1
|
Wang YN, Liu S. The role of ALDHs in lipid peroxidation-related diseases. Int J Biol Macromol 2025; 288:138760. [PMID: 39674477 DOI: 10.1016/j.ijbiomac.2024.138760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Lipid peroxidation presents the oxidative degradation of polyunsaturated fatty acids lincited by reactive species. Excessive accumulation of lipid peroxidation byproducts, including 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA), causes protein dysfunction and various illnesses. Aldehyde dehydrogenases (ALDHs) catalyze the metabolism of both endogenous and exogenous aldehydes. These enzymes participate in detoxification and intermediary metabolism. Contemporary research has affirmed the involvement of both enzymatic and non-enzymatic pathways of ALDHs in modulating the evolution of diseases associated with lipid peroxidation. This review provides an overview of the biological functions and clinical implications concerning the enzymatic and non-enzymatic pathways of ALDHs in diseases related to lipid peroxidation, such as, non-alcoholic fatty liver disease (NAFLD), atherosclerosis, and type 2 diabetes (T2DM). Furthermore, the activators or inhibitors of ALDHs represent a promising therapeutic strategy for lipid peroxidation-related diseases.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Shiyue Liu
- Department of Implantology & Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Dos Anjos Melo DF, Silva MAC, de Oliveira NRL, de Oliveira Neto JR, de Souza Lino Júnior R, Cruz AC, da Cunha LC. New insight on the acute CCl 4-induced hepatotoxicity model in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03824-6. [PMID: 39878816 DOI: 10.1007/s00210-025-03824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
The CCl4-induced hepatotoxicity model is a traditional preclinical assay applied to evaluate potential hepatoprotective compounds. However, several studies have used it with inappropriate dose and exposure time, generating both weak response or irreversible liver injury, as well as lack of representative liver and plasma biomarkers. Therefore, this study aims to determine the best dose and exposure time of CCl4 in Wistar rats, permitting a proper evaluation of potential hepatoprotective effect. Thus, CCl4-intraperitoneal doses of 0.5, 1.0, and 2.0 mL/kg were first evaluated 24 h post-exposure, and then with the best dose achieved, it was also assessed at 6 and 12 h post-exposure. The determination of the main hepatotoxicity biomarkers, including malondialdehyde (MDA), aspartate transaminase (AST), and alanine transaminase (ALT), and histopathological analyses were performed. The results suggest that 6h CCl4 post-exposure is too short to induce ideal liver injury, and at 24 h, a suggestive rat free-radical scavenger mechanism seems to revert CCl4-initiated damage. According to these data, the ideal acute CCl4-induced hepatotoxicity model was established at a dose of 2.0 mL/kg and 12 h post-exposure in Wistar rats, which demonstrated a significant increase of liver MDA levels without irreversible injury, permitting a proper and reliable evaluation of potential hepatoprotective compounds.
Collapse
Affiliation(s)
- Dorcas Fernandes Dos Anjos Melo
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil
- University Center of Goiatuba (UniCerrado), Goiatuba, GO, Brazil
| | - Marina Alves Coelho Silva
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil
| | - Naiara Raica Lopes de Oliveira
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil.
| | - Jerônimo Raimundo de Oliveira Neto
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil
| | - Ruy de Souza Lino Júnior
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiania, GO, Brazil
| | - Alessandro Carvalho Cruz
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil
| | - Luiz Carlos da Cunha
- Center of Studies and Research Toxic-Pharmacological, School of Pharmacy, Federal University of Goias, Leste Universitario, 240th Street, Corner of 5th Avenue, Goiania, GO, 74605-170, Brazil
| |
Collapse
|
3
|
Ma C, Zhang W, Jing J, Wang Z, Sheng N, An Z, Zhang J. Enalomics: A Mass Spectrometry-Based Approach for Profiling, Identifying, and Semiquantifying Enals in Biological Samples. Anal Chem 2025; 97:1507-1516. [PMID: 39748299 DOI: 10.1021/acs.analchem.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Human cells generate a bulk of aldehydes during lipid peroxidation (LPO), influencing critical cellular processes, such as oxidative stress, protein modification, and DNA damage. Enals, highly reactive α,β-unsaturated aldehydic metabolites, are implicated in various human pathologies, especially neurodegenerative disorders, cancer, and cardiovascular diseases. Despite their importance, endogenous enals remain poorly characterized, primarily due to their instability and low abundance. Herein, we introduced "enalomics," a mass spectrometry (MS)-based approach for profiling, identifying, and semiquantifying enals in biological samples. Derivatization with 2,4-dinitrophenylhydrazine and treatment with ascorbic acid stabilized enals in biological matrices and provided a unique MS fragment ([M-H-47]-) for reliable enal identification. Utilizing precursor ion scanning, dynamic multiple reaction monitoring, high-resolution MS, and mathematical correlations between retention times and carbon numbers of enals, we identified 157 enals (127 newly reported) with tissue-specific profiles in rats and 29 enals (24 newly reported) in human plasma. To the best of our knowledge, this represents the comprehensive analysis of enals, i.e., "enalomics," in biological samples. Enalomics demonstrated significant alterations in enal metabolism in rats with myocardial injury, highlighting the potential of medium- and short-chain plasma enals as sensitive diagnostic biomarkers. Further application of enalomics in patients with myocardial infarction (MI) identified 14 plasma diagnostic biomarkers. Receiver operating characteristic curves showed good discrimination (area under curve ≥ 0.8603, p ≤ 0.0043). This research advances the understanding of LPO products and emphasizes the roles of enals in human diseases, offering good prospects for early screening, diagnosis, and clinical interventions targeting LPO products in MI patients.
Collapse
Affiliation(s)
- Congyu Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Wen Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P. R. China
| | - Jialong Jing
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Ning Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Zhuoling An
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P. R. China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
4
|
Flor AC, Wolfgeher DJ, Kron SJ. Noncanonical inhibition of topoisomerase II alpha by oxidative stress metabolites. Redox Biol 2025; 80:103504. [PMID: 39879737 DOI: 10.1016/j.redox.2025.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
During its catalytic cycle, the homodimeric ATPase topoisomerase II alpha (TOP2A) cleaves double stranded DNA and remains covalently bound to 5' ends via tyrosine phosphodiester bonds. After passing a second, intact duplex through, TOP2A rejoins the break and releases from the DNA. Thereby, TOP2A can relieve strain accumulated during transcription, replication and chromatin remodeling and disentangle sister chromatids for mitosis. Chemotherapy agents such as etoposide are poisons that trap TOP2A mid-cycle, covalently bound to cleaved DNA, leaving behind DNA double strand breaks and activating DNA damage response. While etoposide has been proposed to stabilize the TOP2A-DNA cleavage complex (TOP2Acc) via interfacial inhibition, we have elucidated a complementary mechanism mediated by the ability of etoposide and other TOP2A poisons to induce oxidative stress. Consequently, lipid peroxidation and accumulation of lipid-derived electrophiles such as 4-hydroxynonenal (HNE) results in covalent modification of TOP2A, both blocking ATPase activity and trapping TOP2Acc. HNE modifies multiple sites on human TOP2A in vitro, including alkylating Cys216 in the ATPase domain in a DNA-dependent fashion. Taken together, our data suggest an underappreciated role for TOP2A as a redox sensor in tumor cells, connecting oxidative stress to DNA damage signaling and thereby creating a target for redox-active drugs.
Collapse
Affiliation(s)
- Amy C Flor
- University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Donald J Wolfgeher
- University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Stephen J Kron
- University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Angali KA, Farhadi M, Neisi A, Cheraghian B, Ahmadi M, Takdastan A, Dargahi A. The effect of consuming bread contaminated with heavy metals on cardiovascular disease and calculating its risk assessment. Sci Rep 2025; 15:2710. [PMID: 39837925 PMCID: PMC11751297 DOI: 10.1038/s41598-025-86240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Heavy metals (HMs) may cause the generation of reactive oxygen species (ROS), which results in oxidative stress and eventually leads to an increase in cardiovascular diseases (CVD). The Hoveyzeh Cohort Study Center provided clinical data for cardiovascular cases. The collection of samples was done randomly. The association between CVD and HMs has been evaluated utilizing seven machine-learning techniques. The results showed that the effect coefficient (β) of bread consumption in the incidence of heart disease is 4.6908 × 10-02. Consumption of bread contaminated with chromium (P value < 0.0217), cadmium (P value < 2.95 × 10-6) and arsenic (P value < 1.15 × 10-07) is significantly related to cardiovascular incidence. Each unit of bread consumption increases As intake by 0.494 (β = 4.940 × 10-01) and CVD incidence by 11.9% (OR = 1.1190). Bread consumption increases Cd intake by 0.479 (β = 4.799 × 10-1) and cardiovascular disease incidence by 11.97% (OR = 1.1197) per unit. The findings indicated that bread intake in the study region is not correlated with non-carcinogenic or carcinogenic risks, since the cancer risk and incremental lifetime cancer risk for both groups were below 1*10^-6. In the present investigation, bread had HMs included As, Cd, Cr, and Pb higher than the limit declared by WHO. The results of the present study showed that bread is a mediating factor (between HMs and the incidence of CVD).
Collapse
Affiliation(s)
- Kambiz Ahmadi Angali
- Department of Biostatistics and Epidemiology, School of Health, Social Determinants of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Farhadi
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Abdolkazem Neisi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolah Dargahi
- Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| |
Collapse
|
6
|
Fanti F, Sergi M, Compagnone D. LC-MS/MS based analytical strategies for the detection of lipid peroxidation products in biological matrices. J Pharm Biomed Anal 2025; 256:116681. [PMID: 39847924 DOI: 10.1016/j.jpba.2025.116681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Oxidative stress (OS) arises mainly from exposure to reactive oxygen species (ROS) such as superoxide anion, hydroxyl radical, and hydrogen peroxide. These molecules can cause significant damage to proteins, DNA, and lipids, leading to various diseases. Cells fight ROS with detoxifying enzymes; however, an imbalance can cause damage leading to ischemic conditions, heart disease progression, and neurological disorders such as Alzheimer's disease. Accurate assessment of OS levels is then crucial and oxidized lipidic products are considered relevant OS biomarkers. In fact, lipids are particularly prone to ROS attack, leading to lipid peroxidation, cell membrane damage, and toxic by-products affecting DNA, proteins, and low-density lipoproteins. This review reports on recent advances in LC-MS/MS approaches for OS lipidic biomarkers, focusing on overcoming analytical challenges. 3 different classes of biomarkers have been reported, malondialdehyde, isoprostanes and oxidised sterols. For each class, the main analytical challenges with a particular focus on derivatisation procedure, sensitivity, matrix effect, ionisation have been described and discussed. The recent advancements of the LC-MS-MS procedures move towards simpler approaches, reducing errors and improving the reliability of the measurement thus enabling a comprehensive and robust OS assessment.
