1
|
Chen M, Wang R, Wang T. Gut microbiota and skin pathologies: Mechanism of the gut-skin axis in atopic dermatitis and psoriasis. Int Immunopharmacol 2024; 141:112658. [PMID: 39137625 DOI: 10.1016/j.intimp.2024.112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024]
Abstract
Atopic dermatitis (AD) and psoriasis are chronic skin diseases with a global impact, posing significant challenges to public health systems and severely affecting patients' quality of life. This review delves into the key role of the gut microbiota in these diseases, emphasizing the importance of the gut-skin axis in inflammatory mediators and immune regulation and revealing a complex bidirectional communication system. We comprehensively assessed the pathogenesis, clinical manifestations, and treatment strategies for AD and psoriasis, with a particular focus on how the gut microbiota and their metabolites influence disease progression via the gut-skin axis. In addition, personalized treatment plans based on individual patient microbiome characteristics have been proposed, offering new perspectives for future treatment approaches. We call for enhanced interdisciplinary cooperation to further explore the interactions between gut microbiota and skin diseases and to assess the potential of drugs and natural products in modulating the gut-skin axis, aiming to advance the treatment of skin diseases.
Collapse
Affiliation(s)
- Meng Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Rui Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| | - Ting Wang
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|
2
|
Lin J, Wang Z, Wang H, Li Y, Liu Y, He Y, Liu Q, Chen Z, Ji Y. Screening of Diabetes-Associated Autoantigens and Serum Antibody Profiles Using a Phage Display System. Int J Microbiol 2024; 2024:1220644. [PMID: 39483642 PMCID: PMC11527542 DOI: 10.1155/2024/1220644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/10/2024] [Accepted: 09/13/2024] [Indexed: 11/03/2024] Open
Abstract
Aims/Introduction: Phage display method is a crucial tool to find novel clinically valuable diabetes-associated autoantigens and identify known autoantigen epitopes that are associated with diabetes and could provide scientific support and guidance for the artificial construction and synthesis of Type I diabetes mellitus (T1DM) novel biomarkers. Materials and Methods: The phage display system was used for the "biopanning" of T1DM serum. Following the sequencing of the phage DNAs, the homologous sequences of the above fusion heptapeptide were further investigated by BLAST to track the origin of the polypeptide sequences. The antibody spectrum revealed new T1DM-associated epitopes and antibodies. Results: A total of 1200 phage DNA were sequenced and 9 conserved polypeptide sequences were collected. It was confirmed that the zinc transporter and islet amyloid protease were among them. The conserved polypeptide sequence 8 and another three distinctive polypeptide sequences derived from Proteus were discovered. Furthermore, we expressed recombinant proteins with homologous polypeptide sequences for the human islet amyloid polypeptide (IAPP) and polypeptide precursor human zinc transporter 8 (ZNT8). Through clinical sample detection for the serum from T1DM (n = 100) and T2DM (n = 200) patients, results demonstrate the importance and relevance of these polypeptides in the recognition and classification of various forms of diabetes. Conclusion: Human pancreatic and concurrent bacterial-derived protein antigens and their epitopes were identified in this research by the phage display system, which is crucial for distinguishing different types of diabetes.
Collapse
Affiliation(s)
- Jun Lin
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Zhenyu Wang
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Hongtao Wang
- Shenzhen Blot Bio-Products Ltd, Nanshan Knowledge Service Building, 3025 Nanhai Avenue, Nanshan, Shenzhen 518052, China
| | - Yuping Li
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Yao Liu
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Yige He
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Qian Liu
- Shenzhen Blot Bio-Products Ltd, Nanshan Knowledge Service Building, 3025 Nanhai Avenue, Nanshan, Shenzhen 518052, China
| | - Zichuan Chen
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| | - Yuan Ji
- Shenzhen Institute for Drug Control (Shenzhen Testing Center of Medical Devices), No. 28, Gaoxin Central 2nd Avenue, Nanshan, Shenzhen 518057, China
| |
Collapse
|
3
|
Szczerbiec D, Glińska S, Kamińska J, Drzewiecka D. Outer Membrane Vesicles Formed by Clinical Proteus mirabilis Strains May Be Incorporated into the Outer Membrane of Other P. mirabilis Cells and Demonstrate Lytic Properties. Molecules 2024; 29:4836. [PMID: 39459204 PMCID: PMC11509992 DOI: 10.3390/molecules29204836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Outer membrane vesicles (OMVs) are extracellular structures, ranging in size from 10 to 300 nm, produced by Gram-negative bacteria. They can be incorporated into the outer membrane of a recipient's cells, which may enable the transfer of substances with lytic properties. Due to the scarce information regarding the OMVs produced by Proteus mirabilis, the aim of this study was to test the blebbing abilities of the clinical P. mirabilis O77 and O78 strains and to determine the blebs' interactions with bacterial cells, including their possible bactericidal activities. The production of OMVs was visualised by Transmission electron microscopy (TEM). The presence of OMVs in the obtained samples as well as the phenomenon of OMV fusion to recipient cells were confirmed by Enzyme-Linked ImmunoSorbent Assay (ELISA) and Western blotting assays. The bacteriolytic activity of the OMVs was examined against P. mirabilis clinical strains and reference Staphylococcus aureus and Escherichia coli strains. It was shown that each of the two tested P. mirabilis strains could produce OMVs which were able to fuse into the cells of the other strain. The lytic properties of the O78 OMVs against another P. mirabilis O78 strain were also demonstrated. This promising result may help in the future to better understand the mechanisms of the pathogenesis and to treat the infections caused by P. mirabilis.
Collapse
Affiliation(s)
- Dominika Szczerbiec
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (J.K.)
| | - Sława Glińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Justyna Kamińska
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (J.K.)
| | - Dominika Drzewiecka
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (J.K.)
| |
Collapse
|
4
|
Vaishnavi J, Osborne JW. Biodegradation of monocrotophos, cypermethrin & fipronil by Proteus myxofaciens VITVJ1: A plant - microbe based remediation. Heliyon 2024; 10:e37384. [PMID: 39309857 PMCID: PMC11416261 DOI: 10.1016/j.heliyon.2024.e37384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Current study was focused on the degradation of pesticides such as Monocrotophos, Cypermethrin & Fipronil (M, C & F) using phyto and rhizoremediation strategies. The isolate Proteus myxofaciens (VITVJ1) obtained from agricultural soil was capable of degrading M, C & F. The bacteria exhibited resistance to all the pesticides (M, C & F) up to 1500 ppm and was also capable of forming biofilms. The degraded products identified using Gas Chromatography-Mass Spectroscopy (GC-MS) and FTIR was further used for deriving the degradation pathway. The end product of M, C & F was acetic acid and 3-phenoxy benzoic acid which was confirmed by the presence of functional groups such as C=O and OH. Seed germination assay revealed the non-toxic nature of the degraded products with increased germination index in the treatments augmented with degraded products. The candidate genes such as opdA gene, Est gene and MnP1gene was amplified with the amplicon size of 700bp, 1200bp and 500bp respectively. P. myxofaciens not only degraded M, C & F, but was also found to be a plant growth promoting rhizobacteria. Since, it was capable of producing Indole Acetic acid (IAA), siderophore and was able to solubilize insoluble phosphate. Therefore, VITVJ1 upon augmentation to the rhizoremediation setup aided the degradation of pesticides with increase in plant growth as compared to that of the phytoremediation setup. To our knowledge this is the first study where P. myxofaciens has been effectively used for the degradation of three different classes of pesticides, which could also enhance the growth of plants and simultaneously degrade M, C & F.
Collapse
Affiliation(s)
- Jeevanandam Vaishnavi
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Jabez William Osborne
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
5
|
Rabapane KJ, Matambo TS. Profiling the dynamic adaptations of CAZyme-Producing microorganisms in the gastrointestinal tract of South African goats. Heliyon 2024; 10:e37508. [PMID: 39290285 PMCID: PMC11407064 DOI: 10.1016/j.heliyon.2024.e37508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
The gastrointestinal tract of goats serves as a habitat for anaerobic microbial populations that work together to break down complex plant material, including lignocellulose. This study explored the microbial diversity and metabolic profiles across different gastrointestinal tract compartments. Significant diversity differences among the compartments were observed (ANOSIM p < 0.006), with the abomasum showing a distinct species composition and a decreased alpha diversity (Mann-Whitney/Kruskal-Wallis test p = 0.00096), possibly due to its acidic environment. Dominant microbial phyla included Proteobacteria, Bacteroidetes, and Firmicutes, with Proteobacteria being the most prevalent in the abomasum (50.06 %). Genera like Proteus and Bacteroides were particularly prominent in the rumen and reticulum, highlighting their significant role in feed degradation and fermentation processes. Over 65 % of genes at Kyoto Encyclopedia of Genes and Genomes level 1 were involved in metabolism with significant xenobiotic biodegradation in the abomasum. The dbCAN2 search identified Glycoside Hydrolases as the most prevalent CAZyme class (79 %), followed by Glycosyltransferases, Polysaccharide Lyases, and Carbohydrate Esterases, with Carbohydrate-Binding Modules and Auxiliary Activities accounting for 1 % of the hits. Higher CAZyme abundance was observed in the reticulum and omasum compartments, possibly due to MAGs diversity. In conclusion, the gastrointestinal tract of South African goats harbors diverse CAZyme classes, with Glycoside Hydrolases predominating. Interestingly, higher CAZyme abundance in specific compartments suggested compartmentalized microbial activity, reflecting adaptation to dietary substrates.
Collapse
Affiliation(s)
- Kgodiso J Rabapane
- Centre of Competence in Environmental Biotechnology, Department of Environmental Science, University of South Africa's College of Agriculture and Environmental Science, Cnr Pioneer and Christian De Wet Roads, Private Bag X6, Florida, 1710, South Africa
- Institute for Catalysis and Energy Solutions, University of South Africa's College of Science, Engineering, and Technology, Cnr Pioneer and Christian De Wet Roads, Private Bag X6, Florida, 1710, South Africa
| | - Tonderayi S Matambo
- Centre of Competence in Environmental Biotechnology, Department of Environmental Science, University of South Africa's College of Agriculture and Environmental Science, Cnr Pioneer and Christian De Wet Roads, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
6
|
Nartop D, Hasanoğlu Özkan E, Öğütcü H, Kurnaz Yetim N, Özdemir İ. Novel α-N-heterocyclic thiosemicarbazone complexes: synthesis, characterization, and antimicrobial of properties investigation. RSC Adv 2024; 14:29308-29318. [PMID: 39285885 PMCID: PMC11403394 DOI: 10.1039/d4ra04002c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
In this paper, eight novel α-N-heterocyclic thiosemicarbazone complexes were synthesized in search of new biologically active compounds, and characterized via organic elemental analysis, nuclear magnetic resonance spectroscopy, infrared spectra, thermogravimetric analysis, ultraviolet-visible spectroscopy, molar conductance and magnetic susceptibility measurements. The in vitro antimicrobial activity of these complexes was examined against ten disease-causing pathogens: Gram-positive bacteria (Micrococcus luteus ATCC9341, Staphylococcus epidermidis ATCC12228, Bacillus cereus RSKK863) and Gram-negative bacteria (Pseudomonas aeroginosa ATCC27853, Klebsiella pneumonia ATCC27853, Enterobacter aerogenes ATCC51342, Salmonella typhi H NCTC9018394, Shigella dysenteria NCTC2966, Proteus vulgaris RSKK96026) and yeast (Candida albicans Y-1200-NIH). The results revealed that the α-N-heterocyclic thiosemicarbazone compounds showed potent activity. It was observed that all thiosemicarbazone complexes were more susceptible to Gram-negative strains based on the presence of an electron-withdrawing substituent (-Br/-Cl/-F). It was determined that thiosemicarbazone Cu2+complexes showed stronger antifungal effects.
