1
|
Restar A, Wilson-Barthes MG, Dusic E, Operario D, Galárraga O. Using stated preference methods to design gender-affirming long-acting PrEP programs for transgender and nonbinary adults. Sci Rep 2024; 14:23482. [PMID: 39379446 PMCID: PMC11461737 DOI: 10.1038/s41598-024-72920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Integrating gender-affirming care with biomedical HIV prevention could help address the disproportionate HIV risk experienced by transgender and nonbinary (trans) adults. This discrete choice experiment assesses and identifies the most important programming factors influencing the decisions of trans adults to use injectable long-acting HIV pre-exposure prophylaxes (LA-PrEP). From March to April 2023 n = 366 trans adults in Washington state chose between four different choice profiles that presented hypothetical programs (each comprised of 5 attributes with 4 levels). We analyzed ranked choice responses using a mixed rank-ordered logit model for main effects. Respondents preferred to receive LA-PrEP from a gender-affirming care provider and a co-prescription for both oral and injectable hormones. Trans adults strongly favored 12-month protection and injection in the upper arm. No strong preferences emerged surrounding the type of health facility offering the gender-affirming LA-PrEP program. Our findings show that integrating and leveraging gender-affirming health systems, inclusive of medical services such as hormone therapy, with HIV biomedical products like LA-PrEP is strongly preferred and influential to trans adults' decision to use LA-PrEP. Leveraging choice-based design experiments provides informative results for optimizing gender-affirming LA-PrEP programming tailored to trans adults.
Collapse
Affiliation(s)
- A Restar
- Departments of Epidemiology, and Health Systems and Population Health, University of Washington School of Public Health, Seattle, WA, USA.
- School of Public Health, Yale University, New Haven, CT, USA.
- Weitzman Institute, Moses Weitzman Health System, Washington, DC, USA.
| | - M G Wilson-Barthes
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - E Dusic
- Departments of Epidemiology, and Health Systems and Population Health, University of Washington School of Public Health, Seattle, WA, USA
| | - D Operario
- Department of Behavioral, Social, and Health Education Sciences, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - O Galárraga
- Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
2
|
Nayan MU, Panja S, Sultana A, Zaman LA, Vora LK, Sillman B, Gendelman HE, Edagwa B. Polymer Delivery Systems for Long-Acting Antiretroviral Drugs. Pharmaceutics 2024; 16:183. [PMID: 38399244 PMCID: PMC10892262 DOI: 10.3390/pharmaceutics16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The success of long-acting (LA) drug delivery systems (DDSs) is linked to their biocompatible polymers. These are used for extended therapeutic release. For treatment or prevention of human immune deficiency virus type one (HIV-1) infection, LA DDSs hold promise for improved regimen adherence and reduced toxicities. Current examples include Cabenuva, Apretude, and Sunlenca. Each is safe and effective. Alternative promising DDSs include implants, prodrugs, vaginal rings, and microarray patches. Each can further meet patients' needs. We posit that the physicochemical properties of the formulation chemical design can optimize drug release profiles. We posit that the strategic design of LA DDS polymers will further improve controlled drug release to simplify dosing schedules and improve regimen adherence.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Sudipta Panja
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lubaba A. Zaman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK;
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (M.U.N.); (S.P.); (A.S.); (L.A.Z.); (B.S.)
| |
Collapse
|
3
|
Ullah Nayan M, Sillman B, Hasan M, Deodhar S, Das S, Sultana A, Thai Hoang Le N, Soriano V, Edagwa B, Gendelman HE. Advances in long-acting slow effective release antiretroviral therapies for treatment and prevention of HIV infection. Adv Drug Deliv Rev 2023; 200:115009. [PMID: 37451501 DOI: 10.1016/j.addr.2023.115009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Adherence to daily oral antiretroviral therapy (ART) is a barrier to both treatment and prevention of human immunodeficiency virus (HIV) infection. To overcome limitations of life-long daily regimen adherence, long-acting (LA) injectable antiretroviral (ARV) drugs, nanoformulations, implants, vaginal rings, microarray patches, and ultra-long-acting (ULA) prodrugs are now available or in development. These medicines enable persons who are or at risk for HIV infection to be treated with simplified ART regimens. First-generation LA cabotegravir, rilpivirine, and lenacapavir injectables and a dapivirine vaginal ring are now in use. However, each remains limited by existing dosing intervals, ease of administration, or difficulties in finding drug partners. ULA ART regimens provide an answer, but to date, such next-generation formulations remain in development. Establishing the niche will require affirmation of extended dosing, improved access, reduced injection volumes, improved pharmacokinetic profiles, selections of combination treatments, and synchronization of healthcare support. Based on such needs, this review highlights recent pharmacological advances and a future treatment perspective. While first-generation LA ARTs are available for HIV care, they remain far from ideal in meeting patient needs. ULA medicines, now in advanced preclinical development, may close gaps toward broader usage and treatment options.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Science, University of Nebraska Medical Center, NE, USA
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Srijanee Das
- Department of Pathology and Microbiology, University of Nebraska Medical Center, NE, USA
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Nam Thai Hoang Le
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | | | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
4
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
Ogunnaike M, Das S, Raut SS, Sultana A, Nayan MU, Ganesan M, Edagwa BJ, Osna NA, Poluektova LY. Chronic Hepatitis B Infection: New Approaches towards Cure. Biomolecules 2023; 13:1208. [PMID: 37627273 PMCID: PMC10452112 DOI: 10.3390/biom13081208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection leads to the development of cirrhosis and hepatocellular carcinoma. Lifelong treatment with nucleotides/nucleoside antiviral agents is effective at suppressing HBV replication, however, adherence to daily therapy can be challenging. This review discusses recent advances in the development of long-acting formulations for HBV treatment and prevention, which could potentially improve adherence. Promising new compounds that target distinct steps of the virus life cycle are summarized. In addition to treatments that suppress viral replication, curative strategies are focused on the elimination of covalently closed circular DNA and the inactivation of the integrated viral DNA from infected hepatocytes. We highlight promising long-acting antivirals and genome editing strategies for the elimination or deactivation of persistent viral DNA products in development.
Collapse
Affiliation(s)
- Mojisola Ogunnaike
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Samiksha S. Raut
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Murali Ganesan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| |
Collapse
|
6
|
Gunawardana M, Remedios-Chan M, Sanchez D, Fanter R, Webster S, Webster P, Moss JA, Trinh M, Beliveau M, Ramirez CM, Marzinke MA, Kuo J, Gallay PA, Baum MM. Preclinical Considerations for Long-acting Delivery of Tenofovir Alafenamide from Subdermal Implants for HIV Pre-exposure Prophylaxis. Pharm Res 2023; 40:1657-1672. [PMID: 36418671 PMCID: PMC10421770 DOI: 10.1007/s11095-022-03440-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Long-acting formulations of the potent antiretroviral prodrug tenofovir alafenamide (TAF) hold potential as biomedical HIV prevention modalities. Here, we present a rigorous comparison of three animal models, C57BL/6 J mice, beagle dogs, and merino sheep for evaluating TAF implant pharmacokinetics (PKs). METHODS Implants delivering TAF over a wide range of controlled release rates were tested in vitro and in mice and dogs. Our existing PK model, supported by an intravenous (IV) dosing dog study, was adapted to analyze mechanistic aspects underlying implant TAF delivery. RESULTS TAF in vitro release in the 0.13 to 9.8 mg d-1 range with zero order kinetics were attained. Implants with equivalent fabrication parameters released TAF in mice and sheep at rates that were not statistically different, but were 3 times higher in dogs. When two implants were placed in the same subcutaneous pocket, a two-week creep to Cmax was observed in dogs for systemic drug and metabolite concentrations, but not in mice. Co-modeling IV and TAF implant PK data in dogs led to an apparent TAF bioavailability of 9.6 in the single implant groups (compared to the IV group), but only 1.5 when two implants were placed in the same subcutaneous pocket. CONCLUSIONS Based on the current results, we recommend using mice and sheep, with macaques as a complementary species, for preclinical TAF implant evaluation with the caveat that our observations may be specific to the implant technology used here. Our report provides fundamental, translatable insights into multispecies TAF delivery via long-acting implants.
Collapse
Affiliation(s)
- Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Mariana Remedios-Chan
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Debbie Sanchez
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Rob Fanter
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Simon Webster
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Paul Webster
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - John A Moss
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - MyMy Trinh
- Certara USA, Inc., Integrated Drug Development, 100 Overlook Center, Suite 101, Princeton, NJ, USA
| | - Martin Beliveau
- Certara USA, Inc., Integrated Drug Development, 100 Overlook Center, Suite 101, Princeton, NJ, USA
| | - Christina M Ramirez
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles (UCLA), 650 Charles E. Young Drive, Los Angeles, CA, USA
| | - Mark A Marzinke
- Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, 600 N. Wolfe Street/Carnegie 417, Baltimore, MD, USA
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Philippe A Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA.
| |
Collapse
|
7
|
Barr RK, Barber BW, Tait JR, Landersdorfer CB, Salman S, Musk GC, Page-Sharp M, Batty KT, Kado J, Manning L, Carapetis JR, Boyd BJ. Development of a sustained release implant of benzathine penicillin G for secondary prophylaxis of rheumatic heart disease. Eur J Pharm Biopharm 2023:S0939-6411(23)00159-5. [PMID: 37354997 DOI: 10.1016/j.ejpb.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/21/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Regular intramuscular (i.m.) benzathine penicillin G (BPG) injections have been the cornerstone of rheumatic heart disease (RHD) secondary prophylaxis since the 1950s. Patient adherence to IM BPG is poor, largely due to pain, the need for regular injections every 3-4 weeks and health sector delivery challenges in resource-limited settings. There is an urgent need for new approaches for secondary prophylaxis, such as an implant which could provide sustained penicillin concentrations for more than 6 months. METHODS In this study we developed and evaluated a slow release implant with potential for substantially extended treatment. The side wall of a solid drug rich core was coated with polycaprolactone which acts as an impermeable barrier. The exposed surfaces at the ends of the implant defined the release surface area, and the in vitro release rate of drug was proportional to the exposed surface area across implants of differing diameter. The in vivo pharmacokinetics and tolerability of the implants were evaluated in a sheep model over 9 weeks after subcutaneous implantation. RESULTS The absolute release rates obtained for the poorly water-soluble benzathine salt were dependent on the exposed surface area demonstrating the impermeability of the wall of the implant. The implants were well-tolerated after subcutaneous implantation in a sheep model, without adverse effects at the implantation site. Gross structural integrity was maintained over the course of the study, with erosion limited to the dual-exposed ends. Steady release of penicillin G was observed over the 9 weeks and resulted in approximately constant plasma concentrations close to accepted target concentrations. CONCLUSION In principle, a long acting BPG implant is feasible as an alternative to IM injections for secondary prophylaxis of RHD. However, large implant size is currently a significant impediment to clinical utility and acceptability.
Collapse
Affiliation(s)
- Renae K Barr
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia
| | - Bryce W Barber
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Jessica R Tait
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | | | - Sam Salman
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia; Clinical Pharmacology and Toxicology Unit, PathWest Laboratory Medicine, Nedlands, WA, Australia; Medical School, University of Western Australia, Crawley, WA, Australia
| | - Gabrielle C Musk
- Animal Care Services, University of Western Australia, Crawley, WA, Australia
| | - Madhu Page-Sharp
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Kevin T Batty
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Joseph Kado
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia
| | - Laurens Manning
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia; Medical School, University of Western Australia, Crawley, WA, Australia; Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Jonathan R Carapetis
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia; Medical School, University of Western Australia, Crawley, WA, Australia; Department of Infectious Diseases, Perth Children's Hospital, Nedlands, WA, Australia4.
| | - Ben J Boyd
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia; University of Copenhagen Department of Pharmacy, University of Copenhagen Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
8
|
Abstract
There are an estimated 257 million persons living with chronic hepatitis B for whom there are multiple potential applications of long-acting antiviral compounds. Current efforts include both injection and implant approaches to formulating derivates of existing anti-HBV compounds such as tenofovir or entecavir. Substantial progress has already occurred especially as aligned with the development of long-acting tenofovir-based medications with dual activity against human immunodeficiency virus (HIV) and hepatitis B virus (HBV). Nonetheless, substantial challenges will need to be overcome before these agents are available.