Collapse
Affiliation(s)
- Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy.
| |
Collapse
|
7
|
Baldriche-Acosta J, Uribe-Ramírez M, Narváez-Morales J, De Vizcaya-Ruiz A, Barbier OC, Aztatzi-Aguilar OG. Urinary oxidative stress biomarkers in nephrotoxicity induced by PM 2.5 in a rat model. Inhal Toxicol 2025:1-10. [PMID: 39801041 DOI: 10.1080/08958378.2025.2450393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025]
Abstract
OBJECTIVE The present study evaluated urinary oxidative stress (OxS) biomarkers to explain the extrapulmonary effect of renal function decline due to subchronic inhalation exposure to particles smaller than 2.5 μm, as well as the correlation of the biomarkers with the particles' endotoxin content. MATERIALS AND METHODS Adult male Sprague-Dawley rats were exposed to subchronic inhalation of particles smaller than 2.5 μm (8 weeks, 4 days/week, 5 h/day). The control group was exposed to filtered air. MiniVol and HiVol samplers were used to estimate the concentration and collected particles, respectively. Biomarkers were assessed in weekly urine samples harvested by the metabolic cage. The OxS biomarkers assessed were methylglyoxal, non-esterified fatty acids, malondialdehyde, advanced oxidative protein products, arginase, myeloperoxidase, glutathione S-transferase, and gamma-glutamyl transferase, all of which were evaluated by colorimetric assays. Creatinine was evaluated by the Jaffe reaction, and cystatin-C (Cys-C) and neutrophil gelatinase-associated lipocalin-2 were quantified using Luminex technology. Endotoxin content was analyzed with the Limulus Amebocyte Lysate Pyrochrome Chromogenic Test Kit. RESULTS AND DISCUSSION Subchronic exposure to PM2.5 increased OxS biomarkers in urine. Endotoxin content showed a positive correlation with the urinary OxS biomarkers evaluated. Additionally, urinary OxS biomarkers correlated with creatinine and the early kidney damage biomarkers Cys-C and neutrophil gelatinase-associated lipocalin-2, where the strongest and positive correlations were observed with the latter two biomarkers. CONCLUSIONS Inhalation of environmental airborne particles smaller than 2.5 μm increased urinary OxS biomarkers, correlated with endotoxin content and early kidney damage biomarkers. This finding corroborates the extrapulmonary nephrotoxic effect of inhaled particles.
Collapse
Affiliation(s)
- Jessica Baldriche-Acosta
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Andrea De Vizcaya-Ruiz
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, USA
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
8
|
Borén J, Packard CJ, Binder CJ. Apolipoprotein B-containing lipoproteins in atherogenesis. Nat Rev Cardiol 2025:10.1038/s41569-024-01111-0. [PMID: 39743565 DOI: 10.1038/s41569-024-01111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Apolipoprotein B (apoB) is the main structural protein of LDLs, triglyceride-rich lipoproteins and lipoprotein(a), and is crucial for their formation, metabolism and atherogenic properties. In this Review, we present insights into the role of apoB-containing lipoproteins in atherogenesis, with an emphasis on the mechanisms leading to plaque initiation and growth. LDL, the most abundant cholesterol-rich lipoprotein in plasma, is causally linked to atherosclerosis. LDL enters the artery wall by transcytosis and, in vulnerable regions, is retained in the subendothelial space by binding to proteoglycans via specific sites on apoB. A maladaptive response ensues. This response involves modification of LDL particles, which promotes LDL retention and the release of bioactive lipid products that trigger inflammatory responses in vascular cells, as well as adaptive immune responses. Resident and recruited macrophages take up modified LDL, leading to foam cell formation and ultimately cell death due to inadequate cellular lipid handling. Accumulation of dead cells and cholesterol crystallization are hallmarks of the necrotic core of atherosclerotic plaques. Other apoB-containing lipoproteins, although less abundant, have substantially greater atherogenicity per particle than LDL. These lipoproteins probably contribute to atherogenesis in a similar way to LDL but might also induce additional pathogenic mechanisms. Several targets for intervention to reduce the rate of atherosclerotic lesion initiation and progression have now been identified, including lowering plasma lipoprotein levels and modulating the maladaptive responses in the artery wall.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Wang X, Wang X, Zhao Z, Wang Q, Zhu X, Ou Q, Xu JY, Lu L, Gao F, Wang J, Bi Y, Xu GT, Jin C, Tian H. DNA-Dependent Protein Kinase Catalytic Subunit Prevents Ferroptosis in Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 2025; 66:50. [PMID: 39841110 PMCID: PMC11756607 DOI: 10.1167/iovs.66.1.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose The purpose of this study was to investigate the activated core kinases involved in the DNA damage responses (DDR) during ferroptosis of retinal pigment epithelial (RPE) cells in vitro and their regulatory effects on ferroptosis. Methods Ferroptosis was induced by erastin in induced RPE (iRPE) cells derived from human umbilical cord mesenchymal stem cells (hUCMSCs), hUCMSCs, and induced pluripotent stem cell-derived RPE (iPSC-RPE) cells. CCK8 was employed to measure the cell viability. Calcein/PI staining was used to detect the ferroptotic cells. The γ-H2AX, 8-oxoG, and phosphorylated DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were determined through immunostaining. The phosphorylation of DNA-PKcs and ERK1/2 was determined by Western blotting. Lipid peroxides were detected by BODIPY581/591-C11 staining. Results The iRPE cells exhibited a stronger ability to resist ferroptosis compared to hUCMSCs. Ferroptosis induced DNA damage in cells, and DNA-PKcs was rapidly phosphorylated in iRPE cells on the treatment of erastin. In addition, inhibition of DNA-PKcs phosphorylation promoted ferroptosis in iRPE cells, suggesting that DNA-PKcs prevents ferroptosis. Meanwhile, DNA-PKcs inhibited ERK1/2 phosphorylation only at the early stage of ferroptosis induction, whereas ERK1/2 phosphorylation played a protective role in iRPE cells. Furthermore, erastin inducing DNA-PKcs phosphorylation and inhibition of its phosphorylation promoting ferroptosis were also verified in iPSC-RPE cells. Conclusions The present study elucidates that the key DDR kinase DNA-PKcs is activated and plays protective role during ferroptosis in RPE cells in vitro, which will provide new research targets and strategies for inhibiting ferroptosis in RPE cells.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xi Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Zhenzhen Zhao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Qian Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoman Zhu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yanlong Bi
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
McGraw KE, Domingo-Relloso A, Riggs DW, Medgyesi DN, Neupane R, Stingone JA, Sanchez TR. Exposure to Volatile Organic Compounds and Blood Pressure in NHANES 2011 to 2018. Hypertension 2025; 82:136-148. [PMID: 39534964 DOI: 10.1161/hypertensionaha.124.23695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Volatile organic compounds (VOCs) are ubiquitous environmental pollutants. Exposure to VOCs is associated with cardiovascular disease risk factors, including elevated blood pressure in susceptible populations. However, research in the general population, particularly among nonsmoking adults, is limited. We hypothesized that higher VOC exposure is associated with higher blood pressure and hypertension, among nonsmokers. METHODS We included 4 cycles of data (2011-2018) of nonsmoking adults (n=4430) from the National Health and Nutrition Examination Survey. Urinary VOC metabolites were measured by ultraperformance liquid chromatography-mass spectrometry, adjusted for urine dilution, and log-transformed. We estimated mean differences in blood pressure using linear models and prevalence ratio of stage 2 hypertension using modified Poisson models with robust standard errors. Models were adjusted for age, sex, race and ethnicity, education, body mass index, estimated glomerular filtration rate, and National Health and Nutrition Examination Survey cycle. RESULTS Participants were 54% female, with a median age of 48 years, 32.3% had hypertension, and 7.9% had diabetes. The mean differences (95% CI) in systolic blood pressure were 1.61 (0.07-3.15) and 2.46 (1.01-3.92) mm Hg when comparing the highest with the lowest quartile of urinary acrolein (N-acetyl-S-[2-carboxyethyl]-L-cysteine) and 1,3-butadiene (N-acetyl-S-[3,4-dihydroxybutyl]-L-cysteine) metabolites. The prevalence ratios for hypertension were 1.06 (95% CI, 1.02-1.09) and 1.05 (95% CI, 1.01-1.09) when comparing the highest with lowest quartiles of urinary acrolein (N-acetyl-S-[2-carboxyethyl]-L-cysteine) and 1,3-butadiene (N-acetyl-S-[3,4-dihydroxybutyl]-L-cysteine), respectively. CONCLUSIONS Exposure to VOCs may be a relevant yet understudied environmental contributor to cardiovascular disease risk in the nonsmoking, US population.
Collapse
Affiliation(s)
- Katlyn E McGraw
- Department of Environmental Health Science (K.E.M., A.D.-R., D.N.M., T.R.S.), Columbia University Mailman School of Public Health, New York, NY
| | - Arce Domingo-Relloso
- Department of Environmental Health Science (K.E.M., A.D.-R., D.N.M., T.R.S.), Columbia University Mailman School of Public Health, New York, NY
| | - Daniel W Riggs
- Christina Lee Brown Envirome Institute, University of Louisville, KY (D.W.R.)
| | - Danielle N Medgyesi
- Department of Environmental Health Science (K.E.M., A.D.-R., D.N.M., T.R.S.), Columbia University Mailman School of Public Health, New York, NY
| | - Raghavee Neupane
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL (R.N.)
| | - Jeanette A Stingone
- Department of Epidemiology (J.A.S.), Columbia University Mailman School of Public Health, New York, NY
| | - Tiffany R Sanchez
- Department of Environmental Health Science (K.E.M., A.D.-R., D.N.M., T.R.S.), Columbia University Mailman School of Public Health, New York, NY
| |
Collapse
|
11
|
Waga M, Nakade K. Light wavelengths that induce oxidation of oxymyoglobin in meat. Meat Sci 2025; 219:109664. [PMID: 39288547 DOI: 10.1016/j.meatsci.2024.109664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Light wavelengths that induce meat discoloration and the photoreceptors in the meat were studied. We investigated the effects of the light wavelength on the oxidation rate of myoglobin (Mb) by exposing Mb extracts or model solutions containing Mb to light at specific wavelengths with a bandwidth of 5 nm using a fluorescence spectrophotometer. The wavelengths examined comprised 385, 415, 445, 460, 490, 525, 555, 580, 605, 630,660, and 750 nm. In the Mb extracts, Mb oxidation was induced through exposure to the light at 445 and 580-605 nm; Mb was insensitive to light at 445 nm. Mitochondria, containing cytochrome a and cytochrome a3 with absorption peaks at 448 and 600 nm, and riboflavin with fluorescence at 450 nm were studied as 445 nm receptors. Mitochondria significantly oxidized Mb via cytochrome c oxidation through complex IV activity; however, no 445 nm-specific photo sensitivity effects were observed. In contrast, riboflavin increased the Mb oxidation rate induced via exposure to the light at 450 nm in a concentration-dependent manner (minimum concentration: 38.4 μg L-1). While native mitochondria did not show 445 nm-specific photosensitivity effects on Mb, supernatants of heated mitochondria conferred 445 nm-wavelength sensitivity to Mb. Riboflavin concentration in this supernatant was 182 ± 60 μg L-1. The Mb photosensitivity spectrum with 473 μg L-1 riboflavin had two peaks at 445 nm and 580 nm, which were similar to those of Mb extract. These results suggest that mitochondrial damage affects the meat discoloration through the release of cytochrome c and riboflavin.
