazodone, diazepam/nordiazepam and flunitrazepam) were found. Codeine, ketamine, methylone and mephedrone were also detected.
Collapse
Affiliation(s)
- J Rubicondo
- Forensic Toxicology Unit, Department of Health Science, University of Florence, L.go Brambilla 3, Florence 50134, Italy
| | - L Scuffi
- Forensic Toxicology Unit, Department of Health Science, University of Florence, L.go Brambilla 3, Florence 50134, Italy
| | - L Pietrosemoli
- Forensic Toxicology Unit, Department of Health Science, University of Florence, L.go Brambilla 3, Florence 50134, Italy
| | - M Mineo
- Forensic Toxicology Unit, Department of Health Science, University of Florence, L.go Brambilla 3, Florence 50134, Italy
| | - F Terranova
- Forensic Toxicology Unit, Department of Health Science, University of Florence, L.go Brambilla 3, Florence 50134, Italy
| | - M Bartucca
- Forensic Toxicology Unit, Department of Health Science, University of Florence, L.go Brambilla 3, Florence 50134, Italy
| | - C Trignano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43c, Sassari 07100, Italy
| | - E Bertol
- U.R.I.To.N.-Unit of Research, University of Florence, L.go Brambilla 3, Florence 50134, Italy
| | - F Vaiano
- Forensic Toxicology Unit, Department of Health Science, University of Florence, L.go Brambilla 3, Florence 50134, Italy.,U.R.I.To.N.-Unit of Research, University of Florence, L.go Brambilla 3, Florence 50134, Italy
| |
Collapse
|
5
|
Feliu C, Konecki C, Cazaubon Y, Binet L, Vautier D, Fouley A, Gozalo C, Djerada Z. Development and Validation of a Non-Targeted Screening Method for Most Psychoactive, Analgesic, Anaesthetic, Anti-Diabetic, Anti-Coagulant and Anti-Hypertensive Drugs in Human Whole Blood and Plasma Using High-Resolution Mass Spectrometry. Pharmaceuticals (Basel) 2023; 16:ph16010076. [PMID: 36678573 PMCID: PMC9865759 DOI: 10.3390/ph16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
(1) Background: In toxicological laboratories, various screening methods can be used to identify compounds involved in intoxication. High-resolution mass spectrometry has been increasingly used in this context for the last years, because of its sensitivity and reliability. Here, we present the development and validation of a screening method that uses liquid chromatography coupled with a high-resolution mass spectrometer. (2) Methods: This method required only 100 µL of whole blood or plasma sample. Pretreatment consisted of a rapid and simple deproteinisation with methanol/acetonitrile and zinc sulphate. This new assay was validated according to international guidelines. (3) Results: To perform the method validation, 53 compounds were selected. The selection criteria were as follows: various chemical structures and therapeutic families (>15), large m/z distribution, positive or negative ionisation mode, and various elution times. The assays showed high selectivity and specificity, with optimal process efficiency. The identification limits, determined using predefined criteria, were established at sub-therapeutic or therapeutic concentrations. Applicability was evaluated using spiked plasma controls and external quality controls. (4) Conclusions: The new method was then successfully applied to routine clinical and forensic samples.
Collapse
Affiliation(s)
- Catherine Feliu
- Department of Pharmacology, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France
- Correspondence: (C.F.); (Z.D.)
| | - Celine Konecki
- Department of Pharmacology, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France
| | - Yoann Cazaubon
- Institute Desbrest of Epidemiology and Public Health, INSERM, Montpellier University, Department of Pharmacology, Montpellier University Hospital, Avenue du Doyen Gaston Giraud, 34090 Montpellier, France
| | - Laurent Binet
- Department of Pharmacology, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France
| | - Damien Vautier
- Department of Pharmacology, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France
| | - Aurélie Fouley
- Department of Pharmacology, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France
| | - Claire Gozalo
- Department of Pharmacology, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France
| | - Zoubir Djerada
- Department of Pharmacology, EA 3801, SFR CAP-Santé, Reims University Hospital, 51 Rue Cognacq-Jay, CEDEX, 51095 Reims, France
- Correspondence: (C.F.); (Z.D.)
| |
Collapse
|
6
|
Wille SMR, Desharnais B, Pichini S, Trana AD, Busardò FP, Wissenbach DK, Peters FT. Liquid Chromatography High Resolution Mass Spectrometry in Forensic Toxicology: What Are the Specifics of Method Development, Validation and Quality Assurance for Comprehensive Screening Approaches? Curr Pharm Des 2022; 28:1230-1244. [PMID: 35619258 DOI: 10.2174/1381612828666220526152259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
The use of High Resolution Mass Spectrometry (HRMS) has increased over the past decade in clinical and forensic toxicology, especially for comprehensive screening approaches. Despite this, few guidelines of this field have specifically addressed HRMS issues concerning compound identification, validation, measurement uncertainty and quality assurance. To fully implement this technique, certainly in an era in which the quality demands for laboratories are ever increasing due to various norms (e.g. the International Organization for Standardization's ISO 17025), these specific issues need to be addressed. This manuscript reviews 26 HRMS-based methods for qualitative systematic toxicological analysis (STA) published between 2011 and 2021. Key analytical data such as samples matrices, analytical platforms, numbers of analytes and employed mass spectral reference databases/libraries as well as the studied validation parameters are summarized and discussed. The article further includes a critical review of targeted and untargeted data acquisition approaches, available HRMS reference databases and libraries as well as current guidelines for HRMS data interpretation with a particular focus on identification criteria. Moreover, it provides an overview on current recommendations for the validation and determination measurement uncertainty of qualitative methods. Finally, the article aims to put forward suggestions for method development, compound identification, validation experiments to be performed, and adequate determination of measurement uncertainty for this type of wide-range qualitative HRMS-based methods.
Collapse
Affiliation(s)
- Sarah M R Wille
- Unit Toxicology, National Institute of Criminalistics and Criminology (NICC), Brussels, Belgium
| | - Brigitte Desharnais
- Laboratoire de sciences judiciaires et de médecine légale, Department of Toxicology, 1701 Parthenais St., Montréal, Québec, H2K 3S7, Canada
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Annagiulia Di Trana
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche", Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche", Ancona, Italy
| | - Dirk K Wissenbach
- Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
7
|
Bayer R, Baumann S, Federbusch M, Dreßler J. Ungewöhnlicher Suizid durch Verbluten aus einer Hautvene. Rechtsmedizin (Berl) 2022. [DOI: 10.1007/s00194-022-00575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfassungEin 90-jähriger Mann verstarb durch protrahiertes Verbluten aus einer, mittels Rasierklinge minimal eröffneten, oberflächlichen Beinvene über der Patella und nachfolgender Manipulation. Dabei handelte es sich wahrscheinlich um einen Ast der V. saphena accessoria anterior. Es lag zunächst eine Fehleinschätzung durch den leichenschauhaltenden Arzt vor, der von einer gastrointestinalen Blutung als Todesursache ausging. Diese Einschätzung teilten die Kriminalbeamten aufgrund der Auffindesituation nicht. Begünstigend war eine vorbestehende Varikosis. Die Einnahme von Antikoagulanzien oder eine vorbestehende oder erworbene Gerinnungsstörung konnte nicht nachgewiesen bzw. eruiert werden. Bei Vorlage eines Abschiedsbriefes und Ausschluss fremder Gewalteinwirkungen oder einer Vergiftung kann plausibel von einem ungewöhnlichen suizidalen Ereignis ausgegangen werden. Es wird über die Auffindung sowie die Ergebnisse der Sektion und umfangreicher Zusatzuntersuchungen berichtet.