Collapse
Affiliation(s)
- David L Thomas
- Department of Medicine, Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer J Kiser
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, USA
| |
Collapse
|
9
|
Massud I, Krovi A, Nishiura K, Ruone S, Li L, Holder A, Gary J, Mills P, Mitchell J, Khalil G, Pan Y, Luecke E, Gatto G, Heneine W, García-Lerma JG, Johnson L, van der Straten A, Dobard C. Safety and efficacy of a biodegradable implant releasing tenofovir alafenamide for vaginal protection in a macaque model. J Antimicrob Chemother 2022; 77:2964-2971. [PMID: 35913838 DOI: 10.1093/jac/dkac252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/24/2022] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES To advance the initiative of ending the global epidemic, long-lasting HIV protection is needed through sustained release of antiretroviral drugs for months to years. We investigated in macaques the safety and efficacy of biodegradable polycaprolactone implants releasing tenofovir alafenamide for HIV pre-exposure prophylaxis (PrEP). METHODS Implants were administered subcutaneously in the arm using a contraceptive trocar. Efficacy against vaginal simian-HIV (SHIV) infection was investigated in six pigtailed macaques that received two tenofovir alafenamide implants (0.35 mg/day), one in each arm, for a total release rate of tenofovir alafenamide at 0.7 mg/day. Macaques were exposed to SHIV twice weekly for 6 weeks. Statistical analyses were used to compare outcome with eight untreated controls. Histological assessments were performed on skin biopsies collected near implantation sites. RESULTS Median (range) tenofovir diphosphate level in PBMCs was 1519 (1068-1898) fmol/106 cells. All macaques with tenofovir alafenamide implants were protected against vaginal SHIV infection. In contrast, 7/8 controls were infected after a median of 4 SHIV exposures (P = 0.0047). Histological assessment of tissues near tenofovir alafenamide implant sites showed inflammation and necrosis in 5/6 animals, which were not evident by visual inspection. CONCLUSIONS We demonstrated complete protection against vaginal SHIV infection with two implants releasing a total of 0.7 mg of tenofovir alafenamide per day. We also identified tenofovir diphosphate concentrations in PBMCs associated with complete vaginal protection. Consistent with previous findings, we observed adverse local toxicity and necrosis near the tenofovir alafenamide implant site. Improved tenofovir alafenamide implants that are safe and maintain high efficacy have the potential to provide long-lasting protection against vaginal HIV infection.
Collapse
Affiliation(s)
- I Massud
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - A Krovi
- RTI International, Research Triangle Park, NC, USA
| | - K Nishiura
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - S Ruone
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - L Li
- RTI International, Research Triangle Park, NC, USA
| | - A Holder
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - J Gary
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infection Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - P Mills
- Comparative Medicine Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infection Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - J Mitchell
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - G Khalil
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Y Pan
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - E Luecke
- RTI International, Research Triangle Park, NC, USA
| | - G Gatto
- RTI International, Research Triangle Park, NC, USA
| | - W Heneine
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - J G García-Lerma
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - L Johnson
- RTI International, Research Triangle Park, NC, USA
| | - A van der Straten
- Center for AIDS Prevention Studies (CAPS), Department of Medicine, University of California San Francisco, San Francisco, CA and ASTRA Consulting, Kensington, CA, USA
| | - C Dobard
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
10
|
Agrahari V, Anderson SM, Peet MM, Wong AP, Singh ON, Doncel GF, Clark MR. Long-acting HIV Pre-exposure Prophylaxis (PrEP) approaches: Recent advances, emerging technologies and development challenges. Expert Opin Drug Deliv 2022; 19:1365-1380. [PMID: 36252277 PMCID: PMC9639748 DOI: 10.1080/17425247.2022.2135699] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction: Poor or inconsistent adherence to daily oral pre-exposure prophylaxis (PrEP) has emerged as a key barrier to effective HIV prevention. The advent of potent long-acting (LA) antiretrovirals (ARVs) in conjunction with advances in controlled release technologies has enabled LA ARV drug delivery systems (DDS) capable of providing extended dosing intervals and overcome the challenge of suboptimal drug adherence with daily oral dosing. Areas covered: This review discusses the current state of the LA PrEP field, recent advances, and emerging technologies, including ARV prodrug modifications and new DDS. Technological challenges, knowledge gaps, preclinical testing considerations, and future directions important in the context of clinical translation and implementation of LA HIV PrEP are discussed. Expert opinion: The HIV prevention field is evolving faster than ever and the bar for developing next-generation LA HIV prevention options continues to rise. The requirements for viable LA PrEP products to be implemented in resource-limited settings are challenging, necessitating proactive consideration and product modifications during the design and testing of promising new candidates. If successfully translated, next-generation LA PrEP that are safe, affordable, highly effective, and accepted by both end-users and key stakeholders will offer significant potential to curb the HIV pandemic.
Collapse
Affiliation(s)
- Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | | - Andrew P. Wong
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Onkar N. Singh
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | |
Collapse
|
11
|
Martinez O, Levine E, Munoz-Laboy M, Carballo-Diéguez A, Bauermeister JA, Chacon A, Jacobson J, Bettiker R, Sutton M, Rudolph AE, Wu E, Rhodes SD, Tanner AE, Mann L, Valentin O, Ilarraza A, Pardes M, Davison R, Fernandez MI. More than just oral PrEP: exploring interest in rectal douche, dissolvable implant, removable implant and injection HIV prevention approaches among racially diverse men who have sex with men in the Northeast Corridor. BMJ Open 2022; 12:e063474. [PMID: 35981775 PMCID: PMC9394203 DOI: 10.1136/bmjopen-2022-063474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES HIV scholars and practitioners have worked to expand strategies for prevention among marginalised populations who are disproportionately impacted by the epidemic, such as racial minority men who have sex with men (MSM). Given this urgency, the objective of this study was to assess interest in biomedical prevention strategies. METHODS This exploratory and cross-sectional study investigated interest in four biomedical prevention tools-rectal douche, dissolvable implant, removable implant and injection-among a racially diverse sample of MSM from the Northeast Corridor region between Philadelphia and Trenton. Data were collected as part of screening for Connecting Latinos en Pareja, a couples-based HIV prevention intervention for Latino MSM and their partners. RESULTS A total of 381 individuals participated in the screener and provided information about their interest in bio tools. Approximately 26% of participants identified as black, 28% as white and 42% as 'other' or multiracial; 49% identified as Latino. Majority (54%) reported some form of child sexual abuse. Of the participants who reported being in a primary relationship (n=217), two-thirds reported unprotected anal sex within that relationship over the past 90 days (n=138, 64%) and approximately half (n=117, 54%) reported unprotected anal sex outside of the relationship in this period. Majority of participants reported interest in all bio tools assessed, including dissolvable implants (60%), removable implants (64%), rectal douching (79%) and injection (79%). Although interest in bio tools was broadly unassociated with demographics and sexual risk behaviours, analyses revealed significant associations between reports of child sexual abuse and interest in implant and injection methods. CONCLUSIONS The authors recommend investing in these prevention methods, particularly rectal douching and injection, as a means of preventing HIV among racial minority MSM. Given the interest in biomedical prevention tools, future studies should explore potential strategies for adherence.
Collapse
Affiliation(s)
- Omar Martinez
- College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Ethan Levine
- School of Social and Behavioral Sciences, Stockton University, Galloway, New Jersey, USA
| | - Miguel Munoz-Laboy
- School of Social Welfare, Stony Brook University, Stony Brook, New York, USA
| | | | - José Arturo Bauermeister
- Family and Community Health, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA
| | - Alexi Chacon
- Editorial Department, Token Theatre Friends, New York City, New York, USA
| | - Jeffrey Jacobson
- School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Robert Bettiker
- School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Madeline Sutton
- School of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Abby E Rudolph
- College of Public Health, Temple University, Philadelphia, Pennsylvania, USA
| | - Elwin Wu
- School of Social Work, Columbia University, New York, New York, USA
| | - Scott D Rhodes
- Department of Social Science and Health Policy, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Amanda E Tanner
- School of Health and Human Sciences, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Lilli Mann
- Department of Social Science and Health Policy, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Omar Valentin
- Miller School Of Medicine, University of Miami, Coral Gables, Florida, USA
| | - Ariel Ilarraza
- College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Mariana Pardes
- College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Robin Davison
- College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Maria Isabel Fernandez
- College of Osteopathic Medicine, Nova Southeastern University, Sunny Isles Beach, Florida, USA
| |
Collapse
|
12
|
Korelidou A, Domínguez-Robles J, Magill ER, Eleftheriadou M, Cornelius VA, Donnelly RF, Margariti A, Larrañeta E. 3D-printed reservoir-type implants containing poly(lactic acid)/poly(caprolactone) porous membranes for sustained drug delivery. BIOMATERIALS ADVANCES 2022; 139:213024. [PMID: 35908473 DOI: 10.1016/j.bioadv.2022.213024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/22/2022]
Abstract
Implantable drug delivery systems are an interesting alternative to conventional drug delivery systems to achieve local or systemic drug delivery. In this work, we investigated the potential of fused-deposition modelling to prepare reservoir-type implantable devices for sustained drug delivery. An antibiotic was chosen as a model molecule to evaluate the potential of this type of technology to prepare implants on-demand to provide prophylactic antimicrobial treatment after surgery. The first step was to prepare and characterize biodegradable rate-controlling porous membranes based on poly(lactic acid) (PLA) and poly(caprolactone) (PCL). These membranes were prepared using a solvent casting method. The resulting materials contained different PLA/PCL ratios. Cylindrical implants were 3D-printed vertically on top of the membranes. Tetracycline (TC) was loaded inside the implants and drug release was evaluated. The results suggested that membranes containing a PLA/PCL ratio of 50/50 provided drug release over periods of up to 25 days. On the other hand, membranes containing lower PCL content did not show a porous structure and accordingly the drug could not permeate to the same extent. The influence of different parameters on drug release was evaluated. It was established that film thickness, drug content and implant size are critical parameters as they have a direct influence on drug release kinetics. In all cases the implants were capable of providing drug release for at least 25 days. The antimicrobial properties of the implants were evaluated against E. coli and S. aureus. The resulting implants showed antimicrobial properties at day 0 and even after 21 days against both type of microorganisms. Finally, the biocompatibility of the implants was evaluated using endothelial cells. Cells exposed to implants were compared with a control group. There were no differences between both groups in terms of cell proliferation and morphology.
Collapse
Affiliation(s)
- Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Elizabeth R Magill
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Magdalini Eleftheriadou
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Victoria A Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
13
|
Efatpanah A, Rabbani S, Talimi R, Mortazavi SA, Haeri A. Indomethacin Sustained-Release Anti-adhesion Membrane Composed of a Phospholipid and Polycaprolactone Blend. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e127353. [PMID: 36710990 PMCID: PMC9872549 DOI: 10.5812/ijpr-127353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
Background Postoperative peritoneal adhesions are among common challenging problems in surgery. The availability of limited efficient strategies to prevent intra-abdominal adhesion reinforces the need to explore new methods. Given the favorable prolonged drug release characteristics of polycaprolactone (PCL) films and their ability to act as a biodegradable physical barrier implant, along with the anti-inflammatory and anti-adhesion properties of indomethacin and phospholipids, this study hypothesized that indomethacin sustained-release membrane composed of phosphatidylcholine (PC) and PCL blend could efficiently prevent abdominal adhesion formation. Methods Different polymeric and polymeric/lipidic hybrid formulations with three feeding materials to drug weight ratios were prepared, and their physicochemical characteristics and drug release kinetics were evaluated and compared. Abdominal adhesions were induced in 48 rats by the abrasion of the cecum and excision of a section of the opposite abdominal wall. Adhesion formation was evaluated by macroscopic scoring, histological, scanning electron microscopy, and polymerase chain reaction analyses. Results Both PCL and PCL-PC films exhibited sustained indomethacin release profiles. The X-ray diffraction and Fourier-transform infrared spectroscopy studies confirmed indomethacin incorporation in formulations in molecular dispersion form without any interaction. The films showed smooth surfaces and good mechanical properties. The treatment with indomethacin PCL-PC membrane significantly reduced the expression levels of tumor necrosis factor-alpha, transforming growth factor-beta, interleukin-1, interleukin-6, and fibrinogen in the adhesion tissues. The separation of the injured peritoneum, very low adhesion scores, and complete mesothelial cell regeneration were also achieved. Conclusions This study suggests that indomethacin-eluting PCL-PC membrane acting through the combination of physical barrier, anti-inflammatory agents, and controlled drug delivery warrants an effective approach to prevent intra-abdominal adhesion.