Collapse
Affiliation(s)
- Dilek Nartop
- Department of Chemistry, Faculty of Arts and Sciences, Düzce University Düzce Turkiye
| | | | - Hatice Öğütcü
- Department of Field Crops, Faculty of Agriculture, Kırşehir Ahi Evran University Kırşehir Turkiye
| | - Nurdan Kurnaz Yetim
- Department of Chemistry, Faculty of Arts and Sciences, Kırklareli University Kırklareli Turkiye
| | - İnci Özdemir
- Kocaeli University, Izmit Vocational School, Property Protection and Security Department 41285 Kocaeli Turkiye
| |
Collapse
|
7
|
de Oliva BHD, do Nascimento AB, de Oliveira JP, Guidone GHM, Schoeps BL, Silva LC, Barbosa MGL, Montini VH, de Oliveira Junior AG, Rocha SPD. Genomic insights into a Proteus mirabilis strain inducing avian cellulitis. Braz J Microbiol 2024:10.1007/s42770-024-01508-6. [PMID: 39235714 DOI: 10.1007/s42770-024-01508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Proteus mirabilis, a microorganism distributed in soil, water, and animals, is clinically known for causing urinary tract infections in humans. However, recent studies have linked it to skin infections in broiler chickens, termed avian cellulitis, which poses a threat to animal welfare. While Avian Pathogenic Escherichia coli (APEC) is the primary cause of avian cellulitis, few cases of P. mirabilis involvement are reported, raising questions about the factors facilitating such occurrences. This study employed a pan-genomic approach to investigate whether unique genes exist in P. mirabilis strains causing avian cellulitis. The genome of LBUEL-A33, a P. mirabilis strain known to cause this infection, was assembled, and compared with other P. mirabilis strains isolated from poultry and other sources. Additionally, in silico serogroup analysis was conducted. Results revealed numerous genes unique to the LBUEL-A33 strain. No function in cellulitis was identified for these genes, and in silico investigation of the virulence potential of LBUEL-A33's exclusive proteins proved inconclusive. These findings support that multiple factors are necessary for P. mirabilis to cause avian cellulitis. Furthermore, this species likely employs its own unique arsenal of virulence factors, as many identified mechanisms are analogous to those of E. coli. While antigenic gene clusters responsible for serogroups were identified, no clear trend was observed, and the gene cluster of LBUEL-A33 did not show homology with any sequenced Proteus serogroups. These results reinforce the understanding that this disease is multifactorial, necessitating further research to unravel the mechanisms and underpin the development of control and prevention strategies.
Collapse
Affiliation(s)
- Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Arthur Bossi do Nascimento
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - João Paulo de Oliveira
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Beatriz Lernic Schoeps
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Mario Gabriel Lopes Barbosa
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | - Victor Hugo Montini
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil
| | | | - Sérgio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PO-BOX 6001, Londrina, 86051-980, Paraná, Brazil.
| |
Collapse
|
8
|
Liang Y, Zhang Q, Yu J, Hu W, Xu S, Xiao Y, Ding H, Zhou J, Chen H. Tumour-associated and non-tumour-associated bacteria co-abundance groups in colorectal cancer. BMC Microbiol 2024; 24:242. [PMID: 38961349 PMCID: PMC11223424 DOI: 10.1186/s12866-024-03402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND & AIMS Gut microbiota is closely related to the occurrence and development of colorectal cancer (CRC). However, the differences in bacterial co-abundance groups (CAGs) between tumor tissue (TT) and normal tissue (NT), as well as their associations with clinical features, are needed to be clarified. METHODS Bacterial 16 S rRNA sequencing was performed by using TT samples and NT samples of 251 patients with colorectal cancer. Microbial diversity, taxonomic characteristics, microbial composition, and functional pathways were compared between TT and NT. Hierarchical clustering was used to construct CAGs. RESULTS Four CAGs were grouped in the hierarchical cluster analysis. CAG 2, which was mainly comprised of pathogenic bacteria, was significantly enriched in TT samples (2.27% in TT vs. 0.78% in NT, p < 0.0001). CAG 4, which was mainly comprised of non-pathogenic bacteria, was significantly enriched in NT samples (0.62% in TT vs. 0.79% in NT, p = 0.0004). In addition, CAG 2 was also significantly associated with tumor microsatellite instability (13.2% in unstable vs. 2.0% in stable, p = 0.016), and CAG 4 was positively correlated with the level of CA199 (r = 0.17, p = 0.009). CONCLUSIONS Our research will deepen our understanding of the interactions among multiple bacteria and offer insights into the potential mechanism of NT to TT transition.
Collapse
Affiliation(s)
- Yuxuan Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qingrong Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jing Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenyan Hu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Sihua Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yiyuan Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Hui Ding
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jiaming Zhou
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
9
|
Mitchaothai J, Grabowski NT, Lertpatarakomol R, Trairatapiwan T, Lukkananukool A. Bacterial Contamination and Antimicrobial Resistance in Two-Spotted ( Gryllus bimaculatus) and House ( Acheta domesticus) Cricket Rearing and Harvesting Processes. Vet Sci 2024; 11:295. [PMID: 39057979 PMCID: PMC11281677 DOI: 10.3390/vetsci11070295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Food safety for cricket production is a crucial factor in producing edible crickets with safety for consumers and sustainability for two-spotted (Gryllus bimaculatus) as well as house (Acheta domesticus) cricket production. This study was conducted by simultaneously rearing two cricket species, comprising two-spotted crickets (G. bimaculatus) and house crickets (A. domesticus). A total of 16 rearing crates were used for the present study, which were allocated into 8 rearing crates for each studied cricket species, including paper egg cartons. Cricket eggs were incubated in the rearing crates. Once the crickets hatched, tap water and powdered feed were provided ad libitum throughout the experiment. At the end of this study (35 and 42 days for the two-spotted and house crickets, respectively), all crickets were harvested, rinsed in tap water, and boiled in water for 5 min. During the rearing and harvesting processes, samples were collected from various potential contamination points for bacteria, including E. coli and Salmonella spp. There were samples of the initial input (feed, drinking water, and staff hands), rearing environment (water pipe, crate wall, living cartons, frass, and cricket surface), and harvesting crickets (harvested, washed, and boiled crickets), with a 2-week sampling interval, except for the last round of sampling for the two-spotted crickets. Subsequently, all samples were submitted to isolate and identify contaminated bacteria. The samples from the last round of sampling for both kinds of crickets were submitted to quantify the level of contamination for E. coli and Salmonella spp., including antimicrobial resistance by the disk diffusion method for the positive isolate. The results showed that bacterial contamination was found in the rearing of both cricket species, primarily involving Klebsiella spp. and Enterobacter spp., mainly found in prepared drinking water and the water pipes of drinking water supply equipment, which are potential sources of contamination with cricket frass. E. coli was found in 4.8% and 4.3% of the two-spotted and house crickets, respectively, while no presence of Salmonella spp. was detected in any submitted samples. The quantification of E. coli and Salmonella spp. indicated E. coli contamination near the water pipe and the frass of two-spotted crickets, but Salmonella spp. was undetectable in both two-spotted and house crickets. The antimicrobial resistance of isolated E. coli mainly involved penicillin G, amoxicillin, ampicillin, erythromycin, lincomycin, and tiamulin. Thus, good farm management with proper sanitation practices (such as cleaning and keeping the environment dry), as well as boiling crickets during the harvesting process, may help ensure the safety of edible cricket production.
Collapse
Affiliation(s)
- Jamlong Mitchaothai
- Office of Administrative Interdisciplinary Program on Agricultural Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand
| | - Nils T. Grabowski
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover (TiHo), 30173 Hannover, Germany;
| | - Rachakris Lertpatarakomol
- Faculty of Veterinary Medicine, Mahanakorn University of Technology (MUT), Bangkok 10530, Thailand; (R.L.); (T.T.)
| | - Tassanee Trairatapiwan
- Faculty of Veterinary Medicine, Mahanakorn University of Technology (MUT), Bangkok 10530, Thailand; (R.L.); (T.T.)
| | - Achara Lukkananukool
- Department of Animal Production Technology and Fisheries, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand;
| |
Collapse
|
10
|
Niu SQ, Song HR, Zhang X, Bao XW, Li T, He LY, Li Y, Li Y, Zhang DX, Bai J, Liu SJ, Guo JL. The Cd resistant mechanism of Proteus mirabilis Ch8 through immobilizing and detoxifying. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116432. [PMID: 38728947 DOI: 10.1016/j.ecoenv.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Cadmium (Cd) pollution is a serious global environmental problem, which requires a global concern and practical solutions. Microbial remediation has received widespread attention owing to advantages, such as environmental friendliness and soil amelioration. However, Cd toxicity also severely deteriorates the remediation performance of functional microorganisms. Analyzing the mechanism of bacterial resistance to Cd stress will be beneficial for the application of Cd remediation. In this study, the bacteria strain, up to 1400 mg/L Cd resistance, was employed and identified as Proteus mirabilis Ch8 (Ch8) through whole genome sequence analyses. The results indicated that the multiple pathways of immobilizing and detoxifying Cd maintained the growth of Ch8 under Cd stress, which also possessed high Cd extracellular adsorption. Firstly, the changes in surface morphology and functional groups of Ch8 cells were observed under different Cd conditions through SEM-EDS and FTIR analyses. Under 100 mg/L Cd, Ch8 cells exhibited aggregation and less flagella; the Cd biosorption of Ch8 was predominately by secreting exopolysaccharides (EPS) and no significant change of functional groups. Under 500 mg/L Cd, Ch8 were present irregular polymers on the cell surface, some cells with wrapping around; the Cd biosorption capacity exhibited outstanding effects (38.80 mg/g), which was mainly immobilizing Cd by secreting and interacting with EPS. Then, Ch8 also significantly enhanced the antioxidant enzyme activity and the antioxidant substance content under different Cd conditions. The activities of SOD and CAT, GSH content of Ch8 under 500 mg/L Cd were significantly increased by 245.47%, 179.52%, and 241.81%, compared to normal condition. Additionally, Ch8 significantly induced the expression of Acr A and Tol C (the resistance-nodulation-division (RND) efflux pump), and some antioxidant genes (SodB, SodC, and Tpx) to reduce Cd damage. In particular, the markedly higher expression levels of SodB under Cd stress. The mechanism of Ch8 lays a foundation for its application in solving soil remediation.
Collapse
Affiliation(s)
- Shu-Qi Niu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Hao-Ran Song
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Xiu-Wen Bao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Ting Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Li-Ying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China
| | - Yang Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Dai-Xi Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Jing Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Si-Jing Liu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, P. R. China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, PR China.
| |
Collapse
|
11
|
Owen EJ, Heylen RA, Stewart K, Winyard PG, Jenkins ATA. Detecting and monitoring incontinence associated dermatitis: Does impedance spectroscopy have a part to play? Proc Inst Mech Eng H 2024; 238:655-666. [PMID: 36882988 PMCID: PMC11318234 DOI: 10.1177/09544119231159178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
In this review, current understanding of the prevention and treatment of Incontinence Associated Dermatitis (IAD) is discussed. The need for preventative measures which target specific faecal/urinary irritants is highlighted, including the role of urease inhibitors. There is no existing internationally and clinically accepted method to diagnose and categorise the severity of IAD. Diagnosis currently relies on visual inspection; non-invasive techniques to assess skin barrier function could remove subjectiveness, particularly in darker skin tones. Impedance spectroscopy is a non-invasive technique which can be used to monitor skin barrier function, supporting visual assessments. Six studies (2003-2021) which used impedance to assess dermatitis were reviewed; inflamed skin was distinguishable from healthy skin in each case. This suggests that impedance spectroscopy could be useful in diagnosis early-stage IAD, potentially enabling earlier intervention. Finally, the authors present their initial findings on the role of urease in skin breakdown in an in vivo IAD model, using impedance spectroscopy.
Collapse
Affiliation(s)
- Emily J Owen
- Department of Chemistry, University of Bath, Bath, UK
| | | | | | | | | |
Collapse
|
12
|
Li MS. Request for an Opinion: conservation of the illegitimate prokaryotic generic name Proteus Hauser 1885 (Approved Lists 1980). Int J Syst Evol Microbiol 2024; 74. [PMID: 38922319 DOI: 10.1099/ijsem.0.006434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
The prokaryotic generic name Proteus Hauser 1885 (Approved Lists 1980) is a later homonym of the protozoan genus name Proteus Müller, 1786 and therefore should be considered illegitimate and in need of replacement according to Rules 51b(4) and 54 of the International Code of Nomenclature of Prokaryotes. However, it would be unwelcome for medical and veterinary community to propose by anyone any replacement name and discontinue the current usage. To prevent from any unfavourable replacement, conservation of the illegitimate prokaryotic generic name Proteus Hauser 1885 (Approved Lists 1980) according to Rules 23a Note 4 and 56b is needed, and therefore, a request for conservation by the Judicial Commission over its earlier protozoan homonym is made here by the author, with Judicial Opinions 9 and 12 serving as precedents.