Collapse
|
8
|
Degreef M, Berry EM, Covaci A, Maudens KE, van Nuijs AL. Qualitative and semi-quantitative screening of selected psychoactive substances in blood: Usefulness of liquid chromatography – triple quadrupole and quadrupole time-of-flight mass spectrometry in routine toxicological analyses. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1206:123279. [DOI: 10.1016/j.jchromb.2022.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
|
9
|
Goncalves R, Pelletier R, Couette A, Gicquel T, Le Daré B. Suitability of high-resolution mass spectrometry in analytical toxicology: Focus on drugs of abuse. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Vejar-Vivar C, Bustamante L, Lucena R, Ortega C, Valenzuela M, Mardones C. Direct coupling of MEPS to ESI-QqTOF-MS for the simultaneous analysis of tricyclic antidepressants and benzodiazepines in postmortem blood. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Development of a New LC-MS/MS Screening Method for Detection of 120 NPS and 43 Drugs in Blood. SEPARATIONS 2021. [DOI: 10.3390/separations8110221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the last few years, liquid chromatography coupled with mass spectrometry (LC/MS) has been increasingly used for screening purposes in forensic toxicology. These techniques have the advantages of low time/resource-consuming and high versatility and have been applied in numerous new multi-analytes methods. The new psychoactive substance (NPS) phenomenon provided a great impulse to this wide-range approach, but it is also important to keep the attention on “classical” psychoactive substances, such as benzodiazepines (BDZ). In this paper, a fully validated screening method in blood for the simultaneous detection of 163 substances (120 NPS and 43 other drugs) by a dynamic multiple reaction monitoring analysis through LC-MS/MS is described. The method consists of a deproteinization of 200 µL of blood with acetonitrile. The LC separation is achieved with a 100 mm long C18 column in 35 min. The method was very sensitive, with limits of quantification from 0.02 to 1.5 ng/mL. Matrix effects did not negatively affect the analytical sensitivity. This method proved to be reliable and was successfully applied to our routinary analytical activity in several forensic caseworks, allowing the identification and quantification of many BDZs and 3,4-methylenedioxypyrovalerone (MDPV).
Collapse
|
12
|
Kleis J, Hess C, Germerott T, Roehrich J. Sensitive Screening of New Psychoactive Substances in Serum Using Liquid-Chromatography Quadrupole Time-of-Flight Mass Spectrometry. J Anal Toxicol 2021; 46:592-599. [PMID: 34125215 DOI: 10.1093/jat/bkab072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 01/18/2023] Open
Abstract
Analysis of new psychoactive substances (NPS) still pose a challenge for many institutions due to the number of available substances and the constantly changing drug market. Both new and well-known substances keep appearing and disappearing on the market, making it hard to adapt analytical methods in a timely manner. In this study we developed a qualitative screening approach for serum samples by means of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Samples were measured in data-dependent auto-MS/MS mode and identified by fragment spectra comparison, retention time and accurate mass. Approximately 500 NPS, including 195 synthetic cannabinoids, 180 stimulants, 86 hallucinogens, 26 benzodiazepines and 7 others were investigated. Serum samples were fortified to 1 ng/mL and 10 ng/mL concentrations to estimate approximate limits of identification. Samples were extracted using solid-phase extraction with non-endcapped C18 material and elution in two consecutive steps. Benzodiazepines were eluted in the first step, while substances of other NPS subclasses were distributed among both extracts. To determine limits of identification, both extracts were combined. 96 % (470/492) of investigated NPS were detected in 10 ng/mL samples and 88 % (432/492) were detected in 1 ng/mL samples. Stimulants stood out with higher limits of identification, possibly due to instability of certain methcathinone derivatives. However, considering relevant blood concentrations, the method provided sufficient sensitivity for stimulants as well as other NPS subclasses. Data-dependent acquisition was proven to provide high sensitivity and reliability when combined with an information-dependent preferred list, without losing its untargeted operation principle. Summarizing, the developed method fulfilled its purpose as a sensitive untargeted screening for serum samples and allows uncomplicated expansion of the spectral library to include thousands of targets.
Collapse
Affiliation(s)
- J Kleis
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - C Hess
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - T Germerott
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - J Roehrich
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
13
|
Screening of imidazoles in atmospheric aerosol particles using a hybrid targeted and untargeted method based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Chim Acta 2021; 1163:338516. [PMID: 34024422 DOI: 10.1016/j.aca.2021.338516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
The method for identification and quantification of imidazoles in atmospheric aerosol particles with an aerodynamic diameter up to 2.5 μm (PM2.5) is scarce, and the existing method focus on only a few imidazoles. With the goal of measuring more imidazoles, especially some previously unidentified ones, we developed a screening workflow based on data-dependent acquisition (DDA) auto MS/MS with a preferred targeted list containing 421 imidazoles using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). To enable our method to effectively and accurately detect as many imidazoles as possible, we optimized and validated the method based on specificity, limit of detection (LOD), limit of quantification (LOQ), linearity, accuracy, precision and matrix effects using 20 imidazole standards with different functional groups. The method exhibited excellent performance with LOD and LOQ of 0.5-2 ng/mL and 1.5-6 ng/mL, respectively, and spiked recoveries ranging from 64.7 to 98.7% with standard deviations less than 16.0%, and with relatively shorter analytical time. The established method was then used to screen imidazoles in 37 ambient PM2.5 samples. Ten targeted imidazoles were identified and quantified using imidazole standards, while five suspected imidazoles were identified without standards, and three imidazoles have not been reported before. Concentrations of the 10 targeted imidazoles ranged from 0.13 to 0.42 ng/m3. The established method enabled us to identify a wide range of imidazoles in ambient aerosol particles with and without using standards.
Collapse
|
14
|
Polettini AE, Kutzler J, Sauer C, Guber S, Schultis W. LC-QTOF-MS Presumptive Identification of Synthetic Cannabinoids without Reference Chromatographic Retention/Mass Spectral Information. II. Evaluation of a Computational Approach for Predicting and Identifying Unknown High-Resolution Product Ion Mass Spectra. J Anal Toxicol 2021; 45:440-461. [PMID: 32896859 DOI: 10.1093/jat/bkaa127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 11/14/2022] Open
Abstract
Despite liquid chromatography-high-resolution tandem mass spectrometry (MS2) enables untargeted acquisition, data processing in toxicological screenings is almost invariably performed in targeted mode. We developed a computational approach based on open source chemometrics software that, starting from a suspected synthetic cannabinoid (SC) determined formula, searches for isomers in different new psychoactive substances web databases, predicts retention time (RT) and high-resolution MS2 spectrum, and compares them with the unknown providing a rank-ordered candidates list. R was applied on 105 SC measured data to develop and validate a multiple linear regression quantitative structure-activity relationship model predicting RT. Competitive Fragmentation Modeling for Metabolite Identification (CFM-ID) freeware was used to predict/compare spectra with Jaccard similarity index. Data-dependent acquisition was performed with an Agilent Infinity 1290 LC-6550 iFunnel Q-TOF MS with ZORBAX Eclipse-Plus C18 (100 × 2.1 mm2/1.8 µm) in water/acetonitrile/ammonium formate gradient. Ability of the combined RT/MS2 prediction to identify unknowns was evaluated on SC standards (with leave-one-out from the RT model) and on unexpected SC encountered in real cases. RT prediction reduced the number of isomers retrieved from a group of new psychoactive substances web databases to one-third (2,792 ± 3,358→845 ± 983) and differentiated between SC isomers when spectra were not selective (4F-MDMB-BUTINACA, 4F-MDMB-BUTINACA 2'-indazole isomer) or unavailable (4CN-Cumyl-B7AICA, 4CN-Cumyl-BUTINACA). When comparing 30/40 eV measured spectra of 99 SC against RT-selected, CFM-ID predicted spectra of isomers, the right candidate ranked 1st on median and 4th on average; 54% and 88% of times the right match ranked 1st or within the first 5 matches, respectively. To our knowledge, this is the first case of extensive chemometrics application to toxicological screening. In most cases, presumptive identification (being based on computation, it requires further information for confirmation) of unexpected SC was achieved without reference measured information. This method is currently the closest possible to true unbiased/untargeted screening. The bottleneck of the method is the processing time required to predict mass spectra (ca. 30-35 s/compound using a 64-bit 2.50-GHz Intel® Core™ i5-7200U CPU). However, strategies can be implemented to reduce prediction processing time.
