1
|
Alavi E, Tajadod G, Jafari Marandi S, Arbabian S. Vicia faba seed: a bioindicator of phytotoxicity, genotoxicity, and cytotoxicity of light crude oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21043-21051. [PMID: 36264458 DOI: 10.1007/s11356-022-23244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Crude oil contamination is a serious threat to the environment and human health as it can contaminate food chains. Therefore, it is necessary to find efficient tests to monitor soils for crude oil contamination. The present study investigates the efficacy of Vicia faba seeds for monitoring contaminated soils with light crude oil. Vicia faba seeds were planted in 0 (control), 1, 2, and 4 percentages (weight percentage) light crude oil-contaminated soils. The seed germination and root length were measured to evaluate phytotoxicity, while the mitotic index, chromosome aberrations, and micronucleus formation in the root tip cells were examined for cytotoxicity and genotoxicity tests. The results showed that light crude oil had toxic effects on Vicia faba growth characteristics, even at 1% contamination. The phytotoxicity assay showed that crude oil reduced seed germination and root length by 45% and 61.67%, respectively. In contrast, cellular observations indicated an increase in mitotic index, chromosome aberrations, and micronucleus formation up to 3, 3.59, and 5.6 times, respectively, compared to the control. The light crude oil at 4% induced the simultaneous occurrence of nuclear bud, polyploidy, and micronucleus that may be considered as severe clastogenic and aneugenic effects. Accordingly, Vicia faba can be considered a reliable living system for monitoring light crude oil pollution in soils, even at low concentrations.
Collapse
Affiliation(s)
- Elaheh Alavi
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Golnaz Tajadod
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Sayeh Jafari Marandi
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sedigheh Arbabian
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Genotoxicity of sodium arsenite on Vicia faba root meristematic cells. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
3
|
Grúz P, Yasui M, Ukai A, Horibata K, Honma M, Sugiyama KI. Potent mutagenicity of an azide, 3-azido-1,2-propanediol, in human TK6 cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503475. [PMID: 35483777 DOI: 10.1016/j.mrgentox.2022.503475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Sodium azide is a strong mutagen that has been successfully employed in mutation breeding of crop plants. In biological systems, it is metabolically converted to the proximate mutagen azidoalanine, which requires further bioactivation to a putative ultimate mutagen that remains elusive. The nature of the DNA modifications induced by azides leading to mutations is also unknown. Other mutagenic organic azido compounds seem to share the same bioactivation pathway to the ultimate mutagenic species as they induce point mutations dependent on the same DNA repair pathways. We investigated mutations induced by the representative mutagen 3-azido-1,2-propanediol (azidoglycerol, AZG) in the human TK6 cell line. Until now, azides have been considered to be non-mutagens and non-carcinogens in mammals, including humans, as judged only by the conventional clastogenicity chromosomal aberration types of bioassays. Here, we show the potent mutagenicity of AZG in cultured human cells, comparable to alkylating agents such as methyl methanesulfonate at concentrations with similar lethality. The potent ability of an organic azide to induce base substitutions in a mammalian system raises an alert with respect to human exposure to organic and inorganic azido compounds.
Collapse
Affiliation(s)
- Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan.
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Akiko Ukai
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| |
Collapse
|
4
|
El-Saber MM, Mahdi AA, Hassan AH, Farroh KY, Osman A. Effects of magnetite nanoparticles on physiological processes to alleviate salinity induced oxidative damage in wheat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5550-5562. [PMID: 33709391 DOI: 10.1002/jsfa.11206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND One of the major abiotic stressors that have a serious effect on plant growth and productivity worldwide is the salinity of soil or irrigation water. The effect of foliar application of magnetite nanoparticles (size = 22.05 nm) at different concentrations (0, 0.25, 0.5, and 1.0 ppm) was investigated to improve salinity tolerance in two wheat cultivars, namely, Misr1 (Tolerant) and Gimmeza11 (Sensitive). Moreover, toxicological investigations of magnetite oxide nanoparticle in Wistar albino rats were estimated. RESULTS The magnetite nanoparticles positively affected growth, chlorophyll, and enzymatic antioxidants such as superoxide dismutase (SOD), stimulating reduced glutathione and improving the aggregation of several polypeptide chains that may be linked to the tolerance of saline stress. In contrast, magnetite nanoparticles reduced malondialdehyde (MDA). Inverse sequence-tagged repeat (ISTR) assay of DNA molecular marker showed the change in band numbers with the highest polymorphic bands with 90% polymorphism at primer F3, B5 and 20 positive bands in Gimmeza11 with 0.5 ppm magnetite nanoparticles. In the median lethal dose (LD50 ) study, no rats died after the oral administration of magnetite nanoparticle at different doses. Therefore, the iron oxide nanoparticle was nontoxic when administered orally by gavage. CONCLUSION Magnetite nanoparticles partially helped to alleviate the effects of salt stress by activating growth, chlorophyll content, SOD, glutathione, and soluble proteins in two wheat cultivars (Misr1 and Gimmeza11) and decreasing MDA content. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mahmoud M El-Saber
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Asmaa A Mahdi
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Ahmed H Hassan
- Genetics Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center, Giza, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
5
|
Palácio SM, de Almeida JCB, de Campos ÉA, Veit MT, Ferreira LK, Deon MTM. Silver nanoparticles effect on Artemia salina and Allium cepa organisms: influence of test dilution solutions on toxicity and particles aggregation. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:836-850. [PMID: 33864553 DOI: 10.1007/s10646-021-02393-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to evaluate the effects of AgNPs on Artemia salina and Allium cepa, evaluating the influence of the dilution solutions on the particle behavior. The AgNPs were synthesized by chemical reduction of AgNO3 (3 and 5 mmol L-1) with sodium borohydride and stabilized with PVA (polyvinyl alcohol) and CMC (sodium carboxymethyl cellulose). The toxicity of AgNPs was evaluated in Artemia salina (mortality) using Meyer's solution as a diluent and in Allium cepa (chromosomal aberrations) using reconstituted hard water. AgNPs showed characteristic molecular absorption bands. Particles with CMC presented hydrodynamic radius between 4 and 102 nm and with PVA between 7 and 46 nm. The studied dispersions were toxic to A. salina species. Meyer's solution, used as dilution water in the test, caused precipitation of Ag+ and also caused changes in CMC-stabilized AgNPs, changing the shape of the nanoparticles by depositing precipitates on their surface. These changes make the results of toxicity difficult to interpret. AgNPs stabilized with PVA remained unchanged. AgNPs affected cell division and caused the appearance of chromosomal aberrations on A. cepa. Higher numbers of chromosomal aberrations occurred in dispersions with smaller particle diameters (AgNPs3-PVA and AgNPs5-PVA, without dilution). In the studied conditions the dispersions were toxic to the tested organisms, the concentrations of precursors and the type of stabilizer used influenced the particle size and toxicity. In the test with A. cepa, the reconstituted hard water did not cause changes in the dispersions of AgNPs, whereas for A. salina the Meyer solution promoted aggregation of the particles and precipitation, in the dispersions stabilized with CMC, thus changing the samples.
Collapse
Affiliation(s)
- Soraya Moreno Palácio
- Postgraduate Program of Chemical Engineering, Western Paraná State University, Rua da Faculdade 645, Jd. Santa Maria, Toledo, PR, 85903-000, Brazil.
| | - Jean Carlos Bosquette de Almeida
- Postgraduate Program of Chemical Engineering, Western Paraná State University, Rua da Faculdade 645, Jd. Santa Maria, Toledo, PR, 85903-000, Brazil
| | - Élvio Antônio de Campos
- Postgraduate Program of Chemical Engineering, Western Paraná State University, Rua da Faculdade 645, Jd. Santa Maria, Toledo, PR, 85903-000, Brazil
| | - Márcia Teresinha Veit
- Postgraduate Program of Chemical Engineering, Western Paraná State University, Rua da Faculdade 645, Jd. Santa Maria, Toledo, PR, 85903-000, Brazil
| | - Laila Karoline Ferreira
- Department of Chemical Engineering, Western Paraná State University, Rua da Faculdade 645, Jd. Santa Maria, Toledo, PR, 85903-000, Brazil
| | - Marjhorie Thais Meneguzzo Deon
- Department of Chemical Engineering, Western Paraná State University, Rua da Faculdade 645, Jd. Santa Maria, Toledo, PR, 85903-000, Brazil
| |
Collapse
|
6
|
Physico-Chemical Characterization and Biological Activities of a Digestate and a More Stabilized Digestate-Derived Compost from Agro-Waste. PLANTS 2021; 10:plants10020386. [PMID: 33670466 PMCID: PMC7922375 DOI: 10.3390/plants10020386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
The excessive use of agricultural soils and the reduction in their organic matter, following circular economy and environmental sustainability concepts, determined a strong attention in considering composting as a preferred method for municipalities and industries to recycle organic by-products. Microorganisms degrade organic matter for producing CO2, water and energy, originating stable humus named compost. The current study analyzed the chemical composition of a cow slurry on-farm digestate and a more stabilized digestate-derived compost (DdC), along with their phytotoxic, genotoxic and antifungal activities. The chemical analysis showed that digestate cannot be an ideal amendment due to some non-acceptable characteristics. Biological assays showed that the digestate had phytotoxicity on the tested plants, whereas DdC did not induce a phytotoxic effect in both plants at the lowest dilution; hence, the latter was considered in subsequent analyses. The digestate and DdC induced significant antifungal activity against some tested fungi. DdC did not show genotoxic effect on Vicia faba using a micronuclei test. Soil treated with DdC (5 and 10%) induced damping-off suppression caused by Fusarium solani in tomato plants. The eco-physiological data indicated that DdC at 5–10% could increase the growth of tomato plants. In conclusion, DdC is eligible as a soil amendment and to strengthen the natural soil suppressiveness against F. solani.