Collapse
Affiliation(s)
- Meng-Syun Li
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
13
|
Owen EJ, Heylen RA, Stewart K, Winyard PG, Jenkins ATA. The multi-factorial modes of action of urease in the pathogenesis of incontinence associated dermatitis. SKIN HEALTH AND DISEASE 2024; 4:e349. [PMID: 38846694 PMCID: PMC11150740 DOI: 10.1002/ski2.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 06/09/2024]
Abstract
Background Incontinence Associated Dermatitis (IAD) is a type of skin inflammation caused by chronic exposure to urine and/or faeces. Current treatment strategies involve creating a barrier between the skin and urine/faeces rather than targeting specific irritants. Urease expressing pathogens catalyse the conversion of urea, present in urine, into ammonia. The accumulation of ammonia causes an elevation in skin pH which is believed to activate faecal enzymes which damage skin, and opportunistic pathogens, which lead to secondary infections. Objectives To develop a better, multi-factorial model of IAD pathogenesis, including the effect of urease-expressing bacteria on skin, mechanism of damage of urease and urease-triggered activity of faecal enzymes and secondary pathogens. To study the effect of urease inhibition on preventing IAD skin damage. Methods Five separate studies were made using ex vivo porcine skin and in vivo human skin models. Measurements of the change in skin barrier function were made using skin impedance, trans-epidermal water loss (TEWL), stratum corneum moisture and pH. Skin was exposed to artificial urine, inoculated with various microbes, enzymes and chemicals to examine the influence of: 1) urease-positive Proteus mirabilis 2) ammonia, 3) combination of P. mirabilis and a faecal enzyme, trypsin, 4) combination of P. mirabilis and opportunistic pathogens, Candida albicans and Staphylococcus aureus, 5) inhibition of urease using acetohydroxamic acid (AHA) on barrier function. Results The urease-mediated production of ammonia had two principal effects: it elevated skin pH and caused inflammation, leading to significant breakdown in skin (stratum corneum) barrier function. Urease was found to further increase the activity of faecal enzymes and opportunistic pathogens, due to elevated skin pH. The urease inhibitor, AHA, was shown to have significantly reduced damage to skin barrier function, measured as its electrical resistance. Conclusions Targeted therapeutic strategies should be developed to prevent the manifestation of IAD, rather than creating a generic barrier between skin and urine/faeces. Urease has been identified as a crucial component in the manifestation of IAD, due to its role in the production of ammonia. Urease inhibition provides a promising therapeutic target to halt the progression of IAD.
Collapse
|
14
|
Aguzie IO, Obioha AM, Unachukwu CE, Okpasuo OJ, Anunobi TJ, Ugwu KO, Ubachukwu PO, Dibua UME. Hand contamination and hand hygiene knowledge and practices among commercial transport users after the SARS-CoV-2 virus (COVID-19) scare, Enugu State, Nigeria. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002627. [PMID: 38820394 PMCID: PMC11142581 DOI: 10.1371/journal.pgph.0002627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Contaminated hands are one of the most common modes of microorganism transmission that are responsible for many associated infections in healthcare, food industries, and public places such as transportation parks. Public health approaches during COVID-19 pandemic have shown that hand hygiene practices and associated knowledge are critical measure to control the spread of infectious agent. Hence, assessment of commercial transport users' knowledge, belief and practices on hand hygiene, and potential contamination with infectious agents which is the aim of the study, aligns with general health concern of quantifying contamination risk levels to predict disease outbreaks. This study utilized a randomized sampling approach to select 10 frequently used commercial parks within two districts in the State: Enugu and Nsukka. The parameters analysed include a cross-sectional questionnaire survey, hand swab and hand washed samples collected from dominant hand of participants. A total of 600 participants responded to the questionnaire survey, while 100 participants' hand swabs were examined for microbial contamination. This study recorded a high prevalence of fungal (90.0%) and bacterial (87.0%) species; 20 species of fungus were identified with prevalence range of 1% to 14%; 21 bacterial species were isolated with prevalence range of 1% to 16%. These species were identified as either opportunistic, non-invasive, or pathogenic, which may constitute a health concern amongst immunocompromised individuals within the population. Aspergillus spp. (14%), was the most common fungal species that was exclusively found amongst Nsukka commercial users, while E. coli was the most prevalent isolated bacterial species amongst Nsukka (12%) and Enugu (20%) commercial park users. Prevalence of fungal contamination in Nsukka (94.0%; 47/50) and Enugu (86.0%; 43/50) were both high. Prevalence of bacterial contamination was higher in Enugu than Nsukka but not significantly (47[94.0%] vs. 40[80.0%], p = 0.583). A greater number of participants (99.3%) were aware of the importance of hand hygiene, however with low compliance rate aside "after using the toilet" (80%) and "before eating" (90%), other relevant hand washing and sanitizing practices were considered less important. With these observations, we can emphatically say that despite the COVID-19 scare, commercial park users within the sampled population do not efficiently practice quality hand wash and hygiene measures, hence, risking the widespread of infectious agents in situation of disease outbreak or among immunocompromised individuals.
Collapse
Affiliation(s)
- Ifeanyi O. Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Ahaoma M. Obioha
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Chisom E. Unachukwu
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Onyekachi J. Okpasuo
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Toochukwu J. Anunobi
- Department of Science Laboratory Technology, Federal Polytechnic, Idah, Kogi State, Nigeria
| | - Kenneth O. Ugwu
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Patience O. Ubachukwu
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Uju M. E. Dibua
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
15
|
Resci I, Zavatta L, Piva S, Mondo E, Albertazzi S, Nanetti A, Bortolotti L, Cilia G. Predictive statistical models for monitoring antimicrobial resistance spread in the environment using Apis mellifera (L. 1758) colonies. ENVIRONMENTAL RESEARCH 2024; 248:118365. [PMID: 38301758 DOI: 10.1016/j.envres.2024.118365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rise of antimicrobial resistance (AMR) is one of the most relevant problems for human and animal health. According to One Health Approach, it is important to regulate the use of antimicrobials and monitor the spread of AMR in the environment as well. Apis mellifera (L. 1758) colonies were used as bioindicators thanks to their physical and behavioural characteristics. During their foraging flights, bees can intercept small particles, including atmospheric particulate matter, etc., and also microorganisms. To date, the antimicrobial surveillance network is limited to the sanitary level but lacks into environmental context. This study aimed to evaluate the use of A. mellifera colonies distributed throughout the Emilia-Romagna region (Italy) as indicators of environmental antimicrobial-resistant bacteria. This was performed by creating a statistical predictive model that establishes correlations between environmental characteristics and the likelihood of isolating specific bacterial genera and antimicrobial-resistant strains. A total of 608 strains were isolated and tested for susceptibility to 19 different antimicrobials. Aztreonam-resistant strains were significantly related to environments with sanitary structures, agricultural areas and wetlands, while urban areas present a higher probability of trimethoprim/sulfamethoxazole-resistant strains isolation. Concerning genera, environments with sanitary structures and wetlands are significantly related to the genera Proteus spp., while the Escherichia spp. strains can be probably isolated in industrial environments. The obtained models showed maximum values of Models Accuracy and robustness (R2) of 55 % and 24 %, respectively. The results indicate the efficacy of utilizing A. mellifera colonies as valuable bioindicators for estimating the prevalence of AMR in environmentally disseminated bacteria. This survey can be considered a good basis for the development of further studies focused on monitoring both sanitary and animal pathology, creating a specific network in the environments of interest.
Collapse
Affiliation(s)
- Ilaria Resci
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; Department of Veterinary Sciences, University of Bologna, Via Tolara di Sopra, 43, 40064 Ozzano Dell'Emilia (BO), Italy
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy; DISTAL-Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Silvia Piva
- Department of Veterinary Sciences, University of Bologna, Via Tolara di Sopra, 43, 40064 Ozzano Dell'Emilia (BO), Italy
| | - Elisabetta Mondo
- Department of Veterinary Sciences, University of Bologna, Via Tolara di Sopra, 43, 40064 Ozzano Dell'Emilia (BO), Italy
| | - Sergio Albertazzi
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy
| | - Laura Bortolotti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128 Bologna, Italy.
| |
Collapse
|
16
|
Chakkour M, Hammoud Z, Farhat S, El Roz A, Ezzeddine Z, Ghssein G. Overview of Proteus mirabilis pathogenicity and virulence. Insights into the role of metals. Front Microbiol 2024; 15:1383618. [PMID: 38646633 PMCID: PMC11026637 DOI: 10.3389/fmicb.2024.1383618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Proteus mirabilis is a Gram-negative bacterium with exclusive molecular and biological features. It is a versatile pathogen acclaimed for its distinct urease production, swarming behavior, and rapid multicellular activity. Clinically, P. mirabilis is a frequent pathogen of the human urinary system where it causes urinary tract infections (UTIs) and catheter-associated urinary tract infections (CAUTIs). This review explores the epidemiology, risk factors, clinical manifestations, and treatment of P. mirabilis infections, emphasizing its association with UTIs. The bacterium's genome analysis revealed the presence of resistance genes against commonly used antibiotics, an antibiotic-resistant phenotype that poses a serious clinical challenge. Particularly, the emergence of extended-spectrum β-lactamases (ESBLs) and carbapenemases resistant P. mirabilis strains. On a molecular level, P. mirabilis possesses a wide array of virulence factors including the production of fimbriae, urease, hemolysins, metallophores, and biofilm formation. This review thoroughly tackles a substantial gap in understanding the role of metallophores in shaping the virulence factors of P. mirabilis virulence. Siderophores, iron metal chelating and transporting metallophores, particularly contribute to the complex pathogenic strategies, displaying a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Zeinab Hammoud
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Solay Farhat
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Ali El Roz
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde, Lebanon
| | - Zeinab Ezzeddine
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde, Lebanon
| | - Ghassan Ghssein
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde, Lebanon
| |
Collapse
|
17
|
Egbule OS, Konye OP, Iweriebor BC. Assessment of Biofilm Forming Capability and Antibiotic Resistance in Proteus mirabilis Colonizing Indwelling Catheter. Pak J Biol Sci 2024; 27:268-275. [PMID: 38840467 DOI: 10.3923/pjbs.2024.268.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
<b>Background and Objective:</b> Urinary tract infections from the use of an indwelling urinary catheter are one of the most common infections caused by <i>Proteus mirabilis</i>. Due to their biofilm-producing capacity and the increasing antimicrobial resistance in this microorganism, this study aimed to determine the prevalence, biofilm-producing capacity, antimicrobial resistance patterns, multidrug resistance and plasmid mediated resistance of the recovered isolates. <b>Materials and Methods:</b> A total of 50 urinary samples were collected from May to August, 2018 from patients on indwelling urinary catheters. Using routine microbiological and biochemical methods, 37 <i>P. mirabilis</i> were isolated. Biofilm forming capability was determined among the isolates using the tube method while antimicrobial susceptibility and plasmid curing were also performed. <b>Results:</b> All isolates were biofilm producers with 17(46%) being moderate producers while 20(54%) were strong biofilm formers. The study isolates exhibited a high resistance rate to empiric antibiotics, including ceftazidime (75.8%), cefuroxime (54.5%), ampicillin (69.7%) and amoxicillin-clavulanic acid (51.5%). Low resistance was seen in the fluoroquinolones, gentamicin and nitrofurantoin. Plasmid curing experiment revealed that most isolates lost their resistance indicating that resistance was borne on plasmids. Plasmid carriage is likely the reason for the high MDR rate of 56.8% observed. <b>Conclusion:</b> These findings necessitate the provision of infection control programs which will guide and implement policies.