Collapse
Affiliation(s)
- Aldo E Polettini
- Department of Diagnostics & Public Health, University of Verona, 371334 Verona, Italy.,Department of Toxicology and Forensic Toxicology, Synlab MVZ Weiden GmbH, 92637 Weiden, Germany
| | - Johannes Kutzler
- Department of Toxicology and Forensic Toxicology, Synlab MVZ Weiden GmbH, 92637 Weiden, Germany
| | - Christoph Sauer
- Department of Toxicology and Forensic Toxicology, Synlab MVZ Weiden GmbH, 92637 Weiden, Germany
| | - Susanne Guber
- Department of Toxicology and Forensic Toxicology, Synlab MVZ Weiden GmbH, 92637 Weiden, Germany
| | - Wolfgang Schultis
- Department of Toxicology and Forensic Toxicology, Synlab MVZ Weiden GmbH, 92637 Weiden, Germany
| |
Collapse
|
15
|
Non-targeted screening of trace organic contaminants in surface waters by a multi-tool approach based on combinatorial analysis of tandem mass spectra and open access databases. Talanta 2021; 230:122293. [PMID: 33934765 DOI: 10.1016/j.talanta.2021.122293] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023]
Abstract
Non-targeted screening (NTS) in mass spectrometry (MS) helps alleviate the shortcoming of targeted analysis such as missing the presence of concerning compounds that are not monitored and its lack of retrospective analysis to subsequently look for new contaminants. Most NTS workflows include high resolution tandem mass spectrometry (HRMS2) and structure annotation with libraries which are still limited. However, in silico combinatorial fragmentation tools that simulate MS2 spectra are available to help close the gap of missing compounds in empirical libraries. Three NTS tools were combined and used to detect and identify unknown contaminants at ultra-trace levels in surface waters in real samples in this qualitative study. Two of them were based on combinatorial fragmentation databases, MetFrag and the Similar Partition Searching algorithm (SPS), and the third, the Global Natural Products Social Networking (GNPS), was an ensemble of empirical databases. The three NTS tools were applied to the analysis of real samples from a local river. A total of 253 contaminants were identified by combining all three tools: 209 were assigned a probable structure and 44 were confirmed using reference standards. The two major classes of contaminants observed were pharmaceuticals and consumer product additives. Among the confirmed compounds, octylphenol ethoxylates, denatonium, irbesartan and telmisartan are reported for the first time in surface waters in Canada. The workflow presented in this work uses three highly complementary NTS tools and it is a powerful approach to help identify and strategically select contaminants and their transformation products for subsequent targeted analysis and uncover new trends in surface water contamination.
Collapse
|
16
|
Di Rago M, Pantatan S, Hargreaves M, Wong K, Mantinieks D, Kotsos A, Glowacki L, Drummer OH, Gerostamoulos D. High Throughput Detection of 327 Drugs in Blood by LC-MS-MS with Automated Data Processing. J Anal Toxicol 2021; 45:154-183. [PMID: 32451548 DOI: 10.1093/jat/bkaa057] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/20/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
The described procedure provides a rapid technique for the detection and semi-quantitation of a large number of drugs in blood. This procedure uses a minimal sample volume and employs a one-step liquid extraction and automated data processing to yield rapid turnaround times. A total of 327 of the most commonly used medicinal and illicit drugs in Australia were selected including various amphetamines, anesthetics, antidepressants, antipsychotics, anticonvulsants, benzodiazepines, beta blockers, opioid and nonopioid analgesics, stimulants, THC and a large number of synthetic cannabinoids and other novel psychoactive substances. The extracts were subject to 5-minute chromatography using a Kinetex C18 50 × 4.6 mm 2.6 μm solid-core analytical column and analyzed using a Sciex 3200 Q-TRAP MS-MS (+ ESI, MRM mode, two transitions per analyte). The method was fully validated in accordance with international guidelines. Matrix effects and extraction efficiencies were acceptable with most analytes showing > 80% response and low variation (within 25%RSD). Cannabinoids were most affected by the matrix and yielded poorest recovery values but were still detectable. Precision, accuracy, repeatability and multipoint linearity were assessed for all analytes. The method has been used in routine practice in the forensic toxicology service at the Victorian Institute of Forensic Medicine in over 6000 coronial investigations using both postmortem and clinical blood specimens. This technique has greatly increased throughput, reduced turnaround times and allowed for rapid same-day analysis of results when needed. The method is routinely used in routine overnight testing with results reported to pathologists within 4 h of data acquisition. This rapid toxicological technique is used in conjunction with other investigative processes such as full-body CT imaging, review of case circumstances and medical histories to provide an efficient death investigation process.
Collapse
Affiliation(s)
- Matthew Di Rago
- Toxicology, Victorian Institute of Forensic Medicine, Southbank, Victoria, Australia.,Department of Forensic Medicine, Monash University, Clayton, Victoria, Australia
| | - Supranee Pantatan
- Toxicology, Central Institute of Forensic Science, Bangkok, Thailand
| | - Melynda Hargreaves
- Toxicology, Victorian Institute of Forensic Medicine, Southbank, Victoria, Australia
| | - Katherine Wong
- Toxicology, Victorian Institute of Forensic Medicine, Southbank, Victoria, Australia
| | - Dylan Mantinieks
- Toxicology, Victorian Institute of Forensic Medicine, Southbank, Victoria, Australia.,Department of Forensic Medicine, Monash University, Clayton, Victoria, Australia
| | - Alex Kotsos
- Toxicology, Victorian Institute of Forensic Medicine, Southbank, Victoria, Australia
| | - Linda Glowacki
- Toxicology, Victorian Institute of Forensic Medicine, Southbank, Victoria, Australia
| | - Olaf H Drummer
- Toxicology, Victorian Institute of Forensic Medicine, Southbank, Victoria, Australia.,Department of Forensic Medicine, Monash University, Clayton, Victoria, Australia
| | - Dimitri Gerostamoulos
- Toxicology, Victorian Institute of Forensic Medicine, Southbank, Victoria, Australia.,Department of Forensic Medicine, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
XIE Y, CHEN H, GE L, HUO S, FAN C, Lü M. [Rapid screening and confirmation of 415 pesticide residues in red cabbages by liquid chromatography-quadrupole-time of flight-mass spectrometry]. Se Pu 2021; 39:301-315. [PMID: 34227311 PMCID: PMC9403803 DOI: 10.3724/sp.j.1123.2020.05006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 11/25/2022] Open
Abstract
An analytical method for the simultaneous rapid screening and accurate confirmation of 415 pesticide residues in red cabbages was established using liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-QTOF/MS) with single acquisition. In the established method, the pesticides in red cabbage were extracted using acetonitrile-acetic acid (99∶1, v/v) and salted-out using anhydrous magnesium sulfate and sodium chloride. The resultant solution was then cleaned-up by automatic solid phase extraction using a Carbon/NH2 cartridge. The SPE cartridge was activated with 4 mL acetonitrile-toluene (3∶1, v/v) and the effluents were discarded. The resultant solution was transferred to the Carbon/NH2 cartridge, using 3×2 mL acetonitrile-toluene (3∶1, v/v) to wash the test sample concentrate bottle, and waited until the surface of the test sample concentrate liquid reached the top layer of anhydrous Na2SO4 before transferring the washing liquid to the cartridge. A 30-mL reservoir was attached to the upper part of the SPE cartridge and 25 mL acetonitrile-toluene (3∶1, v/v) was used to wash the SPE cartridge again. The eluent was evaporated in the glass tube in a water bath at 37 ℃ and shaking speed 150 r/min to reduce the volume to 0.5 mL. Nitrogen was used to dry the concentrates, and the residues were dissolved in 1.0 mL acetonitrile-water (3∶2, v/v), homogenized by ultrasonication, and passed through 0.22-μm filtering membrane before determination. The dissolved sample solution was loaded onto a ZORBAX SB-C18 column (100 mm×2.1 mm, 3.5 μm) and separated under gradient elution using 0.1% (v/v) formic acid aqueous solution containing 5 mmol/L ammonium acetate and acetonitrile as the binary mobile phase. The eluent from the column was further detected by QTOF/MS under electrospray positive ionization in the MS/MS scanning mode. A matrix-matched external calibration method was used for quantitation. By optimizing the different parameters under Auto MS/MS and All Ions MS/MS acquisition modes, the optimal conditions for All Ions MS/MS under each acquisition mode were obtained, which were then compared for selection of a better mode. The results demonstrated that the developed method can be used to accurately screen and quantify all 415 pesticides in red cabbage. The linear regression correlation coefficients (r2) for the 415 pesticides were all greater than 0.990 in the corresponding linear concentration range. In addition, the screening detection limits (SDL) of 411 pesticides were no more than 5 μg/kg, and the limits of quantification (LOQs) of 413 pesticides were no more than 10 μg/kg. At the spiked levels of LOQ, two-fold LOQ, and 10-fold LOQ, the recoveries were in the ranges of 65.7%-118.4%, 72.0%-118.8% and 70.2%-111.2%, with relative standard deviations (RSDs) in the ranges of 0.9%-19.7%, 0.2%-19.9% and 0.6%-19.9%, respectively. The method was applied to detect pesticide residues in the red cabbage samples provided by the 2019 European proficiency test project for unknown pesticide screening (EUPT-SM-11) and accurate quantitation (EUPT-FV-21). For EUPT-SM-11, all the spiked and incurred pesticides in red cabbage were qualified accurately, without false positives or false negatives. This is completely consistent with the final results published by the EU official. For EUPT-FV-21, there were 19 non-volatile pesticides that can be detected by LC-MS, which were then accurately quantitated with the corresponding pesticide standard. The results demonstrate that the proposed method is accurate and reliable. It is also rapid and time-saving, and can be used for high-throughput screening and quantitative determination of pesticide residues in cabbage. It can also be extended to other fruits and vegetable matrices.