Collapse
|
7
|
Khan A, Kumar V, Srivastava A, Saxena G, Verma PC. Biomarker-based evaluation of cytogenotoxic potential of glyphosate in Vigna mungo (L.) Hepper genotypes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:73. [PMID: 33469782 DOI: 10.1007/s10661-021-08865-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Herbicides have proven to be a boon for agricultural fields. Their inherent property to kill weeds and unwanted vegetation makes them an essential biological tool for farmers and agricultural systems. Besides being capable of destroying weeds, they also exhibit certain effects on non-target crop plants. In the present study, a laboratory experiment was performed to assess the effect of glyphosate on Vigna mungo root meristem cells. Seeds of five different genotypes of V. mungo were treated with a series of concentrations of glyphosate ranging from 1 to 10 mM, and their effects on mitotic cell division were studied. Healthy and uniform-sized seeds were selected and were allowed to grow in Petri plates for 3 days, and all the doses were maintained in triplicates. Roots were fixed at day 3 after treatment (DAT) for cytological microscopic slide preparation. The results obtained indicate the dose-dependent reduction in the mitotic index in all the genotypes and an increase in the percentage of chromosomal aberrations (CAs) and relative abnormality rate (RAR). Most commonly observed chromosome aberrations at lower doses (< 6 mM) were fragments, stickiness, and disoriented metaphase, while at higher doses (6 to 10 mM) bridges, laggards, spindle disorientation, and clumping were obvious. The increase in the percentage of CAs and RAR indicates the inhibitory effect of glyphosate on cell cycle progression at various stages in root tip cells. The present study is a fine example of a biomarker-based genotoxic assessment of mitotic damage caused by glyphosate.
Collapse
Affiliation(s)
- Adiba Khan
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Vaibhav Kumar
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India
| | - Gauri Saxena
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, UP, 226007, India.
| | - Praveen C Verma
- Department of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India
| |
Collapse
|
8
|
HASSANEIN AM, MOHAMED AH, ABD ALLAH HA, ZAKI H. Cytogenetic and molecular studies on two faba bean cultivars revealed their difference in their aluminum tolerance. ACTA AGRICULTURAE SLOVENICA 2020; 116. [DOI: 10.14720/aas.2020.116.2.1346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Two cultivars of faba bean (Vicia faba ‘Giza 843’ and ‘Nobaria 3’) that differ in aluminum (Al) tolerance were used to study cytogenetic and genomic alterations under the influence of Al Cl3 (5, 15, and 25 mmol AlCl3) for different periods (6, 12 and 24 h). Under Al treatments, mitotic index in both cultivars decreased and total chromosomal abnormalities increased. The frequencies of micronuclei and chromosomal abnormalities (C-anaphase, metaphase-star chromosomes, breaks, sticky and disturbed chromosomes during metaphase or anaphase) in ‘Giza 843’ were lower than in ‘Nabaria 3’. Increase of the registered cytogenetic events under the influence of Al stress led to increase the detected polymorphism using RAPD and ISSR markers. Application of RAPD primers gave the same value of polymorphism in both faba bean cultivars under Al stress. Polymorphism average of nine ISSR primers of ’Giza 843’ (65.36 %) was lower than that of ‘Nobaria 3’ (71.59 %). Molecular markers, cytogenetic characteristics and seedling growth data indicate that Al tolerance of ‘Giza 843’ was higher than of ‘Nobaria 3’. This work shows that cytogenetic and ISSR techniques could be used efficiently to distinguish between the ability of two faba bean cultivars to tolerate toxic effects of Al.
Collapse
|
9
|
Immobilization of Cr(VI) in Soil Using a Montmorillonite-Supported Carboxymethyl Cellulose-Stabilized Iron Sulfide Composite: Effectiveness and Biotoxicity Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176087. [PMID: 32825647 PMCID: PMC7503541 DOI: 10.3390/ijerph17176087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022]
Abstract
A novel composite of montmorillonite-supported carboxymethyl cellulose-stabilized nanoscale iron sulfide (CMC@MMT-FeS), prepared using the co-precipitation method, was applied to remediate hexavalent chromium (Cr(VI))-contaminated soil. Cr(VI)-removal capacity increased with increasing FeS-particle loading. We tested the efficacy of CMC@MMT-FeS at three concentrations of FeS: 0.2, 0.5, and 1 mmol/g, hereafter referred to as 0.2 CMC@MMT-FeS, 0.5 CMC@MMT-FeS, and 1.0 CMC@MMT-FeS, respectively. The soil Cr(VI) concentration decreased by 90.7% (from an initial concentration of 424.6 mg/kg to 39.4 mg/kg) after 30 days, following addition of 5% (composite-soil mass proportion) 1.0 CMC@MMT-FeS. When 2% 0.5 CMC@MMT-FeS was added to Cr(VI)-contaminated soil, the Cr(VI) removal efficiency, as measured in the leaching solution using the toxicity characteristic leaching procedure, was 90.3%, meeting the environmental protection standard for hazardous waste (5 mg/kg). The European Community Bureau of Reference (BCR) test confirmed that the main Cr fractions in the soil samples changed from acid-exchangeable fractions to oxidable fractions and residual fractions after 30 days of soil remediation by the composite. Moreover, the main complex formed during remediation was Fe(III)-Cr(III), based on BCR and X-ray photoelectron spectroscopy analyses. Biotoxicity of the remediated soils, using Vicia faba and Eisenia foetida, was analyzed and evaluated. Our results indicate that CMC@MMT-FeS effectively immobilizes Cr(VI), with widespread potential application in Cr(VI)-contaminated soil remediation.
Collapse
|
10
|
Youssef MS, Elamawi RM. Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18972-18984. [PMID: 30238264 DOI: 10.1007/s11356-018-3250-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/14/2018] [Indexed: 05/25/2023]
Abstract
Due to the accelerating use of manufactured nanomaterials, more research is needed to define their impact on plants. The present investigation aimed at evaluating the effect of different levels (0.0, 10, 25, 50, and 100 mg/L) of ZnO nanoparticles (NPs) on Vicia faba during seed germination and seedling establishment. Additionally, V. faba root meristems were used as a model to monitor the cytotoxic and genotoxic effects resulting from exposure to ZnO NPs. The influence of ZnO NPs on three isoenzyme systems, peroxidase, α, and β esterase, was also evaluated using native-PAGE. Our results showed that lower concentrations of ZnO NPs (especially 10 and 25 mg/L) enhanced seed germination and improved seedling growth, while higher concentrations (100 and 200 mg/L) resulted in phytotoxicity. Cytological investigations of ZnO NPs-treated V. faba root cells denoted the clastogenic and aneugenic nature of ZnO NPs. Differential increase in mitotic index and significant alterations in cell cycle were observed upon exposure to ZnO NPs. High concentrations of ZnO NPs markedly induced chromosomal aberration, micronuclei, and vacuolated nuclei formation. Chromosomal breakage, chromosomal bridges, ring chromosomes, laggard chromosomes, and stickiness were also observed at a higher rate. The PAGE analysis showed that ZnO NPs treatments altered the expression patterns of all studied enzyme systems. Collectively, results from this work will help to further understand the phytotoxic effects of nanomaterials.
Collapse
Affiliation(s)
- Mohamed S Youssef
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Rabab M Elamawi
- Rice Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, 33717, Egypt
| |
Collapse
|
11
|
Schiavo S, Oliviero M, Chiavarini S, Manzo S. Adverse effects of oxo-degradable plastic leachates in freshwater environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8586-8595. [PMID: 31904098 DOI: 10.1007/s11356-019-07466-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
The production of biodegradable plastics is considered to be a way to reduce plastic waste issue. Among others, oxo-degradant additives enable a faster degradation of plastics in the environment. However, the introduction of these new materials could provoke the release of substances potentially toxic in the environment. This work determined and compared the toxicity of leachates from various additivated polymers (polyethylene, PE; polypropylene, PP; polystyrene, PS) upon different test organisms: plants (Sorghum saccharatum, Lepidium sativum, Sinapis alba, and Vicia faba), crustacean (Daphnia magna), and luminescent bacteria (Vibrio fischeri). Daphnia magna survival was mainly affected by PS and PP leachates (72% and 61% effect, respectively) while PS notably reduced the reproduction rate. On plants, only PP exerted a negative effect (S. saccharatum IG% 32.4), while V. fischeri always showed values around 50%. The data integration, through the Toxicity Test Battery Integrated Index (TBI) approach, allowed to rank the leachates toxicity as PE > PS > PP. This result could be mainly ascribable to the highest metals content in PE since no difference with organic compounds analysis was evidenced. In conclusion, since the polymers exerted dissimilar toxicity, the additive could not be considered the sole responsible of the measured toxicity, but its role in the enhancement of the virgin polymers leachates effects can be solidly hypothesized.