Collapse
Affiliation(s)
- Masahiro Waga
- Central Research Institute, Itoham Yonekyu Holdings, Inc, Moriya, Japan.
| | - Koji Nakade
- Central Research Institute, Itoham Yonekyu Holdings, Inc, Moriya, Japan
| |
Collapse
|
12
|
Monroe TB, Hertzel AV, Dickey DM, Hagen T, Santibanez SV, Berdaweel IA, Halley C, Puchalska P, Anderson EJ, Camell CD, Robbins PD, Bernlohr DA. Lipid peroxidation products induce carbonyl stress, mitochondrial dysfunction, and cellular senescence in human and murine cells. Aging Cell 2025; 24:e14367. [PMID: 39394673 PMCID: PMC11709094 DOI: 10.1111/acel.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/14/2024] Open
Abstract
Lipid enals are electrophilic products of lipid peroxidation that induce genotoxic and proteotoxic stress by covalent modification of DNA and proteins, respectively. As lipid enals accumulate to substantial amounts in visceral adipose during obesity and aging, we hypothesized that biogenic lipid enals may represent an endogenously generated, and therefore physiologically relevant, senescence inducers. To that end, we identified that 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal (4-HHE) or 4-oxo-2-nonenal (4-ONE) initiate the cellular senescence program of IMR90 fibroblasts and murine adipose stem cells. In such cells, lipid enals induced accumulation of γH2AX foci, increased p53 signaling, enhanced expression of p21Cip1, and upregulated the expression and secretion of numerous cytokines, chemokines, and regulatory factors independently from NF-κB activation. Concomitantly, lipid enal treatment resulted in covalent modification of mitochondrial proteins, reduced mitochondrial spare respiratory capacity, altered nucleotide pools, and increased the phosphorylation of AMP kinase. Lipid-induced senescent cells upregulated BCL2L1 (Bcl-xL) and BCL2L2 (Bcl-w). and were resistant to apoptosis while pharmacologic inhibition of BAX/BAK macropores attenuated lipid-induced senescence. In situ, the 4-HNE scavenger L-carnosine ameliorated the development of the cellular senescence, while in visceral fat of obese C57BL/6J mice, L-carnosine reduced the abundance of 4-HNE-modified proteins and blunted the expression of senescence biomarkers CDKN1A (p21Cip1), PLAUR, BCL2L1, and BCL2L2. Taken together, the results suggest that lipid enals are endogenous regulators of cellular senescence and that biogenic lipid-induced senescence (BLIS) may represent a mechanistic link between oxidative stress and age-dependent pathologies.
Collapse
Affiliation(s)
- T. Blake Monroe
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Deborah M. Dickey
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Thomas Hagen
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Simon Vergara Santibanez
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Islam A. Berdaweel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowaUSA
- Present address:
Department of Clinical Pharmacy and Pharmacy Practice, College of PharmacyYarmouk UniversityIrbidJordan
| | - Catherine Halley
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Patrycja Puchalska
- Department of MedicineUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Ethan J. Anderson
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIowaUSA
| | - Christina D. Camell
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
- Institute for the Biology of Aging and MetabolismUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - Paul D. Robbins
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
- Institute for the Biology of Aging and MetabolismUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of Minnesota‐Twin CitiesMinneapolisMinnesotaUSA
| |
Collapse
|
13
|
Jahan I, Islam MM, Nakamura T, Nakamura Y, Munemasa S, Mano J, Murata Y. Reactive carbonyl species function downstream of reactive oxygen species in chitosan-induced stomatal closure. PHYSIOLOGIA PLANTARUM 2025; 177:e70094. [PMID: 39887342 PMCID: PMC11783587 DOI: 10.1111/ppl.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
An elicitor, chitosan (CHT), induces stomatal closure in plants, which is accompanied by salicylhydroxamic acid (SHAM)-sensitive peroxidases-mediated reactive oxygen species (ROS) production in guard cells. Reactive carbonyl species (RCS) function downstream of ROS in abscisic acid (ABA) and methyl jasmonate (MeJA) signalling in guard cells. However, the involvement of RCS in CHT-induced stomatal closure is still unknown. In this study, we used transgenic tobacco (Nicotiana tabacum) plants overexpressing Arabidopsis thaliana 2-alkenal reductase (AER-OE tobacco) and Arabidopsis wild-type (WT) plants to investigate whether RCS is involved in CHT-induced stomatal closure. Chitosan-induced stomatal closure was inhibited in the tobacco AER-OE plants. In the WT tobacco and Arabidopsis plants, CHT-induced stomatal closure was inhibited by RCS scavengers, carnosine and pyridoxamine. Chitosan significantly increased RCS production in the WT tobacco and Arabidopsis, but in the tobacco AER-OE plants, chitosan did not increase significantly RCS accumulation. Moreover, neither the application of RCS scavengers to both WT plants nor scavenging RCS by AER-OE affected the CHT-induced ROS accumulation. However, treatment with a peroxidase inhibitor, SHAM, significantly inhibited CHT-induced RCS accumulation in WT tobacco and Arabidopsis plants. Taken together, these results suggest that RCS acts downstream of ROS production in CHT signalling in guard cells of A. thaliana and N. tabacum.
Collapse
Affiliation(s)
- Israt Jahan
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Md. Moshiul Islam
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
- Department of AgronomyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Jun'ichi Mano
- Science Research CenterYamaguchi UniversityYamaguchiJapan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| |
Collapse
|
14
|
Zhu D, Zheng X, Dong H, Liu X, Hu X, Chen M, Liu X, Shao Y. Effects of storage on volatile organic components and physiological properties of different storage-tolerant rice varieties. Food Chem X 2025; 25:102134. [PMID: 39844964 PMCID: PMC11751419 DOI: 10.1016/j.fochx.2024.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/08/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025] Open
Abstract
The effects of storage on rice flavor among different rice varieties have not been well studied. To address this gap, we analyzed volatile organic components (VOCs) identified by gas chromatography-ion mobility spectrometry (GC-IMS) and related physicochemical properties of different storage-tolerant rice varieties during storage. The results showed that VOCs of four rice varieties significantly changed after 6 months of storage; OPLS-DA analysis classified the four rice varieties into two groups. There were fewer (N81 and JH1) and more significant changes (N84 and ZJ96) after storage, and the hexanal and 2-pentylfuran were considered the key VOCs for flavor changes during storage. Lipoxygenase (LOX) activity first increased and then decreased, while antioxidant activities decreased during storage. Under these conditions, oleic and linoleic acids were hydrolyzed. These results provide a better understanding of rice flavor changes after storage between different storable rice varieties.
Collapse
Affiliation(s)
- Dawei Zhu
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Xin Zheng
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Huiyin Dong
- Department of Food Science, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xingquan Liu
- Department of Food Science, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Xianqiao Hu
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Mingxue Chen
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| | - Xin Liu
- Seed Management Station of Zhejiang Province, Hangzhou 310006, China
| | - Yafang Shao
- Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
15
|
Li SH, Huang WT, Chen YH, Lu HI, Lo CM, Tsai HT, Chen CH. Aldo-keto reductase family 1 member B10 prevents esophageal squamous cell carcinoma from reactive carbonyl species-induced cell death and promotes its progression. Cancer Cell Int 2024; 24:425. [PMID: 39710692 DOI: 10.1186/s12935-024-03623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024] Open
Abstract
INTRODUCTION Chronic alcohol consumption and tobacco usage are major risk factors for esophageal squamous cell carcinoma (ESCC). Excessive tobacco and alcohol consumption lead to oxidative stress and the generation of reactive carbonyl species (RCS) which induce DNA damage and cell apoptosis. This phenomenon contributes to cell damage and carcinogenesis in various organs including ESCC. However, it also raises an important question on how ESCC cells evade RCS-induced apoptosis and grow rapidly under these conditions. Therefore, we hypothesize that some enzymes produced by ESCC cells are capable of catabolizing RCS, preventing ESCC neoplastic cells from undergoing RCS-induced apoptosis, potentially contributing to ESCC progression. METHODS To identify significant gene clusters involved in the metabolism of RCS in ESCC, we used an Agilent SurePrint G3 Human V2 GE 8 × 60 K microarray kit to analyze differentially expressed genes between nine paired ESCC tissues and adjacent normal esophageal tissues taken from areas distant from the tumor site. Bioinformatics analysis using gene ontology (GO) was performed to categorize these genes. To validate the findings, immunohistochemical staining in specimens from 169 surgically resected ESCC patients was performed and then correlated with treatment outcomes. Furthermore, the identified signaling pathway and its biological effects were investigated in ESCC cell lines in vitro and 4-nitroquinoline 1-oxide (4-NQO)-induced-ESCC murine model in vivo. RESULTS Interestingly, we found that one of the significantly altered 57 GO molecular function domain terms (GO:0004033 aldo-keto reductase activity; P = 0.021) between nine paired ESCC tumors and adjacent normal tissue specimens was associated with the RCS metabolism. Among significant genes within this domain, AKR1B10 (aldo-keto reductase family 1 member B10; P = 0.006) was identified as the most significantly altered gene. Immunohistochemical analysis revealed that AKR1B10 expression was higher in ESCC cells than in adjacent normal esophageal epithelium. In addition, AKR1B10 expression was independently significantly associated with a poorer prognosis in 169 ESCC patients. Enzyme-linked immunosorbent assay results further demonstrated that blood AKR1B10 concentrations were significantly higher in 72 ESCC patients than in 24 healthy controls. In vitro experiments revealed that inhibiting endogenous AKR1B10 enhanced the cytotoxicity of 4-hydroxy trans-2-nonenal, a type of RCS. In a 4-NQO-induced-ESCC murine model, oleanolic acid, an AKR1B10 inhibitor, significantly reduced the incidence of esophageal tumors. CONCLUSIONS Our findings suggested that AKR1B10 is an independent adverse prognosticator for patients with ESCC, and could prevent ESCC neoplastic cells from undergoing RCS-induced apoptosis, and promote ESCC progression. Therefore, AKR1B10 signaling could be a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Shau-Hsuan Li
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Hao Chen
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-I Lu
- Department of Thoracic & Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Ming Lo
- Department of Thoracic & Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-Ting Tsai
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Taichung City, 407219, Taiwan
| | - Chang-Han Chen
- Department of Applied Chemistry, Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Taiwan.
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Taichung City, 407219, Taiwan.
| |
Collapse
|
16
|
Mishra L, Mishra M. Ribose-induced advanced glycation end products reduce the lifespan in Drosophila melanogaster by changing the redox state and down-regulating the Sirtuin genes. Biogerontology 2024; 26:28. [PMID: 39702854 DOI: 10.1007/s10522-024-10172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Advanced Glycation End (AGE) products are one such factor that accumulates during aging and age-related diseases. However, how exogenous AGE compounds cause aging is an area that needs to be explored. Specifically, how an organ undergoes aging and aging-related phenomena that need further investigation. The intestine is the most exposed area to food substances. How AGEs affect the intestine in terms of aging need to be explored. Drosophila melanogaster, a well-known model organism, is used to decode aging and age-associated phenomena. In this study, we fed Ribose induced Advanced Glycation End products (Rib-AGE) to D. melanogaster to study the aging mechanism. The Rib-AGE-induced aging was checked in Drosophila. We found a series of changes in Rib-AGE-fed flies. Reactive oxygen species (ROS) and nitric oxide species (NOs) were higher in the Rib-AGE-fed flies, and the antioxidant level was lower. The intestinal permeability was altered. The microorganism load was higher inside the gut. The structural arrangement of the gut's microfilament was found to be damaged, and the nuclear shape was found to be irregular. Cell death within the gut was elevated in comparison to control. The food intake was found to be reduced. The relative mRNA expression of the Sirtuin 2 and Sirtuin 6 gene of D. melanogaster was downregulated in Rib-AGE-fed flies compared to the control. All these findings strongly suggest that Rib-AGE accelerates aging and age-related disorders in D. melanogaster.