Collapse
|
18
|
Borden SA, Palaty J, Termopoli V, Famiglini G, Cappiello A, Gill CG, Palma P. MASS SPECTROMETRY ANALYSIS OF DRUGS OF ABUSE: CHALLENGES AND EMERGING STRATEGIES. MASS SPECTROMETRY REVIEWS 2020; 39:703-744. [PMID: 32048319 DOI: 10.1002/mas.21624] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Mass spectrometry has been the "gold standard" for drugs of abuse (DoA) analysis for many decades because of the selectivity and sensitivity it affords. Recent progress in all aspects of mass spectrometry has seen significant developments in the field of DoA analysis. Mass spectrometry is particularly well suited to address the rapidly proliferating number of very high potency, novel psychoactive substances that are causing an alarming number of fatalities worldwide. This review surveys advancements in the areas of sample preparation, gas and liquid chromatography-mass spectrometry, as well as the rapidly emerging field of ambient ionization mass spectrometry. We have predominantly targeted literature progress over the past ten years and present our outlook for the future. © 2020 Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Scott A Borden
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Jan Palaty
- LifeLabs Medical Laboratories, Burnaby, BC, V3W 1H8, Canada
| | - Veronica Termopoli
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Giorgio Famiglini
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Achille Cappiello
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195
| | - Pierangela Palma
- Applied Environmental Research Laboratories (AERL), Department of Chemistry, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
- LC-MS Laboratory, Department of Pure and Applied Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| |
Collapse
|
19
|
Bade R, Abbate V, Abdelaziz A, Nguyen L, Trobbiani S, Stockham P, Elliott S, White JM, Gerber C. The complexities associated with new psychoactive substances in influent wastewater: The case of 4-ethylmethcathinone. Drug Test Anal 2020; 12:1494-1500. [PMID: 32621345 DOI: 10.1002/dta.2890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/07/2022]
Abstract
Consumption of new psychoactive substances (NPS) is an international problem for health, policing, forensic, and analytical laboratories. The transience of these substances in the community, combined with continual slight structural changes to evade legislation makes the elucidation of NPS an analytical challenge. This is amplified in a matrix as complex as wastewater. For that reason, suspect and non-target methodologies, employing high resolution mass spectrometry are the most appropriate current tool to facilitate the identification of new and existing compounds. In the current work, a qualitative screening method of influent wastewater using liquid chromatography-high resolution mass spectrometry showed a strong signal at m/z 192.1382 - identical to that of two NPS standards that were in our method (pentedrone and 4-methylethcathinone), and with identical fragment ions, but the retention times did not match. This work shows the methodology followed to identify this compound, highlighting the challenges of the identifying "new" compounds in influent wastewater.
Collapse
Affiliation(s)
- Richard Bade
- UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia
| | - Vincenzo Abbate
- King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Ahmed Abdelaziz
- UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia
| | - Lynn Nguyen
- UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia
| | | | - Peter Stockham
- Forensic Science SA, GPO Box 2790, Adelaide, Australia.,College of Science and Engineering, Flinders University, Bedford Park, South Australia
| | - Simon Elliott
- King's Forensics, Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK.,Elliott Forensic Consulting, Birmingham, UK
| | - Jason M White
- UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia
| | - Cobus Gerber
- UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Gundersen POM, Broecker S, Slørdal L, Spigset O, Josefsson M. Retrospective screening of synthetic cannabinoids, synthetic opioids and designer benzodiazepines in data files from forensic post mortem samples analysed by UHPLC-QTOF-MS from 2014 to 2018. Forensic Sci Int 2020; 311:110274. [DOI: 10.1016/j.forsciint.2020.110274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
|
21
|
Lee HJ, Kadokami K, Oh JE. Occurrences of microorganic pollutants in the Kumho River by a comprehensive target analysis using LC-Q/TOF-MS with sequential window acquisition of all theoretical fragment ion spectra (SWATH). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136508. [PMID: 32019012 DOI: 10.1016/j.scitotenv.2020.136508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
In this study, simultaneous identification and semi-quantification of hundreds of micropollutant compounds, including pharmaceutical and personal care products (PPCPs) and pesticides were performed in river and effluent samples from the Kumho River Basin using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) with sequential window acquisition of all theoretical fragment ion spectra (SWATH). In total, 85 compounds (29 pesticides and 56 PPCPs) were identified. The highest proportions of PPCP residues were detected in the downstream area of the Kumho River, close to the central city. On the other hand, the highest proportions of pesticide residues were observed upstream, near agricultural land and golf courses. Additionally, the highly exposable chemicals were prioritized using a scoring and ranking system based on their concentration and detection frequency. Thus, 20 compounds (7 pesticides and 13 PPCPs) with scores of 200 or higher were defined as highly exposable compounds in Kumho River basin.
Collapse
Affiliation(s)
- Heon-Jun Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea
| | - Kiwao Kadokami
- Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
22
|
Kang D, Ding Q, Xu Y, Yin X, Guo H, Yu T, Wang H, Xu W, Wang G, Liang Y. Comparative analysis of constitutes and metabolites for traditional Chinese medicine using IDA and SWATH data acquisition modes on LC-Q-TOF MS. J Pharm Anal 2019; 10:588-596. [PMID: 33425453 PMCID: PMC7775849 DOI: 10.1016/j.jpha.2019.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 01/26/2023] Open
Abstract
Identification of components and metabolites of traditional Chinese medicines (TCMs) employing liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF MS) techniques with information-dependent acquisition (IDA) approaches is increasingly frequent. A current drawback of IDA-MS is that the complexity of a sample might prevent important compounds from being triggered in IDA settings. Sequential window acquisition of all theoretical fragment-ion spectra (SWATH) is a data-independent acquisition (DIA) method where the instrument deterministically fragments all precursor ions within the predefined m/z range in a systematic and unbiased fashion. Herein, the superiority of SWATH on the detection of TCMs’ components was firstly investigated by comparing the detection efficiency of SWATH-MS and IDA-MS data acquisition modes, and sanguisorbin extract was used as a mode TCM. After optimizing the setting parameters of SWATH, rolling collision energy (CE) and variable Q1 isolation windows were found to be more efficient for sanguisorbin identification than the fixed CE and fixed Q1 isolation window. More importantly, the qualitative efficiency of SWATH-MS on sanguisorbins was found significantly higher than that of IDA-MS data acquisition. In IDA mode, 18 kinds of sanguisorbins were detected in sanguisorbin extract. A total of 47 sanguisorbins were detected when SWATH-MS was used under rolling CE and flexible Q1 isolation window modes. Besides, 26 metabolites of sanguisorbins were identified in rat plasma, and their metabolic pathways could be deduced as decarbonylation, oxidization, reduction, methylation, and glucuronidation according to their fragmental ions acquired in SWATH-MS mode. Thus, SWATH-MS data acquisition could provide more comprehensive information for the component and metabolite identification for TCMs than IDA-MS. SWATH was first used to identify components and metabolites of TCMs. Superiority of SWATH on the detection of TCM was firstly investigated. The number of components detected by SWATH was greatly higher than IDA.