Collapse
Affiliation(s)
- Simona Schiavo
- ENEA CR Portici, SSPT-PROTER Division, P. le E. Fermi, 1, 80055, Portici, Naples, Italy
- University of Naples Parthenope, Naples, Italy
| | - Maria Oliviero
- ENEA CR Portici, SSPT-PROTER Division, P. le E. Fermi, 1, 80055, Portici, Naples, Italy
| | - Salvatore Chiavarini
- ENEA CR Casaccia, SSPT-PROTER Division, via Anguillarese 301, 00123, Rome, Italy
| | - Sonia Manzo
- ENEA CR Portici, SSPT-PROTER Division, P. le E. Fermi, 1, 80055, Portici, Naples, Italy.
| |
Collapse
|
12
|
Gupta K, Srivastava A, Srivastava S, Kumar A. Phyto-genotoxicity of arsenic contaminated soil from Lakhimpur Kheri, India on Vicia faba L. CHEMOSPHERE 2020; 241:125063. [PMID: 31610463 DOI: 10.1016/j.chemosphere.2019.125063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The present experiment was designed to evaluate physico-chemical characteristics and phyto-genotoxicity of arsenic (As) contaminated soil collected from different sites of Lakhimpur, Uttar Pradesh (UP), India by employing Vicia faba L. The analyses included various biochemical as well as cyto-genotoxicity assays. The results showed that soil pH was slightly acidic to neutral in nature. The bulk density (1.18-1.23 gcm-3), particle density (2.51-2.59 gcm-3) and porosity (44-53%) varied in different places. The level of available nutrients, nitrogen, phosphorus and potassium was found to vary as 124-165 mgkg-1, 173-186 mgkg-1 and 48-98 mgkg-1, respectively. The maximum As levels were found in soil of Fulvareya (27.13 mgkg-1) and Atareya (24.12 mgkg-1), the level of As in water samples of these sites were 0.19 mgl-1and 0.21 mgl-1, respectively. Phytotoxicity of the As present in soils was evident through significant increases in stress metabolites, hydrogen peroxide (H2O2), malondialdehyde (MDA) and carbonyl groups in root and shoot of V. faba. Cyto-genotoxic effects were also seen through reduced mitotic index (MI) and increased mitotic depression (MD), relative abnormality rate (RAR) as well as other chromosomal abnormalities along with micronuclei in root meristematic cells of V. faba. The phytotoxicity and cyto-genotoxicity assessment suggests the harmful soil properties that might affect biota.
Collapse
Affiliation(s)
- Kiran Gupta
- Department of Botany, Lucknow University, Lucknow, 226007, India
| | - Alka Srivastava
- Department of Botany, Lucknow University, Lucknow, 226007, India.
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Kumar
- Department of Botany, Lucknow University, Lucknow, 226007, India.
| |
Collapse
|
13
|
Srivastava R, Tewari A, Chauhan LKS, Kumar D, Gupta SK. Ecotoxicological Evaluation of Municipal Sludge. Altern Lab Anim 2019; 33:21-7. [PMID: 15804214 DOI: 10.1177/026119290503300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Municipal wastes originating from urban and industrial areas have become a major source of soil, ground and surface water pollution. These undesirable agents in our environment significantly interact with our flora and fauna. The aim of this study was to test samples of municipal sludge (MS) for their ecotoxicological potential by using sensitive bioassays involving a plant, Vicia faba, and the earthworm, Eisenia foetida. A 10% leachate of MS was prepared for the experiments, and V. faba seedlings were exposed to three leachate concentrations (2.5%, 5% and 10%) for 5 days. The findings revealed chromosome aberrations during the metaphase as well as the anaphase of cell division, and inhibition of the mitotic index, which reflects that MS originating from domestic and other human activities may be genotoxic to the living organisms of the ecosystem. Abnormalities in chlorophyll content, plant growth, root length, shoot length and root/shoot length ratio in V. faba clearly indicated the toxicity of the sludge. Behavioural and reproduction studies with E. foetida also provided evidence for the toxic nature of the MS.
Collapse
Affiliation(s)
- Richa Srivastava
- Cell Biology Section, Industrial Toxicology Research Centre, P.O. Box 80, M.G. Marg, Lucknow 226 001, India
| | | | | | | | | |
Collapse
|
14
|
Cytotoxic, Genotoxic, and Polymorphism Effects on Vanilla planifolia Jacks ex Andrews after Long-Term Exposure to Argovit ® Silver Nanoparticles. NANOMATERIALS 2018; 8:nano8100754. [PMID: 30257465 PMCID: PMC6215222 DOI: 10.3390/nano8100754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022]
Abstract
Worldwide demands of Vanilla planifolia lead to finding new options to produce large-scale and contaminant-free crops. Particularly, the Mexican Government has classified Vanilla planifolia at risk and it subject to protection programs since wild species are in danger of extinction and no more than 30 clones have been found. Nanotechnology could help to solve both demands and genetic variability, but toxicological concerns must be solved. In this work, we present the first study of the cytotoxic and genotoxic effects promoted by AgNPs in Vanilla planifolia plantlets after a very long exposure time of six weeks. Our results show that Vanilla planifolia plantlets growth with doses of 25 and 50 mg/L is favored with a small decrease in the mitotic index. A dose-dependency in the frequency of cells with chromosomal aberrations and micronuclei was found. However, genotoxic effects could be considered as minimum due to with the highest concentration employed (200 mg/L), the total percentage of chromatic aberrations is lower than 5% with only three micronuclei in 3000 cells, despite the long-time exposure to AgNP. Therefore, 25 and 50 mg/L (1.5 and 3 mg/L of metallic silver) were identified as safe concentrations for Vanilla planifolia growth on in vitro conditions. Exposure of plantlets to AgNPs increase the polymorphism registered by inter-simple sequence repeat method (ISSR), which could be useful to promote the genetic variability of this species.
Collapse
|
15
|
Rusin M, Gospodarek J, Nadgórska-Socha A, Barczyk G. Effect of petroleum-derived substances on life history traits of black bean aphid (Aphis fabae Scop.) and on the growth and chemical composition of broad bean. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:308-319. [PMID: 28144803 PMCID: PMC5397440 DOI: 10.1007/s10646-017-1764-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 05/06/2023]
Abstract
The aim of the study was to determine the effects of various petroleum-derived substances, namely petrol, diesel fuel and spent engine oil, on life history traits and population dynamics of the black bean aphid Aphis fabae Scop. and on growth and chemical composition of its host plant Vicia faba L. Each substance was tested separately, using two concentrations (9 g kg-1 and 18 g kg-1). The experiment was conducted in four replications (four pots with five plants in each pot per treatment). Plants were cultivated in both control and contaminated soils. After six weeks from soil contamination and five weeks from sowing the seeds, observations of the effect of petroleum-derived substances on traits of three successive generations of aphids were conducted. Aphids were inoculated separately on leaves using cylindrical cages hermetically closed on both sides. Contamination of aphid occurred through its host plant. Results showed that all tested substances adversely affected A. fabae life history traits and population dynamics: extension of the prereproductive period, reduction of fecundity and life span, reduction of the population intrinsic growth rate. In broad bean, leaf, roots, and shoot growth was also impaired in most conditions, whereas nutrient and heavy metal content varied according to substances, their concentration, as well as plant part analysed. Results indicate that soil contamination with petroleum-derived substances entails far-reaching changes not only in organisms directly exposed to these pollutants (plants), but also indirectly in herbivores (aphids) and consequently provides information about potential negative effects on further links of the food chain, i.e., for predators and parasitoids.
Collapse
Affiliation(s)
- Milena Rusin
- Department of Agricultural Environment Protection, University of Agriculture, al. A. Mickiewicza 21, Krakow, 31-120, Poland.
| | - Janina Gospodarek
- Department of Agricultural Environment Protection, University of Agriculture, al. A. Mickiewicza 21, Krakow, 31-120, Poland
| | | | - Gabriela Barczyk
- Department of Ecology, University of Silesia, Bankowa 9, Katowice, 40-007, Poland
| |
Collapse
|
16
|
Biruk LN, Moretton J, Fabrizio de Iorio A, Weigandt C, Etcheverry J, Filippetto J, Magdaleno A. Toxicity and genotoxicity assessment in sediments from the Matanza-Riachuelo river basin (Argentina) under the influence of heavy metals and organic contaminants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:302-311. [PMID: 27764694 DOI: 10.1016/j.ecoenv.2016.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/29/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate the parameters of chemical extraction associated with the detection of toxicity and genotoxicity in sediment sample extracts. Quantitative analysis of metals and polycyclic aromatic hydrocarbons (PAHs), together with a battery of four bioassays, was performed in order to evaluate the extraction efficiency of inorganic and organic toxicants. The extracts were carried out using two inorganic solvents, two organic solvents and two extraction methodologies, making a total of five extracts. Two toxicity tests, the algal growth inhibition of Pseudokirchneriella subcapitata and the root elongation inhibition of Lactuca sativa, and two genotoxicity tests, the analysis of revertants of Salmonella typhimurium and the analysis of micronuclei and chromosomal aberrations in Allium cepa, were performed. According to the chemical analysis, the acidic solution extracted more heavy metal concentrations than distilled water, and dichloromethane extracted more but fewer concentrations of PAH compounds than methanol. Shaker extracts with distilled water were non-toxic to P. subcapitata, but were toxic to L. sativa. The acidic extracts were more toxic to P. subcapitata than to L. sativa. The methanolic organic extracts were more toxic to the alga than those obtained with dichloromethane. None of these extracts resulted toxic to L. sativa. Mutagenic effects were only detected in the organic dichloromethane extracts in the presence of metabolic activation. All the inorganic and organic extracts were genotoxic to A. cepa. This study showed that the implementation of different extraction methods together with a battery of bioassays could be suitable tools for detecting toxicity and genotoxicity in sediment samples.
Collapse
Affiliation(s)
- Lucía N Biruk
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956 4° Piso (C1113AAC), Buenos Aires, Argentina
| | - Juan Moretton
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956 4° Piso (C1113AAC), Buenos Aires, Argentina
| | - Alicia Fabrizio de Iorio
- Cátedra de Química Analítica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, Argentina
| | - Cristian Weigandt
- Cátedra de Química Analítica, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, Argentina
| | - Jimena Etcheverry
- Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, (1650), San Martín, Buenos Aires, Argentina
| | - Javier Filippetto
- Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, (1650), San Martín, Buenos Aires, Argentina
| | - Anahí Magdaleno
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956 4° Piso (C1113AAC), Buenos Aires, Argentina.
| |
Collapse
|
17
|
Corrêa Martins MN, de Souza VV, Souza TDS. Genotoxic and mutagenic effects of sewage sludge on higher plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:489-496. [PMID: 26643763 DOI: 10.1016/j.ecoenv.2015.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
Sewage treatment yields sludge, which is often used as a soil amendment in agriculture and crop production. Although the sludge contains elevated concentrations of macro and micronutrients, high levels of inorganic and organic compounds with genotoxic and mutagenic properties are present in sludge. Application of sludge in agriculture is a pathway for direct contact of crops to toxic chemicals. The objective of this study was to compile information related to the genotoxic and mutagenic effects of sewage sludge in different plant species. In addition, data are presented on toxicological effects in animals fed with plants grown in soils supplemented with sewage sludge. Despite the benefits of using sewage sludge as organic fertilizer, the data showcased in this review suggest that this residue can induce genetic damage in plants. This review alerts potential risks to health outcomes after the intake of food cultivated in sewage sludge-amended soils.