Collapse
|
18
|
Li T, Ma X, Wang T, Tian W, Liu J, Shen W, Liu Y, Li Y, Zhang X, Ma J, Zhang X, Ma J, Wang H. Clostridium butyricum inhibits the inflammation in children with primary nephrotic syndrome by regulating Th17/Tregs balance via gut-kidney axis. BMC Microbiol 2024; 24:97. [PMID: 38521894 PMCID: PMC10960420 DOI: 10.1186/s12866-024-03242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Primary nephrotic syndrome (PNS) is a common glomerular disease in children. Clostridium butyricum (C. butyricum), a probiotic producing butyric acid, exerts effective in regulating inflammation. This study was designed to elucidate the effect of C. butyricum on PNS inflammation through the gut-kidney axis. METHOD BALB/c mice were randomly divided into 4 groups: normal control group (CON), C. butyricum control group (CON+C. butyricum), PNS model group (PNS), and PNS with C. butyricum group (PNS+C. butyricum). The PNS model was established by a single injection of doxorubicin hydrochloride (DOX) through the tail vein. After 1 week of modeling, the mice were treated with C. butyricum for 6 weeks. At the end of the experiment, the mice were euthanized and associated indications were investigated. RESULTS Since the successful modeling of the PNS, the 24 h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), urine urea nitrogen (UUN), urine creatinine (UCr), lipopolysaccharides (LPS), pro-inflammatory interleukin (IL)-6, IL-17A were increased, the kidney pathological damage was aggravated, while a reduction of body weights of the mice and the anti-inflammatory IL-10 significantly reduced. However, these abnormalities could be dramatically reversed by C. butyricum treatment. The crucial Th17/Tregs axis in PNS inflammation also was proved to be effectively regulated by C. butyricum treatment. This probiotic intervention notably affected the expression levels of signal transducer and activator of transcription 3 (STAT3), Heme oxygenase-1 (HO-1) protein, and retinoic acid-related orphan receptor gamma t (RORγt). 16S rRNA sequencing showed that C. butyricum could regulate the composition of the intestinal microbial community and found Proteobacteria was more abundant in urine microorganisms in mice with PNS. Short-chain fatty acids (SCFAs) were measured and showed that C. butyricum treatment increased the contents of acetic acid, propionic acid, butyric acid in feces, acetic acid, and valeric acid in urine. Correlation analysis showed that there was a closely complicated correlation among inflammatory indicators, metabolic indicators, microbiota, and associated metabolic SCFAs in the gut-kidney axis. CONCLUSION C. butyricum regulates Th17/Tregs balance via the gut-kidney axis to suppress the immune inflammatory response in mice with PNS, which may potentially contribute to a safe and inexpensive therapeutic agent for PNS.
Collapse
Affiliation(s)
- Ting Li
- Department of Pediatrics, The First Clinical College of Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaolong Ma
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Ting Wang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Wenyan Tian
- Department of Gastroenterology, The First Clinical College of Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jian Liu
- Department of Hepatobiliary, The First Clinical College of Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenke Shen
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Liu
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yiwei Li
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoxu Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Junbai Ma
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China.
| | - Jinhai Ma
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
19
|
Ramatla T, Ramaili T, Lekota K, Mileng K, Ndou R, Mphuthi M, Khasapane N, Syakalima M, Thekisoe O. Antibiotic resistance and virulence profiles of Proteus mirabilis isolated from broiler chickens at abattoir in South Africa. Vet Med Sci 2024; 10:e1371. [PMID: 38357843 PMCID: PMC10867704 DOI: 10.1002/vms3.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Proteus mirabilis has been identified as an important zoonotic pathogen, causing several illnesses such as diarrhoea, keratitis and urinary tract infections. OBJECTIVE This study assessed the prevalence of P. mirabilis in broiler chickens, its antibiotic resistance (AR) patterns, ESBL-producing P. mirabilis and the presence of virulence genes. METHODS A total of 26 isolates were confirmed as P. mirabilis from 480 pooled broiler chicken faecal samples by polymerase chain reaction (PCR). The disk diffusion method was used to evaluate the antibacterial susceptibility test, while nine virulence genes and 26 AR genes were also screened by PCR. RESULTS All 26 P. mirabilis isolates harboured the ireA (siderophore receptors), ptA, and zapA (proteases), ucaA, pmfA, atfA, and mrpA (fimbriae), hlyA and hpmA (haemolysins) virulence genes. The P. mirabilis isolates were resistant to ciprofloxacin (62%) and levofloxacin (54%), while 8 (30.7%) of the isolates were classified as multidrug resistant (MDR). PCR analysis identified the blaCTX-M gene (62%), blaTEM (58%) and blaCTX-M-2 (38%). Further screening for AMR genes identified mcr-1, cat1, cat2, qnrA, qnrD and mecA, 12%, 19%, 12%, 54%, 27% and 8%, respectively for P. mirabilis isolates. The prevalence of the integron integrase intI1 and intI2 genes was 43% and 4%, respectively. CONCLUSIONS The rise of ciprofloxacin and levofloxacin resistance, as well as MDR strains, is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Furthermore, because ESBL-producing P. mirabilis has the potential to spread to humans, the presence of blaCTX -M -producing P. mirabilis in broilers should be kept under control. This is the first study undertaken to isolate P. mirabilis from chicken faecal samples and investigate its antibiotic resistance status as well as virulence profiles in South Africa.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
- Gastrointestinal Research UnitDepartment of SurgerySchool of Clinical MedicineUniversity of the Free StateBloemfonteinSouth Africa
| | - Taole Ramaili
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Kealeboga Mileng
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Rendani Ndou
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Malekoba Mphuthi
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Ntelekwane Khasapane
- Department of Life SciencesCentre for Applied Food Safety and BiotechnologyCentral University of TechnologyBloemfonteinSouth Africa
| | - Michelo Syakalima
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
- Department of Disease ControlSchool of Veterinary MedicineUniversity of ZambiaLusakaZambia
| | - Oriel Thekisoe
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
20
|
Han Y, Gao YF, Xu HT, Li JP, Li C, Song CL, Lei CW, Chen X, Wang Q, Ma BH, Wang HN. Characterization and risk assessment of novel SXT/R391 integrative and conjugative elements with multidrug resistance in Proteus mirabilis isolated from China, 2018-2020. Microbiol Spectr 2024; 12:e0120923. [PMID: 38197656 PMCID: PMC10871549 DOI: 10.1128/spectrum.01209-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 11/09/2023] [Indexed: 01/11/2024] Open
Abstract
Proteus mirabilis can transfer transposons, insertion sequences, and gene cassettes to the chromosomes of other hosts through SXT/R391 integrative and conjugative elements (ICEs), significantly increasing the possibility of antibiotic resistance gene (ARG) evolution and expanding the risk of ARGs transmission among bacteria. A total of 103 strains of P. mirabilis were isolated from 25 farms in China from 2018 to 2020. The positive detection rate of SXT/R391 ICEs was 25.2% (26/103). All SXT/R391 ICEs positive P. mirabilis exhibited a high level of overall drug resistance. Conjugation experiments showed that all 26 SXT/R391 ICEs could efficiently transfer to Escherichia coli EC600 with a frequency of 2.0 × 10-7 to 6.0 × 10-5. The acquired ARGs, genetic structures, homology relationships, and conservation sequences of 26 (19 different subtypes) SXT/R391 ICEs were investigated by high-throughput sequencing, whole-genome typing, and phylogenetic tree construction. ICEPmiChnHBRJC2 carries erm (42), which have never been found within an SXT/R391 ICE in P. mirabilis, and ICEPmiChnSC1111 carries 19 ARGs, including clinically important cfr, blaCTX-M-65, and aac(6')-Ib-cr, making it the ICE with the most ARGs reported to date. Through genetic stability, growth curve, and competition experiments, it was found that the transconjugant of ICEPmiChnSCNNC12 did not have a significant fitness cost on the recipient bacterium EC600 and may have a higher risk of transmission and dissemination. Although the transconjugant of ICEPmiChnSCSZC20 had a relatively obvious fitness cost on EC600, long-term resistance selection pressure may improve bacterial fitness through compensatory adaptation, providing scientific evidence for risk assessment of horizontal transfer and dissemination of SXT/R391 ICEs in P. mirabilis.IMPORTANCEThe spread of antibiotic resistance genes (ARGs) is a major public health concern. The study investigated the prevalence and genetic diversity of integrative and conjugative elements (ICEs) in Proteus mirabilis, which can transfer ARGs to other hosts. The study found that all of the P. mirabilis strains carrying ICEs exhibited a high level of drug resistance and a higher risk of transmission and dissemination of ARGs. The analysis of novel multidrug-resistant ICEs highlighted the potential for the evolution and spread of novel resistance mechanisms. These findings emphasize the importance of monitoring the spread of ICEs carrying ARGs and the urgent need for effective strategies to combat antibiotic resistance. Understanding the genetic diversity and potential for transmission of ARGs among bacteria is crucial for developing targeted interventions to mitigate the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Feng Gao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - He-ting Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jin-Peng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Cai-Liang Song
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Chang-Wei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xuan Chen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Qin Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Bo-Heng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hong-Ning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Chang X, Xue S, Li R, Zhang Y. Episyrphus balteatus symbiont variation across developmental stages, living states, two sexes, and potential horizontal transmission from prey or environment. Front Microbiol 2024; 14:1308393. [PMID: 38249471 PMCID: PMC10797133 DOI: 10.3389/fmicb.2023.1308393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Episyrphus balteatus is one representative Syrphidae insect which can provide extensive pollination and pest control services. To date, the symbiont composition and potential acquisition approaches in Syrphidae remain unclear. Methods Herein, we investigated microbiota dynamics across developmental stages, different living states, and two sexes in E. balteatus via full-length 16S rRNA genes sequencing, followed by an attempt to explore the possibility of symbiont transmission from prey Megoura crassicauda to the hoverfly. Results Overall, Proteobacteria and Firmicutes were the dominant bacteria phyla with fluctuating relative abundances across the life stage. Cosenzaea myxofaciens is dominant in adulthood, while Enterococcus silesiacus and Morganella morganii dominate in larvae and pupae of E. balteatus, respectively. Unexpectedly, Serratia symbiotica, one facultative endosymbiont commonly harbored in aphids, was one of the predominant bacteria in larvae of E. balteatus, just behind Enterococcus silesiacus. In addition, S. symbiotica was also surprisingly most dominated in M. crassicauda aphids (92.1% relative abundance), which are significantly higher than Buchnera aphidicola (4.7% relative abundance), the primary obligate symbiont of most aphid species. Approximately 25% mortality was observed among newly emerged adults, of which microbiota was also disordered, similar to normally dying individuals. Sexually biased symbionts and 41 bacteria species with pairwise co-occurrence in E. balteatus and 23 biomarker species for each group were identified eventually. Functional prediction showed symbionts of hoverflies and aphids, both mainly focusing on metabolic pathways. In brief, we comprehensively explored the microbiome in one Syrphidae hoverfly using E. balteatus reared indoors on M. morganii as the model, revealed its dominated symbiont species, identified sexually biased symbionts, and found an aphid facultative endosymbiont inhabited in the hoverfly. We also found that the dominated symbiotic bacteria in M. crassicauda are S. symbiotica other than Buchnera aphidicola. Discussion Taken together, this study provides new valuable resources about symbionts in hoverflies and prey aphids jointly, which will benefit further exploring the potential roles of microbiota in E. balteatus.
Collapse
Affiliation(s)
- Xiao Chang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, China
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
- Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Inte-grated Utilization, Anyang, Henan, China
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, China
| | - Shuang Xue
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
- Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Inte-grated Utilization, Anyang, Henan, China
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, China
| | - Ruimin Li
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
- Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Inte-grated Utilization, Anyang, Henan, China
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, China
| | - Yuanchen Zhang
- School of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
- Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Inte-grated Utilization, Anyang, Henan, China
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Linzhou, China
| |
Collapse
|
22
|
Yang X, Tan AJ, Zheng MM, Feng D, Mao K, Yang GL. Physiological response, microbial diversity characterization, and endophytic bacteria isolation of duckweed under cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166056. [PMID: 37558073 DOI: 10.1016/j.scitotenv.2023.166056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Duckweed is a cadmium (Cd) hyperaccumulator. However, its enrichment characteristics and physiological responses to Cd have not been systematically studied. The physiological responses, enrichment characteristics, diversity of endophytic bacterial communities, and isolation of Cd-resistant endophytes in duckweed (Lemna minor 0014) were studied for different durations and Cd concentrations. The results indicated that peroxidase (POD) and catalase (CAT) activities decreased while superoxide dismutase activity first increased and then decreased with increasing Cd stress duration. POD activities, CAT activities, and O2- increased as Cd concentrations increased. Malondialdehyde content and Cd accumulation in duckweed increased with increasing concentrations and time. This endophytic diversity study identified 488 operational taxonomic units, with the dominant groups being Proteobacteria, Firmicutes, and Actinobacteria. Paenibacillus sp. Y11, a strain tolerant to high concentrations of Cd and capable of significantly promoting duckweed growth, was isolated from the plant. Our study revealed the effects of heavy metals on aquatic plants, providing a theoretical basis for the application of duckweed in water pollution.