Collapse
Affiliation(s)
- Dian Kang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China
| | - Qingqing Ding
- Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), No. 300 Guangzhou Road, Nanjing, 210029, PR China
| | - Yangfan Xu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China
| | - Xiaoxi Yin
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China
| | - Huimin Guo
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China
| | - Tengjie Yu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China
| | - He Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China
| | - Wenshuo Xu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China
| |
Collapse
|
23
|
Development and application of a forensic toxicological library for identification of 56 natural toxic substances by liquid chromatography–quadrupole time-of-flight mass spectrometry. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00506-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Purpose
The present study aims to develop a forensic toxicological library to identify 56 natural toxic substances by liquid chromatography–quadrupole time-of-flight tandem mass spectrometry (LC–QTOF-MS/MS).
Methods
For setting up the library of product ion spectra, individual substances (31 plant toxins, 7 mushroom toxins, 5 marine toxins, 5 frog venoms, 4 mycotoxins, and 4 substances derived from plants) were analyzed by LC–QTOF-MS/MS with positive and negative ionization. The product ion spectra were acquired at the collision energies (CEs) of 20, 35, and 50 eV in single enhanced product ion mode and then in collision energy spread mode in which the CE ramp range was set to 35 ± 15 eV.
Results
To test the performance of the library, human blood plasma samples were spiked with a mixture of lycorine and domoic acid, extracted by acetonitrile deproteinization and analyzed by LC–QTOF-MS/MS. Identification by our library search could be achieved for these toxins at the purity scores of 79.1 and 67.2, respectively. The method was also applied to postmortem blood from a death case with an aconite intake, and showed that four toxins in an aconite could be identified in the blood sample at the purity scores of 54.6–60.3.
Conclusions
This library will be more effective for the screening of natural toxic substances in routine forensic toxicological analysis. To our knowledge, there are no reports dealing with development of library for natural toxic substances by LC–QTOF-MS/MS.
Collapse
|
24
|
Simultaneous Analysis of Drugs in Forensic Cases by Liquid Chromatography–High-Resolution Orbitrap Mass Spectrometry. Chromatographia 2019. [DOI: 10.1007/s10337-019-03814-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Quadrupole Time-of-Flight Mass Spectrometry: A Paradigm Shift in Toxicology Screening Applications. Clin Biochem Rev 2019; 40:135-146. [PMID: 31530964 DOI: 10.33176/aacb-19-00023] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The screening of biological samples for the presence of illicit or legal substances is an important frontline tool in both clinical and forensic toxicology. In the clinical setting, drug screening is a useful tool for the clinician in improving patient care and guiding treatment. Analytical approaches for the screening of drugs in biological samples are extensive and well documented, though many rapid screening techniques often lack appropriate sensitivity and specificity, requiring careful clinical interpretation. The continuous emergence of new psychoactive substances presents a considerable analytical challenge in maintaining up-to-date methods for the detection of relevant drugs. Adapting and validating methods for the detection of new substances can be a complicated and costly undertaking. There is also a considerable lag time between the emergence of new drugs and the release of commercial assays for detection. Quadrupole time-of-flight mass spectrometry (Q-TOF-MS) has gained considerable attention over the last decade as an analytical technique that is capable of meeting the challenges of a rapidly changing drug landscape. Exhibiting both high sensitivity and specificity in drug detection, Q-TOF-MS also allows methods to be rapidly updated for newly emerging psychoactive agents. The coupling of Q-TOF-MS with techniques such as liquid or gas chromatography can provide both rapid and comprehensive screening solutions that are gaining popularity in the clinical laboratory setting.
Collapse
|
26
|
Xue J, Lai Y, Liu CW, Ru H. Towards Mass Spectrometry-Based Chemical Exposome: Current Approaches, Challenges, and Future Directions. TOXICS 2019; 7:toxics7030041. [PMID: 31426576 PMCID: PMC6789759 DOI: 10.3390/toxics7030041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
The proposal of the “exposome” concept represents a shift of the research paradigm in studying exposure-disease relationships from an isolated and partial way to a systematic and agnostic approach. Nevertheless, exposome implementation is facing a variety of challenges including measurement techniques and data analysis. Here we focus on the chemical exposome, which refers to the mixtures of chemical pollutants people are exposed to from embryo onwards. We review the current chemical exposome measurement approaches with a focus on those based on the mass spectrometry. We further explore the strategies in implementing the concept of chemical exposome and discuss the available chemical exposome studies. Early progresses in the chemical exposome research are outlined, and major challenges are highlighted. In conclusion, efforts towards chemical exposome have only uncovered the tip of the iceberg, and further advancement in measurement techniques, computational tools, high-throughput data analysis, and standardization may allow more exciting discoveries concerning the role of exposome in human health and disease.
Collapse
Affiliation(s)
- Jingchuan Xue
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yunjia Lai
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chih-Wei Liu
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
27
|
Sun D, Wang Y, Zhang Q, Pang J. Investigation of etoxazole metabolites in citrus, soil and earthworms by ultra-performance liquid chromatography with time-of-flight mass spectrometry. CHEMOSPHERE 2019; 226:782-790. [PMID: 30965249 DOI: 10.1016/j.chemosphere.2019.03.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Etoxazole is a newly registered and widely used acaricide. However, its metabolites were not fully understood and might exhibit similar or even higher toxicity than parent compound. Therefore, in this study, the metabolites of etoxazole in citrus, soil and earthworms were firstly identified by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). Four potential metabolites in citrus, 11 in soil, and 8 in earthworms were determined. These metabolites were then further structural elucidated based on the fragment pathways, and accurate mass measurement. The distributions of etoxazole and its main metabolites (M1, M2, M3, M4 and M5) which were identified as the dehydrogenation, hydrolysis, oxidation products of etoxazole (M0) were also monitored in citrus, soil and earthworms at different exposure periods. The 45 days exposure experiment showed that M0 gradually decreased in citrus and soil samples by 80% and 28% of the initial amounts, respectively. In earthworm samples, M0 accumulated in the bodies of the worms during 24 days exposure and then decreased with time. The dissipation rate of etoxazole were citrus > earthworms > soil. Concentrations of M1 and M3 in soil were found continuously increased with time during the experimental period. Moreover, the persistence of M1 in earthworm samples was also observed. Great attention should be paid to these two compounds due to their potential risks to both environmental and human health.
Collapse
Affiliation(s)
- Dali Sun
- College of Food Safety, Guizhou Medical University, Guiyang, 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, 550025, China
| | - Yunru Wang
- Guangxi Subtropical Crops Research Institute, Guangxi, Nanning, 530001, China
| | - Qinghai Zhang
- College of Food Safety, Guizhou Medical University, Guiyang, 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, 550025, China
| | - Junxiao Pang
- Key Laboratory of Critical Technology for Degradation of Pesticide Residues in Agro-products in Guizhou Ecological Environment, Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, 550005, China.
| |
Collapse
|
28
|
Theofel N, Roscher S, Scholtis S, Tsokos M. Wenn Leichen auf Gerichtsmediziner treffen. CHEM UNSERER ZEIT 2019. [DOI: 10.1002/ciuz.201800862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nadine Theofel
- Landesinstitut für gerichtliche und soziale Medizin Turmstraße 21 10559 Berlin
| | | | | | | |
Collapse
|
29
|
Li Z, Li Y, Tang YJ, Shui W. Exploiting High-Resolution Mass Spectrometry for Targeted Metabolite Quantification and 13C-Labeling Metabolism Analysis. Methods Mol Biol 2019; 1859:171-184. [PMID: 30421229 DOI: 10.1007/978-1-4939-8757-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quantification of targeted metabolites, especially trace metabolites and structural isomers, in complex biological materials is an ongoing challenge for metabolomics. In this chapter, we summarize high-resolution mass spectrometry-based approaches mainly used for targeted metabolite and metabolomics analysis, and then introduce an MS1/MS2-combined PRM workflow for quantification of central carbon metabolism intermediates, amino acids, and shikimate pathway-related metabolites. Major steps in the workflow, including cell culture, metabolite extraction, LC-MS analysis and data processing, are described. Furthermore, we adapt this new approach to a dynamic 13C-labeling experiment and demonstrate its unique advantage in capturing and correcting isotopomer labeling curves to facilitate nonstationary 13C-labeling metabolism analysis.