Collapse
Affiliation(s)
- Maria Nilza Corrêa Martins
- Programa de Pós-Graduação em Genética e Melhoramento, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, CEP 29500-000 Alegre, ES, Brazil
| | - Victor Ventura de Souza
- Departamento de Biologia, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, CEP 29500-000 Alegre, ES, Brazil
| | - Tatiana da Silva Souza
- Programa de Pós-Graduação em Genética e Melhoramento, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, CEP 29500-000 Alegre, ES, Brazil; Departamento de Biologia, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, CEP 29500-000 Alegre, ES, Brazil.
| |
Collapse
|
18
|
Iqbal M. Vicia faba bioassay for environmental toxicity monitoring: A review. CHEMOSPHERE 2016; 144:785-802. [PMID: 26414739 DOI: 10.1016/j.chemosphere.2015.09.048] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 05/26/2023]
Abstract
Higher plants are recognized as excellent genetic models to detect cytogenetic and mutagenic agents and are frequently used in environmental monitoring studies. Vicia faba (V. faba) bioassay have been used to study DNA damages i.e., chromosomal and nuclear aberrations induced by metallic compounds, pesticides, complex mixtures, petroleum derivates, toxins, nanoparticles and industrial effluents. The main advantages of using V. faba is its availability round the year, economical to use, easy to grow and handle; its use does not require sterile conditions, rate of cell division is fast, chromosomes are easy to score, less expensive and more sensitive as compared to other short-term tests that require pre-preparations. The V. faba test offers evaluation of different endpoints and tested agents can be classified as cytotoxic/genotoxic/mutagenic. This test also provides understanding about mechanism of action, whether the tested agent is clastogenic or aneugenic in nature. In view of advantages offered by V. faba test system, it is used extensively to assess toxic agents and has been emerged as an important bioassay for ecotoxicological studies. Based on the applications of V. faba test to assess the environmental quality, this article offers an overview of this test system and its efficiency in assessing the cytogenetic and mutagenic agents in different classes of the environmental concerns.
Collapse
Affiliation(s)
- Munawar Iqbal
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
| |
Collapse
|
19
|
Kumar D, Rajeshwari A, Jadon PS, Chaudhuri G, Mukherjee A, Chandrasekaran N, Mukherjee A. Cytogenetic studies of chromium (III) oxide nanoparticles on Allium cepa root tip cells. J Environ Sci (China) 2015; 38:150-157. [PMID: 26702979 DOI: 10.1016/j.jes.2015.03.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 06/05/2023]
Abstract
The current study evaluates the cytogenetic effects of chromium (III) oxide nanoparticles on the root cells of Allium cepa. The root tip cells of A. cepa were treated with the aqueous dispersions of Cr2O3 nanoparticles (NPs) at five different concentrations (0.01, 0.1, 1, 10, and 100μg/mL) for 4hr. The colloidal stability of the nanoparticle suspensions during the exposure period were ascertained by particle size analyses. After 4hr exposure to Cr2O3 NPs, a significant decrease in mitotic index (MI) from 35.56% (Control) to 35.26% (0.01μg/mL), 34.64% (0.1μg/mL), 32.73% (1μg/mL), 29.6% (10μg/mL) and 20.92% (100μg/mL) was noted. The optical, fluorescence and confocal laser scanning microscopic analyses demonstrated specific chromosomal aberrations such as-chromosome stickiness, chromosome breaks, laggard chromosome, clumped chromosome, multipolar phases, nuclear notch, and nuclear bud at different exposure concentrations. The concentration-dependent internalization/bio-uptake of Cr2O3 NPs may have contributed to the enhanced production of anti oxidant enzyme, superoxide dismutase to counteract the oxidative stress, which in turn resulted in observed chromosomal aberrations and cytogenetic effects. These results suggest that A. cepa root tip assay can be successfully applied for evaluating environmental risk of Cr2O3 NPs over a wide range of concentrations.
Collapse
Affiliation(s)
- Deepak Kumar
- Centre for Nanobiotechnology, VIT University, Vellore, India
| | - A Rajeshwari
- Centre for Nanobiotechnology, VIT University, Vellore, India
| | | | - Gouri Chaudhuri
- Centre for Nanobiotechnology, VIT University, Vellore, India
| | - Anita Mukherjee
- Centre of Advanced Study, Department of Botany, University of Calcutta, India
| | | | | |
Collapse
|
20
|
Magdaleno A, Peralta Gavensky M, Fassiano AV, Ríos de Molina MC, Santos M, March H, Moretton J, Juárez ÁB. Phytotoxicity and genotoxicity assessment of imazethapyr herbicide using a battery of bioassays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19194-202. [PMID: 26250814 DOI: 10.1007/s11356-015-5103-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
The imazethapyr herbicide (formulation Verosil(®)) was evaluated for phytotoxicity and genotoxicity using a battery of bioassays: (1) the growth inhibition of the green alga Pseudokirchneriella subcapitata, (2) the root growth and germination of the higher plant Lactuca sativa, (3) the genetic damage using the Salmonella/microsome test, and (4) the aneugenic and clastogenic effects on Allium cepa. The Verosil(®) formulation was highly toxic to the non-target green alga (median effective concentration (EC50) = 1.05 ± 0.05 mg active ingredient (a.i.) L(-1)), and concentrations above 10 mg a.i. L(-1) inhibited root elongation in lettuce: relative growth index (RGI) between 0.28 ± 0.01 and 0.66 ± 0.10. No genotoxic effect was observed in S almonella typhimurium at 100 mg a.i. L(-1), either with or without the microsomal fraction. However, significant differences in the frequency of chromosomal aberrations in anaphases and telophases (bridges, chromosome fragments, and vagrants) were observed in A. cepa at concentrations between 0.01 and 1 mg a.i. L(-1) with respect to the control. The frequencies of micronuclei showed significant differences with respect to the control at concentrations between 0.001 and 0.1 mg a.i. L(-1). A very high mitotic index (MI = 93.8 ± 5.8) was observed associated with a high number of cells in the prophase stage at 100 mg a.i. L(-1), indicating cytotoxicity. These results showed that imazethapyr is toxic to the non-target populations in both aquatic and terrestrial ecosystems. This herbicide might also exert clastogenic and aneugenic mitotic damage in higher plants. Therefore, the imazethapyr formulation may constitute an environmental risk to plants.
Collapse
Affiliation(s)
- Anahí Magdaleno
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° Piso, C1113AAC, Buenos Aires, Argentina.
| | - Marina Peralta Gavensky
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° Piso, C1113AAC, Buenos Aires, Argentina
| | - Anabella V Fassiano
- Departamento de Química Biológica, IQUIBICEN UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María C Ríos de Molina
- Departamento de Química Biológica, IQUIBICEN UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina Santos
- Instituto Nacional de Tecnología Industrial (INTI), San Martín, Buenos Aires, Argentina
| | - Hugo March
- Agrofina S.A., Vicente López, Buenos Aires, Argentina
| | - Juan Moretton
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° Piso, C1113AAC, Buenos Aires, Argentina
| | - Ángela B Juárez
- Departamento de Química Biológica, IQUIBICEN UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, IBBEA UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Rajeshwari A, Kavitha S, Alex SA, Kumar D, Mukherjee A, Chandrasekaran N, Mukherjee A. Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip--effects of oxidative stress generation and biouptake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11057-11066. [PMID: 25794585 DOI: 10.1007/s11356-015-4355-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The commercial usage of Al2O3 nanoparticles (Al2O3 NPs) has gone up significantly in the recent times, enhancing the risk of environmental contamination with these agents and their consequent adverse effects on living systems. The current study has been designed to evaluate the cytogenetic potential of Al2O3 NPs in Allium cepa (root tip cells) at a range of exposure concentrations (0.01, 0.1, 1, 10, and 100 μg/mL), their uptake/internalization profile, and the oxidative stress generated. We noted a dose-dependent decrease in the mitotic index (42 to 28 %) and an increase in the number of chromosomal aberrations. Various chromosomal aberrations, e.g. sticky, multipolar and laggard chromosomes, chromosomal breaks, and the formation of binucleate cells, were observed by optical, fluorescence, and confocal laser scanning microscopy. FT-IR analysis demonstrated the surface chemical interaction between the nanoparticles and root tip cells. The biouptake of Al2O3 in particulate form led to reactive oxygen species generation, which in turn probably contributed to the induction of chromosomal aberrations.