Collapse
Affiliation(s)
- Lokanath Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India.
| |
Collapse
|
17
|
Wonisch W, Tatzber F, Lindschinger M, Falk A, Resch U, Mörkl S, Zarkovic N, Cvirn G. Overview of Clinical Relevance of Antibodies Against Oxidized Low-Density Lipoprotein (oLAb) Within Three Decades by ELISA Technology. Antioxidants (Basel) 2024; 13:1560. [PMID: 39765889 PMCID: PMC11672888 DOI: 10.3390/antiox13121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
One of the most prominent actions of oxidative stress is the attack of free radicals on poylyunsaturated fatty acids (PUFAs), initiating a chain reaction to modify these PUFAs and generate oxidized modifications on all biomolecules. In the last quarter of the 20th century, intensive research was carried out to identify antibodies against such modifications. In the mid-1990s, the first enzyme-linked immunosorbent assay (ELISA) was introduced to the market, significantly accelerating research activities and knowledge gain. During this pioneering period, the main focus was on cardiovascular diseases, cancer, diabetes, and other diseases associated with oxidative stress. Subsequently, a standard range of these antibodies against oxidized LDL (oLAb) was determined in the population. Furthermore, the impact of exhaustive physical activity and diet on oLAb titers, and the correlation between newborns and mothers after delivery, as well as nutritional intake in newborns, were evaluated. Subsequently, the harmful effects of smoking and many other areas regarding oLAb titer were published, resulting in novel approaches for prognostic and therapeutic options, in particular through studies with antioxidants, which were able to influence oLAb significantly. This review presents an overview of the research activities obtained with this ELISA over the past three decades.
Collapse
Affiliation(s)
- Willibald Wonisch
- Otto Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, 8010 Graz, Styria, Austria;
| | - Franz Tatzber
- Omnignostica Ltd., 3421 Höflein an der Donau, Lower Austria, Austria
| | - Meinrad Lindschinger
- Institute of Nutritional and Metabolic Diseases, Outpatient Clinic Laßnitzhöhe, 8301 Laßnitzhöhe, Styria, Austria; (M.L.); (A.F.)
| | - Andreas Falk
- Institute of Nutritional and Metabolic Diseases, Outpatient Clinic Laßnitzhöhe, 8301 Laßnitzhöhe, Styria, Austria; (M.L.); (A.F.)
- BioNanoNet Forschungsgesellschaft mbH (BNN), 8010 Graz, Styria, Austria
| | - Ulrike Resch
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Vienna, Austria;
| | - Sabrina Mörkl
- Department of Medical Psychology, Psychosomatics and Psychotherapy, Medical University of Graz, 8036 Graz, Styria, Austria;
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia;
| | - Gerhard Cvirn
- Otto Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, 8010 Graz, Styria, Austria;
| |
Collapse
|
18
|
Chancellor A, Constantin D, Giuliano Berloffa, Yang Q, Nosi V, Loureiro JP, Colombo R, Jakob RP, Joss D, Pfeffer M, De Simone G, Morabito A, Schaefer V, Vacchini A, Brunelli L, Montagna D, Heim M, Zippelius A, Davoli E, Häussinger D, Maier T, Mori L, De Libero G. The carbonyl nucleobase adduct M 3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells. Immunity 2024:S1074-7613(24)00534-X. [PMID: 39701104 DOI: 10.1016/j.immuni.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
The major histocompatibility complex (MHC) class I-related molecule MHC-class-I-related protein 1 (MR1) presents metabolites to distinct MR1-restricted T cell subsets, including mucosal-associated invariant T (MAIT) and MR1T cells. However, self-reactive MR1T cells and the nature of recognized antigens remain underexplored. Here, we report a cell endogenous carbonyl adduct of adenine (8-(9H-purin-6-yl)-2-oxa-8-azabicyclo[3.3.1]nona-3,6-diene-4,6-dicarbaldehyde [M3Ade]) sequestered in the A' pocket of MR1. M3Ade induced in vitro MR1-mediated stimulation of MR1T cell clones that bound MR1-M3Ade tetramers. MR1-M3Ade tetramers identified heterogeneous MR1-reactive T cells ex vivo in healthy donors, individuals with acute myeloid leukemia, and tumor-infiltrating lymphocytes from non-small cell lung adenocarcinoma and hepatocarcinoma. These cells displayed phenotypic, transcriptional, and functional diversity at distinct differentiation stages, indicating their adaptive nature. They were also polyclonal, with some preferential T cell receptor (TCRαβ) pair usage. Thus, M3Ade is an MR1-presented self-metabolite that enables stimulation and tracking of human-MR1T cells from blood and tissue, aiding our understanding of their roles in health and disease.
Collapse
Affiliation(s)
- Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| | - Daniel Constantin
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Qinmei Yang
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Michael Pfeffer
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Giulia De Simone
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Aurelia Morabito
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Laura Brunelli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniela Montagna
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia and Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Markus Heim
- Hepatology Laboratory, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Enrico Davoli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
19
|
Wei S, Mao Y, Sokolova IM, Li Z, Li L, Khalid MS, Tu Z, Zhong Z, Hu M, Wang Y. Extreme heat event influences the toxic impacts of nano-TiO 2 with different crystal structures in mussel Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176916. [PMID: 39454788 DOI: 10.1016/j.scitotenv.2024.176916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The wide use of nano‑titanium dioxide (nano-TiO2) and its ubiquitous emission into aquatic environments are threatening environmental health. Ambient temperature can affect the aggregation state of nano-TiO2 in seawater, thus influencing the intake and physiological effects on marine species. We studied the physiological effects of mixed nano-TiO2 (a mixture of anatase and rutile crystals with an average particle size of 25 nm, P25) on mussels. Subsequently, we investigated the oxidative stress, immunotoxicity, neurotoxicity, and detoxification in Mytilus coruscus exposed to two different crystal structures of nano-TiO2 (anatase and rutile) at 100 μg/L concentration under marine heatwaves (MHWs, 28 °C). MHWs and nano-TiO2 exposure induced neurotoxicity and immune damage and caused dysregulation of redox balance in the gills. Moreover, MHWs exposure disturbed the glutathione system and detoxification function of mussels, resulting in enhanced toxicity of nano-TiO2 under co-exposure. Anatase exposure significantly impaired the antioxidant system and downregulated the relative expression of antioxidant-related genes (Nrf2 and Bcl-2), HSP-90, and immune parameters under MHWs, while producing higher ROS levels compared to rutile. Based on integrated biomarker response (IBR), mussels co-exposed to anatase and MHW showed the highest value (19.29). However, there was no significant difference in bioaccumulation of titanium between anatase (6.07 ± 0.47 μg/g) and rutile (5.3 ± 0.44 μg/g) exposures under MHWs. These results indicate that MHWs would elevate the potential hazard of nanoparticles to marine organisms.
Collapse
Affiliation(s)
- Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yiran Mao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Zhuoqing Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Malik Shahzaib Khalid
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhen Zhong
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
20
|
Zhang Z, Xiao T, Hall MR, Crodian JS, Alford AK, Kimbrough A, Shi R. Temporal differential effects of post-injury alcohol consumption in a mouse model of blast-induced traumatic brain injury. Neuroscience 2024; 562:239-251. [PMID: 39369945 PMCID: PMC11769080 DOI: 10.1016/j.neuroscience.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/22/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Traumatic brain injury is a prevalent condition that affects millions worldwide with no clear understanding or effective therapeutic management available. Military soldiers have a high risk of exposure to blast-induced traumatic brain injury (bTBI). Furthermore, alcohol drinking is common in this population, and studies have shown that post-TBI alcohol exposure can result in memory loss. Hence, it is possible that alcohol could contribute to the overall pathological outcome of brain trauma. However, such a possibility has not been explored in detail. Here, we combined a mild bTBI (mbTBI) model with the drinking-in-the-dark (DID) paradigm to investigate the pathological synergy between mbTBI and alcohol consumption by examining brain oxidative stress levels and behavioral alterations in mice. The results revealed the anxiolytic and short-term memory improvement effects of post-trauma alcohol drinking examined at an early timepoint post mbTBI. However, extended alcohol drinking for up to three weeks post mbTBI impaired long-term memory and was accompanied by intensified oxidative stress in brain regions associated with memory and anxiety. These findings, as well as those from previous in vitro TBI/alcohol studies, suggest a pathological synergy of physical force and post-impact alcohol exposure. This knowledge could potentially aid in establishing guidelines for TBI victims to avoid further injury to their brains as well as to help maximize their recovery following TBI.
Collapse
Affiliation(s)
- Zaiyang Zhang
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States
| | - Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States
| | - Mekyna R Hall
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States
| | - Jennifer S Crodian
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States
| | - Anna K Alford
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States; The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine Purdue University, West Lafayette, IN, United States; Center for Paralysis Research, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
21
|
Borkum JM. Cluster Headache and Hypoxia: Breathing New Life into an Old Theory, with Novel Implications. Neurol Int 2024; 16:1691-1716. [PMID: 39728749 DOI: 10.3390/neurolint16060123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Cluster headache is a severe, poorly understood disorder for which there are as yet virtually no rationally derived treatments. Here, Lee Kudrow's 1983 theory, that cluster headache is an overly zealous response to hypoxia, is updated according to current understandings of hypoxia detection, signaling, and sensitization. It is shown that the distinctive clinical characteristics of cluster headache (circadian timing of attacks and circannual patterning of bouts, autonomic symptoms, and agitation), risk factors (cigarette smoking; male gender), triggers (alcohol; nitroglycerin), genetic findings (GWAS studies), anatomical substrate (paraventricular nucleus of the hypothalamus, solitary tract nucleus/NTS, and trigeminal nucleus caudalis), neurochemical features (elevated levels of galectin-3, nitric oxide, tyramine, and tryptamine), and responsiveness to treatments (verapamil, lithium, melatonin, prednisone, oxygen, and histamine desensitization) can all be understood in terms of hypoxic signaling. Novel treatment directions are hypothesized, including repurposing pharmacological antagonists of hypoxic signaling molecules (HIF-2; P2X3) for cluster headache, breath training, physical exercise, high-dose thiamine, carnosine, and the flavonoid kaempferol. The limits of current knowledge are described, and a program of basic and translational research is proposed.
Collapse
Affiliation(s)
- Jonathan M Borkum
- Department of Psychology, University of Maine, 301 Williams Hall, Orono, ME 04469-5742, USA
| |
Collapse
|
22
|
Li A, Dong L, Li X, Yi J, Ma J, Zhou J. ALDH3A1-mediated detoxification of reactive aldehydes contributes to distinct muscle responses to denervation and Amyotrophic Lateral Sclerosis progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626422. [PMID: 39677625 PMCID: PMC11642873 DOI: 10.1101/2024.12.02.626422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Different muscles exhibit varied susceptibility to degeneration in Amyotrophic Lateral Sclerosis (ALS), a fatal neuromuscular disorder. Extraocular muscles (EOMs) are particularly resistant to ALS progression and exploring the underlying molecular nature may deliver great therapeutic value. Reactive aldehyde 4-hydroxynonenal (HNE) is implicated in ALS pathogenesis and ALDH3A1 is an inactivation-resistant intracellular detoxifier of 4-HNE protecting eyes against UV-induced oxidative stress. Here we detected prominently higher levels of ALDH3A1 in mouse EOMs than other muscles under normal physiological conditions. In an ALS mouse model (hSOD1G93A) reaching end-stage, ALDH3A1 expression was sustained at high level in EOMs, whereas substantial upregulation of ALDH3A1 occurred in soleus and diaphragm. The upregulation was less pronounced in extensor digitorum longus (EDL) muscle, which endured the most severe pathological remodeling as demonstrated by unparalleled upregulation of a denervation marker ANKRD1 expression. Interestingly, sciatic nerve transection in wildtype mice induced ALDH3A1 and ANKRD1 expression in an inverse manner over muscle type and time. Adeno-associated virus enforced overexpression of ALDH3A1 protected myotubes from 4-HNE-induced DNA fragmentation, plasma membrane leakage and restored MG53-mediated membrane repair. Our data indicate that ALDH3A1 may contribute to distinct muscle resistance to ALS through detoxifying reactive aldehydes.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| | - Jianjie Ma
- Department of Surgery, Division of Surgical Sciences, University of Virginia, Charlottesville, VA, 22903, USA
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, TX, 76019, USA
| |
Collapse
|
23
|
Almasi D, Kazemi S, Asghari MH, Hosseini SM, Moghadamnia AA. Ameliorative effect of Melatonin on 5-Fluorouracil-induced reproductive toxicity in male rats. Daru 2024; 32:675-687. [PMID: 39312086 PMCID: PMC11554997 DOI: 10.1007/s40199-024-00537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/30/2024] [Indexed: 11/12/2024] Open
Abstract
5-Fluorouracil (5-FU) is an antimetabolite chemotherapeutic agent that can cause oxidative stress and complications in normal organs, including the reproductive system. This study was conducted to investigate the effect of melatonin (MEL) on 5-FU-induced reproductive toxicity in male rats. Male Wistar rats weighing 180 ± 20 g were divided into five groups: control, 5-FU (50 mg/kg), 5-FU + MEL (2.5, 5 & 10 mg/kg). The testes and prostates were removed, and histopathological aspects, biochemical markers, and gene expression were investigated. The effect of 5-FU on the normal TM4 cell line (murine testicular Sertoli line) and co-treatment of 5-FU and MEL were studied using MTT assay. Results showed that MEL prevented cell death in the TM4 cell line induced by 5-FU. MEL also reduced edema, hyperemia, and vacuolization in testis and prostate tissues induced by 5-FU. Additionally, MEL increased the activity of antioxidant enzymes and reduced the levels of MDA (p < 0.0001) and MPO (p < 0.0001). The levels of testosterone (p < 0.01) and the number of spermatocytes and spermatogonia (p < 0.0001) were increased in groups receiving 5-FU with MEL compared to 5-FU alone. The prostate-specific antigen (PSA) level in prostate samples was lower in the groups receiving 5-FU with MEL compared to the 5-FU group. Furthermore, the genes expression of COX-2 and TNF-α in testis tissues was reduced in the presence of MEL. in conclusion, the antioxidant property of MEL can protect the male reproductive system against 5-FU toxicity, as evidenced by the improved histopathological and biochemical parameters, as well as the reduced gene expression of COX-2 and TNF- α genes.