Collapse
Affiliation(s)
- Zhucui Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujing Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
30
|
Leal AEBP, de Oliveira AP, Santos RFD, Soares JMD, Lavor EMD, Pontes MC, Lima JTD, Santos ADDC, Tomaz JC, Oliveira GGD, Neto FC, Lopes NP, Rolim LA, Almeida JRGDS. Determination of phenolic compounds, in vitro antioxidant activity and characterization of secondary metabolites in different parts of Passiflora cincinnata by HPLC-DAD-MS/MS analysis. Nat Prod Res 2018; 34:995-1001. [PMID: 30584781 DOI: 10.1080/14786419.2018.1548445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ethanol extracts of different parts of Passiflora cincinnata were obtained by maceration. The total phenolic and flavonoid contents were evaluated. The antioxidant activities were determined by β-carotene-linoleic acid bleaching test, 2,2-diphenyl-1-picrylhydrazil (DPPH), and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging. The crude ethanol stem extract showed the highest amount of total polyphenols (45.53 mg gallic acid equivalent/g) while the highest total flavonoid contents (1.42 mg of quercetin equivalent/g) were observed in the leaf extract. The lowest IC50 (25.65 μg/ml) by the DPPH method was observed for the stem extract. The ABTS method showed a significant antioxidant activity for all investigated extracts. The secondary metabolite composition of ethanol extracts was assessed by HPLC-DAD-MS/MS analysis, leading to the identification of fourteen secondary metabolites in P. cincinnata extracts. These results showed the potentiality of this species as a source of phenolic compounds and antioxidants.
Collapse
Affiliation(s)
- Ana Ediléia Barbosa Pereira Leal
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Ana Paula de Oliveira
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Raira Feitosa Dos Santos
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Juliana Mikaelly Dias Soares
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Erica Martins de Lavor
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Michelle Cruz Pontes
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Julianeli Tolentino de Lima
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | - Alan Diego da Conceição Santos
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil
| | | | | | | | | | - Larissa Araújo Rolim
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley, Petrolina, Pernambuco, Brazil.,University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
31
|
Mollerup CB, Rasmussen BS, Johansen SS, Mardal M, Linnet K, Dalsgaard PW. Retrospective analysis for valproate screening targets with liquid chromatography–high resolution mass spectrometry with positive electrospray ionization: An omics‐based approach. Drug Test Anal 2018; 11:730-738. [DOI: 10.1002/dta.2543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Christian Brinch Mollerup
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical SciencesUniversity of Copenhagen Frederik V's vej 11 2100 Copenhagen Ø Denmark
| | - Brian Schou Rasmussen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical SciencesUniversity of Copenhagen Frederik V's vej 11 2100 Copenhagen Ø Denmark
| | - Sys Stybe Johansen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical SciencesUniversity of Copenhagen Frederik V's vej 11 2100 Copenhagen Ø Denmark
| | - Marie Mardal
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical SciencesUniversity of Copenhagen Frederik V's vej 11 2100 Copenhagen Ø Denmark
| | - Kristian Linnet
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical SciencesUniversity of Copenhagen Frederik V's vej 11 2100 Copenhagen Ø Denmark
| | - Petur Weihe Dalsgaard
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical SciencesUniversity of Copenhagen Frederik V's vej 11 2100 Copenhagen Ø Denmark
| |
Collapse
|
32
|
Partridge E, Trobbiani S, Stockham P, Scott T, Kostakis C. A Validated Method for the Screening of 320 Forensically Significant Compounds in Blood by LC/QTOF, with Simultaneous Quantification of Selected Compounds. J Anal Toxicol 2018; 42:220-231. [PMID: 29329431 DOI: 10.1093/jat/bkx108] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/08/2017] [Indexed: 11/14/2022] Open
Abstract
A broad drug screening method for toxicologically significant drugs and metabolites in whole blood using liquid chromatography time-of-flight mass spectrometry (LC/QTOF) was developed and comprehensively validated. The method qualitatively screens for 320 compounds while simultaneously quantifying 39. Compounds were extracted from the blood using alkaline liquid/liquid extraction and chromatographic separation was achieved in 12 min. The QTOF was operated using positive mode electrospray ionization using data dependent acquisition. Qualitative validation was performed for all 320 compounds, and included selectivity, recovery, limit of detection, matrix effects, carryover and extract stability. The limits of detection were in the low to sub ng/mL range for the majority of compounds. Full quantitative validation was performed for 39 compounds and accuracy and precision were within 15 and 18%, respectively. The qualitative data processing method uses an in-house retention time, accurate mass and MSMS spectral database, which can be easily updated with new compounds of interest as they emerge onto the market, without affecting method performance. The use of a non-targeted data acquisition method coupled with targeted data processing has proven to be a highly versatile, efficient and robust approach to screening, well suited to meet the needs of the modern toxicology laboratory involved in systematic toxicological analysis.
Collapse
Affiliation(s)
- Emma Partridge
- Forensic Science SA, GPO Box 2790, Adelaide, South Australia, 5001, Australia.,Flinders University of South Australia, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Stephen Trobbiani
- Forensic Science SA, GPO Box 2790, Adelaide, South Australia, 5001, Australia
| | - Peter Stockham
- Forensic Science SA, GPO Box 2790, Adelaide, South Australia, 5001, Australia.,Flinders University of South Australia, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Timothy Scott
- Forensic Science SA, GPO Box 2790, Adelaide, South Australia, 5001, Australia.,Flinders University of South Australia, Sturt Road, Bedford Park, South Australia, 5042, Australia
| | - Chris Kostakis
- Forensic Science SA, GPO Box 2790, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
33
|
Gundersen POM, Spigset O, Josefsson M. Screening, quantification, and confirmation of synthetic cannabinoid metabolites in urine by UHPLC-QTOF-MS. Drug Test Anal 2018; 11:51-67. [PMID: 29996011 PMCID: PMC6585856 DOI: 10.1002/dta.2464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 01/25/2023]
Abstract
Synthetic cannabinoids are one of the most significant groups within the category new psychoactive substances (NPS) and in recent years new compounds have continuously been introduced to the market of recreational drugs. A sensitive and quantitative screening method in urine with metabolites of frequently seized compounds in Norway (AB‐FUBINACA, AB‐PINACA, AB‐CHMINACA, AM‐2201, AKB48, 5F‐AKB48, BB‐22, JWH‐018, JWH‐073, JWH‐081, JWH‐122, JWH‐203, JWH‐250, PB‐22, 5F‐PB‐22, RCS‐4, THJ‐2201, and UR‐144) using ultra‐high pressure liquid chromatography–quadrupole time of flight–mass spectrometry (UHPLC–QTOF–MS) has been developed. The samples were treated with ß‐glucuronidase prior to extraction and solid‐phase extraction was used. Liquid handling was automated using a robot. Chromatographic separation was achieved using a C18‐column and a gradient of water and acetonitrile, both with 0.1% formic acid. Each sample was initially screened for identification and quantification followed by a second injection for confirmation. The concentrations by which the compounds could be confirmed varied between 0.1 and 12 ng/mL. Overall the validation showed that the method fulfilled the set criteria and requirements for matrix effect, extraction recovery, linearity, precision, accuracy, specificity, and stability. One thousand urine samples from subjects in drug withdrawal programs were analyzed using the presented method. The metabolite AB‐FUBINACA M3, hydroxylated metabolite of 5F‐AKB48, hydroxylated metabolite of AKB48, AKB48 N‐pentanoic acid, 5F‐PB‐22 3‐carboxyindole, BB‐22 3‐carboxyindole, JWH‐018 N‐(5‐hydroxypentyl), JWH‐018 N‐pentanoic acid, and JWH‐073 N‐butanoic acid were quantified and confirmed in 2.3% of the samples. The method was proven to be sensitive, selective and robust for routine use for the investigated metabolites.