Collapse
Affiliation(s)
- Adrina Efatpanah
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rozhin Talimi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P. O. Box: 14155-6153, Tehran, Iran. Tel: +98-2188200212,
| |
Collapse
|
14
|
Gunawardana M, Remedios-Chan M, Sanchez D, Webster S, Castonguay AE, Webster P, Buser C, Moss JA, Trinh M, Beliveau M, Hendrix CW, Marzinke MA, Tuck M, Caprioli RM, Reyzer ML, Kuo J, Gallay PA, Baum MM. Fundamental aspects of long-acting tenofovir alafenamide delivery from subdermal implants for HIV prophylaxis. Sci Rep 2022; 12:8224. [PMID: 35581262 PMCID: PMC9114338 DOI: 10.1038/s41598-022-11020-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/15/2022] [Indexed: 01/04/2023] Open
Abstract
Global efforts aimed at preventing human immunodeficiency virus type one (HIV-1) infection in vulnerable populations appear to be stalling, limiting our ability to control the epidemic. Long-acting, controlled drug administration from subdermal implants holds significant potential by reducing the compliance burden associated with frequent dosing. We, and others, are exploring the development of complementary subdermal implant technologies delivering the potent prodrug, tenofovir alafenamide (TAF). The current report addresses knowledge gaps in the preclinical pharmacology of long-acting, subdermal TAF delivery using several mouse models. Systemic drug disposition during TAF implant dosing was explained by a multi-compartment pharmacokinetic (PK) model. Imaging mass spectrometry was employed to characterize the spatial distribution of TAF and its principal five metabolites in local tissues surrounding the implant. Humanized mouse studies determined the effective TAF dose for preventing vaginal and rectal HIV-1 acquisition. Our results represent an important step in the development of a safe and effective TAF implant for HIV-1 prevention.
Collapse
Affiliation(s)
- Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Mariana Remedios-Chan
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Debbie Sanchez
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Simon Webster
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Amalia E Castonguay
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Paul Webster
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - Christopher Buser
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - John A Moss
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA
| | - MyMy Trinh
- Certara Integrated Drug Development, 2000 Peel Street, Suite 570, Montreal, QC, Canada
| | - Martin Beliveau
- Certara Integrated Drug Development, 2000 Peel Street, Suite 570, Montreal, QC, Canada
| | - Craig W Hendrix
- Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, Baltimore, MD, USA
| | - Mark A Marzinke
- Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, 600 N. Wolfe Street/Carnegie 417, Baltimore, MD, USA
| | - Michael Tuck
- Department of Biochemistry, Vanderbilt University, 9160 MRB III, 465 21st Ave. South, Nashville, TN, USA
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, 9160 MRB III, 465 21st Ave. South, Nashville, TN, USA
| | - Michelle L Reyzer
- Department of Biochemistry, Vanderbilt University, 9160 MRB III, 465 21st Ave. South, Nashville, TN, USA
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Philippe A Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, USA.
| |
Collapse
|
15
|
Picco CJ, Domínguez-Robles J, Utomo E, Paredes AJ, Volpe-Zanutto F, Malinova D, Donnelly RF, Larrañeta E. 3D-printed implantable devices with biodegradable rate-controlling membrane for sustained delivery of hydrophobic drugs. Drug Deliv 2022; 29:1038-1048. [PMID: 35363100 PMCID: PMC8979538 DOI: 10.1080/10717544.2022.2057620] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Implantable drug delivery systems offer an alternative for the treatments of long-term conditions (i.e. schizophrenia, HIV, or Parkinson’s disease among many others). The objective of the present work was to formulate implantable devices loaded with the model hydrophobic drug olanzapine (OLZ) using robocasting 3D-printing combined with a pre-formed rate controlling membrane. OLZ was selected as a model molecule due to its hydrophobic nature and because is a good example of a molecule used to treat a chronic condition schizophrenia. The resulting implants consisted of a poly(ethylene oxide) (PEO) implant coated with a poly(caprolactone) (PCL)-based membrane. The implants were loaded with 50 and 80% (w/w) of OLZ. They were prepared using an extrusion-based 3D-printer from aqueous pastes containing 36–38% (w/w) of water. The printing process was carried out at room temperature. The resulting implants were characterized by using infrared spectroscopy, scanning electron microscopy, thermal analysis, and X-ray diffraction. Crystals of OLZ were present in the implant after the printing process. In vitro release studies showed that implants containing 50% and 80% (w/w) of OLZ were capable of providing drug release for up to 190 days. On the other hand, implants containing 80% (w/w) of OLZ presented a slower release kinetics. After 190 days, total drug release was ca. 77% and ca. 64% for implants containing 50% and 80% (w/w) of OLZ, respectively. The higher PEO content within implants containing 50% (w/w) of OLZ allows a faster release as this polymer acts as a co-solvent of the drug.
Collapse
Affiliation(s)
- Camila J Picco
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | | - Dessislava Malinova
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
16
|
Bekker LG, Pike C, Hillier SL. HIV prevention: better choice for better coverage. J Int AIDS Soc 2022; 25:e25872. [PMID: 35030296 PMCID: PMC8759757 DOI: 10.1002/jia2.25872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/05/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction Antiretroviral‐based pre‐exposure prophylaxis (PrEP) is today an established, effective and safe method of HIV prevention used in multiple countries worldwide by a broad range of populations at risk of HIV infection. Biomedical innovations are critical in supporting the primary prevention of HIV; however, their potential can only be maximized if end‐user challenges are recognized, described and used to develop next‐generation models. Discussion First‐generation PrEP, a daily oral pill, is highly efficacious, discreet and affords users the ability to commence and conclude treatment rapidly. However, consistent daily adherence and persistence is challenging, especially among younger populations, due in part to side effects, the risk of stock‐outs and a lack of pill storage options. Second‐generation PrEP, longer acting agents that require less frequent dosing, could overcome such challenges. Agents that have shown efficacy in clinical trials include a monthly vaginal ring and PrEP injectables to be administered every 8 weeks, while products in development include 6 monthly injectables, oral therapy that uses monthly rather than daily pills, implants and the potential for long‐acting passive immunization. Conclusions Second‐generation PrEP agents will have the potential to offer improved adherence and less frequent reminders once they have undergone further development and the delivery systems that will best support them have been established. In order to pursue global UNAIDS targets of reducing new HIV infections to fewer than 500,000 annually by 2025, and to ensure that all people have access to prevention options that meet their specific prevention needs, both early and next‐generation PrEP options are needed.
Collapse
Affiliation(s)
- Linda-Gail Bekker
- The Desmond Tutu HIV Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Carey Pike
- The Desmond Tutu HIV Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sharon L Hillier
- Department of Obstetrics, Gynaecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Maturavongsadit P, Paravyan G, Kovarova M, Garcia JV, Benhabbour SR. A new engineering process of biodegradable polymeric solid implants for ultra-long-acting drug delivery. Int J Pharm X 2021; 3:100068. [PMID: 33392498 PMCID: PMC7773589 DOI: 10.1016/j.ijpx.2020.100068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We present a long-acting (LA) biodegradable polymeric solid implant (PSI) fabricated using a new process combining in-situ phase inversion and compression. This robust process allows fabrication of solid implants that can have different shapes and sizes, accommodate high drug payloads, and provide sustained drug release over several months. Herein the integrase inhibitor dolutegravir (DTG) was used to develop PSIs for HIV prevention. PSIs were fabricated using a three-step process by (a) phase inversion of DTG-loaded polymer solution to form an initial in-situ forming implant in an aqueous solution, (b) micronization of dried DTG-loaded solid implants, and (c) compression of the micronized DTG-loaded solid implants to form the PSI. High drug loading (up to 85 wt%) was achieved in the PSIs. DTG exhibited minimum burst release in the first 24 h (<6%) and sustained release kinetics over 6 months. The release kinetics of DTG can be fine-tuned by varying drug-loading concentration, the ratio of polymer (poly(lactic-co-glycolic acid), PLGA) to solvent (N-methyl-2-pyrrolidone, NMP) and polymer (PLGA) molecular weight in the precursor solution. The physical/chemical properties of DTG were retained post-storage under accelerated storage conditions (40 °C/75% relative humidity) for 6 months. The versatility of this technology makes it an attractive drug delivery platform for HIV prevention applications.
Collapse
Affiliation(s)
- Panita Maturavongsadit
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gayane Paravyan
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Martina Kovarova
- International Center for the Advancement of Translational Science, USA
- Division of Infectious Diseases, Center for Aids Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J. Victor Garcia
- International Center for the Advancement of Translational Science, USA
- Division of Infectious Diseases, Center for Aids Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S. Rahima Benhabbour
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Cobb DA, Smith N, Deodhar S, Bade AN, Gautam N, Shetty BLD, McMillan J, Alnouti Y, Cohen SM, Gendelman HE, Edagwa B. Transformation of tenofovir into stable ProTide nanocrystals with long-acting pharmacokinetic profiles. Nat Commun 2021; 12:5458. [PMID: 34531390 PMCID: PMC8445934 DOI: 10.1038/s41467-021-25690-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Treatment and prevention of human immunodeficiency virus type one (HIV-1) infection was transformed through widespread use of antiretroviral therapy (ART). However, ART has limitations in requiring life-long daily adherence. Such limitations have led to the creation of long-acting (LA) ART. While nucleoside reverse transcriptase inhibitors (NRTI) remain the ART backbone, to the best of our knowledge, none have been converted into LA agents. To these ends, we transformed tenofovir (TFV) into LA surfactant stabilized aqueous prodrug nanocrystals (referred to as NM1TFV and NM2TFV), enhancing intracellular drug uptake and retention. A single intramuscular injection of NM1TFV, NM2TFV, or a nanoformulated tenofovir alafenamide (NTAF) at 75 mg/kg TFV equivalents to Sprague Dawley rats sustains active TFV-diphosphate (TFV-DP) levels ≥ four times the 90% effective dose for two months. NM1TFV, NM2TFV and NTAF elicit TFV-DP levels of 11,276, 1,651, and 397 fmol/g in rectal tissue, respectively. These results are a significant step towards a LA TFV ProTide.
Collapse
Affiliation(s)
- Denise A Cobb
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nathan Smith
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhagya Laxmi Dyavar Shetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
19
|
Zane D, Roller S, Shelton J, Singh R, Jain R, Wang Y, Yang B, Felx M, Alessi T, Feldman PL. A 28-Day Toxicity Study of Tenofovir Alafenamide Hemifumarate by Subcutaneous Infusion in Rats and Dogs. Microbiol Spectr 2021; 9:e0033921. [PMID: 34190595 PMCID: PMC8552772 DOI: 10.1128/spectrum.00339-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022] Open
Abstract
The toxicity of tenofovir alafenamide (TAF) hemifumarate (HF) was evaluated when administered by continuous subcutaneous (s.c.) infusion via an external infusion pump for 28 days to rats and dogs. The toxicokinetics of TAF and two metabolites, tenofovir (TFV) and tenofovir diphosphate (TFV-DP) were also evaluated. After administration of TAF HF in rats and dogs, primary systemic findings supported an inflammatory response that was considered minimal to mild. Gross pathology and histopathologic evaluation of tissue surrounding the s.c. infusion site revealed signs of inflammation, including edema, mass formation, fibrosis, and mononuclear cell inflammation in groups receiving ≥300 μg/kg/day in rats and ≥25 μg/day in dogs. Although these changes were observed in animals receiving vehicle, the severity was greater in animals receiving TAF HF. Changes in the local tissue were considered a TAF HF-mediated exacerbation of an inflammatory response to the presence of the catheter. In rats, systemic and local findings were considered not adverse due to their low severity and reversibility; therefore, the "no observed adverse effect level" (NOAEL) was set at 1,000 μg/kg/day. Because none of the systemic findings were related to systemic exposure to TAF, the systemic NOAEL was set at 250 μg/kg/day in dogs. Due to the severity of the observations noted, a NOAEL for local toxicity could not be established. Although these results might allow for exploration of tolerability and pharmacokinetics of s.c. administered TAF HF in humans, data suggest a local reaction may develop in humans at doses below a clinically relevant dose. IMPORTANCE Human immunodeficiency virus (HIV) infection continues to be a serious global human health issue, with ∼38 million people living with HIV worldwide at the end of 2019. HIV preexposure prophylaxis (PrEP) has introduced the use of antiretroviral therapies as another helpful tool for slowing the spread of HIV worldwide. One possible solution to the problem of inconsistent access and poor adherence to HIV PrEP therapies is the development of subcutaneous (s.c.) depots or s.c. implantable devices that continuously administer protective levels of an HIV PrEP therapy for weeks, months, or even years at a time. We evaluate here the toxicity of tenofovir alafenamide, a potent inhibitor or HIV replication, after continuous s.c. infusion in rats and dogs for HIV PrEP.