Collapse
Affiliation(s)
- Darya Almasi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hossien Asghari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
24
|
Du M, Song M, Wu D, Zhang Y, Song H, Lv H, Ke A, Du H, Zhao S. Novel fluorescent nanoplatform for all-in-one sensing and removal of acrolein: An ultrasensitive probe to evaluate its removal efficiency. Food Chem 2024; 460:140667. [PMID: 39094348 DOI: 10.1016/j.foodchem.2024.140667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
As a highly toxic aldehyde, acrolein is widely found in diet and environment, and can be produced endogenously, posing a serious threat to human health. Herein, we designed a novel fluorescent nanoplatform integrating carbon dots‑manganese dioxide (CDs-MnO2) and glutathione (GSH) for all-in-one sensing and removal of acrolein. By converting Mn4+ to free Mn2+, GSH inhibited the inner filter effect (IFE) of MnO2 nanosheets, and the Michael addition of acrolein with GSH inhibited the GSH-induced Mn4+ conversion, forming an "off-on-off" fluorescence response of CDs. The developed fluorescent nanoplatform exhibited high sensitivity (LOD was 0.067 μM) and selectivity for the simultaneous detection and removal of acrolein. The combination of CDs-MnO2 hydrogels with smartphones realized the point-of-care detection of acrolein, yielding satisfactory results (recovery rates varied between 97.01-104.65%, and RSD ranged from 1.42 to 4.16%). Moreover, the capability of the nanoplatform was investigated for on-site evaluating acrolein scavengers' efficacy, demonstrating excellent potential for practical application.
Collapse
Affiliation(s)
- Man Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Meimei Song
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Die Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yue Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Haiwen Song
- Hebei Lansheng Biotechnology Co., LTD., Shijiazhuang 052260, China.
| | - Haijun Lv
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Aibing Ke
- Hebei Lansheng Biotechnology Co., LTD., Shijiazhuang 052260, China
| | - Hongxia Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shuchun Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
25
|
Koorehpaz K, Eslami M, Farrokhi-Ardabili F. Comparison of Cholesterol Carriers and Substitution of Fructose and Glycerol With Trehalose on Frozen/Thawed ATP Content, DNA Integrity and Kinematics Variables of Ram Spermatozoa. Reprod Domest Anim 2024; 59:e14748. [PMID: 39614672 DOI: 10.1111/rda.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
Current study was aimed to assess the β-cyclodextrin (βCD) and methyl-β-cyclodextrin (MβCD) on delivery of cholesterol, and substitution of fructose and glycerol with trehalose on the ram semen cryosurvival. Samples were collected, diluted with Tris-citric acid-LDL extender, pooled, and used. In experiment I, βCD and MβCD carriers were used and compared to deliver the cholesterol (at 0, 0.5, 1, 1.5, 2, and 4 mg/mL). In the experiment II, trehalose (0, 7, 14, 21, and 28 mM) was substituted with fructose (28, 21, 14, 7, 0 mM, respectively). In the experiment III, the best cholesterol/carrier dose groups from the first experiment, were selected to be evaluated with the fructose/trehalose (14/14 mM) combination compared to fructose (28 mM) alone. The concentration of glycerol in the above-mentioned experiments was set at 4.5%. In the experiment IV, the effect of lowering glycerol (4% vs. 4.5%) was assessed using selected cholesterol/carrier groups. Kinematics, chromatin integrity, ATP contents, malondialdehyde amounts and viability were evaluated. Cholesterol (especially at 1.5 and 2 mg/mL) improved the kinematics and ATP levels using both carriers. The optimised amounts of trehalose (14 mM)/fructose(14 mM) reduced peroxidation and DNA fragmentation levels. Co-administration of optimised levels of cholesterol with trehalose/fructose did not show extra beneficial effects compared to each of them. Trehalose could not protect the spermatozoa at lower amounts of glycerol (4% vs. 4.5%). In conclusion, either the optimised levels of cholesterol (using βCD or MβCD carriers) or substitution of half of the fructose with the trehalose alone could lead to improvement in quality of frozen/thawed ram semen.
Collapse
Affiliation(s)
- Kave Koorehpaz
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mohsen Eslami
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | |
Collapse
|
26
|
Yamashima T. 4-Hydroxynonenal from Mitochondrial and Dietary Sources Causes Lysosomal Cell Death for Lifestyle-Related Diseases. Nutrients 2024; 16:4171. [PMID: 39683565 DOI: 10.3390/nu16234171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Excessive consumption of vegetable oils such as soybean and canolla oils containing ω-6 polyunsaturated fatty acids is considered one of the most important epidemiological factors leading to the progression of lifestyle-related diseases. However, the underlying mechanism of vegetable-oil-induced organ damage is incompletely elucidated. Since proopiomelanocortin (POMC) neurons in the hypothalamus are related to the control of appetite and energy expenditure, their cell degeneration/death is crucial for the occurrence of obesity. In patients with metabolic syndrome, saturated fatty acids, especially palmitate, are used as an energy source. Since abundant reactive oxygen species are produced during β-oxidation of the palmitate in mitochondria, an increased amount of 4-hydroxy-2-nonenal (4-HNE) is endogenously generated from linoleic acids constituting cardiolipin of the inner membranes. Further, due to the daily intake of deep-fried foods and/or high-fat diets cooked using vegetable oils, exogenous 4-HNE being generated via lipid peroxidation during heating is incorporated into the blood. By binding with atheromatous and/or senile plaques, 4-HNE inactivates proteins via forming hybrid covalent chemical addition compounds and causes cellular dysfunction and tissue damage by the specific oxidation carbonylation. 4-HNE overstimulates G-protein-coupled receptors to induce abnormal Ca2+ mobilization and µ-calpain activation. This endogenous and exogenous 4-HNE synergically causes POMC neuronal degeneration/death and obesity. Then, the resultant metabolic disorder facilitates degeneration/death of hippocampal neurons, pancreatic β-cells, and hepatocytes. Hsp70.1 is a molecular chaperone which is crucial for both protein quality control and the stabilization of lysosomal limiting membranes. Focusing on the monkey hippocampus after ischemia, previously we formulated the 'calpain-cathepsin hypothesis', i.e., that calpain-mediated cleavage of carbonylated Hsp70.1 is a trigger of programmed neuronal death. This review aims to report that in diverse organs, lysosomal cell degeneration/death occurs via the calpain-cathepsin cascade after the consecutive injections of synthetic 4-HNE in monkeys. Presumably, 4-HNE is a root substance of lysosomal cell death for lifestyle-related diseases.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Psychiatry and Behavioral Science, Kanazawa University Graduate School of Medical Sciences, Takara-machi 13-1, Kanazawa 920-8040, Japan
| |
Collapse
|
27
|
Li S, Liu W, Chen X, Chen Z, Shi J, Hua J. From Hypoxia to Oxidative Stress: Antioxidants' Role to Reduce Male Reproductive Damage. Reprod Sci 2024:10.1007/s43032-024-01746-x. [PMID: 39557807 DOI: 10.1007/s43032-024-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia is one of the main reasons causing male reproductive damage for people living in high altitude. Pathological evidences have been presented both in humans and animal models. Spermatogenesis disruption, worse sperm parameters, hormone disorder and erectile dysfunction are emblematic of male reproductive impairments brought by hypoxia. Among many mechanisms impairing male reproductive systems, oxidative stress is always a field of interest to explore. Although previous reviews have discussed about hypoxia or oxidative stress and antioxidants on male fertility respectively, no one has elucidated the concrete role of oxidative stress in hypoxia and correlating antioxidants that can ameliorate the negative effects. In this review, we firstly introduce hypoxia etiology and describe specific damage of hypoxia on male reproductive functions. Then, we emphasized interplays between hypoxia and oxidative stress as well as negative influences brought by oxidative stress. Finally, we listed antioxidants for oxidative stress and hypoxia-induced reproductive damage and discussed their controversial experimental effects for male infertility.
Collapse
Affiliation(s)
- Siyao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhaoyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingtian Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
28
|
Angali KA, Farhadi M, Neisi A, Cheraghian B, Ahmadi M, Takdastan A, Dargahi A, Angali ZA. Carcinogenic and non-carcinogenic risks caused by rice contamination with heavy metals and their effect on the prevalence of cardiovascular disease (Using machine learning). Food Chem Toxicol 2024; 194:115085. [PMID: 39521240 DOI: 10.1016/j.fct.2024.115085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The safety and health of food products are essential in the food industry, and the risk of contamination from various contaminants must be evaluated. Exposure to HMs from the environment (especially food) causes various adverse effects on the body and increases the risk of cardiovascular disease (CVD). MATERIAL AND METHOD Volunteers in the study comprised both healthy individuals and those with CVD. Patients were chosen using a cohort database of CVD individuals. A random choice of samples was conducted. Medical information (individuals with CVD) related to the participants was obtained from the Hoveyzeh Cohort Study Center. CVD-HM relationships were assessed using various machine-learning techniques. RESULT Based on the results of the GAM statistics approach, the baseline levels (β) of As, Cd, and Cr in rice have been calculated to be 1.05, 1.19, and 1.11, respectively. Based on the investigation's results, rice acts as a mediator between high-magnitude actions and the prevalence of CVD. Eating rice increases the probability of CVD by 0.18 and raises As eating by 0.494. The results showed that rice consumption in the research area is not associated with non-carcinogenic and carcinogenic risk (CRs and ILCRs for both categories were less than 1∗10-6). CONCLUSION There was neither a carcinogenic nor non-carcinogenic threat to adults or children and many hazardous HMs existed at the accepted thresholds. A notable relationship was seen between rice contaminated with HM and CVD.