Collapse
Affiliation(s)
- Per Ole M Gundersen
- Department of Clinical Pharmacology, St Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Olav Spigset
- Department of Clinical Pharmacology, St Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Martin Josefsson
- National Forensic Centre, Drug Unit, Linköping, Sweden.,Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
34
|
Caspar AT, Meyer MR, Maurer HH. Blood plasma level determination using an automated LC-MS n screening system and electronically stored calibrations exemplified for 22 drugs and two active metabolites often requested in emergency toxicology. Drug Test Anal 2018; 11:102-111. [PMID: 30011134 DOI: 10.1002/dta.2466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
Fast and comprehensive qualitative and quantitative methods preferably by gas chromatography-mass spectrometry (GC-MS) and/or liquid chromatography-mass spectrometry (LC-MS) are needed to support the (differential) diagnosis of acute poisonings in emergency toxicology. One option is a commercially available qualitative screening solution based on LC-MSn (Bruker Daltonik Toxtyper™, TT). Identified and toxicologically relevant compounds should be quantified to assess severity of poisonings. The aim of the present study was to test the TT system for quantification simultaneous with the screening process in blood plasma exemplified for 22 relevant drugs and two active metabolites. A standard liquid-liquid extraction was used for sample work-up followed by 1:5 dilution of the final extracts. They were analyzed using the TT system consisting of a Bruker amaZon speed ion trap and a Thermo Fisher Dionex Ultimate 3000 LC system. Plasma levels were assessed using full-scan data and an electronically stored five-point calibration. The calibration model was linear for the studied ranges and could be used for at least two months. The method was validated according to international guidelines. The acceptance criteria recommended for emergency toxicology for accuracy and precision were fulfilled for all tested compounds, but bromazepam, lorazepam, oxycodone, and prothipendyl could reliably be determined only above the therapeutic range. In conclusion, the presented procedure allowed the combination of a comprehensive LC-MSn screening with fast automated assessment of plasma levels for emergency toxicology of tested compounds.
Collapse
Affiliation(s)
- Achim T Caspar
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical, Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical, Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical, Pharmacology and Toxicology, Saarland University, Homburg, Germany
| |
Collapse
|
35
|
Kind T, Tsugawa H, Cajka T, Ma Y, Lai Z, Mehta SS, Wohlgemuth G, Barupal DK, Showalter MR, Arita M, Fiehn O. Identification of small molecules using accurate mass MS/MS search. MASS SPECTROMETRY REVIEWS 2018; 37:513-532. [PMID: 28436590 PMCID: PMC8106966 DOI: 10.1002/mas.21535] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 05/03/2023]
Abstract
Tandem mass spectral library search (MS/MS) is the fastest way to correctly annotate MS/MS spectra from screening small molecules in fields such as environmental analysis, drug screening, lipid analysis, and metabolomics. The confidence in MS/MS-based annotation of chemical structures is impacted by instrumental settings and requirements, data acquisition modes including data-dependent and data-independent methods, library scoring algorithms, as well as post-curation steps. We critically discuss parameters that influence search results, such as mass accuracy, precursor ion isolation width, intensity thresholds, centroiding algorithms, and acquisition speed. A range of publicly and commercially available MS/MS databases such as NIST, MassBank, MoNA, LipidBlast, Wiley MSforID, and METLIN are surveyed. In addition, software tools including NIST MS Search, MS-DIAL, Mass Frontier, SmileMS, Mass++, and XCMS2 to perform fast MS/MS search are discussed. MS/MS scoring algorithms and challenges during compound annotation are reviewed. Advanced methods such as the in silico generation of tandem mass spectra using quantum chemistry and machine learning methods are covered. Community efforts for curation and sharing of tandem mass spectra that will allow for faster distribution of scientific discoveries are discussed.
Collapse
Affiliation(s)
- Tobias Kind
- Genome Center, Metabolomics, UC Davis, Davis, California
| | - Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Tomas Cajka
- Genome Center, Metabolomics, UC Davis, Davis, California
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, People’s Republic of China
| | - Zijuan Lai
- Genome Center, Metabolomics, UC Davis, Davis, California
| | | | | | | | | | - Masanori Arita
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Oliver Fiehn
- Genome Center, Metabolomics, UC Davis, Davis, California
- Faculty of Sciences, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Seither JZ, Hindle R, Arroyo-Mora LE, DeCaprio AP. Systematic analysis of novel psychoactive substances. I. Development of a compound database and HRMS spectral library. Forensic Chem 2018. [DOI: 10.1016/j.forc.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Grapp M, Kaufmann C, Streit F, Binder L. Systematic forensic toxicological analysis by liquid-chromatography-quadrupole-time-of-flight mass spectrometry in serum and comparison to gas chromatography-mass spectrometry. Forensic Sci Int 2018; 287:63-73. [DOI: 10.1016/j.forsciint.2018.03.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
|
38
|
Mollerup CB, Mardal M, Dalsgaard PW, Linnet K, Barron LP. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. J Chromatogr A 2018; 1542:82-88. [DOI: 10.1016/j.chroma.2018.02.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/06/2018] [Accepted: 02/14/2018] [Indexed: 12/15/2022]
|
39
|
Bruderer T, Varesio E, Hidasi AO, Duchoslav E, Burton L, Bonner R, Hopfgartner G. Metabolomic spectral libraries for data-independent SWATH liquid chromatography mass spectrometry acquisition. Anal Bioanal Chem 2018; 410:1873-1884. [PMID: 29411086 DOI: 10.1007/s00216-018-0860-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/12/2017] [Accepted: 01/08/2018] [Indexed: 11/27/2022]
Abstract
High-quality mass spectral libraries have become crucial in mass spectrometry-based metabolomics. Here, we investigate a workflow to generate accurate mass discrete and composite spectral libraries for metabolite identification and for SWATH mass spectrometry data processing. Discrete collision energy (5-100 eV) accurate mass spectra were collected for 532 metabolites from the human metabolome database (HMDB) by flow injection analysis and compiled into composite spectra over a large collision energy range (e.g., 10-70 eV). Full scan response factors were also calculated. Software tools based on accurate mass and predictive fragmentation were specially developed and found to be essential for construction and quality control of the spectral library. First, elemental compositions constrained by the elemental composition of the precursor ion were calculated for all fragments. Secondly, all possible fragments were generated from the compound structure and were filtered based on their elemental compositions. From the discrete spectra, it was possible to analyze the specific fragment form at each collision energy and it was found that a relatively large collision energy range (10-70 eV) gives informative MS/MS spectra for library searches. From the composite spectra, it was possible to characterize specific neutral losses as radical losses using in silico fragmentation. Radical losses (generating radical cations) were found to be more prominent than expected. From 532 metabolites, 489 provided a signal in positive mode [M+H]+ and 483 in negative mode [M-H]-. MS/MS spectra were obtained for 399 compounds in positive mode and for 462 in negative mode; 329 metabolites generated suitable spectra in both modes. Using the spectral library, LC retention time, response factors to analyze data-independent LC-SWATH-MS data allowed the identification of 39 (positive mode) and 72 (negative mode) metabolites in a plasma pool sample (total 92 metabolites) where 81 previously were reported in HMDB to be found in plasma. Graphical abstract Library generation workflow for LC-SWATH MS, using collision energy spread, accurate mass, and fragment annotation.
Collapse
Affiliation(s)
- Tobias Bruderer
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24, Quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | - Emmanuel Varesio
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Anita O Hidasi
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24, Quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | - Eva Duchoslav
- Sciex, 71 Four Valley Drive, Concord, ON, L4K 4V8, Canada
| | - Lyle Burton
- Sciex, 71 Four Valley Drive, Concord, ON, L4K 4V8, Canada
| | - Ron Bonner
- Ron Bonner Consulting, Newmarket, ON, L3Y 3C7, Canada
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, Department of Inorganic and Analytical Chemistry, University of Geneva, 24, Quai Ernest Ansermet, 1211, Geneva 4, Switzerland.