Collapse
Affiliation(s)
- Xiao Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ai-Juan Tan
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Meng-Meng Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dan Feng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Kang Mao
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China
| | - Gui-Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China.
| |
Collapse
|
23
|
Palusiak A, Turska-Szewczuk A, Drzewiecka D. Antigenic and Structural Properties of the Lipopolysaccharide of the Uropathogenic Proteus mirabilis Dm55 Strain Classified to a New O85 Proteus Serogroup. Int J Mol Sci 2023; 24:16424. [PMID: 38003613 PMCID: PMC10671486 DOI: 10.3390/ijms242216424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of the study was the serological and structural characterization of the lipopolysaccharide (LPS) O antigen from P. mirabilis Dm55 coming from the urine of a patient from Lodz. The Dm55 LPS was recognized in ELISA only by the O54 antiserum, suggesting a serological distinction of the Dm55 O antigen from all the 84 Proteus LPS serotypes described. The obtained polyclonal rabbit serum against P. mirabilis Dm55 reacted in ELISA and Western blotting with a few LPSs (including O54), but the reactions were weaker than those observed in the homologous system. The LPS of P. mirabilis Dm55 was subjected to mild acid hydrolysis, and the obtained high-molecular-mass O polysaccharide was chemically studied using sugar and methylation analyses, mass spectrometry, and 1H and 13C NMR spectroscopy, including 1H,1H NOESY, and 1H,13C HMBC experiments. The Dm55 O unit is a branched three-saccharide, and its linear fragment contains α-GalpNAc and β-Galp, whereas α-GlcpNAc occupies a terminal position. The Dm55 OPS shares a disaccharide epitope with the Proteus O54 antigen. Due to the structural differences of the studied O antigen from the other described Proteus O polysaccharides, we propose to classify the P. mirabilis Dm55 strain to a new Proteus O85 serogroup.
Collapse
Affiliation(s)
- Agata Palusiak
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Dominika Drzewiecka
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| |
Collapse
|
24
|
Ullah A, Rehman B, Khan S, Almanaa TN, Waheed Y, Hassan M, Naz T, Ul Haq M, Muhammad R, Sanami S, Irfan M, Ahmad S. An In Silico Multi-epitopes Vaccine Ensemble and Characterization Against Nosocomial Proteus penneri. Mol Biotechnol 2023:10.1007/s12033-023-00949-y. [PMID: 37934390 DOI: 10.1007/s12033-023-00949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Proteus penneri (P. penneri) is a bacillus-shaped, gram-negative, facultative anaerobe bacterium that is primarily an invasive pathogen and the etiological agent of several hospital-associated infections. P. penneri strains are naturally resistant to macrolides, amoxicillin, oxacillin, penicillin G, and cephalosporins; in addition, no vaccines are available against these strains. This warrants efforts to propose a theoretical based multi-epitope vaccine construct to prevent pathogen infections. In this research, reverse vaccinology bioinformatics and immunoinformatics approaches were adopted for vaccine target identification and construction of a multi-epitope vaccine. In the first phase, a core proteome dataset of the targeted pathogen was obtained using the NCBI database and subjected to bacterial pan-genome analysis using bacterial pan-genome analysis (BPGA) to predict core protein sequences which were then used to find good vaccine target candidates. This identified two proteins, Hcp family type VI secretion system effector and superoxide dismutase family protein, as promising vaccine targets. Afterward using the IEDB database, different B-cell and T-cell epitopes were predicted. A set of four epitopes "KGSVNVQDRE, NTGKLTGTR, IIHSDSWNER, and KDGKPVPALK" were chosen for the development of a multi-epitope vaccine construct. A 183 amino acid long vaccine design was built along with "EAAAK" and "GPGPG" linkers and a cholera toxin B-subunit adjuvant. The designed vaccine model comprised immunodominant, non-toxic, non-allergenic, and physicochemical stable epitopes. The model vaccine was docked with MHC-I, MHC-II, and TLR-4 immune cell receptors using the Cluspro2.0 web server. The binding energy score of the vaccine was - 654.7 kcal/mol for MHC-I, - 738.4 kcal/mol for MHC-II, and - 695.0 kcal/mol for TLR-4. A molecular dynamic simulation was done using AMBER v20 package for dynamic behavior in nanoseconds. Additionally, MM-PBSA binding free energy analysis was done to test intermolecular binding interactions between docked molecules. The MM-GBSA net binding energy score was - 148.00 kcal/mol, - 118.00 kcal/mol, and - 127.00 kcal/mol for vaccine with TLR-4, MHC-I, and MHC-II, respectively. Overall, these in silico-based predictions indicated that the vaccine is highly promising in terms of developing protective immunity against P. penneri. However, additional experimental validation is required to unveil the real immune response to the designed vaccine.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 2500, Pakistan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Bushra Rehman
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, 1401, Lebanon
| | - Muhammad Hassan
- Department of Pharmacy, Bacha Khan University, Charsadda, 24461, Pakistan
| | - Tahira Naz
- Department of Chemical and Life Sciences, Qurtuba University of Science and Technology, Peshawar, Pakistan
| | - Mehboob Ul Haq
- Department of Pharmacy, Abasyn University, Peshawar, 25000, Pakistan
| | - Riaz Muhammad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 2500, Pakistan
| | - Samira Sanami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32611, USA
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 2500, Pakistan.
- Department of Natural Sciences, Lebanese American University, P.O. Box 36, Beirut, Lebanon.
| |
Collapse
|
25
|
Peng K, Li Y, Wang Q, Yang P, Wang Z, Li R. Integrative conjugative elements mediate the high prevalence of tmexCD3-toprJ1b in Proteus spp. of animal source. mSystems 2023; 8:e0042923. [PMID: 37707055 PMCID: PMC10654056 DOI: 10.1128/msystems.00429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/23/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE The emergence and spread of tmexCD-toprJ have greatly weakened the function of tigecycline. Although studies have demonstrated the significance of Proteus as carriers for tmexCD-toprJ, the epidemic mechanism and characteristics of tmexCD-toprJ in Proteus remain unclear. Herein, we deciphered that the umuC gene in VRIII of SXT/R391 ICEs was a hotspot for the integration of tmexCD3-toprJ1b-bearing mobile genetic elements by genomic analysis. The mobilization and dissemination of tmexCD3-toprJ1b in Proteus were mediated by highly prevalent ICEs. Furthermore, the co-occurrence of tmexCD3-toprJ1b-bearing ICEs with other chromosomally encoded multidrug resistance gene islands warned that the chromosomes of Proteus are significant reservoirs of ARGs. Overall, our results provide significant insights for the prevention and control of tmexCD3-toprJ1b in Proteus.
Collapse
Affiliation(s)
- Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yangfan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiaojun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Pengbin Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
26
|
Yin CM, Niu RG, Wang H, Li XY, Zeng QF, Lan JF. Symbiotic hemolymph bacteria reduce hexavalent chromium to protect the host from chromium toxicity in Procambarus clarkii. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132257. [PMID: 37572611 DOI: 10.1016/j.jhazmat.2023.132257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a cytotoxic heavy metal pollutant that adversely affects all life forms. Interestingly, the crustacean Procambarus clarkii exhibits a relatively high tolerance to heavy metals. The underlying mechanisms remain unclear. In this study, we investigated the role of symbiotic bacteria in P. clarkii in alleviating Cr(VI)-induced damage and explored their potential mechanisms of action. Through transcriptomic analysis, we observed that Cr(VI) activated P. clarkii's antimicrobial immune responses and altered the bacterial composition in the hemolymph. After antibiotic treatment to reduce bacterial populations, Cr(VI)-induced intestinal and liver damage worsened, and crayfish exhibited lower levels of GSH/CAT/SOD activity. The Exiguobacterium, the symbiotic bacteria in the hemolymph of P. clarkii, were proved to be primary contributor to Cr(VI) tolerance. Further investigation suggested that it resists Cr(VI) through the activation of the ABC transporter system and the reduction of Cr(VI) via the reductase gene nfsA. To validate the role of Exiguobacterium in Cr(VI) tolerance, crayfish treated with antibiotics then supplemented with Exiguobacterium H6 and recombinant E. coli (with the nfsA gene), reduced Cr(VI)-induced ovarian damage. Overall, this study revealed that the symbiotic bacteria Exiguobacterium can absorb and reduce hexavalent chromium, mitigating Cr(VI)-induced damage in P. clarkii. These findings provide new insights into hexavalent chromium tolerance mechanisms in crustaceans.
Collapse
Affiliation(s)
- Cheng-Ming Yin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Rui-Geng Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Xian-Yao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Qi-Fan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
27
|
Li Q, Cai Q, Pan L, Tang X, Ling G, Wei Y, Li X, Yang S. Changes in the Microbiome of Sugarcane ( Saccharum spp. Hybrids.) Rhizosphere in Response to Manganese Toxicity. Life (Basel) 2023; 13:1956. [PMID: 37895338 PMCID: PMC10608702 DOI: 10.3390/life13101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Manganese toxicity has limited sugarcane (Saccharum spp. hybrid.) growth and production in acidic soils in south China. The rhizosphere plays an irreplaceable role in plant adaptation to soil abiotic stress, but the responses of the sugarcane rhizosphere to manganese toxicity are still unknown. We designed pot experiments in Mn-rich acidic soil, collected the sugarcane rhizosphere and bulk soil samples, and then investigated the changes in Mn-related soil parameters and microbiome. The results indicated that the water-soluble and exchangeable manganese concentrations in the sugarcane rhizosphere were significantly lower than that in the bulk soil, which was not associated with soil pH changes. In contrast, the number of bacteria and the activity of peroxidase, sucrase, urease, and laccase in the rhizosphere were significantly higher. The 16S rDNA sequencing results showed that the bacterial diversity and quantity along with the abundance of Proteobacteria in the rhizosphere were significantly higher than in the bulk soil, while the abundance of Acidobacteria was lower than in the bulk soil. The soil laccase activity and the number of bacteria decreased significantly with the increase in the manganese toxicity stress. Finally, the relative abundance of proteins associated with manganese transportation and oxidation was significantly higher in the rhizosphere soil. In summary, the Mn-induced response of the rhizosphere is an important mechanism in sugarcane adaptation to manganese toxicity in acidic soil.
Collapse
Affiliation(s)
- Qiuyue Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China (X.T.)
| | - Qiuliang Cai
- Agriculture and Food Engineering College, Baise University, Baise 533000, China
| | - Linjuan Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China (X.T.)
| | - Xinlian Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China (X.T.)
| | - Guizhi Ling
- Institute for New Rural Development, Guangxi University, Nanning 530004, China
| | - Yanyan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China (X.T.)
| | - Xiaofeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China (X.T.)
| | - Shu Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China (X.T.)
| |
Collapse
|
28
|
Erinmez M, Zer Y. Effects of deferoxamine on intrinsic colistin resistance of Proteus mirabilis. Exp Ther Med 2023; 26:459. [PMID: 37614438 PMCID: PMC10443054 DOI: 10.3892/etm.2023.12158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Proteus mirabilis is a common pathogen, which is responsible for urinary tract infections. Iron is a critical element necessary for both humans and pathogens to maintain their biological functions, and iron limitation via chelator agents may be useful in the treatment of infections. The present study aimed to investigate the synergistic interactions between the iron chelator agent deferoxamine (DFO) and the antibacterial drug colistin. The minimum inhibitory concentration (MIC) values of DFO and colistin for P. mirabilis isolates were determined by broth microdilution. The checkerboard technique was used to examine the potential synergy between DFO and colistin. Furthermore, time-kill assays were used for the confirmation of synergy detected by the checkerboard assay, as well as for determining bacteriostatic and bactericidal interactions throughout a 24-h period. As expected, all P. mirabilis isolates were resistant to colistin. DFO did not inhibit P. mirabilis growth when used alone, even at very high doses (10 µg ml-1). Notably, when in combination with DFO, the MIC values of colistin were markedly reduced, and the checkerboard assay results showed synergy between colistin and DFO for all isolates. In addition, in time-kill assays, colistin + DFO exhibited synergistic activity against all strains at most time intervals and concentrations tested. Colistin + DFO showed bactericidal activity at colistin concentrations of 1xMIC and 2xMIC, although a degree of re-growth was observed in one of the strains at 12-24 h. These findings indicated that DFO has the potential for use as an adjunct to colistin through iron sequestration, thus providing synergistic activity to an antibiotic that would not normally be considered a treatment option against P. mirabilis. In vivo experiments in the future may provide useful information on the efficacy of DFO/colistin since these models effectively reflect physiological parameters.