Collapse
Affiliation(s)
- Doris Zane
- Intarcia Therapeutics, Inc., Hayward, California, USA
| | - Shane Roller
- Intarcia Therapeutics, Inc., Research Triangle Park, California, USA
| | | | - Roshni Singh
- Intarcia Therapeutics, Inc., Hayward, California, USA
| | - Rachna Jain
- Intarcia Therapeutics, Inc., Hayward, California, USA
| | - Yan Wang
- Intarcia Therapeutics, Inc., Hayward, California, USA
| | - Bing Yang
- Intarcia Therapeutics, Inc., Hayward, California, USA
| | - Melanie Felx
- Charles River Laboratories, Senneville, Quebec, Canada
| | - Thomas Alessi
- Intarcia Therapeutics, Inc., Hayward, California, USA
| | - Paul L. Feldman
- Intarcia Therapeutics, Inc., Research Triangle Park, California, USA
| |
Collapse
|
20
|
Krovi SA, Johnson LM, Luecke E, Achilles SL, van der Straten A. Advances in long-acting injectables, implants, and vaginal rings for contraception and HIV prevention. Adv Drug Deliv Rev 2021; 176:113849. [PMID: 34186143 DOI: 10.1016/j.addr.2021.113849] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/22/2022]
Abstract
Worldwide, women face compounding reproductive health risks, including human immunodeficiency virus (HIV), sexually-transmitted infections (STIs), and unintended pregnancy. Multipurpose prevention technologies (MPTs) offer combined protection against these overlapping risks in singular prevention products that offer potential for simplified use, lower burden, higher acceptability, and increased public health benefits. Over the past decade, substantial progress has been made in development of extended-release MPTs, which have further potential to grant sexual and reproductive health autonomy to women globally and to offer choice for women to accommodate varying needs during their reproductive lives. Here, we highlight the advances made in injectable, implant, and ring delivery forms, and the importance of incorporating end-user preferences early in the research and development of these products.
Collapse
Affiliation(s)
| | | | - Ellen Luecke
- Women's Global Health Imperative, RTI International, Berkeley, CA, USA
| | - Sharon L Achilles
- University of Pittsburgh, School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh, PA, USA; Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Ariane van der Straten
- Center for AIDS Prevention Studies, Dept of Medicine, University of California San Francisco, San Francisco, CA, USA; ASTRA Consulting, Kensington, CA, USA
| |
Collapse
|
21
|
Maturavongsadit P, Shrivastava R, Sykes C, Cottrell ML, Montgomery SA, Kashuba ADM, Rahima Benhabbour S. Biodegradable polymeric solid implants for ultra-long-acting delivery of single or multiple antiretroviral drugs. Int J Pharm 2021; 605:120844. [PMID: 34216767 DOI: 10.1016/j.ijpharm.2021.120844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
Lack of adherence is a key barrier to a successful human immunodeficiency virus (HIV) treatment and prevention. We report on an ultra-long-acting (ULA) biodegradable polymeric solid implant (PSI) that can accommodate one or more antiretrovirals (e.g., dolutegravir (DTG) and rilpivirine (RPV)) at translatable human doses (65% wt.) in a single implant. PSIs are fabricated using a three-step process: (a) phase inversion of a drug/polymer solution to form an initial in-situ forming solid implant, (b) micronization of dried drug-loaded solid implants, and (c) compression of the micronized drug-loaded solid powder to generate the PSI. DTG and RPV can be pre-combined in a single PLGA-based solution to make dual-drug PSI; or formulated individually in PLGA-based solutions to generate separate micronized powders and form a bilayer dual-drug PSI. Results showed that in a single or bilayer dual-drug PSI, DTG and RPV exhibited physicochemical properties similar to their pure drug analogues. PSIs were well tolerated in vivo and effectively delivered drug(s) over 180 days with concentrations above 4× PA-IC90 after a single subcutaneous administration. While biodegradable and do not require removal, these PSIs can safely be removed to terminate the treatment if required. The versatility of this technology makes it attractive as an ULA drug delivery platform for HIV and various therapeutic applications.
Collapse
Affiliation(s)
- Panita Maturavongsadit
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roopali Shrivastava
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig Sykes
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mackenzie L Cottrell
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S Rahima Benhabbour
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Subcutaneous implants are a promising technology to enable long-acting parenteral delivery of antiretroviral drugs (ARV) because they may be able to provide protective drugs concentrations for a year or longer following a single implant. The present review covers the current status of preclinical and clinical development of antiretroviral implants. RECENT FINDINGS Over the past three decades, subcutaneous implants have been widely used for long-acting hormonal contraception and the treatment of hormonally-driven malignancies. They are economical and scalable to manufacture, but require special procedures for insertion and removal. They are generally well tolerated, and can remain in place for up to five years. As long-acting delivery of ARV would confer significant advantages, a few investigational implants are under development for the delivery of ARV; most remain at preclinical stages of development. Islatravir, a potent nucleoside analog reverse transcriptase translocation inhibitor that shows particular promise, has entered clinical testing in implant form. Investigational implants containing tenofovir alafenamide and nevirapine, and entecavir (for hepatitis B virus) have been developed and tested in animal models, with varying degrees of success. There is also burgeoning interest in bioerodable implant formulations of established ARVs. SUMMARY LARV implants are a promising new technology, but are in early stages of clinical development. Their potential advantages include more consistent and predictable drug release than that provided by intramuscular injections, the possibility of combining several partner drugs into one implant, and the fact that implants can be removed in the case of a desire to stop treatment or the development of adverse events.
Collapse
|
23
|
Romano JW, Baum MM, Demkovich ZR, Diana F, Dobard C, Feldman PL, Garcia-Lerma JG, Grattoni A, Gunawardana M, Ho DK, Hope TJ, Massud I, Milad M, Moss JA, Pons-Faudoa FP, Roller S, van der Straten A, Srinivasan S, Veazey RS, Zane D. Tenofovir Alafenamide for HIV Prevention: Review of the Proceedings from the Gates Foundation Long-Acting TAF Product Development Meeting. AIDS Res Hum Retroviruses 2021; 37:409-420. [PMID: 33913760 PMCID: PMC8213003 DOI: 10.1089/aid.2021.0028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ability to successfully develop a safe and effective vaccine for the prevention of HIV infection has proven challenging. Consequently, alternative approaches to HIV infection prevention have been pursued, and there have been a number of successes with differing levels of efficacy. At present, only two oral preexposure prophylaxis (PrEP) products are available, Truvada and Descovy. Descovy is a newer product not yet indicated in individuals at risk of HIV-1 infection from receptive vaginal sex, because it still needs to be evaluated in this population. A topical dapivirine vaginal ring is currently under regulatory review, and a long-acting (LA) injectable cabotegravir product shows strong promise. Although demonstrably effective, daily oral PrEP presents adherence challenges for many users, particularly adolescent girls and young women, key target populations. This limitation has triggered development efforts in LA HIV prevention options. This article reviews efforts supported by the Bill & Melinda Gates Foundation, as well as similar work by other groups, to identify and develop optimal LA HIV prevention products. Specifically, this article is a summary review of a meeting convened by the foundation in early 2020 that focused on the development of LA products designed for extended delivery of tenofovir alafenamide (TAF) for HIV prevention. The review broadly serves as technical guidance for preclinical development of LA HIV prevention products. The meeting examined the technical feasibility of multiple delivery technologies, in vivo pharmacokinetics, and safety of subcutaneous (SC) delivery of TAF in animal models. Ultimately, the foundation concluded that there are technologies available for long-term delivery of TAF. However, because of potentially limited efficacy and possible toxicity issues with SC delivery, the foundation will not continue investing in the development of LA, SC delivery of TAF products for HIV prevention.
Collapse
Affiliation(s)
| | - Marc M. Baum
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, USA
| | | | - Frank Diana
- FJD-CMC Consulting, LLC., Ocean City, New Jersey, USA
| | - Charles Dobard
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul L. Feldman
- Intarcia Therapeutics, Inc., Research Triangle Park, North Carolina, USA
| | - J. Gerardo Garcia-Lerma
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA
| | - Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, USA
| | - Duy-Khiet Ho
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Northwestern University, Chicago, Illinois, USA
| | - Ivana Massud
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mark Milad
- Milad Pharmaceutical Consulting, Plymouth, Michigan, USA
| | - John A. Moss
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, USA
| | | | - Shane Roller
- Intarcia Therapeutics, Inc., Research Triangle Park, North Carolina, USA
| | - Ariane van der Straten
- Women's Global Health Imperative, RTI International, Berkeley, California, USA
- Department of Medicine, Center for AIDS Prevention Study (CAPS), UCSF, San Francisco, California, USA
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Ronald S. Veazey
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Doris Zane
- Intarcia Therapeutics, Inc., Heyward, California, USA
| |
Collapse
|
24
|
Pons-Faudoa FP, Sizovs A, Shelton KA, Momin Z, Niles JA, Bushman LR, Xu J, Chua CYX, Nichols JE, Demaria S, Ittmann MM, Hawkins T, Rooney JF, Marzinke MA, Kimata JT, Anderson PL, Nehete PN, Arduino RC, Ferrari M, Sastry KJ, Grattoni A. Preventive efficacy of a tenofovir alafenamide fumarate nanofluidic implant in SHIV-challenged nonhuman primates. ADVANCED THERAPEUTICS 2021; 4:2000163. [PMID: 33997267 PMCID: PMC8114879 DOI: 10.1002/adtp.202000163] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Pre-exposure prophylaxis (PrEP) using antiretroviral oral drugs is effective at preventing HIV transmission when individuals adhere to the dosing regimen. Tenofovir alafenamide (TAF) is a potent antiretroviral drug, with numerous long-acting (LA) delivery systems under development to improve PrEP adherence. However, none has undergone preventive efficacy assessment. Here we show that LA TAF using a novel subcutaneous nanofluidic implant (nTAF) confers partial protection from HIV transmission. We demonstrate that sustained subcutaneous delivery through nTAF in rhesus macaques maintained tenofovir diphosphate concentration at a median of 390.00 fmol/106 peripheral blood mononuclear cells, 9 times above clinically protective levels. In a non-blinded, placebo-controlled rhesus macaque study with repeated low-dose rectal SHIVSF162P3 challenge, the nTAF cohort had a 62.50% reduction (95% CI: 1.72% to 85.69%; p=0.068) in risk of infection per exposure compared to the control. Our finding mirrors that of tenofovir disoproxil fumarate (TDF) monotherapy, where 60.00% protective efficacy was observed in macaques, and clinically, 67.00% reduction in risk with 86.00% preventive efficacy in individuals with detectable drug in the plasma. Overall, our nanofluidic technology shows potential as a subcutaneous delivery platform for long-term PrEP and provides insights for clinical implementation of LA TAF for HIV prevention.
Collapse
Affiliation(s)
- Fernanda P Pons-Faudoa
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Antons Sizovs
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Kathryn A Shelton
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Zoha Momin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean A Niles
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Lane R Bushman
- Deparment of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado- Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jiaqiong Xu
- Center for Outcomes Research and DeBakey Heart and Vascular Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joan E Nichols
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Mark A Marzinke
- Departments of Pathology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter L Anderson
- Deparment of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado- Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Roberto C Arduino
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Mauro Ferrari
- School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - K Jagannadha Sastry
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
25
|
Krogstad EA, Atujuna M, Montgomery ET, Minnis AM, Morroni C, Bekker LG. Perceptions matter: Narratives of contraceptive implant robbery in Cape Town, South Africa. CULTURE, HEALTH & SEXUALITY 2021; 23:383-396. [PMID: 32216584 PMCID: PMC7529647 DOI: 10.1080/13691058.2020.1714739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Uptake of contraceptive implants has declined in South Africa since their introduction in 2014, with side effects and inadequate health provider training cited as primary contributors underlying a poor community perception of implants. In this paper we explore a theme that emerged unexpectedly during analysis of our research in Cape Town that may be an additional factor in this decline: narratives of women being assaulted by robbers who physically remove the implants for smoking as drugs. Narratives were described consistently across interviews and focus groups with youth (aged 18-24 years) and in interviews with health providers, with six participants (two young people, four health providers) sharing personal experiences of robbery. While there was a range of perspectives on whether narratives are based on real experiences or are myths, there was strong consensus that narratives of implant robbery may be influencing women's decisions around implant use in Cape Town. This is a potent example of how perceptions of new products can affect uptake and offers important lessons for implementers to reflect on in planning for rollout of other health technologies.