Collapse
Affiliation(s)
- A Rajeshwari
- Centre for Nanobiotechnology, VIT University, Vellore, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Mecozzi M, Sturchio E. Effects of essential oil treatments on the secondary protein structure of Vicia faba: a mid-infrared spectroscopic study supported by two-dimensional correlation analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:90-98. [PMID: 25203214 DOI: 10.1016/j.saa.2014.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/05/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
In this study we investigated the effects of essential oil treatments on the secondary protein structure of the Vicia faba roots, a bioindicator plant, in order to obtain information for the potential allelopathic uses of these oils as alternative to the use of pesticides in agriculture. We tested two mixtures of essential oils consisting of Tween 20-emulsions of tea tree oil (TTO) and Tween 20-emulsion of Clove and Rosemary (GARROM) essential oils respectively at three different oil concentrations each. The molecular modifications caused in Vicia faba by exposure to oil emulsions were investigated by FTIR spectroscopy in diffuse reflectance (DRIFT) mode. We considered the specific Amide I, Amide II and Amide VI bands by ordinary and second derivative spectroscopy and the results showed that both Tween 20-emulsion of GARROM and Tween 20-emulsion of TTO oils cause transitions among the secondary (α-helix, β-sheet and β-turn) structures with in addition the appearance of random coil structures in exposed samples. The Amide VI bands, placed between 500 and 600 cm(-1), confirmed the structural transitions observed for the Amide I bands. In addition we observed the presence of a protein oxidation effect for TTO treated samples, oxidation which resulted negligible instead for the GARROM oil samples. At last, FTIR spectra were also submitted to two-dimensional correlation analysis (2DCORR) and double two-dimensional correlation analysis (D2DCORR); the results confirmed the different effects caused by the two typologies of essential oils on the secondary protein structures of Vicia faba roots.
Collapse
Affiliation(s)
- Mauro Mecozzi
- Laboratory of Chemometrics and Environmental Applications, ISPRA, Via di Castel Romano 100, 00128 Rome, Italy.
| | - Elena Sturchio
- Italian Workers' Compensation Authority (INAIL), Department of Production Plants and Anthropic Settlements (DIPIA), Via Alessandria 220/E, 00198 Rome, Italy
| |
Collapse
|
23
|
Dhyèvre A, Foltête AS, Aran D, Muller S, Cotelle S. Effects of soil pH on the Vicia-micronucleus genotoxicity assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 774:17-21. [DOI: 10.1016/j.mrgentox.2014.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 11/30/2022]
|
24
|
Pankiewicz-Sperka M, Stańczyk K, Płaza GA, Kwaśniewska J, Nałęcz-Jawecki G. Assessment of the chemical, microbiological and toxicological aspects of post-processing water from underground coal gasification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:294-301. [PMID: 25108176 DOI: 10.1016/j.ecoenv.2014.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
The purpose of this paper is to provide a comprehensive characterisation (including chemical, microbiological and toxicological parameters) of water after the underground coal gasification (UCG) process. This is the first report in which these parameters were analysed together to assess the environmental risk of the water generated during the simulation of the underground coal gasification (UCG) process performed by the Central Mining Institute (Poland). Chemical analysis of the water indicated many hazardous chemical compounds, including benzene, toluene, ethylbenzene, xylene, phenols and polycyclic aromatic hydrocarbons (PAHs). Additionally, large quantities of inorganic compounds from the coal and ashes produced during the volatilisation process were noted. Due to the presence of refractory and inhibitory compounds in the post-processing water samples, the microbiological and toxicological analyses revealed the high toxicity of the UCG post-processing water. Among the tested microorganisms, mesophilic, thermophilic, psychrophilic, spore-forming, anaerobic and S-oxidizing bacteria were identified. However, the number of detected microorganisms was very low. The psychrophilic bacteria dominated among tested bacteria. There were no fungi or Actinomycetes in any of the water samples. Preliminary study revealed that hydrocarbon-oxidizing bacteria were metabolically active in the water samples. The samples were very toxic to the biotests, with the TU50 reaching 262. None of biotests was the most sensitive to all samples. Cytotoxicity and genotoxicity testing of the water samples in Vicia uncovered strong cytotoxic and clastogenic effects. Furthermore, TUNEL indicated that all of the water samples caused sporadic DNA fragmentation in the nuclei of the roots.
Collapse
Affiliation(s)
- Magdalena Pankiewicz-Sperka
- Department of Energy Saving and Air Protection, Główny Instytut Górnictwa (Central Mining Institute), Plac Gwarków 1, 40-166 Katowice, Poland.
| | - Krzysztof Stańczyk
- Department of Energy Saving and Air Protection, Główny Instytut Górnictwa (Central Mining Institute), Plac Gwarków 1, 40-166 Katowice, Poland
| | - Grażyna A Płaza
- Department of Environmental Microbiology, Institute for Ecology of Industrial Areas, 6 Kossutha, 40-844 Katowice, Poland
| | - Jolanta Kwaśniewska
- Department of Plant Anatomy and Cytology, University of Silesia, 28 Jagiellońska, 40-032 Katowice, Poland
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland
| |
Collapse
|
25
|
Exclusive induction of G:C to A:T transitions by 3-azido-1,2-propanediol in yeast. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 760:73-6. [PMID: 24211442 DOI: 10.1016/j.mrgentox.2013.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/18/2013] [Accepted: 10/28/2013] [Indexed: 11/22/2022]
Abstract
Sodium azide is a strong mutagen which has been successfully employed in mutation breeding of crop plants. In biological systems, it is metabolized to azidoalanine, but further bioactivation to a putative ultimate mutagen as well as the nature of the induced DNA modifications leading to mutations remain elusive. In this study, mutations induced in the CAN1 gene of yeast Saccharomyces cerevisiae by the representative mutagen 3-azido-1,2-propanediol (azidoglycerol, AZG) have been sequenced. Analysis of the forward mutation spectrum to canavanine resistance revealed that AZG induced nearly exclusively G:C to A:T transitions. AZG also induced reversions to tryptophan prototrophy by base-pair substitutions in a dose-dependent manner. This unusual mutational specificity may be shared by other organic azido compounds.
Collapse
|
26
|
Singh N, Srivastava A. Biomonitoring of Genotoxic Effect of Glyphosate and Pendimethalin in Vigna mungo Populations. CYTOLOGIA 2014. [DOI: 10.1508/cytologia.79.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Namrata Singh
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, University of Lucknow
| |
Collapse
|
27
|
Salas-Veizaga DM, Morales-Belpaire I, Terrazas-Siles E. Evaluation of the genotoxic potential of reactive black 5 solutions subjected to decolorizing treatments by three fungal strains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 89:125-129. [PMID: 23332793 DOI: 10.1016/j.ecoenv.2012.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 11/25/2012] [Accepted: 11/26/2012] [Indexed: 06/01/2023]
Abstract
The genotoxic potential of solutions of the textile dye "Reactive Black 5" that were subjected to decolorizing treatments with the fungal strains Coriolopsis polyzona MUCL33483, Penicillium sp. MUBA001 and Pycnoporus sp. MUBA002 was tested. The genotoxicity of the solutions was determined by evaluation of micronuclei formation in Vicia faba root cells and calculation of a damage index (MN(ID)). Non-treated Reactive Black 5 solutions (50-1000 ppm) caused a statistically significant increase in micronuclei formation and, by then, in damage index. Solutions of dye treated with C. polyzona MUCL33483 and Pycnoporus sp. MUBA002 showed color loss, probably due to enzymatic breakdown of the colorant, but maintenance or even an increase in genotoxicity. On the other hand, the Penicillium sp. strain MUBA001 caused decolorization of the dye, apparently by adsorption on mycelia, and, for solutions that initially contained 50 ppm of colorant, an elimination of the genotoxicity was observed after three weeks of treatment.
Collapse
Affiliation(s)
- Daniel Martín Salas-Veizaga
- Instituto de Biología Molecular y Biotecnología, Universidad Mayor de San Andrés, Facultad de Ciencias Puras y Naturales La Paz, Bolivia
| | | | | |
Collapse
|
28
|
Duan P, Zhai T, Xu C, Ding J, Chen Y. A simple and effective method for detecting toxicity of chromium trioxide on Vicia faba. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-1913-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Patlolla AK, Berry A, May L, Tchounwou PB. Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:1649-62. [PMID: 22754463 PMCID: PMC3386578 DOI: 10.3390/ijerph9051649] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/24/2022]
Abstract
The use of silver nanoparticles (AgNPs) in commercial products has increased significantly in recent years. Although there have been some attempts to determine the toxic effects of AgNPs in mammalian and human cell-lines, there is little information on plants which play a vital role in ecosystems. The study reports the use of Vicia faba root-tip meristem to investigate the genotoxicity of AgNPs under modified GENE-TOX test conditions. The root tip cells of V. faba were treated with four different concentrations of engineered AgNPs dispersion to study toxicological endpoints such as mitotic index (MI), chromosomal aberrations (CA) and micronucleus induction (MN). For each concentration, five sets of microscopy observations were carried out. The results demonstrated that AgNPs exposure significantly increased (p < 0.05) the number of chromosomal aberrations, micronuclei, and decreased the MI in exposed groups compared to control. From this study we infer that AgNPs might have penetrated the plant system and may have impaired mitosis causing CA and MN. The results of this study demonstrate that AgNPs are genotoxic to plant cells. Since plant assays have been integrated as a genotoxicity component in risk assessment for detection of environmental mutagens, they should be given full consideration when evaluating the overall toxicological impact of the nanoparticles in the environment.
Collapse
Affiliation(s)
- Anita K. Patlolla
- Molecular Toxicology Research Laboratory, NIH-RCMI Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, Jackson, MS 39217, USA; (A.B.); (L.M.); (P.B.T.)
| | - Ashley Berry
- Molecular Toxicology Research Laboratory, NIH-RCMI Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, Jackson, MS 39217, USA; (A.B.); (L.M.); (P.B.T.)
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - LaBethani May
- Molecular Toxicology Research Laboratory, NIH-RCMI Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, Jackson, MS 39217, USA; (A.B.); (L.M.); (P.B.T.)