Collapse
Affiliation(s)
- Mehmet Erinmez
- Department of Medical Microbiology, Gaziantep University School of Medicine, 27310 Gaziantep, Turkey
| | - Yasemin Zer
- Department of Medical Microbiology, Gaziantep University School of Medicine, 27310 Gaziantep, Turkey
| |
Collapse
|
29
|
Elhoshi M, El-Sherbiny E, Elsheredy A, Aboulela AG. A correlation study between virulence factors and multidrug resistance among clinical isolates of Proteus mirabilis. Braz J Microbiol 2023; 54:1387-1397. [PMID: 37535261 PMCID: PMC10484824 DOI: 10.1007/s42770-023-01080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
Treatment of Proteus mirabilis infections is a challenge due to the high abundance of virulence factors and the high intrinsic resistance to antimicrobials. Multidrug resistance (MDR) and extensive drug resistance (XDR) further challenge the control of P. mirabilis infection. This study aimed to investigate the correlation between virulence determinants and multidrug resistance in 100 clinical isolates of P. mirabilis collected in Alexandria from December 2019 to June 2021. Susceptibility to antimicrobials was tested by the Kirby Bauer method. Detection of swarming, urease, protease, hemolysin, and biofilm formation was performed phenotypically and by PCR amplification of zapA, flaA, ureC, mrpA, atfA, ucaA, hpmA, and luxS. MDR and XDR were detected in 34% and 5%, respectively. All isolates were positive for motility, swarming, urease, and protease production. Ninety percent were positive for hemolysin production, while 73% formed biofilm. All isolates possessed the ureC and zapA genes. The luxS, flaA, ucaA, hpmA, mrpA, and atfA genes were detected in 99%, 98%, 96% 90%, 89%, and 84%, respectively. The presence of a single biofilm-related gene was statistically correlated with non-biofilm production (P= 0.018). It was concluded that P. mirabilis isolates from catheterized-urine samples were significantly associated with biofilm formation. MDR and virulence were not statistically correlated. A significant positive correlation was detected between some virulence genes in P. mirabilis. Non-MDR isolates of P. mirabilis had a high abundance of virulence factors with no statistically significant difference from MDR. Most of the MDR and all XDR isolates could produce biofilm.
Collapse
Affiliation(s)
- Mai Elhoshi
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eglal El-Sherbiny
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amel Elsheredy
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
30
|
Fusco A, Savio V, Chiaromonte A, Alfano A, D’Ambrosio S, Cimini D, Donnarumma G. Evaluation of Different Activity of Lactobacillus spp. against Two Proteus mirabilis Isolated Clinical Strains in Different Anatomical Sites In Vitro: An Explorative Study to Improve the Therapeutic Approach. Microorganisms 2023; 11:2201. [PMID: 37764044 PMCID: PMC10534642 DOI: 10.3390/microorganisms11092201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) and catheter-associated UTIs (CAUTIs) are the principal hospital-acquired infections. Between these, bacterial prostatitis is believed to be the leading cause of recurrent UTIs in men under 50 years of age and is often unresponsive to antibiotic treatment. Proteus mirabilis is more commonly associated with UTIs in these abnormalities, especially in patients undergoing catheterization. Lactobacillus spp. are an important component of the human microbiota and occur in large quantities in foods. Probiotics are proposed as an alternative to antibiotic therapy in the treatment of urinary tract infections. In addition to their ability to produce antimicrobial metabolites, they have immunomodulatory activity and do not cause side effects. For this reason, the combination of probiotic microorganisms and conventional drugs was considered. The aim of this work was to select the most active Lactobacillus strains against two clinical isolates of P. mirabilis on bladder and prostatic epithelium, potentially exploitable to improve the clinical management of UTIs.
Collapse
Affiliation(s)
- Alessandra Fusco
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.S.); (A.C.); (A.A.); (D.C.)
| | | | | | | | | | | | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.S.); (A.C.); (A.A.); (D.C.)
| |
Collapse
|
31
|
Eke M, Tougeron K, Hamidovic A, Tinkeu LSN, Hance T, Renoz F. Deciphering the functional diversity of the gut microbiota of the black soldier fly (Hermetia illucens): recent advances and future challenges. Anim Microbiome 2023; 5:40. [PMID: 37653468 PMCID: PMC10472620 DOI: 10.1186/s42523-023-00261-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Bioconversion using insects is a promising strategy to convert organic waste (catering leftovers, harvest waste, food processing byproducts, etc.) into biomass that can be used for multiple applications, turned into high added-value products, and address environmental, societal and economic concerns. Due to its ability to feed on a tremendous variety of organic wastes, the black soldier fly (Hermetia illucens) has recently emerged as a promising insect for bioconversion of organic wastes on an industrial scale. A growing number of studies have highlighted the pivotal role of the gut microbiota in the performance and health of this insect species. This review aims to provide a critical overview of current knowledge regarding the functional diversity of the gut microbiota of H. illucens, highlighting its importance for bioconversion, food safety and the development of new biotechnological tools. After providing an overview of the different strategies that have been used to outline the microbial communities of H. illucens, we discuss the diversity of these gut microbes and the beneficial services they can provide to their insect host. Emphasis is placed on technical strategies and aspects of host biology that require special attention in the near future of research. We also argue that the singular digestive capabilities and complex gut microbiota of H. illucens make this insect species a valuable model for addressing fundamental questions regarding the interactions that insects have evolved with microorganisms. By proposing new avenues of research, this review aims to stimulate research on the microbiota of a promising insect to address the challenges of bioconversion, but also fundamental questions regarding bacterial symbiosis in insects.
Collapse
Affiliation(s)
- Maurielle Eke
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Kévin Tougeron
- UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, 80039 France
- Research Institute in Bioscience, Université de Mons, Mons, 7000 Belgium
| | - Alisa Hamidovic
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Leonard S. Ngamo Tinkeu
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - François Renoz
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634 Japan
| |
Collapse
|
32
|
Chalmers G, Anderson REV, Murray R, Topp E, Boerlin P. Characterization of Proteus mirabilis and associated plasmids isolated from anaerobic dairy cattle manure digesters. PLoS One 2023; 18:e0289703. [PMID: 37561682 PMCID: PMC10414651 DOI: 10.1371/journal.pone.0289703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Proteus mirabilis is an opportunistic pathogen associated with a variety of human infections, including urinary tract infections. The prevalence of P. mirabilis in foods of animal origin and in the manure by-products created in animal production is not well documented. Further, the prevalence and persistence of extended-spectrum cephalosporin (ESC) resistant P. mirabilis is largely unknown. In this study, we characterized ESC-resistant P. mirabilis recovered from various stages of dairy manure anaerobic digestion. Isolates were screened by PCR for blaCTX-M, blaCMY and blaSHV, and antimicrobial susceptibility testing was performed. Fifty-six P. mirabilis carrying CTX-M were sequenced with short and long read sequencing technologies, and the assembled chromosomes and plasmids were compared. ESC-resistant Proteus was found in four of the six manure digesters, an indication that not all digesters were colonized with resistant strains. Both CTX-M-1 and CTX-M-15 plasmids were found in P. mirabilis isolates. Transfer of plasmid DNA by conjugation was also explored, with ESC-resistance plasmids able to transfer to Escherichia coli at high frequency. We concluded that P. mirabilis can harbour and transfer ESC-resistance genes and plasmids, and may be an overlooked reservoir of antimicrobial resistance.
Collapse
Affiliation(s)
- Gabhan Chalmers
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Rebecca E. V. Anderson
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Roger Murray
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
33
|
Grahl MVC, Andrade BDS, Perin APA, Neves GA, Duarte LDS, Uberti AF, Hohl KS, Follmer C, Carlini CR. Could the Urease of the Gut Bacterium Proteus mirabilis Play a Role in the Altered Gut-Brain Talk Associated with Parkinson's Disease? Microorganisms 2023; 11:2042. [PMID: 37630602 PMCID: PMC10459573 DOI: 10.3390/microorganisms11082042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Intestinal dysbiosis seems to play a role in neurodegenerative pathologies. Parkinson's disease (PD) patients have an altered gut microbiota. Moreover, mice treated orally with the gut microbe Proteus mirabilis developed Parkinson's-like symptoms. Here, the possible involvement of P. mirabilis urease (PMU) and its B subunit (PmUreβ) in the pathogenesis of PD was assessed. Purified proteins were given to mice intraperitoneally (20 μg/animal/day) for one week. Behavioral tests were conducted, and brain homogenates of the treated animals were subjected to immunoassays. After treatment with PMU, the levels of TNF-α and IL-1β were measured in Caco2 cells and cellular permeability was assayed in Hek 293. The proteins were incubated in vitro with α-synuclein and examined via transmission electron microscopy. Our results showed that PMU treatment induced depressive-like behavior in mice. No motor deficits were observed. The brain homogenates had an increased content of caspase-9, while the levels of α-synuclein and tyrosine hydroxylase decreased. PMU increased the pro-inflammatory cytokines and altered the cellular permeability in cultured cells. The urease, but not the PmUreβ, altered the morphology of α-synuclein aggregates in vitro, forming fragmented aggregates. We concluded that PMU promotes pro-inflammatory effects in cultured cells. In vivo, PMU induces neuroinflammation and a depressive-like phenotype compatible with the first stages of PD development.
Collapse
Affiliation(s)
- Matheus V. C. Grahl
- Graduate Program in Medicine and Health Sciences and Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (M.V.C.G.); (A.F.U.)
- School of Health Sciences, University Center Ritter dos Reis, Porto Alegre 90840-440, RS, Brazil
| | - Brenda da Silva Andrade
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, RJ, Brazil; (B.d.S.A.); (G.A.N.); (L.d.S.D.)
| | - Ana Paula A. Perin
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil;
| | - Gilda A. Neves
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, RJ, Brazil; (B.d.S.A.); (G.A.N.); (L.d.S.D.)
| | - Laura de Souza Duarte
- Laboratory of Molecular Pharmacology, Institute of Biomedical Sciences, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro 21944-590, RJ, Brazil; (B.d.S.A.); (G.A.N.); (L.d.S.D.)
| | - Augusto Frantz Uberti
- Graduate Program in Medicine and Health Sciences and Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil; (M.V.C.G.); (A.F.U.)
| | - Kelvin Siqueira Hohl
- Graduate Program in Biological Sciences—Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil;
| | - Cristian Follmer
- Laboratory of Biological Chemistry of Neurodegenerative Disorders, Institute of Chemistry, Department of Physical-Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil;
| | - Celia Regina Carlini
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Institute of Science and Technology in Brain Diseases, Excitotoxity and Neuroprotection (INCT-EN), Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
34
|
Sánchez-Gallego J, Atencio L, Pérez J, Dupuy O, Díaz-Ferguson E, Godoy-Vitorino F. Assessment of Vibrio populations in a transect of Rhizophora mangle in Punta Galeta, Panamá: culture-dependent analyses reveal biotechnological applications. REV BIOL TROP 2023; 71:e50983. [PMID: 39175646 PMCID: PMC11340860 DOI: 10.15517/rev.biol.trop..v71i1.50983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Introduction Rhizophora mangle is considered an ecological niche for microorganisms with potentially novel and complex degrading enzymes. Objective To characterize Vibrio populations using culture-dependent methods, using samples collected from sediments and water along a red mangrove transect composed of three sites. Methods Strains were characterized according to their distribution, capacity to degrade of organic matter and other environmental parameters. Additionally the sequence diversity was assessed using 16S rRNA sequencing. Results Bacterial densities were strongly associated with temperature and salinity. A total of 87 good-quality sequences representing the isolates from the three sites, were binned into eight OTUs (Operational taxonomic units). Taxonomic assignment indicated that the dominant members were Vibrionaceae. Beta diversity analyses showed that bacterial communities clustered by sample source rather than spatial distribution, and that alpha diversity was found to be higher in water than in sediment. Three percent of the strains from water samples could degrade carboxyl-methyl cellulose with the smallest enzymatic indexes compared to 4 % of the strains from sediment samples that showed the highest enzymatic indexes. Two strains identified as Vibrio agarivorans degraded cellulose and agarose, producing the highest enzymatic indexes. Conclusions We found higher bacterial densities and diversity in the bacterial communities of the water samples compared to the sediment, with different OTUs including those similar to Ferrimonas, Providencia, or Shewanella which were not isolated in the sediment. Vibrio OTUs were shown to degrade cellulose in both sample types. The results of this study highlight the importance of red mangroves as Vibrio habitats and as reservoirs of potential enzyme sources with biotechnological applications.