Collapse
Affiliation(s)
- Emily A. Krogstad
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
- Women’s Global Health Imperative, RTI International, San Francisco, CA, USA
| | - Millicent Atujuna
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | | | | | - Chelsea Morroni
- Women’s Health Research Unit, School of Public Health and Family Medicine, University of Cape Town, South Africa
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
Pal S, Mehta D, Dasgupta U, Bajaj A. Advances in engineering of low molecular weight hydrogels for chemotherapeutic applications. Biomed Mater 2021; 16:024102. [PMID: 33461186 DOI: 10.1088/1748-605x/abdce1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemotherapy is the primary option for the treatment of cancer, inflammation, and infectious diseases. Conventional drug delivery poses solubility and bioavailability challenges, systemic toxicity, non-specific targeting, and poor accumulation of chemotherapeutic drugs at the desired site. Nanotechnology has led to the development of various nanomaterials that have decreased the toxicity and increased the accumulation of drugs at the target site. Systemic administration of nanomaterials causes burst release and non-specific targeting of chemotherapeutics, leading to off-target organ toxicity. Drug delivery based on low molecular weight hydrogels (LMWHs) provides a suitable alternative for drug delivery due to their ability to entrap chemotherapeutic drugs. Injectable and biodegradable LMWHs allow the administration of chemotherapeutics with minimal invasion, allow the sustained release of chemotherapeutic drugs for long periods, and reduce the challenges of immunogenicity and low drug entrapment efficiency. Herein, we summarize the advances in the engineering of LMWHs for controlled and prolonged delivery of chemotherapeutics for cancer, infectious diseases, and inflammatory disorders.
Collapse
Affiliation(s)
- Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India. Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | | | | | | |
Collapse
|
27
|
Muheem A, Baboota S, Ali J. An in-depth analysis of novel combinatorial drug therapy via nanocarriers against HIV/AIDS infection and their clinical perspectives: a systematic review. Expert Opin Drug Deliv 2021; 18:1025-1046. [PMID: 33460332 DOI: 10.1080/17425247.2021.1876660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Conventional antiretroviral therapy against HIV infections is threatening to become outdated due to the low chemical, physical, biological, and pharmacokinetic characteristics of therapeutic molecules, followed by the high chance of emergence of drug resistance. Considering the co-encapsulation of multi-infection agents in a single nanocarrier is emerging to offer various benefits such as synergistic action, improved therapeutic efficacy, reduced drug resistance development, patient compliance, and economical therapy.Areas covered: A systematic review of nano-based combinatorial drug therapy was performed using various databases including Scopus, PubMed, Google Scholar, and Science Direct between 2000 and 2020. The search set was screened as per the inclusion and exclusion criteria, followed by 46 scientific articles and seven clinical studies selected for in-depth analysis.Expert opinion: There has been an immense effort to analyze the mechanism of HIV infection to develop a promising therapeutic approach, although the aim of complete prevention has not been succeeded yet. The key finding is to overcome the challenges associated with conventional therapy by the combinatorial drug in a single nanoformulation, which holds great potential for impact in the management of HIV infection.
Collapse
Affiliation(s)
- Abdul Muheem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| |
Collapse
|
28
|
Labh R, Gupta R. Emerging Trends in the Long-Acting Antiretroviral Therapy: Current Status and Therapeutic Challenges. Curr HIV Res 2021; 19:4-13. [PMID: 32838720 DOI: 10.2174/1570162x18666200824104140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/25/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Antiretroviral drug therapy has significantly improved the prognosis and life expectancy of people living with HIV over the years. But this progress comes with an important caveat that antiretroviral regimens generally require adherence to life-long, daily dosing, to keep viral multiplication under check. Non-adherence to such dosing leads to decreased efficacy and increased drug resistance against antiretroviral drugs. Besides, poor drug penetration to certain tissues like CNS and lymph nodes leads to the build-up of viral reservoirs in these sites. To combat some of these challenges and improve patient compliance, long-acting antiretroviral drugs, are a new weapon in the arsenal, in the fight against HIV. Few long-acting preparations have been approved, and several others are in various clinical and preclinical stages of development. However, long-acting formulations also have their share of clinical issues like limited drug distribution, long term adverse drug reactions, drug-drug interactions, and gradual development of drug resistance. Modern technological premises are being tested to mitigate some of these problems. One such promising approach involves nanotechnological methods, which are being used to develop ultra-long acting formulations and drug delivery systems, targeting tissues with residual HIV concentration. Long-Acting Slow Effective Release Antiretroviral Therapy aka LASER ART, also builds on nanotechnology and prodrug modifications to design preparations with tailor-made favorable pharmacokinetics and wider drug distribution. These recent advances are fueling the progression of antiretroviral therapy towards eliminating the disease.
Collapse
Affiliation(s)
- Rajpushpa Labh
- Department of Pharmacology, University College of Medical Sciences & GTB Hospital, University of Delhi, New Delhi, India
| | - Rachna Gupta
- Department of Pharmacology, University College of Medical Sciences & GTB Hospital, University of Delhi, New Delhi, India
| |
Collapse
|
29
|
Karunakaran D, Simpson SM, Su JT, Bryndza-Tfaily E, Hope TJ, Veazey R, Dobek G, Qiu J, Watrous D, Sung S, Chacon JE, Kiser PF. Design and Testing of a Cabotegravir Implant for HIV Prevention. J Control Release 2020; 330:658-668. [PMID: 33347943 DOI: 10.1016/j.jconrel.2020.12.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
Long-acting antiretroviral implants could help protect high-risk individuals from HIV infection. We describe the design and testing of a long-acting reservoir subcutaneous implant capable of releasing cabotegravir for several months. We compressed cabotegravir and excipients into cylindrical pellets and heat-sealed them in tubing composed of hydrophilic poly(ether-urethane) -. The implants have a 47 mm lumen length, 3.6 mm outer diameter, and 200 μm wall thickness. Four cabotegravir pellets were sealed in the membrane, with a total drug loading of 274 ± 3 mg. In vivo, the implants released 348 ± 107 μg/day (median value per implant, N = 41) of cabotegravir in rhesus macaques. Five implants generated an average cabotegravir plasma concentration of 373 ng/ml in rhesus macaques. The non-human primates tolerated the implant without gross pathology or microscopic signs of histopathology compared to placebo implants. Cabotegravir plasma levels in macaques dropped below detectable levels within two weeks after the removal of the implants.
Collapse
Affiliation(s)
- Dipu Karunakaran
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Solange M Simpson
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Jonathan T Su
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Physics and Engineering, Elon University, Elon, NC, USA
| | - Ewa Bryndza-Tfaily
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Thomas J Hope
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Ronald Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | - Georgina Dobek
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA; Tulane University School of Medicine, New Orleans, LA, USA
| | - Jiang Qiu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - David Watrous
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Samuel Sung
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Jorge E Chacon
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Patrick F Kiser
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
30
|
Perazzolo S, Mandal S, Prathipati PK, Destache CJ. Bictegravir Plus Tenofovir Alafenamide Nanoformulation as a Long-Acting Pre-Exposure Prophylaxis Regimen: Application of Modeling to Design Non-Human Primate Pharmacokinetic Experiments. Front Pharmacol 2020; 11:603242. [PMID: 33390993 PMCID: PMC7775496 DOI: 10.3389/fphar.2020.603242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Bictegravir (BIC) and tenofovir alafenamide fumarate (TAF), two potent anti-HIV drugs, had been nanoformulated (nBIC-TAF) to achieve once-a-month PrEP coverage. In-vivo mouse experiments for nBIC-TAF exhibited favorable subcutaneous (SC) pharmacokinetics. To probe the clinical suitability of the nBIC-TAF, as the next step, we intend to study nBIC-TAF in non-human primates (NHP), as the best preclinical model to foster clinical trials. Before entering an expensive NHP study, however, we seek to improve our a priori understanding about nBIC-TAF in higher species, having just mouse data. The mechanism-based pharmacokinetic modeling (MBPK) has been used as an appropriate method for pharmacokinetic modeling and interspecies scaling for nanoformulations. Via the use of MBPK, in this work, we created a model for nBIC-TAF able to predict plasma concentration-time curves in NHP. BIKTARVY is a daily oral combination of BIC, TAF, and emtricitabine (Gilead Science, CA), approved for HIV therapy. Using BIKTARVY equivalent dosages (from their NHP studies), we predicted that, following just one SC dose of nBIC-TAF in NHP, both BIC and tenofovir will have detectable and above in vitro efficacy levels for 28 days. Furthermore, the MBPK was able to provide a mechanistic explanation regarding the long-acting mechanism characterizing nBIC-TAF: nanoparticles stores in the SC space from which drugs slowly dissociate. Dissociated drugs in the SC space then buffer the plasma pool over time, yielding an extended-release effect in the plasma. Overall, we predicted for nBIC-TAF a promising long-acting pharmacokinetic in NHP, potentially usable as monthly PrEP. These results will help investigators to gain confidence for facing regulatory submissions at early stages.
Collapse
Affiliation(s)
- Simone Perazzolo
- Nanomath LLC and University of Washington, Seattle, WA, United States
| | - Subhra Mandal
- School of Pharmacy, Creighton University, Omaha, NE, United States
| | | | | |
Collapse
|
31
|
Adeleke OA. In vitro characterization of a synthetic polyamide-based erodible compact disc for extended drug release. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Kumar S, Bajaj A. Advances in self-assembled injectable hydrogels for cancer therapy. Biomater Sci 2020; 8:2055-2073. [PMID: 32129390 DOI: 10.1039/d0bm00146e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-specific toxicity of chemotherapeutics and evolution of malignant tumors against them are major challenges for existing cancer chemotherapeutic regimens. Engineering of nanomaterials has attempted to minimize the toxicity of anticancer drugs, but systemic delivery of these nanomaterials still imposes many hurdles in their clinical use like burst release of chemotherapeutics and toxicity and immunogenicity associated with excipients of nanomaterials. However, there has been a surge in the development of natural and synthetic nanomaterials to deliver anticancer agents to the diseased (tumor) site as it can minimize the systemic circulation of anticancer drugs and reduce the toxicity-related challenges. Therefore, localized drug delivery is considered as the most effective way to deliver therapeutics but is further challenged by poor biodegradability, high immunogenicity, poor drug entrapment efficacy and inability to maintain sustained release of anticancer agents at the tumor site. This review maps out recent advancements in engineering of low molecular weight hydrogels derived from amino acid, fatty acyl, steroidal lipid and drug conjugated amphiphilic scaffolds. We have summarized the efforts for the development of molecular hydrogels in terms of biocompatibility, therapeutic potential and challenges associated with existing molecular hydrogels for cancer therapy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India. and Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
33
|
Gunawardana M, Remedios-Chan M, Sanchez D, Webster S, Galvan P, Fanter R, Castonguay AE, Webster P, Moss JA, Kuo J, Gallay PA, Vincent KL, Motamedi M, Weinberger D, Marzinke MA, Hendrix CW, Baum MM. Multispecies Evaluation of a Long-Acting Tenofovir Alafenamide Subdermal Implant for HIV Prophylaxis. Front Pharmacol 2020; 11:569373. [PMID: 33536904 PMCID: PMC7849190 DOI: 10.3389/fphar.2020.569373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
New HIV-1 infection rates far outpace the targets set by global health organizations, despite important progress in curbing the progression of the epidemic. Long-acting (LA) formulations delivering antiretroviral (ARV) agents for HIV-1 pre-exposure prophylaxis (PrEP) hold significant promise, potentially facilitating adherence due to reduced dosing frequency compared to oral regimens. We have developed a subdermal implant delivering the potent ARV drug tenofovir alafenamide that could provide protection from HIV-1 infection for 6 months, or longer. Implants from the same lot were investigated in mice and sheep for local safety and pharmacokinetics (PKs). Ours is the first report using these animal models to evaluate subdermal implants for HIV-1 PrEP. The devices appeared safe, and the plasma PKs as well as the drug and metabolite concentrations in dermal tissue adjacent to the implants were studied and contrasted in two models spanning the extremes of the body weight spectrum. Drug and drug metabolite concentrations in dermal tissue are key in assessing local exposure and any toxicity related to the active agent. Based on our analysis, both animal models were shown to hold significant promise in LA product development.