Collapse
Affiliation(s)
- Kambiz Ahmadi Angali
- Department of Biostatistics and Epidemiology, School of Health, Social Determinants of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Farhadi
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Educational Development Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Abdolkazem Neisi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolah Dargahi
- Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Zahra Ahmadi Angali
- Department of Mathematics, Seattle University, 901 12th Ave, Seattle, WA, 98122, USA
| |
Collapse
|
29
|
Fadaei R, Bernstein AC, Jenkins AN, Pickens AG, Zarrow JE, Alli-Oluwafuyi AM, Tallman KA, Davies SS. N-Aldehyde-Modified Phosphatidylethanolamines generated by lipid peroxidation are robust substrates of N-Acyl Phosphatidylethanolamine Phospholipase D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621135. [PMID: 39554116 PMCID: PMC11565945 DOI: 10.1101/2024.10.30.621135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
N-acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) hydrolyzes phosphatidylethanolamines (PE) where the headgroup nitrogen has been enzymatically modified with acyl chains of four carbons or longer (N-acyl-PEs or NAPEs). The nitrogen headgroup of PE can also be non-enzymatically modified by reactive lipid aldehydes, thus forming N-aldehyde modified-PEs (NALPEs). Some NALPEs such as N-carboxyacyl-PEs are linked to PE via amide bonds similar to NAPEs, but others are linked by imine, pyrrole, or lactam moieties. Whether NAPE-PLD can hydrolyze NALPEs was unknown. We therefore characterized the major NALPE species formed during lipid peroxidation of arachidonic acid and linoleic acid and generated various NALPEs for characterization of their sensitivity to NAPE-PLD hydrolysis by reacting synthesized aldehydes with PE. We found that NAPE-PLD could act on NALPEs of various lengths and linkage types including those derived from PE modified by malondialdehyde (N-MDA-PE), butane dialdehyde (N-BDA-PE), 4-hydroxynonenal (N-HNE-PE), 4-oxo-nonenal (N-ONE-PE), 9-keto-12-oxo-dodecenoic acid (N-KODA-PE), and 15-E2-isolevuglandin (N-IsoLG-PE). To assess the relative preference of NAPE-PLD for various NALPEs versus its canonical NAPE substrates, we generated a substrate mixture containing roughly equimolar concentrations of the seven NALPEs as well as two NAPEs (N-palmitoyl-PE and N-linoleoyl-PE) and measured their rate of hydrolysis. Several NALPE species, including the N-HNE-PE pyrrole species, were hydrolyzed at a similar rate as N-linoleoyl-PE and many of the other NALPEs showed intermediate rates of hydrolysis. These results significantly expand the substrate repertoire of NAPE-PLD and suggest that it may play an important role in clearing products of lipid peroxidation in addition to its established role in the biosynthesis of N-acyl-ethanolamines.
Collapse
Affiliation(s)
- Reza Fadaei
- Department of Pharmacology, Vanderbilt University. Nashville, TN, USA, 37232
| | | | - Andrew N. Jenkins
- Department of Cell Biology and Physiology, and Brigham Young University. Provo, UT, 84602
| | - Allison G. Pickens
- Department of Plant and Wildlife Sciences, Brigham Young University. Provo, UT, 84602
| | - Jonah E. Zarrow
- Department of Pharmacology, Vanderbilt University. Nashville, TN, USA, 37232
| | | | - Keri A. Tallman
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Sean S. Davies
- Department of Pharmacology, Vanderbilt University. Nashville, TN, USA, 37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA, 37235
| |
Collapse
|
30
|
Kalyanaraman B, Cheng G, Hardy M. The role of short-chain fatty acids in cancer prevention and cancer treatment. Arch Biochem Biophys 2024; 761:110172. [PMID: 39369836 PMCID: PMC11784870 DOI: 10.1016/j.abb.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Short-chain fatty acids (SCFAs) are microbial metabolites in the gut that may play a role in cancer prevention and treatment. They affect the metabolism of both normal and cancer cells, regulating various cellular energetic processes. SCFAs also inhibit histone deacetylases, which are targets for cancer therapy. The three main SCFAs are acetate, propionate, and butyrate, which are transported into cells through specific transporters. SCFAs may enhance the efficacy of chemotherapeutic agents and modulate immune cell metabolism, potentially reprogramming the tumor microenvironment. Although SCFAs and SCFA-generating microbes enhance therapeutic efficacy of several forms of cancer therapy, published data also support the opposing viewpoint that SCFAs mitigate the efficacy of some cancer therapies. Therefore, the relationship between SCFAs and cancer is more complex, and this review discusses some of these aspects. Clearly, further research is needed to understand the role of SCFAs, their mechanisms, and applications in cancer prevention and treatment.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| |
Collapse
|
31
|
Bannon ST, Decker ST, Erol ME, Fan R, Huang YT, Chung S, Layec G. Mitochondrial free radicals contribute to cigarette smoke condensate-induced impairment of oxidative phosphorylation in the skeletal muscle in situ. Free Radic Biol Med 2024; 224:325-334. [PMID: 39178923 DOI: 10.1016/j.freeradbiomed.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Oxidative stress plays a critical role in cellular dysfunction associated with cigarette smoke exposure and aging. Some chemicals from tobacco smoke have the potential to amplify mitochondrial ROS (mROS) production, which, in turn, may impair mitochondrial respiratory function. Accordingly, the present study tested the hypothesis that a mitochondria-targeted antioxidant (MitoTEMPO, MT) would attenuate the inhibitory effects of cigarette smoke on skeletal muscle respiratory capacity of middle-aged mice. Specifically, mitochondrial oxidative phosphorylation was assessed using high-resolution respirometry in permeabilized fibers from the fast-twitch gastrocnemius muscle of middle-aged C57Bl/6J mice. Before the assessment of respiration, tissues were incubated for 1hr with a control buffer (CON), cigarette smoke condensate (2 % dilution, SMOKE), or MitoTEMPO (10 μM) combined with cigarette smoke condensate (MT + SMOKE). Cigarette smoke condensate (CSC) decreased maximal-ADP stimulated respiration (CON: 60 ± 15 pmolO2.s-1.mg-1 and SMOKE: 33 ± 8 pmolO2.s-1.mg-1; p = 0.0001), and this effect was attenuated by MT (MT + SMOKE: 41 ± 7 pmolO2.s-1.mg-1; p = 0.02 with SMOKE). Complex-I specific respiration was inhibited by CSC, with no significant effect of MT (p = 0.35). Unlike CON, the addition of glutamate (ΔGlutamate) had an additive effect on respiration in fibers exposed to CSC (CON: 0.9 ± 1.1 pmolO2.s-1.mg-1 and SMOKE: 5.4 ± 3.7 pmolO2.s-1.mg-1; p = 0.008) and MT (MT + SMOKE: 8.2 ± 3.8 pmolO2.s-1.mg-1; p ≤ 0.01). Complex-II specific respiration was inhibited by CSC but was partially restored by MT (p = 0.04 with SMOKE). Maximal uncoupled respiration induced by FCCP was inhibited by CSC, with no significant effect of MT. These findings underscore that mROS contributes to cigarette smoke condensate-induced inhibition of mitochondrial respiration in fast-twitch gastrocnemius muscle fibers of middle-aged mice thus providing a potential target for therapeutic treatment of smoke-related diseases. In addition, this study revealed that CSC largely impaired muscle respiratory capacity by decreasing metabolic flux through mitochondrial pyruvate transporter (MPC) and/or the enzymes upstream of α-ketoglutarate in the Krebs cycle.
Collapse
Affiliation(s)
- Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; Diabetes and Metabolism Research Center, University of Utah, UT, USA
| | - Muhammet Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA
| | - Rong Fan
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Yu-Ting Huang
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA.
| |
Collapse
|
32
|
Domengé O, Deloux R, Revet G, Mazière L, Pillet-Michelland E, Commin L, Bonnefont-Rebeix C, Simon A, Mougenot N, Cavagnino A, Baraibar M, Saulnier N, Crépet A, Delair T, Agbulut O, Montembault A. Bio-functionalized hydrogel patches of chitosan for the functional recovery of infarcted myocardial tissue. Int J Biol Macromol 2024; 281:136400. [PMID: 39389478 DOI: 10.1016/j.ijbiomac.2024.136400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The aim of this work was to assess the potential benefits of the enrichment of a chitosan hydrogel patch with secretome and its epicardial implantation in a murine model of chronic ischemia, focusing on the potential to restore the functional capacity of the heart. Thus, a hydrogel with a final polymer concentration of 3 % was prepared from chitosan with an acetylation degree of 24 % and then bio-functionalized with a secretome produced by mesenchymal stromal cells. The identification of proteins in the secretomes showed the presence of several proteins known to have beneficial effects on cardiac muscle repair. Then chitosan hydrogels were immersed in secretome. The protein incorporation in the hydrogel and their release over time were studied, demonstrating the ability of the gel to retain and then deliver proteins (around 40 % was released in the first 6 h, and then a plateau was reached). Moreover, mechanical analysis exhibited that the patches remained suturable after enrichment. Finally, bio-functionalized hydrogel patches were sutured onto the surface of the infarcted myocardium in rat. Thirty days after, the presence of enriched hydrogels induced a reversion of cardiac function which seems to come mainly from an improvement of left ventricle systolic performance and contractility.
Collapse
Affiliation(s)
- O Domengé
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - R Deloux
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - G Revet
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - L Mazière
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - E Pillet-Michelland
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - L Commin
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - C Bonnefont-Rebeix
- Universite Claude Bernard Lyon 1, VetAgro Sup, UPSP 2021.A104, ICE «Interactions Cellules Environnement», Avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - A Simon
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France
| | - N Mougenot
- Sorbonne Universite, UMS28 Plateforme d'Expérimentation Cœur, Muscles, Vaisseaux, 91 Bd de l'Hôpital, F-75013 Paris, France
| | - A Cavagnino
- Société OxiProteomics, 2 rue Antoine Etex, 94000 Créteil, France
| | - M Baraibar
- Société OxiProteomics, 2 rue Antoine Etex, 94000 Créteil, France
| | - N Saulnier
- Vetbiobank, 1 Avenue Bourgelat, 69280 Marcy-l'Étoile, France
| | - A Crépet
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - T Delair
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France
| | - O Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005 Paris, France.
| | - A Montembault
- Universite Claude Bernard Lyon 1, UMR 5223, CNRS, INSA Lyon, Universite Jean Monnet, Ingénierie des Matériaux Polymères, F-69622 Villeurbanne, France.
| |
Collapse
|
33
|
Ji Y, Wang R, Wang Y, Tan D, Wang Y, Wu Y, Cui H, Zhang Y, Wang S. Thermal-induced interactions between soy protein isolate and malondialdehyde: Effects on protein digestibility, structure, and formation of advanced lipoxidation end products. Food Res Int 2024; 196:115075. [PMID: 39614563 DOI: 10.1016/j.foodres.2024.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 12/01/2024]
Abstract
Thermally processed lipid- and protein-rich foods have sparked widespread concern since they may degrade food nutrition and even risk food safety. This study investigated soy protein isolate (SPI) alterations of digestibility and structure, as well as the formation of potentially hazardous chemicals, i.e., advanced lipoxidation end products (ALEs), after interacting with malondialdehyde (MDA, a lipid oxidation product) under high-temperature cooking conditions (100-180 °C, up to 60 min). In-vitro protein digestion of the SPI-MDA mixtures suggested that their room-temperature interactions damaged SPI digestibility, and increasing the temperature and the duration of the thermal treatment exacerbated the adverse effects. Protein oxidation, covalent aggregation of subunits, and changes in secondary and tertiary structures were revealed using thiol quantification, gel electrophoresis, fluorescence spectroscopy, and circular dichroism (CD) spectra, which could explain reduced protein digestibility. High-resolution mass spectrometry (HRMS) identified seven non-crosslinked ALEs and two crosslinked ALEs. Increased MDA concentrations promoted the generation of ALEs. Moreover, the acrolein-derived ALEs with reactive carbonyl groups were prone to further reacting into crosslinked ALEs, potentially responsible for the subunit aggregation.