Collapse
Affiliation(s)
- Joel Sánchez-Gallego
- Facultad de Ciencias de la Salud-William Gorgas, Universidad Latina de Panamá, Panamá
- Estación Científica Coiba (COIBA-AIP), Clayton, Ciudad del Saber, Panamá
| | - Librada Atencio
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama
| | - Jacinto Pérez
- Facultad de Ciencias de la Salud-William Gorgas, Universidad Latina de Panamá, Panamá
| | - Omar Dupuy
- Facultad de Ciencias de la Salud-William Gorgas, Universidad Latina de Panamá, Panamá
| | | | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, Microbiome Laboratory, University of Puerto Rico, School of Medicine, San Juan, Puerto Rico, USA
| |
Collapse
|
35
|
Mathlum Al-Khafaji K, Ayyal Mutar Alrashedi A, Al-Rubaeaee AA. Molecular Analysis of Virulence Genes HpmB and rsbA among proteus Species Isolated from Different Infectious Cases in Iraq. ARCHIVES OF RAZI INSTITUTE 2023; 78:1295-1303. [PMID: 38226368 PMCID: PMC10787923 DOI: 10.32592/ari.2023.78.4.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2024]
Abstract
Proteus species (spp.) is considered one of the widely spread pathogens worldwide. Proteus spp. can be detected in contaminated water, soil, and manure, aiding the decomposition of organic substances from animals. Proteus is a gram-negative bacterium that causes a wide range of human illnesses. This study aimed to find some virulence genes in Proteus spp. from different sources, including the laboratories of government hospitals in Karbala, Al-Hussies, and Al-Muthanna, Iraq. Fifty swab samples were collected from patients' wounds, ears, and sputum. Clinicians collected swab samples for identification. In total, 17 sputum samples, 13 ear samples, and 20 wound samples were collected from 27 (54%) females and 23 (46%) males. The virulence genes hpmB and rsbA were identified after the genomic diagnosis of Proteus spp. Thirteen Proteus isolates were identified using the hpmB primer, and 16 isolates were identified using the rsbA primer. The DNA sequence analysis of rsbA and hpmB genes revealed that all samples shared 99.52% identity for the rsbA gene, whereas the hpmB gene differed from one sample to the next. The sequence results are available at the NCBI under the accession numbers (LC661938) and (LC661939), respectively.
Collapse
|
36
|
Short FS, Lôbo-Hajdu G, Guimarães SM, Laport MS, Silva R. Antimicrobial-Resistant Bacteria from Free-Living Green Turtles ( Chelonia mydas). Antibiotics (Basel) 2023; 12:1268. [PMID: 37627688 PMCID: PMC10451770 DOI: 10.3390/antibiotics12081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Bioindicator species are used to assess the damage and magnitude of possible impacts of anthropic origin on the environment, such as the reckless consumption of antimicrobials. Chelonia mydas has several characteristics that make it a suitable bioindicator of marine pollution and of the presence of pathogens that cause diseases in humans. This study aimed to investigate the green sea turtle as a reservoir of resistant bacteria, mainly because C. mydas is the most frequent sea turtle species in Brazilian coastal regions and, consequently, under the intense impact of anthropic factors. Free-living green sea turtles ranging from 42.8 to 92 cm (average = 60.7 cm) were captured from Itaipú Beach, Brazil. Cloaca samples (characterizing the gastrointestinal tract) and neck samples (representing the transient microbiota) were collected. Bacterial species were identified, and their was resistance associated with the antimicrobials cephalothin, ciprofloxacin, gentamicin, tetracycline, and vancomycin. Citrobacter braaki, Klebsiella oxytoca, K. variicola and Proteus mirabilis were found resistant to cephalothin and Morganella morganii and Enterococcus faecalis tetracycline-resistant isolates in cloaca samples. In neck samples, species resistant to tetracycline were Salmonella sp., Serratia marcescens, S. ureylitica and Proteus mirabilis. This data reinforces that the green turtle is a bioindicator of antimicrobial resistance (AMR).
Collapse
Affiliation(s)
- Fernanda S. Short
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gisele Lôbo-Hajdu
- Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil;
| | - Suzana M. Guimarães
- Projeto Aruanã, Instituto de Pesquisas Ambientais Littoralis, Rio de Janeiro 24320-330, Brazil;
| | - Marinella S. Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Rosane Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
37
|
Paul A, Kulkarni SS. Total Synthesis of the Repeating Units of Proteus penneri 26 and Proteus vulgaris TG155 via a Common Disaccharide. Org Lett 2023; 25:4400-4405. [PMID: 37284758 DOI: 10.1021/acs.orglett.3c01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we report the first total synthesis of the trisaccharide and tetrasaccharide repeating units of P. penneri 26 and P. vulgaris TG155, respectively, having a common disaccharide unit, 3-α-l-QuipNAc-(1 → 3)-α-d-GlcpNAc-(1 →. Striking features of the targets are the presence of rare sugar units, l-quinovosamine and l-rhamnosamine, all joined through α-glycosidic linkages. Major challenges in the formation of 1,2-cis glycosidic linkages in the case of d-glucosamine, l-quinovosamine, and d-galactosamine have been addressed.
Collapse
Affiliation(s)
- Ankita Paul
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
38
|
Shobirin Meor Hussin A, Mustafa S, Ming Gan H, Hashim AM, Hussain N. Bacterial community structure, predicted metabolic activities, and formation of volatile compounds attributed to Malaysian fish sauce flavour. Food Chem 2023; 426:136568. [PMID: 37437500 DOI: 10.1016/j.foodchem.2023.136568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 07/14/2023]
Abstract
The fermentation of Malaysian fish sauce (budu) varies from one to twelve months depending on the producer, resulting in inconsistent quality. The microbiota, their predicted metabolic pathways and volatile metabolites profiles were determined at different stages of budu fermentation. Budu fermented for 1 and 3 months were characterized by the presence of Gram negative Enterobacterales, Gammaproteobacteria, and Fusobacteriaceae, which continuously decrease in abundance over fermentation time. The metabolic pathways prediction grouped 1- and 3- month budu in a cluster enriched with degradation reactions. 6-month budu were dominated by Halanaerobium and Staphylococcus, while the 12-month were dominated by Lentibacillus, Bacilli, and Halomonas. Biosynthesis-type predicted pathways involving protein and lipid derivatives were enriched in 6- and 12-month fermented budu, accumulating 2,6-dimethylpyrazine, methyl 2-ethyldecanoate, 2-phenylacetaldehyde, 3-methylbutanal, and 3-methylbutanoic acid. These compounds may indicate budu maturity and quality. This result may assist as a reference for quality control and fermentation monitoring.
Collapse
Affiliation(s)
- Anis Shobirin Meor Hussin
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Han Ming Gan
- Department of Biological Sciences, Sunway University, 47500 Petaling Jaya, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norhayati Hussain
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
39
|
Behera S, Tanuku NRS, Moturi SRK, Loganathan J, Modali S, Tadi SR, Rachuri V. Huge anthropogenic microbial load during southwest monsoon season in coastal waters of Kakinada, Bay of Bengal. MARINE POLLUTION BULLETIN 2023; 192:114977. [PMID: 37167663 DOI: 10.1016/j.marpolbul.2023.114977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
To examine the influence of anthropogenic activities on the marine ecosystem near the coastal waters of the port city, Kakinada, a study was conducted to investigate the abundance of heterotrophic, indicator and pathogenic bacteria during the spring inter monsoon (SIM) and southwest monsoon (SWM) seasons. A drastic change in the marine bacteria due to the input of allochthonous bacteria during SWM was noticed. An order of magnitude higher abundance of indicators (Escherichia coli and Enterococcus faecalis) and bacterial pathogens (Proteus mirabilis and Pseudomonas aeruginosa) was observed during SWM. In contrast, Chlorophyll-a, heterotrophic bacterial abundance, Aeromonas hydrophila and Klebsiella pneumoniae were higher during SIM. A significant increase in some of the indicator and pathogenic bacterial abundance due to moderate rainfall suggests that the improper drainage system in the city could spread these bacteria, posing a considerable threat to both environment and human health.
Collapse
Affiliation(s)
- Swarnaprava Behera
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Naga Radha Srinivas Tanuku
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sri Rama Krishna Moturi
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| | - Jagadeesan Loganathan
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| | - Sravani Modali
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| | - Satyanarayana Reddy Tadi
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| | - Vivek Rachuri
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawson's Bay Colony, Visakhapatnam 530017, India
| |
Collapse
|
40
|
Mohanty S, Mohapatra PR, Chatterjee D, Venkatachalam P. Pleural Empyema Due to Proteus Mirabilis in an Adult: A Rarely Encountered Clinical Scenario. Cureus 2023; 15:e36690. [PMID: 37113358 PMCID: PMC10127552 DOI: 10.7759/cureus.36690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
The presence of Proteus species in the pleural space is an uncommonly reported entity and is rarely seen even in patients with compromised immune status. We report a case of pleural empyema due to Proteus species in an adult oral cancer patient receiving chemotherapy for academic interest and for generating awareness regarding an expanded pathogenic spectrum of the organism. A 44-year-old salesman, non-smoker and non-alcoholic, presented with sudden-onset shortness of breath, left-sided chest pain, and low-grade fever of one-day duration. He had been recently diagnosed with adenocarcinoma of the tongue and had received two cycles of chemotherapy. After clinical and radiographic evaluation, the patient was diagnosed with left-sided empyema. Following thoracocentesis, the aspirated pus sent for bacterial culture yielded pure growth of Proteus mirabilis. Appropriately modified antibiotic therapy with parenteral piperacillin-tazobactam followed by cefixime, tube drainage, and other supportive therapy resulted in a favorable outcome. After three weeks of hospitalization, the patient was discharged for further planned management of his underlying condition. Though uncommon, the possibility of Proteus species should be kept in mind as a causative agent of thoracic empyema in adults, especially in immunocompromised patients with cancer, diabetes, and renal diseases. The so-called common microorganisms of empyema appear to have altered over time, influenced by anticancer therapy and underlying host immune status. Rapid diagnosis and appropriate antimicrobial therapy usually result in a favorable outcome.
Collapse
|
41
|
Ma S, Shen J, Xu Y, Ding P, Gao X, Pan Y, Wu H, Hu G, He D. Epidemic characteristics of the SXT/R391 integrated conjugative elements in multidrug-resistant Proteus mirabilis isolated from chicken farm. Poult Sci 2023; 102:102640. [PMID: 37068352 PMCID: PMC10130350 DOI: 10.1016/j.psj.2023.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
This study was designed to depict prevalence and antimicrobial resistance characteristics of Proteus mirabilis (P. mirabilis) strains in 4 chicken farms and to probe the transfer mechanism of resistance genes. A total of 187 P. mirabilis isolates were isolated from 4 chicken farms. The susceptibility testing of these isolates to 14 antimicrobials showed that the multidrug resistance (MDR) rate was as high as 100%. The β-lactamase resistance genes blaOXA-1, blaCTX-M-1G, blaCTX-M-9G and colistin resistance gene mcr-1 were highly carried in the P. mirabilis isolates. An MDR strain W47 was selected for whole genome sequencing (WGS) and conjugation experiment. The results showed that W47 carried 23 resistance genes and 64 virulence genes, and an SXT/R391 integrated conjugative elements (ICEs) named ICEPmiChn5 carrying 17 genes was identified in chromosome. ICEPmiChn5 was able to be excised from the chromosome of W47 forming a circular intermediate, but repeated conjugation experiments were unsuccessful. Among 187 P. mirabilis isolates, 144 (77.01%, 144/187) isolates carried ICEPmiChn5-like ICEs, suggesting that ICEs may be the major vector for the transmission of resistance genes among MDR chicken P. mirabilis strains in this study. The findings were conducive to insight into the resistance mechanism of chicken P. mirabilis strains and provide a theoretical basis for the use of antibiotics for the treatment of MDR P. mirabilis infections in veterinary clinic.