Collapse
Affiliation(s)
- Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Mariana Remedios-Chan
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Debbie Sanchez
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Simon Webster
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Patricia Galvan
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Rob Fanter
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Amalia E. Castonguay
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Paul Webster
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - John A. Moss
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| | - Joseph Kuo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Philippe A. Gallay
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Kathleen L. Vincent
- Center for Biomedical Engineering, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | | | - Mark A. Marzinke
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Craig W. Hendrix
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Marc M. Baum
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, CA, United States
| |
Collapse
|
34
|
Sang Y, Ding L, Zhuang C, Chen F. Design strategies for long-acting anti-HIV pharmaceuticals. Curr Opin Pharmacol 2020; 54:158-165. [PMID: 33176247 DOI: 10.1016/j.coph.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022]
Abstract
Current combination antiretroviral therapy (cART) for human immunodeficiency virus (HIV) is limited by the frequent dosing and unfavorable adherence, and the rapid appearance of resistant mutants. Thus, there is a continuous need to improve and optimize the present therapies. The clinical phase III trials of FLAIR and ATLAS, showed two-drug injectable cabotegravir (CAB) and rilpivirine (RPV) formulation is potent, safe, and tolerable in HIV-infected patients. The recent approval of cabenuva (CAB+RPV) by Health Canada is a milestone in the development of long-term therapies for HIV infection. Broadly neutralizing antibodies (bNAbs) with excellent breath and efficiency against HIV have been investigated as LA antiviral weapons. Several modern modalities capable of sustained drug release for long-term treatment and prevention of HIV infection are also in development, such as implants, vaginal rings, and nanotherapies.
Collapse
Affiliation(s)
- Yali Sang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Li Ding
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Fener Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
35
|
Li L, Johnson LM, Krovi SA, Demkovich ZR, van der Straten A. Performance and Stability of Tenofovir Alafenamide Formulations within Subcutaneous Biodegradable Implants for HIV Pre-Exposure Prophylaxis (PrEP). Pharmaceutics 2020; 12:E1057. [PMID: 33167509 PMCID: PMC7694512 DOI: 10.3390/pharmaceutics12111057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/16/2023] Open
Abstract
A critical need exists to develop diverse biomedical strategies for the widespread use of HIV Pre-Exposure Prophylaxis (HIV PrEP). This manuscript describes a subcutaneous reservoir-style implant for long-acting delivery of tenofovir alafenamide (TAF) for HIV PrEP. We detail key parameters of the TAF formulation that affect implant performance, including TAF ionization form, the selection of excipient and the exposure to aqueous conditions. Both in-vitro studies and shelf stability tests demonstrate enhanced performance for TAF freebase (TAFFB) in this long-acting implant platform, as TAFFB maintains higher chemical stability than the TAF hemifumarate salt (TAFHF). We also examined the hydrolytic degradation profiles of various formulations of TAF and identified inflection points for the onset of the accelerated drug hydrolysis within the implant using a two-line model. The compositions of unstable formulations are characterized by liquid chromatography-mass spectrometry (LC-MS) and are correlated to predominant products of the TAF hydrolytic pathways. The hydrolysis rate of TAF is affected by pH and water content in the implant microenvironment. We further demonstrate the ability to substantially delay the degradation of TAF by reducing the rates of drug release and thus lowering the water ingress rate. Using this approach, we achieved sustained release of TAFFB formulations over 240 days and maintained > 93% TAF purity under simulated physiological conditions. The opportunities for optimization of TAF formulations in this biodegradable implant supports further advancement of strategies to address long-acting HIV PrEP.
Collapse
Affiliation(s)
- Linying Li
- Engineered Systems, RTI International, 3040 E Cornwallis Road, Research Triangle Park, Durham, NC 27709, USA; (L.L.); (S.A.K.)
| | - Leah M. Johnson
- Engineered Systems, RTI International, 3040 E Cornwallis Road, Research Triangle Park, Durham, NC 27709, USA; (L.L.); (S.A.K.)
| | - Sai Archana Krovi
- Engineered Systems, RTI International, 3040 E Cornwallis Road, Research Triangle Park, Durham, NC 27709, USA; (L.L.); (S.A.K.)
| | - Zach R. Demkovich
- Women’s Global Health Imperative, RTI International, 2150 Shattuck avenue, Berkeley, CA 94704, USA; (Z.R.D.); (A.v.d.S.)
| | - Ariane van der Straten
- Women’s Global Health Imperative, RTI International, 2150 Shattuck avenue, Berkeley, CA 94704, USA; (Z.R.D.); (A.v.d.S.)
| |
Collapse
|
36
|
Pons-Faudoa FP, Trani ND, Sizovs A, Shelton KA, Momin Z, Bushman LR, Xu J, Lewis DE, Demaria S, Hawkins T, Rooney JF, Marzinke MA, Kimata JT, Anderson PL, Nehete PN, Arduino RC, Sastry KJ, Grattoni A. Viral load Reduction in SHIV-Positive Nonhuman Primates via Long-Acting Subcutaneous Tenofovir Alafenamide Fumarate Release from a Nanofluidic Implant. Pharmaceutics 2020; 12:E981. [PMID: 33080776 PMCID: PMC7590004 DOI: 10.3390/pharmaceutics12100981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
HIV-1 is a chronic disease managed by strictly adhering to daily antiretroviral therapy (ART). However, not all people living with HIV-1 have access to ART, and those with access may not adhere to treatment regimens increasing viral load and disease progression. Here, a subcutaneous nanofluidic implant was used as a long-acting (LA) drug delivery platform to address these issues. The device was loaded with tenofovir alafenamide (TAF) and implanted in treatment-naïve simian HIV (SHIV)-positive nonhuman primates (NHP) for a month. We monitored intracellular tenofovir-diphosphate (TFV-DP) concentration in the target cells, peripheral blood mononuclear cells (PBMC). The concentrations of TFV-DP were maintained at a median of 391.0 fmol/106 cells (IQR, 243.0 to 509.0 fmol/106 cells) for the duration of the study. Further, we achieved drug penetration into lymphatic tissues, known for persistent HIV-1 replication. Moreover, we observed a first-phase viral load decay of -1.14 ± 0.81 log10 copies/mL (95% CI, -0.30 to -2.23 log10 copies/mL), similar to -1.08 log10 copies/mL decay observed in humans. Thus, LA TAF delivered from our nanofluidic implant had similar effects as oral TAF dosing with a lower dose, with potential as a platform for LA ART.
Collapse
Affiliation(s)
- Fernanda P. Pons-Faudoa
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (F.P.P.-F.); (N.D.T.); (A.S.)
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey 64710, NL, Mexico
| | - Nicola Di Trani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (F.P.P.-F.); (N.D.T.); (A.S.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Science (UCAS), Shijingshan, Beijing 100049, China
| | - Antons Sizovs
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (F.P.P.-F.); (N.D.T.); (A.S.)
| | - Kathryn A. Shelton
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA; (K.A.S.); (P.N.N.); (K.J.S.)
| | - Zoha Momin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.M.); (J.T.K.)
| | - Lane R. Bushman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA; (L.R.B.); (P.L.A.)
| | - Jiaqiong Xu
- Center for Outcomes Research and DeBakey Heart and Vascular Center, Houston Methodist Research Institute, Houston, TX 77030, USA;
- Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA;
- Department of Pathology and Laboratory of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Trevor Hawkins
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (T.H.); (J.F.R.)
| | - James F. Rooney
- Gilead Sciences, Inc., Foster City, CA 94404, USA; (T.H.); (J.F.R.)
| | - Mark A. Marzinke
- Departments of Pathology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA;
| | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.M.); (J.T.K.)
| | - Peter L. Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA; (L.R.B.); (P.L.A.)
| | - Pramod N. Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA; (K.A.S.); (P.N.N.); (K.J.S.)
- The University of Texas MD Anderson Cancer Center UTH Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Roberto C. Arduino
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - K. Jagannadha Sastry
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA; (K.A.S.); (P.N.N.); (K.J.S.)
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (F.P.P.-F.); (N.D.T.); (A.S.)
- Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
37
|
Sizovs A, Pons-Faudoa FP, Malgir G, Shelton KA, Bushman LR, Chua CYX, Anderson PL, Nehete PN, Sastry KJ, Grattoni A. Trans-urocanic acid enhances tenofovir alafenamide stability for long-acting HIV applications. Int J Pharm 2020; 587:119623. [PMID: 32663582 PMCID: PMC7484042 DOI: 10.1016/j.ijpharm.2020.119623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 12/30/2022]
Abstract
Long-acting (LA) pre-exposure prophylaxis (PrEP) for HIV prevention is poised to address non-adherence and implementation challenges by alleviating the burden of user-dependent dosing. Due to its potency, tenofovir alafenamide (TAF) is a viable candidate for LA PrEP. However, the inherent hydrolytic instability of TAF presents a challenge for application in LA systems. In this work, we examined the mechanism of TAF hydrolysis in a reservoir-based implant system and characterized TAF degradation kinetics as a function of the solution pH. We determined a pH "stability window" between pH 4.8 - 5.8 in which TAF degradation is substantially mitigated, with minimal degradation at pH 5.3. In a pursuit of a TAF formulation suitable for LA PrEP, we studied trans-urocanic acid (UA) as a buffer excipient. Here we show that UA can maintain the pH of TAF free base (TAFfb) solution inside a surrogate implant model at approximately pH 5.4. Through in vitro analysis, we demonstrated preservation of released TAF purity above 90% for over 9 months. Further, we performed an in vivo assessment of TAFfb-UA formulation in a reservoir-based nanofluidic implant inserted subcutaneously in non-human primates. Preventive levels of tenofovir diphosphate above 100 fmol/106 peripheral blood mononuclear cells were achieved in 2 days and sustained over 35 days. Fluid retrieved from implants after 60 days of implantation showed that UA preserved the aqueous phase in the implant at ~ pH 5.5, effectively counteracting the neutralizing action of interstitial fluids. Moreover, residual TAF in the implants maintained > 98% purity. Overall, TAF-UA represents a viable formulation applicable for LA HIV PrEP.
Collapse
Affiliation(s)
- Antons Sizovs
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Fernanda P Pons-Faudoa
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, NL, Mexico
| | - Gulsah Malgir
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Kathryn A Shelton
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Lane R Bushman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado- Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Peter L Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado- Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - K Jagannadha Sastry
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop, TX 78602, USA; Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Zero-order drug delivery: State of the art and future prospects. J Control Release 2020; 327:834-856. [PMID: 32931897 DOI: 10.1016/j.jconrel.2020.09.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023]
Abstract
Pharmaceutical drugs are an important part of the global healthcare system, with some estimates suggesting over 50% of the world's population takes at least one medication per day. Most drugs are delivered as immediate-release formulations that lead to a rapid increase in systemic drug concentration. Although these formulations have historically played an important role, they can be limited by poor patient compliance, adverse side effects, low bioavailability, or undesirable pharmacokinetics. Drug delivery systems featuring first-order release kinetics have been able to improve pharmacokinetics but are not ideal for drugs with short biological half-lives or small therapeutic windows. Zero-order drug delivery systems have the potential to overcome the issues facing immediate-release and first-order systems by releasing drug at a constant rate, thereby maintaining drug concentrations within the therapeutic window for an extended period of time. This release profile can be used to limit adverse side effects, reduce dosing frequency, and potentially improve patient compliance. This review covers strategies being employed to attain zero-order release or alter traditionally first-order release kinetics to achieve more consistent release before discussing opportunities for improving device performance based on emerging materials and fabrication methods.
Collapse
|
39
|
Stewart S, Domínguez-Robles J, McIlorum VJ, Gonzalez Z, Utomo E, Mancuso E, Lamprou DA, Donnelly RF, Larrañeta E. Poly(caprolactone)-Based Coatings on 3D-Printed Biodegradable Implants: A Novel Strategy to Prolong Delivery of Hydrophilic Drugs. Mol Pharm 2020; 17:3487-3500. [PMID: 32672976 PMCID: PMC7482401 DOI: 10.1021/acs.molpharmaceut.0c00515] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/18/2023]
Abstract
Implantable devices are versatile and promising drug delivery systems, and their advantages are well established. Of these advantages, long-acting drug delivery is perhaps the most valuable. Hydrophilic compounds are particularly difficult to deliver for prolonged times. This work investigates the use of poly(caprolactone) (PCL)-based implant coatings as a novel strategy to prolong the delivery of hydrophilic compounds from implantable devices that have been prepared by additive manufacturing (AM). Hollow implants were prepared from poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) using fused filament fabrication (FFF) AM and subsequently coated in a PCL-based coating. Coatings were prepared by solution-casting mixtures of differing molecular weights of PCL and poly(ethylene glycol) (PEG). Increasing the proportion of low-molecular-weight PCL up to 60% in the formulations decreased the crystallinity by over 20%, melting temperature by over 4 °C, and water contact angle by over 40°, resulting in an increased degradation rate when compared to pure high-molecular-weight PCL. Addition of 30% PEG to the formulation increased the porosity of the formulation by over 50% when compared to an equivalent PCL-only formulation. These implants demonstrated in vitro release rates for hydrophilic model compounds (methylene blue and ibuprofen sodium) ranging from 0.01 to 34.09 mg/day, depending on the drug used. The versatility of the devices produced in this work and the range of release rates achievable show great potential. Implants could be specifically developed in order to match the specific release rate required for a number of drugs for a wide range of conditions.