Collapse
Affiliation(s)
- Yazhou Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Ruican Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuanyifei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dongfei Tan
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences (TAAS), Tianjin 300192, China
| | - Yaya Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Haoxin Cui
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
34
|
Liu PY, Liaw J, Soutter F, Ortiz JJ, Tomley FM, Werling D, Gundogdu O, Blake DP, Xia D. Multi-omics analysis reveals regime shifts in the gastrointestinal ecosystem in chickens following anticoccidial vaccination and Eimeria tenella challenge. mSystems 2024; 9:e0094724. [PMID: 39287379 PMCID: PMC11494932 DOI: 10.1128/msystems.00947-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Coccidiosis, caused by Eimeria parasites, significantly impacts poultry farm economics and animal welfare. Beyond its direct impact on health, Eimeria infection disrupts enteric microbial populations leading to dysbiosis and increases vulnerability to secondary diseases such as necrotic enteritis, caused by Clostridium perfringens. The impact of Eimeria infection or anticoccidial vaccination on host gastrointestinal phenotypes and enteric microbiota remains understudied. In this study, the metabolomic profiles and microbiota composition of chicken caecal tissue and contents were evaluated concurrently during a controlled experimental vaccination and challenge trial. Cobb500 broilers were vaccinated with a Saccharomyces cerevisiae-vectored anticoccidial vaccine and challenged with 15,000 Eimeria tenella oocysts. Assessment of caecal pathology and quantification of parasite load revealed correlations with alterations to caecal microbiota and caecal metabolome linked to infection and vaccination status. Infection heightened microbiota richness with increases in potentially pathogenic species, while vaccination elevated beneficial Bifidobacterium. Using a multi-omics factor analysis, data on caecal microbiota and metabolome were integrated and distinct profiles for healthy, infected, and recovering chickens were identified. Healthy and recovering chickens exhibited higher vitamin B metabolism linked to short-chain fatty acid-producing bacteria, whereas essential amino acid and cell membrane lipid metabolisms were prominent in infected and vaccinated chickens. Notably, vaccinated chickens showed distinct metabolites related to the enrichment of sphingolipids, important components of nerve cells and cell membranes. Our integrated multi-omics model revealed latent biomarkers indicative of vaccination and infection status, offering potential tools for diagnosing infection, monitoring vaccination efficacy, and guiding the development of novel treatments or controls.IMPORTANCEAdvances in anticoccidial vaccines have garnered significant attention in poultry health management. However, the intricacies of vaccine-induced alterations in the chicken gut microbiome and its subsequent impact on host metabolism remain inadequately explored. This study delves into the metabolic and microbiotic shifts in chickens post-vaccination, employing a multi-omics integration analysis. Our findings highlight a notable synergy between the microbiome composition and host-microbe interacted metabolic pathways in vaccinated chickens, differentiating them from infected or non-vaccinated cohorts. These insights pave the way for more targeted and efficient approaches in poultry disease control, enhancing both the efficacy of vaccines and the overall health of poultry populations.
Collapse
Affiliation(s)
- Po-Yu Liu
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - José Jaramillo Ortiz
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Fiona M. Tomley
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Dirk Werling
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Damer P. Blake
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, London, United Kingdom
| | - Dong Xia
- Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
35
|
Kuster L, Mamboundou PD, Boushih A, Rassi Y, Benoît A, Parent-Vézina S, Lord-St-Vincent M, Guillemette JP, Frenette M. Fluorescent probe to quantify lipid-derived electrophiles in edible oils. Analyst 2024; 149:5255-5264. [PMID: 39257220 DOI: 10.1039/d4an00780h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In the presence of molecular oxygen, edible oils can be oxidized to form a multitude of α,β-unsaturated carbonyl products collectively called 'lipid-derived electrophiles'. These molecules affect the taste of fat-containing foods but also act as electrophiles by covalently binding to protein amines/thiols and DNA nucleotides. The chemical modification of proteins by lipid-derived electrophiles appears to play an important role in human health, but the quantification of this diverse class of compounds remains a challenge. In this study, we describe a method capable of measuring the relative content of α,β-unsaturated carbonyls in food containing edible oils by using a "turn-on" fluorescent probe. The detection of electrophiles is based on a pre-fluorescent probe, 7-mercapto-4-methyl-coumarin (C-SH). The fluorescence of C-SH increases after nucleophilic addition to electrophilic lipid oxidation products. Since different lipid-derived electrophiles will react at a different rate with our fluorescent probe, we expressed the probe's response against a standard electrophile: trans-2-nonenal. In this assay, electrophiles which react more quickly will have a more dominant weight in the measurements carried out. Using this analytical technique, we can compare electrophilic content in French fries from several restaurants, and find they have lower amounts of lipid-derived electrophiles versus frozen fries baked at home. We also demonstrate that potato chips sealed in a reduced oxygen atmosphere will have a low 'electrophilic content' that increases over time, whereas chips in oxygen-permeable packaging initially have a higher 'electrophilic content' that does not increase as much over time. The relative ease of fluorescence measurements using microplate readers coupled with a simple oil extraction protocol should allow this method to quantify 'electrophilic content' in several food sources.
Collapse
Affiliation(s)
- Lucille Kuster
- Department of Chemistry, NanoQAM and Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montreal, Quebec, H3C 3P8 Canada.
| | - Priscilia Diane Mamboundou
- Department of Chemistry, NanoQAM and Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montreal, Quebec, H3C 3P8 Canada.
| | - Asma Boushih
- Department of Chemistry, NanoQAM and Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montreal, Quebec, H3C 3P8 Canada.
| | - Yasmine Rassi
- Department of Chemistry, NanoQAM and Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montreal, Quebec, H3C 3P8 Canada.
| | - Alexandre Benoît
- Department of Chemistry, NanoQAM and Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montreal, Quebec, H3C 3P8 Canada.
| | - Samuel Parent-Vézina
- Department of Chemistry, NanoQAM and Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montreal, Quebec, H3C 3P8 Canada.
| | - Michel Lord-St-Vincent
- Department of Chemistry, NanoQAM and Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montreal, Quebec, H3C 3P8 Canada.
| | - Jean-Philippe Guillemette
- Department of Chemistry, NanoQAM and Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montreal, Quebec, H3C 3P8 Canada.
| | - Mathieu Frenette
- Department of Chemistry, NanoQAM and Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal, Montreal, Quebec, H3C 3P8 Canada.
| |
Collapse
|
36
|
Bello-Medina PC, Díaz-Muñoz M, Martín del Campo ST, Pacheco-Moisés FP, Flores Miguel C, Cobián Cervantes R, García Solano PB, Navarro-Meza M. A maternal low-protein diet results in sex-specific differences in synaptophysin expression and milk fatty acid profiles in neonatal rats. J Nutr Sci 2024; 13:e64. [PMID: 39469193 PMCID: PMC11514622 DOI: 10.1017/jns.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/30/2024] Open
Abstract
The developmental origins of health and disease hypothesis have highlighted the link between early life environment and long-term health outcomes in offspring. For example, maternal protein restriction during pregnancy and lactation can result in adverse metabolic and cognitive outcomes in offspring postnatal. Hence, in the present study, we assess whether an isocaloric low-protein diet (ILPD) affects the fatty acid profile in breast milk, the hippocampal synaptophysin (Syn) ratio, and the oxidative stress markers in the neonatal stage of male and female offspring. The aim of this work was to assess the effect of an ILPD on the fatty acid profile in breast milk, quantified the hippocampal synaptophysin (Syn) ratio and oxidative stress markers in neonatal stage of male and female offspring. Female Wistar rats were fed with either a control diet or an ILPD during gestation to day 10 of lactation. Oxidative stress markers were assessed in serum and liver. All quantifications were done at postnatal day 10. The results showed: ILPD led to decreases of 38.5% and 17.4% in breast milk volume and polyunsaturated fatty acids content. Significant decreases of hippocampal Syn ratio in male offspring (decreases of 98% in hippocampal CA1 pyramidal and CA1 oriens, 83%, stratum pyramidal in CA3, 80%, stratum lucidum in CA3, and 81% stratum oriens in CA3). Male offspring showed an increase in pro-oxidant status in serum and liver. Thus, the data suggest that male offspring are more vulnerable than females to an ILPD during gestation and lactation.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Sandra Teresita Martín del Campo
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Querétaro, México
- Food Engineering and Statistical Independent Consultant, Querétaro, México
| | | | - Claudia Flores Miguel
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Raquel Cobián Cervantes
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Perla Belén García Solano
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Mónica Navarro-Meza
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
- Departamento de Ciencias Clínicas, División de Ciencias de Salud, Centro Universitario del Sur, Ciudad Guzmán, Jalisco, México
| |
Collapse
|
37
|
Tang S, Yang J, Xiao B, Wang Y, Lei Y, Lai D, Qiu Q. Aberrant Lipid Metabolism and Complement Activation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39405051 PMCID: PMC11482642 DOI: 10.1167/iovs.65.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Age-related macular degeneration (AMD) stands as a leading cause of severe visual impairment and blindness among the elderly globally. As a multifactorial disease, AMD's pathogenesis is influenced by genetic, environmental, and age-related factors, with lipid metabolism abnormalities and complement system dysregulation playing critical roles. This review delves into recent advancements in understanding the intricate interaction between these two crucial pathways, highlighting their contribution to the disease's progression through chronic inflammation, drusen formation, and retinal pigment epithelium dysfunction. Importantly, emerging evidence points to dysregulated lipid profiles, particularly alterations in high-density lipoprotein levels, oxidized lipid deposits, and intracellular lipofuscin accumulation, as exacerbating factors that enhance complement activation and subsequently amplify tissue damage in AMD. Furthermore, genetic studies have revealed significant associations between AMD and specific genes involved in lipid transport and complement regulation, shedding light on disease susceptibility and underlying mechanisms. The review further explores the clinical implications of these findings, advocating for a novel therapeutic approach that integrates lipid metabolism modulators with complement inhibitors. By concurrently targeting these pathways, the dual-targeted approach holds promise in significantly improving outcomes for AMD patients, heralding a new horizon in AMD management and treatment.
Collapse
Affiliation(s)
- Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Bingqing Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
38
|
Uzomba CG, Ezemagu UK, Ofoegbu MS, Lydia N, Goodness E, Emelike C, Obinna U, Nwafor AJ, Mbajiorgu EF. Edible mushroom ( Pleurotus cornucopiae) extract vs. glibenclamide on alloxan induced diabetes: sub-acute in vivo study of Nrf2 expression and renal toxicity. Anat Cell Biol 2024; 57:446-458. [PMID: 38972671 PMCID: PMC11424557 DOI: 10.5115/acb.24.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 07/09/2024] Open
Abstract
The study aims to compare the action of Pleurotus cornucopiae and glibenclamide on alloxan-induced diabetes and ascertain how an aqueous extract of the edible mushroom regulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), oxidative stress biomarkers and renal toxicity in a diabetic male Wistar rat model. Twenty-five adult male Wistar rats were randomly grouped into five groups with five rats per. Group 1 and those in the treatment groups received normal feed and water ad libitum. Group 2 received intraperitoneal administration of alloxan monohydrate (150 mg/kg body weight). Group 3 received alloxan monohydrate and glibenclamide (5 mg/kg body weight bwt), group 4 received alloxan monohydrate plus the extract (250 mg/kg bwt) and group 5 received alloxan monohydrate plus the extract (500 mg/kg bwt). The administration of glibenclamide plus the extract was oral for 14 days. Glibenclamide and the extract lowered blood glucose level, catalase, and glutathione peroxidase activities, increased the superoxide dismutase (SOD) activity in rats with alloxan induced diabetes. The extract at 500 mg/kg bwt reduced the plasma urea and sodium concentration in the treated rats. The extract and glibenclamide could detoxify alloxan and restore its induced renal degeneration and glomeruli atrophy, intra renal hemorrhage and inflammation and oxidative biomarkers through activation of Nrf2 expression. The drug glibenclamide and P. cornucopiae have appreciable hypoglycemic activity and potential to restore the normal renal architecture in the rats, hence they offer similar curative effects. Additionally, the extract at 500 mg/kg bwt activated SOD and Nrf2 expression more than glibenclamide in rats with alloxan-induced diabetes.