Collapse
Affiliation(s)
- Shengnan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiaxing Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yakun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengyun Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiao Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hua Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
42
|
Zhai W, Wang Q, Zhu X, Jia X, Chen L. Pathogenic infection and microbial composition of yellow catfish (Pelteobagrus fulvidraco) challenged by Aeromonas veronii and Proteus mirabilis. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Drzewiecka D, Siwińska M, Senchenkova SN, Levina EA, Shashkov AS, Knirel YA. Structural and Serological Characterization of the O Antigen of Proteus mirabilis Clinical Isolates Classified into a New Proteus Serogroup, O84. Int J Mol Sci 2023; 24:ijms24054699. [PMID: 36902128 PMCID: PMC10003115 DOI: 10.3390/ijms24054699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Two closely related Proteus mirabilis smooth strains, Kr1 and Ks20, were isolated from wound and skin samples, respectively, of two infected patients in central Poland. Serological tests, using the rabbit Kr1-specific antiserum, revealed that both strains presented the same O serotype. Their O antigens are unique among the Proteus O serotypes, which had been described earlier, as they were not recognized in an enzyme-linked immunosorbent assay (ELISA) by a set of Proteus O1-O83 antisera. Additionally, the Kr1 antiserum did not react with O1-O83 lipopolysaccharides (LPSs). The O-specific polysaccharide (OPS, O antigen) of P. mirabilis Kr1 was obtained via the mild acid degradation of the LPSs, and its structure was established via a chemical analysis and one- and two-dimensional 1H and 13C nuclear magnetic resonance (NMR) spectroscopy applied to both initial and O-deacetylated polysaccharides, where most β-2-acetamido-2-deoxyglucose (N-acetylglucosamine) (GlcNAc) residues are non-stoichiometrically O-acetylated at positions 3, 4, and 6 or 3 and 6, and a minority of α-GlcNAc residues are 6-O-acetylated. Based on the serological features and chemical data, P. mirabilis Kr1 and Ks20 were proposed as candidates to a new successive O-serogroup in the genus Proteus, O84, which is another example of new Proteus O serotypes identified lately among serologically differentiated Proteus bacilli infecting patients in central Poland.
Collapse
Affiliation(s)
- Dominika Drzewiecka
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- Correspondence: ; Tel.: +48-42-6354469; Fax: +48-42-6655818
| | - Małgorzata Siwińska
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Sof’ya N. Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Evgeniya A. Levina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander S. Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yuriy A. Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
44
|
Song P, Liu J, Huang P, Han Z, Wang D, Sun N. Diversity and structural analysis of rhizosphere soil microbial communities in wild and cultivated Rhizoma Atractylodis Macrocephalae and their effects on the accumulation of active components. PeerJ 2023; 11:e14841. [PMID: 36811005 PMCID: PMC9939024 DOI: 10.7717/peerj.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/11/2023] [Indexed: 02/18/2023] Open
Abstract
Rhizosphere microorganisms are the main factors affecting the formation of high quality medicinal materials and promoting the accumulation of secondary metabolites. However, the composition, diversity, and function of rhizosphere microbial communities in endangered wild and cultivated Rhizoma Atractylodis Macrocephalae (RAM) and their relationships with active component accumulation have remained unclear. In this study, high-throughput sequencing and correlation analysis were used to study the rhizosphere microbial community diversity (bacteria and fungi) of three RAM species and its correlation with the accumulation of polysaccharides, atractylone, and lactones (I, II, and III). A total of 24 phyla, 46 classes, and 110 genera were detected. The dominant taxa were Proteobacteria, Ascomycota, and Basidiomycota. The microbial communities in both wild and artificially cultivated soil samples were extremely species-rich, but there were some differences in their structure and the relative abundances of microorganism taxa. Meanwhile, the contents of effective components in wild RAM were significantly higher than those in cultivated RAM. Correlation analysis showed that 16 bacterial and 10 fungal genera were positively or negatively correlated with active ingredient accumulation. These results showed that rhizosphere microorganisms could play an important role in component accumulation and might lay a foundation for future research on endangered materials.
Collapse
Affiliation(s)
- Pingping Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Junling Liu
- Key Laboratory of Quality Research and Evaluation of Traditional Chinese Medicine, State Medical Products Administration, Hefei, China
| | - Peng Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Zhili Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Dianlei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Nianxia Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
45
|
Sanches MS, Silva LC, da Silva CR, Montini VH, de Oliva BHD, Guidone GHM, Nogueira MCL, Menck-Costa MF, Kobayashi RKT, Vespero EC, Rocha SPD. Prevalence of Antimicrobial Resistance and Clonal Relationship in ESBL/AmpC-Producing Proteus mirabilis Isolated from Meat Products and Community-Acquired Urinary Tract Infection (UTI-CA) in Southern Brazil. Antibiotics (Basel) 2023; 12:370. [PMID: 36830280 PMCID: PMC9952622 DOI: 10.3390/antibiotics12020370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The present study aimed to evaluate the prevalence of antimicrobial resistance and clonal relationships in Proteus mirabilis isolated from chicken meat, beef, pork, and community-acquired urinary tract infections (UTI-CA). Chicken meat isolates showed the highest multidrug resistance (MDR), followed by those from pork and UTI-CA, whereas beef had relatively few MDR strains. All sources had strains that carried blaCTX-M-65, whereas blaCTX-M-2 and blaCMY-2 were only detected in chicken meat and UTI-CA isolates. This indicates that chicken meat should be considered an important risk factor for the spread of P. mirabilis carrying ESBL and AmpC. Furthermore, ESBL/AmpC producing strains were resistant to a greater number of antimicrobials and possessed more resistance genes than non-producing strains. In addition, the antimicrobial resistance genes qnrD, aac(6')-Ib-cr, sul1, sul2, fosA3, cmlA, and floR were also found. Molecular typing showed a genetic similarity between chicken meat and UTI-CA isolates, including some strains with 100% similarity, indicating that chicken can be a source of P. mirabilis causing UTI-CA. It was concluded that meat, especially chicken meat, can be an important source of dissemination of multidrug-resistant P. mirabilis in the community.
Collapse
Affiliation(s)
- Matheus Silva Sanches
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Caroline Rodrigues da Silva
- Microorganism Research Center, Health Sciences Center, Department of Dermatological, Infectious and Parasitic Diseases, Medical School of São José do Rio Preto, São José do Rio Preto P.O. Box 15.090, Brazil
| | - Victor Hugo Montini
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Mara Corrêa Lelles Nogueira
- Microorganism Research Center, Health Sciences Center, Department of Dermatological, Infectious and Parasitic Diseases, Medical School of São José do Rio Preto, São José do Rio Preto P.O. Box 15.090, Brazil
| | - Maísa Fabiana Menck-Costa
- Laboratory of Basic and Applied Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Health Sciences Center, Clinical and Toxicological Analysis, University Hospital of Londrina, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| |
Collapse
|
46
|
The transmittable through stinging microbiota differs between honeybees and wasps: a potentially greater microbial risk of the wasp sting for humans. Int Microbiol 2023:10.1007/s10123-023-00332-6. [PMID: 36752864 PMCID: PMC10397125 DOI: 10.1007/s10123-023-00332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
The present research investigated whether accidental contact through stinging with honeybees, wasps, and hornets could represent a microbial hazard for humans. It has been previously suggested that such contact may transmit pathogens causing infections that could even be fatal for some susceptible individuals. Stinging simulation experiments were performed in the lab with live insects collected from the environment in Lemnos Island (north-eastern Greece), while different selective agar media targeting some clinically important bacteria (i.e., Staphylococcus aureus, Streptococcus pyogenes, Enterococcus faecalis/faecium, and Pseudomonas aeruginosa) were used as substrates for microbial recovery and identification. Results revealed none of the target pathogenic bacterial species in the honeybee samples, with bacilli, staphylococci, and micrococci dominating their surveyed microbiota. However, most of the suspect colonies isolated from wasps and hornets belonged to important hygienic indicators (i.e., enterococci, Proteus mirabilis, and coliforms), implying possible contact of these insects with fecal origin materials. To sum up, the microbiota that may be transmitted to humans through stinging appears to differ between honeybees and wasps/hornets, while the isolation from the latter samples of some other important opportunistic pathogens, such as Enterobacter spp. and Klebsiella spp., also known for multidrug resistance, could be an additional reason of concern.
Collapse
|
47
|
Emamjomeh M, Mohd Hashim A, Abdul-Mutalib NA, Khairil Mokhtar NF, Mustapha NA, Maeda T, Amin-Nordin S. Profiling bacterial communities and foodborne pathogens on food-associated surface following contact with raw beef, chicken and pork using 16S amplicon metagenomics. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
48
|
Exploiting 16S rRNA-based metagenomics to reveal neglected microorganisms associated with infertility in breeding bulls in Spanish extensive herds. Res Vet Sci 2022; 150:52-57. [DOI: 10.1016/j.rvsc.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022]
|
49
|
Distribution and Characterization of Antimicrobial Resistant Pathogens in a Pig Farm, Slaughterhouse, Meat Processing Plant, and in Retail Stores. Microorganisms 2022; 10:microorganisms10112252. [DOI: 10.3390/microorganisms10112252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of antibiotic resistance in foodborne pathogens isolated from meat pro-ducts and their producing environment has been an increasing and leading threat to public health. The aim of the study was to identify pathogens and their antimicrobial resistance isolated from pig production to pork meat distribution phases. Through this study, food spoilage and foodborne or clinical pathogenic bacteria were isolated and identified from pork (belly and neck) meat product and its related environmental samples that include pig swabs, diets, feces, liquid manure, workers’ gloves, dust fan swabs, carcass swabs, floor swabs, and drain water in the affiliated farm, slaughterhouse, meat processing plant, and in retail stores. All carcasses at the slaughterhouse and meat products at the meat processing plant were tracked from pigs at a targeted farm. Nine different selective media agars were used to effectively isolate various pathogenic bacteria. A total of 283 presumptive pathogenic bacteria isolated from 126 samples were selected and identified using MALDI-ToF MS. Twenty-three important foodborne pathogens were identified, and some of them, Shiga-toxin-producing E. coli (STEC), Listeria monocytogenes, Staphylococcus aureus, and Yersinia enterocolitica, were further confirmed using PCR. The PFGE patterns of 12 STEC isolates were grouped by sample source or site. All the foodborne pathogens used in the study were not resistant to amoxicillin/clavulanate, ciprofloxacin, and gentamicin, whereas some of the STEC, L. monocytogenes, and S. aureus isolates were resistant to various antibiotics, including ampicillin, erythromycin, tetracycline, and vancomycin. The most common antimicrobial resistance pattern in the pathogenic STEC isolates was AMP-KAN-STR-SXT-TET. Consequently, this study provides valuable information for the distribution of antimicrobial-resistant pathogens along the pork meat production chain and can assist farmers and stakeholders to develop a systematic strategy for reducing the current emergence and spread of antimicrobial resistance in the different phases of pig production and distribution.
Collapse
|
50
|
Chen J, Zou Y, Zheng T, Huang S, Guo L, Lin J, Zheng Q. The in Vitro Fermentation of Cordyceps militaris Polysaccharides Changed the Simulated Gut Condition and Influenced Gut Bacterial Motility and Translocation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14193-14204. [PMID: 36305603 DOI: 10.1021/acs.jafc.2c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The motility ability of intestinal lipopolysaccharide (LPS)-producing bacteria determines their translocation to the enterohepatic circulation and works as an infectious complication. In this study, the health effects of Cordyceps militaris polysaccharides (CMPs) were re-evaluated based on whether these polysaccharides could affect the motility of gut commensal LPS-producing bacteria and impede their translocation. The results showed that CMP-m fermentation in the gut could change the chemical environment, leading to a decrease in velocity and a shift in the motility pattern. Further study suggested that detachment/fragmentation of flagella, decreased motor forces, and changed chemical conditions might account for this weakened motility. The adhesion and invasion abilities of gut bacteria were also reduced, with lower expression of virulence-related genes. These results indicated that the health regulation effects of CMP-m might be through decreasing the motility of LPS-producing bacteria, hindering their translocation and therefore reducing the LPS level in the enterohepatic circulation.
Collapse
Affiliation(s)
- Jieming Chen
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Yuan Zou
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Taotao Zheng
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Shishi Huang
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Liqiong Guo
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Junfang Lin
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Qianwang Zheng
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|