Collapse
Affiliation(s)
- Sarah
A. Stewart
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Juan Domínguez-Robles
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Victoria J. McIlorum
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Zoilo Gonzalez
- Instituto
De Cerámica y Vidrio, CSIC, c/Kelsen, 5, 28049 Madrid, Spain
| | - Emilia Utomo
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Elena Mancuso
- Nanotechnology
and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown BT37 0QB, U.K.
| | - Dimitrios A. Lamprou
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Ryan F. Donnelly
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| | - Eneko Larrañeta
- School
of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| |
Collapse
|
40
|
Cobb DA, Smith NA, Edagwa BJ, McMillan JM. Long-acting approaches for delivery of antiretroviral drugs for prevention and treatment of HIV: a review of recent research. Expert Opin Drug Deliv 2020; 17:1227-1238. [PMID: 32552187 PMCID: PMC7442675 DOI: 10.1080/17425247.2020.1783233] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Despite significant advances in treatment and prevention of HIV-1 infection, poor adherence to daily combination antiretroviral therapy (ART) regimens remains a major obstacle toward achieving sustained viral suppression and prevention. Adherence to ART could also be compromised by adverse drug reactions and societal factors that limit access to therapy. Therefore, medicines that aim to improve adherence by limiting ART side effects, frequency of dosing and socially acceptable regimens are becoming more attractive. AREAS COVERED This review highlights recent advances and challenges in the development of long-acting drug delivery strategies for HIV prevention and treatment. Approaches for extended oral and transdermal deliveries, microbicides, broadly neutralizing antibodies, and long-acting implantable and injectable deliveries are reviewed. EXPERT OPINION Emerging approaches on long-acting antiretroviral therapies and broadly neutralizing antibody technologies are currently at various stages of development. Such efforts, if successful and become broadly accepted by clinicians and users, will provide newer and simpler options for prevention and treatment of HIV infection.
Collapse
Affiliation(s)
- Denise A. Cobb
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center; Omaha, NE, USA
| | - Nathan A. Smith
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center; Omaha, NE, USA
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center; Omaha, NE, USA
| | - JoEllyn M. McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center; Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health; University of Nebraska Medical Center; Omaha, NE, USA
| |
Collapse
|
41
|
Massud I, Cong ME, Ruone S, Holder A, Dinh C, Nishiura K, Khalil G, Pan Y, Lipscomb J, Johnson R, Deyounks F, Rooney JF, Babusis D, Park Y, McCallister S, Callebaut C, Heneine W, García-Lerma JG. Efficacy of Oral Tenofovir Alafenamide/Emtricitabine Combination or Single-Agent Tenofovir Alafenamide Against Vaginal Simian Human Immunodeficiency Virus Infection in Macaques. J Infect Dis 2020; 220:1826-1833. [PMID: 31362305 DOI: 10.1093/infdis/jiz383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Tenofovir alafenamide (TAF)-based regimens are being evaluated for pre-exposure prophylaxis (PrEP). We used a macaque model of repeated exposures to simian human immunodeficiency virus (SHIV) to investigate whether TAF alone or the combination of TAF and emtricitabine (FTC) can prevent vaginal infection. METHODS Pigtail macaques were exposed vaginally to SHIV162p3 once a week for up to 15 weeks. Animals received clinical doses of FTC/TAF (n = 6) or TAF (n = 9) orally 24 hours before and 2 hours after each weekly virus exposure. Infection was compared with 21 untreated controls. RESULTS Five of the 6 animals in the FTC/TAF and 4 of the 9 animals in the TAF alone group were protected against infection (P = .001 and P = .049, respectively). The calculated efficacy of FTC/TAF and TAF was 91% (95% confidence interval [CI], 34.9%-98.8%) and 57.8% (95% CI, -8.7% to 83.6%), respectively. Infection in FTC/TAF but not TAF-treated macaques was delayed relative to controls (P = .005 and P = .114). Median tenofovir diphosphate (TFV-DP) levels in peripheral blood mononuclear cells (PBMCs) were similar among infected and uninfected macaques receiving TAF PrEP (351 and 143 fmols/106 cells, respectively; P = .921). CONCLUSIONS Emtricitabine/TAF provided a level of protection against vaginal challenge similar to FTC/TFV disoproxil fumarate combination in the macaque model. Our results support the clinical evaluation of FTC/TAF for PrEP in women.
Collapse
Affiliation(s)
- Ivana Massud
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mian-Er Cong
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Susan Ruone
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Angela Holder
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Chuong Dinh
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kenji Nishiura
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - George Khalil
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Yi Pan
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jonathan Lipscomb
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ryan Johnson
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Frank Deyounks
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Yeojin Park
- Gilead Sciences, Inc., Foster City, California
| | | | | | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - J Gerardo García-Lerma
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
42
|
Rael CT, Martinez M, Giguere R, Bockting W, MacCrate C, Mellman W, Valente P, Greene GJ, Sherman SG, Footer KHA, D'Aquila RT, Carballo-Diéguez A, Hope TJ. Transgender Women's Concerns and Preferences on Potential Future Long-Acting Biomedical HIV Prevention Strategies: The Case of Injections and Implanted Medication Delivery Devices (IMDDs). AIDS Behav 2020; 24:1452-1462. [PMID: 31654172 PMCID: PMC7181384 DOI: 10.1007/s10461-019-02703-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There are several long-acting biomedical HIV prevention products in the development pipeline, including injections and implanted medication delivery devices (IMDDs). It is critical to understand concerns and preferences on the use of these products in populations that shoulder a disproportionate burden of the HIV epidemic, such as transgender women. This will allow researchers and public health professionals to construct interventions tailored to the needs of these women to promote optimal use of these tools. In studies of other biomedical HIV prevention products (e.g., oral PrEP) it is clear that transgender women have unique concerns related to the use of these strategies. This may have an impact on this group's uptake and sustained use of longacting HIV prevention products. This study conducted four focus groups with N = 18 transgender women in New York City to understand their concerns and preferences on long-acting PrEP injections and IMDDs. Findings showed that participants were overwhelmingly positive about long-acting HIV prevention strategies, though they had some apprehensions. Overall, participants felt that injections and IMDDs could help address adherence challenges, and that transgender-specific needs should be addressed during clinical trials. Also, there were concerns related to injection or IMDD logistics, concerns about injections' or IMDDs' presence in the body, and familiarity with these products affected participants' opinions on them. Findings from this work can be used to inform protocols, measures, materials, and adherence interventions in future initiatives for transgender women using PrEP injections or IMDDs.
Collapse
Affiliation(s)
- Christine Tagliaferri Rael
- HIV Center for Clinical and Behavioral Studies at the New York State Psychiatric Institute and Columbia University, 1051 Riverside Dr., New York, NY, 10032, USA.
| | - Michelle Martinez
- Program for the Study of LGBT Health at the New York State Psychiatric Institute/Columbia Psychiatry and the Columbia University School of Nursing, New York, NY, USA
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Rebecca Giguere
- HIV Center for Clinical and Behavioral Studies at the New York State Psychiatric Institute and Columbia University, 1051 Riverside Dr., New York, NY, 10032, USA
| | - Walter Bockting
- Program for the Study of LGBT Health at the New York State Psychiatric Institute/Columbia Psychiatry and the Columbia University School of Nursing, New York, NY, USA
| | - Caitlin MacCrate
- Program for the Study of LGBT Health at the New York State Psychiatric Institute/Columbia Psychiatry and the Columbia University School of Nursing, New York, NY, USA
- CUNY School of Public Health, New York, NY, USA
| | - Will Mellman
- Program for the Study of LGBT Health at the New York State Psychiatric Institute/Columbia Psychiatry and the Columbia University School of Nursing, New York, NY, USA
| | - Pablo Valente
- Program for the Study of LGBT Health at the New York State Psychiatric Institute/Columbia Psychiatry and the Columbia University School of Nursing, New York, NY, USA
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - George J Greene
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan G Sherman
- Department of Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Katherine H A Footer
- Department of Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Richard T D'Aquila
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alex Carballo-Diéguez
- HIV Center for Clinical and Behavioral Studies at the New York State Psychiatric Institute and Columbia University, 1051 Riverside Dr., New York, NY, 10032, USA
| | - Thomas J Hope
- Northwestern University Feinberg School of Medicine, and Biomedical Engineering in the McCormick School of Engineering and Applied Sciences, Chicago, IL, USA
| |
Collapse
|
43
|
Simpson SM, Widanapathirana L, Su JT, Sung S, Watrous D, Qiu J, Pearson E, Evanoff A, Karunakaran D, Chacon JE, Kiser PF. Design of a Drug-Eluting Subcutaneous Implant of the Antiretroviral Tenofovir Alafenamide Fumarate. Pharm Res 2020; 37:83. [PMID: 32296951 PMCID: PMC7160069 DOI: 10.1007/s11095-020-2777-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/02/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE Sexual transmission of HIV has been clinically proven to be preventable with a once-daily oral tablet; however, missed doses dramatically increase the risk of HIV infection. Long-acting subcutaneous implants do not allow the user to miss a dose. A desirable long-acting drug-eluting implant can deliver a constant amount of drug, adjust the delivered dose, and be readily manufactured. We present a long-acting, subcutaneous implant design composed of tenofovir alafenamide hemifumarate (TAF) pellets loaded in a sealed polyether urethane tube for the prevention of HIV transmission. METHODS Implants were prepared with pressed drug pellets and extruded polyurethane tubing. In vitro release rate of implants using different pellet formulations, rate-controlling membranes, and geometries were measured. RESULTS Tenofovir alafenamide release appeared to be governed by a pseudo-steady state and followed a mass transport model of release from a cylindrical drug reservoir. Implant seal integrity was tested and confirmed using mechanical testing. The inclusion of sodium chloride in the pellet increased the release rate and reduced initial lag. The release was sustained for 100 days. CONCLUSIONS The release rate of tenofovir alafenamide mechanistically varied with geometry and rate controlling membrane composition. The polyether urethane implant presented herein is modular and tunable to adjust the release rate and duration of the TAF release.
Collapse
Affiliation(s)
- Solange M Simpson
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | | | - Jonathan T Su
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
- Department of Physics and Engineering, Elon University, Elon, North Carolina, USA
| | - Samuel Sung
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - David Watrous
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jiang Qiu
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Elizabeth Pearson
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Alex Evanoff
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Dipu Karunakaran
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jorge E Chacon
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Patrick F Kiser
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
44
|
A Subcutaneous Implant of Tenofovir Alafenamide Fumarate Causes Local Inflammation and Tissue Necrosis in Rabbits and Macaques. Antimicrob Agents Chemother 2020; 64:AAC.01893-19. [PMID: 31871073 PMCID: PMC7038301 DOI: 10.1128/aac.01893-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/08/2019] [Indexed: 12/22/2022] Open
Abstract
We describe the in vitro and in vivo evaluation of a subcutaneous reservoir implant delivering tenofovir alafenamide hemifumarate (TAF) for the prevention of HIV infection. These long-acting reservoir implants were able to deliver antiretroviral drug for over 90 days in vitro and in vivo. We evaluated the implants for implantation site histopathology and pharmacokinetics in plasma and tissues for up to 12 weeks in New Zealand White rabbit and rhesus macaque models. We describe the in vitro and in vivo evaluation of a subcutaneous reservoir implant delivering tenofovir alafenamide hemifumarate (TAF) for the prevention of HIV infection. These long-acting reservoir implants were able to deliver antiretroviral drug for over 90 days in vitro and in vivo. We evaluated the implants for implantation site histopathology and pharmacokinetics in plasma and tissues for up to 12 weeks in New Zealand White rabbit and rhesus macaque models. A dose-ranging study in rabbits demonstrated dose-dependent pharmacokinetics and local inflammation up to severe necrosis around the active implants. The matched placebos showed normal wound healing and fibrous tissue encapsulation of the implant. We designed a second implant with a lower release rate and flux of TAF and achieved a median cellular level of tenofovir diphosphate of 42 fmol per 106 rhesus macaque peripheral blood mononuclear cells at a TAF dose of 10 μg/kg/day. This dose and flux of TAF also resulted in adverse local inflammation and necrosis near the implant in rhesus macaques. The level of inflammation in the primates was markedly lower in the placebo group than in the active-implant group. The histological inflammatory response to the TAF implant at 4 and 12 weeks in primates was graded as a severe reaction. Thus, while we were able to achieve a sustained target dose, we observed an unacceptable inflammatory response locally at the implant tissue interface.