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
- Murray High School Student-SEPA Program, Jackson State University, Jackson, MS 39217, USA
| | - Paul B. Tchounwou
- Molecular Toxicology Research Laboratory, NIH-RCMI Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, Jackson, MS 39217, USA; (A.B.); (L.M.); (P.B.T.)
| |
Collapse
|
30
|
Manzo S, Rocco A, Carotenuto R, Picione FDL, Miglietta ML, Rametta G, Di Francia G. Investigation of ZnO nanoparticles' ecotoxicological effects towards different soil organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:756-63. [PMID: 21116865 DOI: 10.1007/s11356-010-0421-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/18/2010] [Indexed: 04/16/2023]
Abstract
INTRODUCTION Nanomaterials have widespread applications in several industrial sectors. ZnO nanoparticles (NPs) are among the most commonly used metal oxide NPs in personal care products, coating and paints. However, their potential toxicological impact on the environment is largely unexplored. MATERIALS AND METHODS The aim of this work was to evaluate whether ZnO nanoparticles exert toxic and genotoxic effects upon terrestrial organisms: plants (Lepidium sativum, Vicia faba), crustaceans (Heterocyipris incongruens), insects (Folsomia candida). To achieve this purpose, organisms pertaining to different trophic levels of the soil ecosystem have been exposed to ZnO NPs. In parallel, the selected soil organisms have been exposed to the same amount of Zn in its ionic form (Zn(2+)) and the effects have been compared. RESULTS The most conspicuous effect, among the test battery organisms, was obtained with the ostracod H. incongruens, which was observed to be the most sensitive organism to ZnO NPs. The root elongation of L. sativum was also mainly affected by exposure to ZnO NPs with respect to ZnCl(2), while collembolan reproduction test produced similar results for both Zn compounds. Slight genotoxic effects with V. faba micronucleus test were observed with both soils. CONCLUSION Nanostructured ZnO seems to exert a higher toxic effect in insoluble form towards different terrestrial organisms with respect to similar amounts of zinc in ionic form.
Collapse
Affiliation(s)
- Sonia Manzo
- ENEA Research Centre Portici, UTTP ChiA, Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Yi M, Yi H, Li H, Wu L. Aluminum induces chromosome aberrations, micronuclei, and cell cycle dysfunction in root cells of Vicia faba. ENVIRONMENTAL TOXICOLOGY 2010; 25:124-129. [PMID: 19274764 DOI: 10.1002/tox.20482] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aluminum (Al) exists naturally in air, water, and soil, and also in our diet. Al can be absorbed into the human body and accumulates in different tissues, which has been linked to the occurrence of Alzheimer's disease and various neurological disorders. By using Vicia cytogenetic tests, which are commonly used to monitor the genotoxicity of environmental pollutants, cytogenetic effects of aluminum (AlCl(3)) were investigated in this study. Present results showed that Al caused significant increases in the frequencies of micronuclei (MN) and anaphase chromosome aberrations in Vicia faba root tips exposed to Al over a concentration-tested range of 0.01-10 mM for 12 h. The frequency of micronucleated cells was higher in Al-treated groups at pH 4.5 than that at pH 5.8. Similarly, AlCl(3) treatment caused a decrease in the number of mitotic cells in a dose- and pH-dependent manner. The number of cells in each mitotic phase changed in Al-treated samples. Mitotic indices (MI) decreased with the increases of pycnotic cells. Our results demonstrate that aluminum chloride is a clear clastogenic/genotoxic and cytotoxic agent in Vicia root cells. The V. faba cytogenetic test could be used for the genotoxicity monitoring of aluminum water contamination.
Collapse
Affiliation(s)
- Min Yi
- School of Life Science and Technology, Shanxi University, Taiyuan 030006, China.
| | | | | | | |
Collapse
|
32
|
Kumari M, Mukherjee A, Chandrasekaran N. Genotoxicity of silver nanoparticles in Allium cepa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:5243-6. [PMID: 19616276 DOI: 10.1016/j.scitotenv.2009.06.024] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/17/2009] [Accepted: 06/22/2009] [Indexed: 05/21/2023]
Abstract
Potential health and environmental effects of nanoparticles need to be thoroughly assessed before their widespread commercialization. Though there are few studies on cytotoxicity of nanoparticles on mammalian and human cell lines, there are hardly any reports on genotoxic and cytotoxic behavior of nanoparticles in plant cells. This study aims to investigate cytotoxic and genotoxic impacts of silver nanoparticles using root tip cells of Allium cepa as an indicator organism. A.cepa root tip cells were treated with four different concentrations (25, 20, 75, and 100 ppm) of engineered silver nanoparticles (below 100 nm size) dispersion, to study endpoints like mitotic index, distribution of cells in mitotic phases, different types of chromosomal aberrations, disturbed metaphase, sticky chromosome, cell wall disintegration, and breaks. For each concentration five sets of microscopic observations were carried out. No chromosomal aberration was observed in the control (untreated onion root tips) and the mitotic index (MI) value was 60.3%. With increasing concentration of the nanoparticles decrease in the mitotic index was noticed (60.30% to 27.62%). The different cytological effects including the chromosomal aberrations were studied in detail for the treated cells as well as control. We infer from this study that silver nanoparticles could penetrate plant system and may impair stages of cell division causing chromatin bridge, stickiness, disturbed metaphase, multiple chromosomal breaks and cell disintegration. The findings also suggest that plants as an important component of the ecosystems need to be included when evaluating the overall toxicological impact of the nanoparticles in the environment.
Collapse
Affiliation(s)
- Mamta Kumari
- Nanobio-Medicine Group, School of Bio Sciences & Technology, VIT University, Vellore 632014, India
| | | | | |
Collapse
|
33
|
Red cabbage anthocyanin extract alleviates copper-induced cytological disturbances in plant meristematic tissue and human lymphocytes. Biometals 2009; 22:479-90. [DOI: 10.1007/s10534-009-9205-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/07/2009] [Indexed: 11/25/2022]
|
34
|
Kovalchuk I, Kovalchuk O. Transgenic Plants as Sensors of Environmental Pollution Genotoxicity. SENSORS (BASEL, SWITZERLAND) 2008; 8:1539-1558. [PMID: 27879779 PMCID: PMC3663010 DOI: 10.3390/s8031539] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 03/07/2008] [Indexed: 11/20/2022]
Abstract
Rapid technological development is inevitably associated with manyenvironmental problems which primarily include pollution of soil, water and air. In manycases, the presence of contamination is difficult to assess. It is even more difficult toevaluate its potential danger to the environment and humans. Despite the existence ofseveral whole organism-based and cell-based models of sensing pollution and evaluationof toxicity and mutagenicity, there is no ideal system that allows one to make a quick andcheap assessment. In this respect, transgenic organisms that can be intentionally altered tobe more sensitive to particular pollutants are especially promising. Transgenic plantsrepresent an ideal system, since they can be grown at the site of pollution or potentiallydangerous sites. Plants are ethically more acceptable and esthetically more appealing thananimals as sensors of environmental pollution. In this review, we will discuss varioustransgenic plant-based models that have been successfully used for biomonitoringgenotoxic pollutants. We will also discuss the benefits and potential drawbacks of thesesystems and describe some novel ideas for the future generation of efficient transgenicphytosensors.
Collapse
Affiliation(s)
- Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
35
|
Kontek R, Osiecka R, Kontek B. Clastogenic and mitodepressive effects of the insecticide dichlorvos on root meristems ofVicia faba. J Appl Genet 2007; 48:359-61. [DOI: 10.1007/bf03195232] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
El Hajjouji H, Pinelli E, Guiresse M, Merlina G, Revel JC, Hafidi M. Assessment of the genotoxicity of olive mill waste water (OMWW) with the Vicia faba micronucleus test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2007; 634:25-31. [PMID: 17851113 DOI: 10.1016/j.mrgentox.2007.05.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 04/04/2007] [Accepted: 05/20/2007] [Indexed: 11/21/2022]
Abstract
The present study concerns the genotoxicity of olive mill waste water (OMWW) generated in mills producing olive oil in Morocco. The Vicia faba micronucleus test was used to evaluate the genotoxicity of OMWW and the six major phenolic compounds identified by HPLC in this effluent. Five dilutions of OMWW were tested: 0.1, 1, 5, 10 and 20%. Maleic hydrazide was used as a positive control. The results showed that OMWW was genotoxic at 10% dilution. In order to investigate the components involved in this genotoxicity, the six major phenols present in this effluent, oleuropein, gallic acid, 4-hydroxyphenyl acetic acid, caffeic acid, paracoumaric acid and veratric acid, were studied at concentrations corresponding to the genotoxic concentration of the OMWW itself. Two phenols, gallic acid and oleuropein induced a significant increase in micronucleus frequency in Vicia faba; the four other phenols had no significant genotoxic effect. These results suggest that under the experimental conditions of our assay, OMWW genotoxicity was associated with gallic acid and oleuropein.
Collapse
Affiliation(s)
- H El Hajjouji
- Laboratoire d'Ecologie Végétale, Sol et Environnement, Département de Biologie, Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390, Marrakech, Maroc
| | | | | | | | | | | |
Collapse
|
37
|
Rao CVN, Afzal M, Malallah G, Kurian M, Gulshan S. Hydrocarbon uptake by roots of Vicia faba (Fabaceae). ENVIRONMENTAL MONITORING AND ASSESSMENT 2007; 132:439-43. [PMID: 17180412 DOI: 10.1007/s10661-006-9546-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Accepted: 09/26/2006] [Indexed: 05/13/2023]
Abstract
Vicia faba was grown in crude oil polluted soil and its roots were extracted for the detection and estimation of hydrocarbons. Saturated and unsaturated Aliphatic Hydrocarbons (AHs) ranging from C(22) to C(36) were identified in AHs fraction. However, PAHs were not present in the same extract. This could be due to the fact that PAHs being toxic compounds are not accumulated in the plant root extracts of V. faba grown in crude oil polluted soil. Three phytoalexins were identified and estimated by mass spectrometric analysis in the root extracts of V. faba. These three compounds are 2-t-butyl-4-(dimethyl benzyl) phenol, 2, 4-bis (dimethyl benzyl) phenol and 2,4-bis (dimethyl benzyl)-6-butyl phenol. These phenolics in V. faba are being reported for the first time. These compounds are presumably elicited as a direct stress on crude oil hydrocarbons on the roots of this plant.