| |
Collapse
|
40
|
Fu Y, Zhao C, Lu X, Xu G. Nontargeted screening of chemical contaminants and illegal additives in food based on liquid chromatography–high resolution mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Michely JA, Meyer MR, Maurer HH. Paper Spray Ionization Coupled to High Resolution Tandem Mass Spectrometry for Comprehensive Urine Drug Testing in Comparison to Liquid Chromatography-Coupled Techniques after Urine Precipitation or Dried Urine Spot Workup. Anal Chem 2017; 89:11779-11786. [DOI: 10.1021/acs.analchem.7b03398] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Julian A. Michely
- Department of Experimental and Clinical
Toxicology, Institute of Experimental and Clinical Pharmacology and
Toxicology, Saarland University, Homburg, Saar D-66421, Germany
| | - Markus R. Meyer
- Department of Experimental and Clinical
Toxicology, Institute of Experimental and Clinical Pharmacology and
Toxicology, Saarland University, Homburg, Saar D-66421, Germany
| | - Hans H. Maurer
- Department of Experimental and Clinical
Toxicology, Institute of Experimental and Clinical Pharmacology and
Toxicology, Saarland University, Homburg, Saar D-66421, Germany
| |
Collapse
|
42
|
Michely JA, Meyer MR, Maurer HH. Power of Orbitrap-based LC-high resolution-MS/MS for comprehensive drug testing in urine with or without conjugate cleavage or using dried urine spots after on-spot cleavage in comparison to established LC-MS n or GC-MS procedures. Drug Test Anal 2017; 10:158-163. [PMID: 28755512 DOI: 10.1002/dta.2255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 11/12/2022]
Abstract
Reliable, sensitive, and comprehensive urine screening procedures by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS) with low or high resolution (HR) are of high importance for drug testing, adherence monitoring, or detection of toxic compounds. Besides conventional urine sampling, dried urine spots are of increasing interest. In the present study, the power of LC-HR-MS/MS was investigated for comprehensive drug testing in urine with or without conjugate cleavage or using dried urine spots after on-spot cleavage in comparison to established LC-MSn or GC-MS procedures. Authentic human urine samples (n = 103) were split in 4 parts. One aliquot was prepared by precipitation (UP), one by UP with conjugate cleavage (UglucP), one spot on filter paper cards and prepared by on-spot cleavage followed by liquid extraction (DUSglucE), and one worked-up by acid hydrolysis, liquid-liquid extraction, and acetylation for GC-MS analysis. The 3 series of LC-HR-MS/MS results were compared among themselves, to corresponding published LC-MSn data, and to screening results obtained by conventional GC-MS. The reference libraries used for the 3 techniques contained over 4500 spectra of parent compounds and their metabolites. The number of all detected hits (770 drug intakes) was set to 100%. The LC-HR-MS/MS approach detected 80% of the hits after UP, 89% after UglucP, and 77% after DUSglucE, which meant over one-third more hits in comparison to the corresponding published LC-MSn results with ≤49% detected hits. The GC-MS approach identified 56% of all detected hits. In conclusion, LC-HR-MS/MS provided the best screening results after conjugate cleavage and precipitation.
Collapse
Affiliation(s)
- Julian A Michely
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical, Pharmacology and Toxicology, Saarland University, Homburg, Saar, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical, Pharmacology and Toxicology, Saarland University, Homburg, Saar, Germany
| | - Hans H Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical, Pharmacology and Toxicology, Saarland University, Homburg, Saar, Germany
| |
Collapse
|
43
|
Michely JA, Maurer HH. A multi-analyte approach to help in assessing the severity of acute poisonings - Development and validation of a fast LC-MS/MS quantification approach for 45 drugs and their relevant metabolites with one-point calibration. Drug Test Anal 2017; 10:164-176. [DOI: 10.1002/dta.2257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Julian A. Michely
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology; Saarland University; Homburg Germany
| | - Hans H. Maurer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology; Saarland University; Homburg Germany
| |
Collapse
|
44
|
Sundström M, Pelander A, Ojanperä I. Comparison of Post-targeted and Pre-targeted Urine Drug Screening by UHPLC–HR-QTOFMS. J Anal Toxicol 2017; 41:623-630. [DOI: 10.1093/jat/bkx044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
|
45
|
Current applications of high-resolution mass spectrometry for the analysis of new psychoactive substances: a critical review. Anal Bioanal Chem 2017. [DOI: 10.1007/s00216-017-0441-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Helfer AG, Michely JA, Weber AA, Meyer MR, Maurer HH. Liquid chromatography-high resolution-tandem mass spectrometry using Orbitrap technology for comprehensive screening to detect drugs and their metabolites in blood plasma. Anal Chim Acta 2017; 965:83-95. [DOI: 10.1016/j.aca.2017.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 02/06/2017] [Accepted: 03/02/2017] [Indexed: 01/30/2023]
|
47
|
Liu HC, Yang CA, Liu RH, Lin DL. Developing a UHPLC–QTOF-MS and Automated Library Search Method for Screening Drugs and Toxic Compounds in Postmortem Specimens. J Anal Toxicol 2017; 41:421-430. [DOI: 10.1093/jat/bkx026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Indexed: 11/13/2022] Open
|
48
|
Chepyala D, Tsai IL, Liao HW, Chen GY, Chao HC, Kuo CH. Sensitive screening of abused drugs in dried blood samples using ultra-high-performance liquid chromatography-ion booster-quadrupole time-of-flight mass spectrometry. J Chromatogr A 2017; 1491:57-66. [DOI: 10.1016/j.chroma.2017.02.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/12/2017] [Accepted: 02/18/2017] [Indexed: 11/27/2022]
|
49
|
Screening of over 100 drugs in horse urine using automated on-line solid-phase extraction coupled to liquid chromatography-high resolution mass spectrometry for doping control. J Chromatogr A 2017; 1490:89-101. [DOI: 10.1016/j.chroma.2017.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/17/2022]
|
50
|
Oliveira AH, de Oliveira GG, Carnevale Neto F, Portuondo DF, Batista-Duharte A, Carlos IZ. Anti-inflammatory activity of Vismia guianensis (Aubl.) Pers. extracts and antifungal activity against Sporothrix schenckii. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:266-274. [PMID: 27856302 DOI: 10.1016/j.jep.2016.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vismia guianensis (Aubl.) Pers. is traditionally used in North and Northeast of Brazil for the treatment of dermatomycoses. Since the strategy associating immunomodulators with antifungal drugs seems to be promissory to improve the treatment efficacy in fungal infections, we aimed to investigate the antifungal activity of V. guianensis ethanolic extract of leaves (VGL) and bark (VGB) against Sporothrix schenckii ATCC 16345 and their antinflammatory activities. MATERIAL AND METHODS The extracts were analyzed by HPLC-DAD-IT MS/MS for in situ identification of major compounds. Antifungal activity was evaluated in vitro (microdilution test) and in vivo using a murine model of S. schenckii infection. The production of TNF-α, IFN-γ, IL-4, IL-10 and IL-12 by measured by ELISA, as well as measured the production and inhibition of the NO after treatment with the plant extracts or itraconazole (ITR). RESULTS Two O-glucosyl-flavonoids and 16 prenylated benzophenone derivatives already described for Vismia were detected. Both VGL and VGB showed significant antifungal activity either in in vitro assay of microdilution (MIC=3.9µg/mL) and in vivo model of infection with reduction of S. schenckii load in spleen. It was also observed a predominance of reduction in the production of NO and the proinflammatory cytokines evaluated except TNFα, but with stimulation of IL-10, as evidence of a potential anti-inflammatory effect associated. CONCLUSION The results showed that both VGL and VGB have a significant antifungal against S. schenckii and an anti-inflammatory activity. These results can support the use of these extracts for alternative treatment of sporotrichosis.
Collapse
Affiliation(s)
- A H Oliveira
- Faculdade de Ciências Farmacêuticas. Universidade Estadual Paulista Julio Mesquita Filho, UNESP, Rod. Araraquara-Jaú - Km 1 -s/n -CEP: 14800-903, Araraquara, SP, Brazil
| | - G G de Oliveira
- Faculdade de Ciências Farmacêuticas de Riberão Preto, Universidade Estadual de São Paulo, Departamento de Física e Química, Riberão Preto, SP, Brazil
| | - F Carnevale Neto
- Faculdade de Ciências Farmacêuticas de Riberão Preto, Universidade Estadual de São Paulo, Departamento de Física e Química, Riberão Preto, SP, Brazil
| | - D F Portuondo
- Faculdade de Ciências Farmacêuticas. Universidade Estadual Paulista Julio Mesquita Filho, UNESP, Rod. Araraquara-Jaú - Km 1 -s/n -CEP: 14800-903, Araraquara, SP, Brazil
| | - A Batista-Duharte
- Faculdade de Ciências Farmacêuticas. Universidade Estadual Paulista Julio Mesquita Filho, UNESP, Rod. Araraquara-Jaú - Km 1 -s/n -CEP: 14800-903, Araraquara, SP, Brazil
| | - I Z Carlos
- Faculdade de Ciências Farmacêuticas. Universidade Estadual Paulista Julio Mesquita Filho, UNESP, Rod. Araraquara-Jaú - Km 1 -s/n -CEP: 14800-903, Araraquara, SP, Brazil
| |
Collapse
|