Collapse
|
45
|
Stewart SA, Domínguez-Robles J, McIlorum VJ, Mancuso E, Lamprou DA, Donnelly RF, Larrañeta E. Development of a Biodegradable Subcutaneous Implant for Prolonged Drug Delivery Using 3D Printing. Pharmaceutics 2020; 12:E105. [PMID: 32013052 PMCID: PMC7076405 DOI: 10.3390/pharmaceutics12020105] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
Implantable drug delivery devices offer many advantages over other routes of drug delivery. Most significantly, the delivery of lower doses of drug, thus, potentially reducing side-effects and improving patient compliance. Three dimensional (3D) printing is a flexible technique, which has been subject to increasing interest in the past few years, especially in the area of medical devices. The present work focussed on the use of 3D printing as a tool to manufacture implantable drug delivery devices to deliver a range of model compounds (methylene blue, ibuprofen sodium and ibuprofen acid) in two in vitro models. Five implant designs were produced, and the release rate varied, depending on the implant design and the drug properties. Additionally, a rate controlling membrane was produced, which further prolonged the release from the produced implants, signalling the potential use of these devices for chronic conditions.
Collapse
Affiliation(s)
- Sarah A. Stewart
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.A.S.); (V.J.M.); (D.A.L.); (R.F.D.)
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.A.S.); (V.J.M.); (D.A.L.); (R.F.D.)
| | - Victoria J. McIlorum
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.A.S.); (V.J.M.); (D.A.L.); (R.F.D.)
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown BT37 0QB, UK;
| | - Dimitrios A. Lamprou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.A.S.); (V.J.M.); (D.A.L.); (R.F.D.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.A.S.); (V.J.M.); (D.A.L.); (R.F.D.)
| | - Eneko Larrañeta
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (S.A.S.); (V.J.M.); (D.A.L.); (R.F.D.)
| |
Collapse
|
46
|
The Invisible Product: Preferences for Sustained-Release, Long-Acting Pre-exposure Prophylaxis to HIV Among South African Youth. J Acquir Immune Defic Syndr 2019; 80:542-550. [PMID: 30865050 DOI: 10.1097/qai.0000000000001960] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Long-acting injectable and implantable approaches aim to overcome some of the documented challenges with uptake and adherence to current HIV prevention methods. Youth are a key end-user population for these methods. We used qualitative methods to examine product attributes and preferences for current and future long-acting HIV prevention approaches. METHODS Ninety-five South African youth aged 18-24 years, of whom 62 were female and 33 male, completed 50 interviews and 6 focus groups. We purposively selected for previous product experience, including oral pre-exposure prophylaxis, injectable pre-exposure prophylaxis, or the vaginal ring, to ensure participants' opinions were rooted in actual experience. RESULTS Irrespective of previous method-use experience, gender, or sexual orientation, the majority expressed a preference for prevention methods formulated as injectables or implants. Several mentioned that their top priority in any product was efficacy, and for some, this overrode other concerns; for example, even if they feared pain, an implant or an injectable would be used if fully protective. Although efficacy was a top priority, there was also a clear desire across all subgroups for a product that would not interfere with sex, would stay in the system to provide protection, and that caused minimal burden, or was not apparent to others, and these characteristics were most salient for long-acting methods. CONCLUSIONS Narrative explanations for preferences converged thematically around different dimensions of "invisibility" including invisibility to oneself, one's partner and household members, and community members. End-user preferences can be used to inform product development of long-acting HIV prevention approaches formulated as injections or implants to optimize adherence and impact.
Collapse
|
47
|
Huang W, Wu D, Ong JJ, Smith MK, Yang F, Fu H, Tang W, Tucker JD. Prepared for PrEP: preferences for HIV pre-exposure prophylaxis among Chinese men who have sex with men in an online national survey. BMC Infect Dis 2019; 19:1057. [PMID: 31842772 PMCID: PMC6916236 DOI: 10.1186/s12879-019-4692-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pre-exposure prophylaxis (PrEP) is not widely available in China. Previous studies reported low awareness and inconclusive findings on the acceptability of PrEP among Chinese men who have sex with men (MSM). METHODS We conducted a secondary analysis of an online national survey comparing preferences for oral and long-acting injectable PrEP among MSM and identifying correlates of preferences. The study did not collect detailed information about partner types that may influence negotiated safety and PrEP uptake. RESULTS Nine-hundred and seventy-nine men from the larger sample of 1045 men responded to the PrEP survey questions. Most men (81.9%) had never heard of PrEP, but reported interest in using PrEP. More participants chose injectable PrEP (36.3%) as their preferred formulation than oral PrEP (24.6%). Men who had at least two HIV tests (adjusted OR = 1.36, 95%CI 1.04, 1.78) more commonly preferred injectable PrEP. CONCLUSION Our findings may help inform PrEP messaging in areas where PrEP has yet to be scaled up.
Collapse
Affiliation(s)
- Wenting Huang
- University of North Carolina at Chapel Hill Project-China, Guangzhou, China
| | - Dan Wu
- University of North Carolina at Chapel Hill Project-China, Guangzhou, China
| | - Jason J. Ong
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - M. Kumi Smith
- Division of Epidemiology and Community Health, University of Minnesota Twin Cities, Twin Cities, USA
| | - Fan Yang
- University of North Carolina at Chapel Hill Project-China, Guangzhou, China
| | - Hongyun Fu
- University of North Carolina at Chapel Hill Project-China, Guangzhou, China
- Eastern Virginia Medical School, Norfolk, USA
| | - Weiming Tang
- University of North Carolina at Chapel Hill Project-China, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Joseph D. Tucker
- University of North Carolina at Chapel Hill Project-China, Guangzhou, China
- London School of Hygiene and Tropical Medicine, London, UK
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
48
|
Beymer MR, Holloway IW, Pulsipher C, Landovitz RJ. Current and Future PrEP Medications and Modalities: On-demand, Injectables, and Topicals. Curr HIV/AIDS Rep 2019; 16:349-358. [PMID: 31222499 PMCID: PMC6719717 DOI: 10.1007/s11904-019-00450-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Pre-exposure prophylaxis (PrEP) is a potent HIV prevention strategy, but uptake of daily oral PrEP remains low. This review covers PrEP agents currently available and agents and modalities under investigation. RECENT FINDINGS Injectable ARV preparations have high acceptability among users but are likely to require adherence to 8-week interval injections. Topical microbicide gels and vaginal rings have underperformed by intention-to-treat analyses in efficacy studies, at least in large part due to challenges with adherence and/or sustained use. However, daily oral TDF-FTC also underperformed in randomized, placebo-controlled trials compared to expectations and subsequent real-world pragmatic use. On-demand (2-1-1 dosing strategy for MSM) and injectable PrEP appear to be acceptable among participants in clinical trials. These modalities are particularly compelling alternatives for individuals who either do not want to take a daily medication (both on-demand and injectable) and/or want to take PrEP without a long commitment (on-demand). Emerging modalities such as vaginal films, microneedles, and subdermal implants have numerous advantages but are still in early stages of development.
Collapse
Affiliation(s)
- Matthew R Beymer
- Department of Health and Mental Health Services, Los Angeles LGBT Center, McDonald/Wright Building, 1625 N Schrader Blvd, Room 114-E, Los Angeles, CA, 90028, USA.
| | - Ian W Holloway
- Department of Social Welfare, Luskin School of Public Affairs, University of California, Los Angeles, 337 Charles E Young Drive East, Los Angeles, CA, 90095, USA
| | | | - Raphael J Landovitz
- David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA
- UCLA Center for Clinical AIDS Research & Education (CARE), 11075 Santa Monica Blvd, Suite 100, Los Angeles, CA, 90024, USA
| |
Collapse
|
49
|
Johnson LM, Krovi SA, Li L, Girouard N, Demkovich ZR, Myers D, Creelman B, van der Straten A. Characterization of a Reservoir-Style Implant for Sustained Release of Tenofovir Alafenamide (TAF) for HIV Pre-Exposure Prophylaxis (PrEP). Pharmaceutics 2019; 11:pharmaceutics11070315. [PMID: 31277461 PMCID: PMC6680758 DOI: 10.3390/pharmaceutics11070315] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 11/29/2022] Open
Abstract
Long-acting (LA) HIV pre-exposure prophylaxis (PrEP) offers the potential to improve adherence by lowering the burden of daily or on-demand regimens of antiretroviral (ARV) drugs. This paper details the fabrication and in vitro performance of a subcutaneous and trocar-compatible implant for the LA delivery of tenofovir alafenamide (TAF). The reservoir-style implant comprises an extruded tube of a biodegradable polymer, poly(ε-caprolactone) (PCL), filled with a formulation of TAF and castor oil excipient. Parameters that affect the daily release rates of TAF are described, including the surface area of the implant, the thickness of the PCL tube walls (between 45 and 200 µm), and the properties of the PCL (e.g., crystallinity). In vitro studies show a linear relationship between daily release rates and surface area, demonstrating a membrane-controlled release mechanism from extruded PCL tubes. Release rates of TAF from the implant are inversely proportional to the wall thickness, with release rates between approximately 0.91 and 0.15 mg/day for 45 and 200 µm, respectively. The sustained release of TAF at 0.28 ± 0.06 mg/day over the course of 180 days in vitro was achieved. Progress in the development of this implant platform addresses the need for new biomedical approaches to the LA delivery of ARV drugs.
Collapse
Affiliation(s)
- Leah M Johnson
- Engineered Systems, RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Sai Archana Krovi
- Engineered Systems, RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Linying Li
- Engineered Systems, RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Natalie Girouard
- Engineered Systems, RTI International, 3040 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Zach R Demkovich
- Women's Global Health Imperative, RTI International, 351 California Street, Suite 500, San Francisco, CA 94104, USA
| | - Daniel Myers
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121, USA
| | - Ben Creelman
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121, USA
| | - Ariane van der Straten
- Women's Global Health Imperative, RTI International, 351 California Street, Suite 500, San Francisco, CA 94104, USA
| |
Collapse
|
50
|
Carballo-Dieguez A, Giguere R, Lentz C, Dolezal C, Fuchs EJ, Hendrix CW. Rectal Douching Practices Associated with Anal Intercourse: Implications for the Development of a Behaviorally Congruent HIV-Prevention Rectal Microbicide Douche. AIDS Behav 2019; 23:1484-1493. [PMID: 30415431 DOI: 10.1007/s10461-018-2336-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tenofovir administration via rectal douching results in higher rectal-mucosa drug concentration than oral administration. Many who engage in receptive anal intercourse (RAI) use cleansing rectal douches. To inform development of a behaviorally-congruent tenofovir douche, 4751 individuals ≥ 18 years-old, born male, from all US states/territories, who engaged in anal intercourse responded to an online survey. Of those who reported RAI in the prior 3 months, 80% douched beforehand, 82% within 1 h, mean 2.9 consecutive applications; 27% douched afterwards, 83% within 1 h, mean 1.7 consecutive applications. Among multidose users, 78% applied doses within 2 min, and 76% retained liquid < 1 min. Most used tap water (89%) in an enema bottle (50%) or rubber bulb (43%), and douched for cleanliness (97%), to avoid smelling bad (65%), and to enhance pleasure (24%). 98% reported high likelihood of using an HIV-prevention douche. An ideal product will protect within a user's typical number of applications, within 1 h, and be dissolvable in tap water.
Collapse
Affiliation(s)
- Alex Carballo-Dieguez
- HIV Center for Clinical and Behavioral Studies at New York State Psychiatric Institute and Columbia University, 1051 Riverside Drive, Unit 15, New York, NY, 10032, USA
| | - Rebecca Giguere
- HIV Center for Clinical and Behavioral Studies at New York State Psychiatric Institute and Columbia University, 1051 Riverside Drive, Unit 15, New York, NY, 10032, USA.
| | - Cody Lentz
- HIV Center for Clinical and Behavioral Studies at New York State Psychiatric Institute and Columbia University, 1051 Riverside Drive, Unit 15, New York, NY, 10032, USA
| | - Curtis Dolezal
- HIV Center for Clinical and Behavioral Studies at New York State Psychiatric Institute and Columbia University, 1051 Riverside Drive, Unit 15, New York, NY, 10032, USA
| | - Edward J Fuchs
- Division of Clinical Pharmacology, Johns Hopkins University, Baltimore, MD, USA
| | - Craig W Hendrix
- Division of Clinical Pharmacology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|