Collapse
Affiliation(s)
- C V Nageswara Rao
- Department of Chemistry, K V R College, Nandigama 521 185, Andhra Pradesh, India.
| | | | | | | | | |
Collapse
|
38
|
Juchimiuk J, Hering B, Maluszynska J. Multicolour FISH in an analysis of chromosome aberrations induced by N-nitroso-N-methylurea and maleic hydrazide in barley cells. J Appl Genet 2007; 48:99-106. [PMID: 17495342 DOI: 10.1007/bf03194666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study is a rare example of a detailed characterization of chromosomal aberrations by identification of individual chromosomes (or chromosome arms) involved in their formation in plant cells by using fluorescent in situ hybridization (FISH). In addition, the first application of more than 2 DNA probes in FISH experiments in order to analyse chromosomal aberrations in plant cells is presented. Simultaneous FISH with 5S and 25S rDNA and, after reprobing of preparations, telomeric and centromeric DNA sequences as probes, were used to compare the cytogenetic effects of 2 chemical mutagens: N-nitroso-N-methylurea (MNU) and maleic hydrazide (MH) on root tip meristem cells of Hordeum vulgare (2n=14). The micronucleus (MN) test combined with FISH allowed the quantitative analysis of the involvement of specific chromosome fragments in micronuclei formation and thus enabled the possible origin of mutagen-induced micronuclei to be explained. Terminal deletions were most frequently caused by MH and MNU. The analysis of the frequency of micronuclei with signals of the investigated DNA probes showed differences between the frequency of MH- and MNU-induced micronuclei with specific signals. The micronuclei with 2 signals, telomeric DNA and rDNA (5S and/or 25S rDNA), were the most frequently observed in the case of both mutagens, but with a higher frequency after treatment with MH (46%) than MNU (37%). Also, 10% of MH-induced micronuclei were characterized by the presence of only telomere DNA sequences, whereas there were almost 3-fold more in the case of MNU-induced micronuclei (28%). Additionally, by using FISH with the same probes, an attempt was made to identify the origin of chromosome fragments in mitotic anaphase.
Collapse
Affiliation(s)
- Jolanta Juchimiuk
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | | | | |
Collapse
|
39
|
Song YF, Gong P, Wilke BM, Zhang W, Song XY, Sun TH, Ackland ML. Genotoxicity assessment of soils from wastewater irrigation areas and bioremediation sites using the Vicia faba root tip micronucleus assay. ACTA ACUST UNITED AC 2007; 9:182-6. [PMID: 17285161 DOI: 10.1039/b614246j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genotoxicity potential of soils taken from wastewater irrigation areas and bioremediation sites was assessed using the Vicia faba root tip micronucleus assay. Twenty five soils were tested, of which 8 were uncontaminated soils and taken as the control to examine the influence of soil properties; 6 soils were obtained from paddy rice fields with a history of long-term wastewater irrigation; 6 soils were obtained from bioremediation sites to examine effects of bioremediation; and 5 PAH-contaminated soils were used to examine methodological effects between direct soil exposure and exposure to aqueous soil extracts on micronuclei (MN) frequency ( per thousand) in the V. faba root tips. Results indicate that soil properties had no significant influences on MN frequencies (p > 0.05) when soil pH varied between 3.4 to 7.6 and organic carbon between 0.4% and 18.6%. The MN frequency measured in these control soils ranged from 1.6 per thousand to 5.8 per thousand. MN frequencies in soils from wastewater irrigation areas showed 2- to 48-fold increase as compared with the control. Soils from bioremediation sites showed a mixed picture: MN frequencies in some soils decreased after bioremediation, possibly due to detoxification; whereas in other cases remediated soils induced higher MN frequencies, suggesting that genotoxic substances might be produced during bioremediation. Exposure to aqueous soil extracts gave a higher MN frequency than direct exposure in 3 soils. However, the opposite was observed in the other two soils, suggesting that both exposure routes should be tested in case of negative results from one route. Data obtained from this study indicate that the MN assay is a sensitive assay suitable for evaluating genotoxicity of soils.
Collapse
Affiliation(s)
- Y F Song
- Key Laboratory of Terrestrial Ecological Processes, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Miadoková E, Svidová S, Vlčková V, Dúhová V, Pražmáriová E, Tothová K, Naďová S, Kogan G, Rauko P. The role of natural biopolymers in genotoxicity of mutagens/carcinogens elimination. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005. [DOI: 10.5507/bp.2005.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Juchimiuk J, Maluszynska J. Transformed roots of Crepis capillaries — a sensitive system for the evaluation of the clastogenicity of abiotic agents. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 565:129-38. [PMID: 15661611 DOI: 10.1016/j.mrgentox.2004.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 10/04/2004] [Accepted: 10/18/2004] [Indexed: 10/26/2022]
Abstract
The presence of a large number of pollutants, including mutagenic agents in the environment is a problem of a major concern. Rapid progress in plant biotechnology, especially in the development of cell transformation methods, including the production of transformed roots -- 'hairy roots' -- has opened new possibilities to use transformed root cultures in plant bioassays for the evaluation mutagenic effects of different agents. We have used Crepis capillaris hairy roots for evaluation of cytogenetic effects of mutagenic treatment. Effects of maleic acid hydrazide (MH) and X-ray treatment were analysed in chromosomal aberration, sister chromatid exchange (SCE) and TUNEL tests. Comparison of cytogenetic effects in hairy roots and roots of seedlings showed a much higher sensitivity of hairy roots, which makes them convenient material for monitoring DNA damage after mutagenic treatment.
Collapse
Affiliation(s)
- Jolanta Juchimiuk
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | | |
Collapse
|
42
|
White PA, Claxton LD. Mutagens in contaminated soil: a review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2004; 567:227-345. [PMID: 15572286 DOI: 10.1016/j.mrrev.2004.09.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intentional and accidental discharges of toxic pollutants into the lithosphere results in soil contamination. In some cases (e.g., wood preserving wastes, coal-tar, airborne combustion by-products), the contaminated soil constitutes a genotoxic hazard. This work is a comprehensive review of published information on soil mutagenicity. In total, 1312 assessments of genotoxic activity from 118 works were examined. The majority of the assessments (37.6%) employed the Salmonella mutagenicity test with strains TA98 and/or TA100. An additional 37.6% of the assessments employed a variety of plant species (e.g., Tradescantia clone 4430, Vicia faba, Zea mays, Allium cepa) to assess mutagenic activity. The compiled data on Salmonella mutagenicity indicates significant differences (p<0.0001) in mean potency (revertents per gram dry weight) between industrial, urban, and rural/agricultural sites. Additional analyses showed significant empirical relationships between S9-activated TA98 mutagenicity and soil polycyclic aromatic hydrocarbon (PAH) concentration (r2=0.19 to 0.25, p<0.0001), and between direct-acting TA98 mutagenicity and soil dinitropyrene (DNP) concentration (r2=0.87, p<0.0001). The plant assay data revealed excellent response ranges and significant differences between heavily contaminated, industrial, rural/agricultural, and reference sites, for the anaphase aberration in Allium cepa (direct soil contact) and the waxy locus mutation assay in Zea mays (direct soil contact). The Tradescantia assays appeared to be less responsive, particularly for exposures to aqueous soil leachates. Additional data analyses showed empirical relationships between anaphase aberrations in Allium, or mutations in Arabidopsis, and the 137Cs contamination of soils. Induction of micronuclei in Tradescantia is significantly related to the soil concentration of several metals (e.g., Sb, Cu, Cr, As, Pb, Cd, Ni, Zn). Review of published remediation exercises showed effective removal of genotoxic petrochemical wastes within one year. Remediation of more refractory genotoxic material (e.g., explosives, creosote) frequently showed increases in mutagenic hazard that remained for extended periods. Despite substantial contamination and mutagenic hazards, the risk of adverse effect (e.g., mutation, cancer) in humans or terrestrial biota is difficult to quantify.
Collapse
Affiliation(s)
- Paul A White
- Mutagenesis Section, Safe Environments Program, Health Canada, Tunney's Pasture 0803A, Ottawa, Ont., Canada K1A 0L2.
| | | |
Collapse
|
43
|
Jain K, Singh J, Chauhan LKS, Murthy RC, Gupta SK. Modulation of flyash-induced genotoxicity in Vicia faba by vermicomposting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2004; 59:89-94. [PMID: 15261728 DOI: 10.1016/j.ecoenv.2004.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Revised: 01/08/2004] [Accepted: 01/28/2004] [Indexed: 05/24/2023]
Abstract
Cytogenetic effects of pre- and postvermicomposted flyash samples were evaluated on the root meristem cells of Vicia faba. Seedlings of V. faba were directly sown in flyash and cow dung-soil mixtures (20%, 40%, 60%, and 80%) and the lateral roots grown in these test mixtures were sampled at 5 days. Negative control was run parallel in cow dung-soil (CS) mixture alone. One set of flyash-cow dung-soil (FCS) mixture was subjected to vermicomposting by introducing Eisenia foetida species of earthworms for 30 days and the cytogenetic effects were reinvestigated through V. faba root meristems. Chemical analysis carried out prior to vermicomposting revealed high concentrations of heavy metals such as Cr, Cu, Pb, Zn, and Ni in FCS samples. CS samples also showed the presence of these metals. Cytogenetic examinations of root meristems exposed to the FCS mixtures showed significant inhibition of mitotic index (MI), induction of chromosome aberrations (CA), and a significantly increased frequency of mitotic aberrations (MA). The increase of the aberrations was dependent on the flyash concentrations. Roots grown in CS samples also showed chromosomal and MAs; however, the percentage was lower than that observed with FCS and also statistically nonsignificant. Cytogenetic analysis of vermicomposted samples of FCS revealed a 15-45% decline in the aberration frequencies whereas chemical analysis showed a 10-50% decline in the metal concentrations, viz. Cr, Cu, Pb, Zn, and Ni, which indicates E. foetida a potential accumulator of heavy metals and the decline in metal concentrations may be the cause of the decrease in aberration frequencies. The present study indicates the genotoxicity potential of flyash and also the feasibility of vermicomposting for cleanup of metal-contaminated soil to mitigate the toxicity/genotoxicity.
Collapse
Affiliation(s)
- Kavindra Jain
- Cell Biology Section, Industrial Toxicology Research Centre, P.O. Box 80, M.G.Road, Lucknow 226001, India
| | | | | | | | | |
Collapse
|
44
|
. MIS, . GTG. The Mutagenic Potentialities of Some Herbicides Using Vicia faba as a Biological System. ACTA ACUST UNITED AC 2004. [DOI: 10.3923/biotech.2004.140.154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Sang N, Li G. Genotoxicity of municipal landfill leachate on root tips of Vicia faba. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2004; 560:159-65. [PMID: 15157653 DOI: 10.1016/j.mrgentox.2004.02.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 02/17/2004] [Accepted: 02/26/2004] [Indexed: 11/21/2022]
Abstract
The genotoxicity of municipal landfill leachate was studied using the Vicia faba root-tip cytogenetic bioassay. Results show that landfill leachates collected in different seasons decreased the mitotic index (MI) and caused significant increases of micronucleus (MN) frequencies and anaphase aberration (AA) frequencies in a concentration-dependent manner (concentration expressed as 'chemical oxygen demand' measured by the method of potassium dichromate oxidation (COD(Cr))). In addition, a seasonal difference in genotoxicity induced by leachate was observed. The results confirm that leachate is a genotoxic agent in plant cells and imply that exposure to leachate in the aquatic environment may pose a potential genotoxic risk to organisms. The results also show that the V. faba cytogenetic bioassay is efficient, simple and reproducible in genotoxicity studies of leachate, and that there is a correlation between the genotoxicity and the chemical measurement (COD(Cr)) of leachate.
Collapse
Affiliation(s)
- Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | | |
Collapse
|
46
|
Ilnytskyy Y, Boyko A, Kovalchuk I. Luciferase-based transgenic recombination assay is more sensitive than beta-glucoronidase-based. Mutat Res 2004; 559:189-97. [PMID: 15066586 DOI: 10.1016/j.mrgentox.2004.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/30/2004] [Accepted: 02/05/2004] [Indexed: 01/05/2023]
Abstract
Study of the DNA repair and genome stability in plants is directly dependent on the availability of an easy, inexpensive, and reliable assay. Marker gene-based homologous recombination (HR) assays were introduced more than a decade ago and have been intensively used ever since. Here, we compared several transgenic Arabidopsis and tobacco lines that carried in their genome the luciferase (LUC) or the beta-glucoronidase (uidA or GUS) substrates for HR. The average recombination frequency detected with the luciferase transgene was nearly 9.0-fold higher in Arabidopsis and 12.4-fold higher in tobacco plants. Importantly, both transgenes were under the control of 35S promoter and had similar expression levels throughout the plants. Irradiation with UVC increased the HR frequency similarly in both transgenes. The actual difference in the frequency of HR in Arabidopsis and tobacco possibly results from differing sensitivity to detection of transgene activity. Thus, we could suggest that luciferase recombination assay, due to its higher sensitivity, should be the assay of choice when plant genome stability is studied.
Collapse
Affiliation(s)
- Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alta., Canada T1K 3M4
| | | | | |
Collapse
|
47
|
Chandra S, Chauhan LKS, Pande PN, Gupta SK. Cytogenetic effects of leachates from tannery solid waste on the somatic cells of Vicia faba. ENVIRONMENTAL TOXICOLOGY 2004; 19:129-133. [PMID: 15037999 DOI: 10.1002/tox.20005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The contamination of surface- and groundwater by the leaching of solid wastes generated by industrial activities as a result of water runoff and rainfall is a matter of great concern. The leachates from tannery solid waste (TSW), a major environmental pollutant, were examined for their possible genotoxic effects on the somatic cells of Vicia faba. Leachates were prepared from solid wastes procured from leather-tanning industrial sites, and V. faba seedlings were exposed to three test concentrations, 2.5%, 5%, and 10%, through soil and aqueous media for 5 days. The root tips examined for cytogenetic damage revealed that leachate of TSW significantly inhibited the mitotic index and induced significantly frequent chromosomal and mitotic aberrations (CA/MA) in a dose-dependent manner. The chemical analysis of TSW samples revealed that the chief constituents were chromium and nickel, which may cause genetic abnormalities. The frequency of aberrations was found to be higher in the root meristematic cells of Vicia faba exposed through the aqueous medium than those exposed through the soil medium. The results of the present study indicated that contamination of potable water bodies by leachates of TSW may cause genotoxicity. For the biomonitoring of complex mixtures of toxicants with the V. faba bioassay, the use of the aqueous medium seems to be a more promising method than the use of the soil medium.
Collapse
Affiliation(s)
- Saurabh Chandra
- Cell Biology Section, Industrial Toxicology Research Centre, P.O. Box 80, M. G. Marg, Lucknow 226 001, India
| | | | | | | |
Collapse
|
48
|
Abstract
Genotoxicity of sulfur dioxide (SO(2)) and its hydrates (bisulfite and sulfite) in human lymphocytes and other mammalian cells have been found earlier in our laboratory. In the present studies, we used Allium stavium and Vicia faba cytogenetic tests, which are the highly sensitive and simple plant bioassays. A mixture of sodium bisulfite and sodium sulfite (1:3), at various concentrations from 1 x 10(-4) to 2 x 10(-3)M was used for the treatment. Genotoxicity was expressed in terms of anaphase aberration (AA) frequencies in the Vicia-AA test and in terms of micronuclei (MCN) frequencies in both Vicia-MCN test and Alllium-MCN test. On average, the results showed a 1.7-3.9-fold increase of AA frequencies and a 3.5-4.5-fold increase of MCN frequencies in Vicia root tips as compared with the negative control. Similarly, results of Allium-MCN test also showed a significant increase in MCN frequencies in the treated samples. In addition, pycnotic cells (PNC) appeared in Allium root tips of treated groups. The frequencies of MCN, AA and PNC increased dose-dependently and the cell cycle delayed at the same time in bisulfite treated samples. Results of the present study suggest that the Vicia and Allium cytogenetic bioassays are efficient, simple and reproducible in genotoxicity studies of bisulfite.
Collapse
Affiliation(s)
- Huilan Yi
- Institute of Environmental Medicine and Toxicology, School of Life Sciences and Technology, Shanxi University, 030006, Taiyuan, China
| | | |
Collapse
|
49
|
Miadoková E, Masterová I, Vlcková V, Dúhová V, Tóth J. Antimutagenic potential of homoisoflavonoids from Muscari racemosum. JOURNAL OF ETHNOPHARMACOLOGY 2002; 81:381-386. [PMID: 12127240 DOI: 10.1016/s0378-8741(02)00135-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The potential antimutagenic effect of the plant extract of Muscari racemosum bulbs, rich on 3-benzylidene-4-chromanones, was evaluated on three genetic model organisms. The mixture of three homoisoflavonoids was applied together with diagnostic mutagens in the Ames assay on four bacterial strains Salmonella typhimurium TA97, TA98, TA100, TA102, in the toxicity and mutagenicity/antimutagenicity assay on the yeast strain Saccharomyces cerevisiae D7, and in the simultaneous phytotoxicity and clastogenicity/anticlastogenicity assay on Vicia sativa (L.). The extract exerted antimutagenic and anticlastogenic effects due to the presence of homoisoflavonoids, which may be included in the group of natural antimutagens. This genotoxicological study suggests that homoisoflavonoids from M. racemosum (L.) owing to antimutagenic and anticlastogenic properties are of great pharmacological importance, and might be beneficial for prevention of cancer.
Collapse
Affiliation(s)
- Eva Miadoková
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
50
|
Grant WF, Owens ET. Lycopersicon assays of chemical/radiation genotoxicity for the study of environmental mutagens. Mutat Res 2002; 511:207-37. [PMID: 12088718 DOI: 10.1016/s1383-5742(02)00011-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
From a literature survey, 21 chemicals are tabulated that have been evaluated in 39 assays for their clastogenic effects in Lycopersicon. Nineteen of the 21 chemicals are reported as giving a positive reaction (i.e. causing chromosome aberrations). Of these, five are reported positive with a dose response. In addition, 23 assays have been recorded for six types of radiation, all of which reacted positively. The results of 102 assays with 32 chemicals and seven types of radiation tested for the induction of gene mutations are tabulated, as well as 20 chemicals and/or radiation in combined treatments. The Lycopersicon esculentum (2n=24) assay is a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis and for somatic mutations induced by chemicals and radiations. The Lycopersicon bioassay has been shown to be as sensitive and as specific an assay as other plant genotoxicity assays, such as Hordeum vulgare, Vicia faba, Crepis capillaris, Pisum sativum and Allium cepa and should be considered in further studies in assessing clastogenicity. Tests using L. esculentum can be made for a spectrum of mutant phenotypes of which many are identifiable in young seedlings.
Collapse
Affiliation(s)
- William F Grant
- Department of Plant Science, P.O. Box 4000, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Que., Canada H9X 3V9
| | | |
Collapse
|