Collapse
Affiliation(s)
- Chinedu Godwin Uzomba
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Uchenna Kenneth Ezemagu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Mary-Sonia Ofoegbu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Njoku Lydia
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Essien Goodness
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Chinedum Emelike
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Uchewa Obinna
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Alo Joseph Nwafor
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Abakaliki, Nigeria
| | - Ejikeme Felix Mbajiorgu
- Department of Histology and Embryology, School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
39
|
Sridharan PS, Koh Y, Miller E, Hu D, Chakraborty S, Tripathi SJ, Kee TR, Chaubey K, Vázquez-Rosa E, Barker S, Liu H, León-Alvarado RA, Franke K, Cintrón-Pérez CJ, Dhar M, Shin MK, Flanagan ME, Castellani RJ, Gefen T, Bykova M, Dou L, Cheng F, Wilson BM, Fujioka H, Kang DE, Woo JAA, Paul BD, Qi X, Pieper AA. Acutely blocking excessive mitochondrial fission prevents chronic neurodegeneration after traumatic brain injury. Cell Rep Med 2024; 5:101715. [PMID: 39241772 PMCID: PMC11525032 DOI: 10.1016/j.xcrm.2024.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Progression of acute traumatic brain injury (TBI) into chronic neurodegeneration is a major health problem with no protective treatments. Here, we report that acutely elevated mitochondrial fission after TBI in mice triggers chronic neurodegeneration persisting 17 months later, equivalent to many human decades. We show that increased mitochondrial fission after mouse TBI is related to increased brain levels of mitochondrial fission 1 protein (Fis1) and that brain Fis1 is also elevated in human TBI. Pharmacologically preventing Fis1 from binding its mitochondrial partner, dynamin-related protein 1 (Drp1), for 2 weeks after TBI normalizes the balance of mitochondrial fission/fusion and prevents chronically impaired mitochondrial bioenergetics, oxidative damage, microglial activation and lipid droplet formation, blood-brain barrier deterioration, neurodegeneration, and cognitive impairment. Delaying treatment until 8 months after TBI offers no protection. Thus, time-sensitive inhibition of acutely elevated mitochondrial fission may represent a strategy to protect human TBI patients from chronic neurodegeneration.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yeojung Koh
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Emiko Miller
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Teresa R Kee
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Kalyani Chaubey
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Edwin Vázquez-Rosa
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sarah Barker
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hui Liu
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rose A León-Alvarado
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Earlham College Neuroscience Program, Richmond, IN, USA
| | - Kathryn Franke
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Coral J Cintrón-Pérez
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matasha Dhar
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Min-Kyoo Shin
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08226, Republic of Korea
| | - Margaret E Flanagan
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Glenn Bigg's Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rudolph J Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marina Bykova
- Department of Regulatory Biology, Cleveland State University, Cleveland, OH, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lijun Dou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brigid M Wilson
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David E Kang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA; Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Jung-A A Woo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
40
|
Liu RX, Song DK, Zhang YY, Gong HX, Jin YC, Wang XS, Jiang YL, Yan YX, Lu BN, Wu YM, Wang M, Li XB, Zhang K, Liu SB. L-Cysteine: A promising nutritional supplement for alleviating anxiety disorders. Neuroscience 2024; 555:213-221. [PMID: 39089569 DOI: 10.1016/j.neuroscience.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Anxiety disorders are prevalent chronic psychological disease with complex pathogenic mechanisms. Current anxiolytics have limited efficacy and numerous side effects in many anxiety patients, highlighting the urgent need for new therapies. Recent research has been focusing on nutritional supplements, particularly amino acids, as potential therapies for anxiety disorders. Among these, L-Cysteine plays a crucial role in various biological processes. L-Cysteine exhibits antioxidant properties that can enhance the antioxidant functions of the central nervous system (CNS). Furthermore, metabolites of L-cysteine, such as glutathione and hydrogen sulfide have been shown to alleviate anxiety through distinct molecular mechanisms. Long-term administration of L-Cysteine has anxiolytic, antidepressant, and memory-improving effects. L-Cysteine depletion can lead to increased oxidative stress in the brain. This review delves into the potential mechanisms of L-Cysteine and its main products, glutathione (GSH) and hydrogen sulfide (H2S) in the management of anxiety and related diseases.
Collapse
Affiliation(s)
- Rui-Xia Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China; Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Da-Ke Song
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ying-Ying Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Heng-Xin Gong
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Chen Jin
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yong-Li Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Shaanxi, Xi'an 710038, China
| | - Yu-Xuan Yan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Bei-Ning Lu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
41
|
Blouin T, Saini N. Aldehyde-induced DNA-protein crosslinks- DNA damage, repair and mutagenesis. Front Oncol 2024; 14:1478373. [PMID: 39328207 PMCID: PMC11424613 DOI: 10.3389/fonc.2024.1478373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Aldehyde exposure has been shown to lead to the formation of DNA damage comprising of DNA-protein crosslinks (DPCs), base adducts and interstrand or intrastrand crosslinks. DPCs have recently drawn more attention because of recent advances in detection and quantification of these adducts. DPCs are highly deleterious to genome stability and have been shown to block replication forks, leading to wide-spread mutagenesis. Cellular mechanisms to prevent DPC-induced damage include excision repair pathways, homologous recombination, and specialized proteases involved in cleaving the covalently bound proteins from DNA. These pathways were first discovered in formaldehyde-treated cells, however, since then, various other aldehydes have been shown to induce formation of DPCs in cells. Defects in DPC repair or aldehyde clearance mechanisms lead to various diseases including Ruijs-Aalfs syndrome and AMeD syndrome in humans. Here, we discuss recent developments in understanding how aldehydes form DPCs, how they are repaired, and the consequences of defects in these repair pathways.
Collapse
Affiliation(s)
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South
Carolina, Charleston, SC, United States
| |
Collapse
|
42
|
Krishna BM, Ramisetty SK, Garg P, Mohanty A, Wang E, Horne D, Awasthi S, Kulkarni P, Salgia R, Singhal SS. Enhancing carboplatin sensitivity in ovarian cancer cells by blocking the mercapturic acid pathway transporter. Carcinogenesis 2024; 45:696-707. [PMID: 39051454 DOI: 10.1093/carcin/bgae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Ral-binding/interacting protein (RLIP) acts as a transporter that responds to stress and provides protection, specifically against glutathione-electrophile conjugates and xenobiotic toxins. Its increased presence in malignant cells, especially in cancer, emphasizes its crucial antiapoptotic function. This is achieved by selectively regulating the cellular levels of proapoptotic oxidized lipid byproducts. Suppressing the progression of tumors in human xenografts can be achieved by effectively inhibiting RLIP, a transporter in the mercapturic acid pathway, without involving chemotherapy. Utilizing ovarian cancer (OC) cell lines (MDAH2774, OVCAR4, and OVCAR8), we observed that agents targeting RLIP, such as RLIP antisense and RLIP antibodies, not only substantially impeded the viability of OC cells but also remarkably increased their sensitivity to carboplatin. To delve further into the cytotoxic synergy between RLIP antisense, RLIP antibodies, and carboplatin, we conducted investigations in both cell culture and xenografts of OC cells. The outcomes revealed that RLIP depletion via phosphorothioate antisense led to rapid and sustained remissions in established subcutaneous human ovary xenografts. Furthermore, RLIP inhibition by RLIP antibodies exhibited comparable efficacy to antisense and enhanced the effectiveness of carboplatin in MDAH2774 OC xenografts. These investigations underscore RLIP as a central carrier crucial for supporting the survival of cancer cells, positioning it as a suitable focus for cancer treatment.
Collapse
Affiliation(s)
- B Madhu Krishna
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States
| | - Sravani K Ramisetty
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Atish Mohanty
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States
| | - Edward Wang
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital in Cayman Islands, George Town, Grand Cayman
| | - Prakash Kulkarni
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, United States
| |
Collapse
|
43
|
Hu J, Nieminen AL, Zhong Z, Lemasters JJ. Role of Mitochondrial Iron Uptake in Acetaminophen Hepatotoxicity. LIVERS 2024; 4:333-351. [PMID: 39554796 PMCID: PMC11567147 DOI: 10.3390/livers4030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Overdose of acetaminophen (APAP) produces fulminant hepatic necrosis. The underlying mechanism of APAP hepatotoxicity involves mitochondrial dysfunction, including mitochondrial oxidant stress and the onset of mitochondrial permeability transition (MPT). Reactive oxygen species (ROS) play an important role in APAP-induced hepatotoxicity, and iron is a critical catalyst for ROS formation. This review summarizes the role of mitochondrial ROS formation in APAP hepatotoxicity and further focuses on the role of iron. Normally, hepatocytes take up Fe3+-transferrin bound to transferrin receptors via endocytosis. Concentrated into lysosomes, the controlled release of iron is required for the mitochondrial biosynthesis of heme and non-heme iron-sulfur clusters. After APAP overdose, the toxic metabolite, NAPQI, damages lysosomes, causing excess iron release and the mitochondrial uptake of Fe2+ by the mitochondrial calcium uniporter (MCU). NAPQI also inhibits mitochondrial respiration to promote ROS formation, including H2O2, with which Fe2+ reacts to form highly reactive •OH through the Fenton reaction. •OH, in turn, causes lipid peroxidation, the formation of toxic aldehydes, induction of the MPT, and ultimately, cell death. Fe2+ also facilitates protein nitration. Targeting pathways of mitochondrial iron movement and consequent iron-dependent mitochondrial ROS formation is a promising strategy to intervene against APAP hepatotoxicity in a clinical setting.
Collapse
Affiliation(s)
- Jiangting Hu
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anna-Liisa Nieminen
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhi Zhong
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John J Lemasters
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
44
|
Satoh K. A new mechanism of cancer initiation that involves the transformation of hepatocytes into preneoplastic single hepatocytes and minifoci positive for glutathione S-transferase P-form (GST-P) in rat livers: 3D analysis using a vibratome. Cancer Med 2024; 13:e70165. [PMID: 39318029 PMCID: PMC11422180 DOI: 10.1002/cam4.70165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Cancer initiation has long been "unknowable" in biology and medicine. In 1987, however, Moore and our research group observed single hepatocytes and minifoci that were strongly positive for glutathione S-transferase P-form (GST-P) in the rat liver as early as 2 to 3 days after initiation by diethylnitrosamine prior to the induction of GST-P+ foci and nodules. The induction of GST-P+ single hepatocytes, precursors of GST-P+ foci and nodules, was considered genetic. But, the details of the induction mechanism have remained unclear despite various examinations over a long period. METHODS Male Sprague-Dawley rats (aged 6 weeks) were fed a basal diet containing either benzyl isothiocyanate (BITC, 0.5% by wt) or 2-acetylaminofluorene (AAF, 0.04%) ad libitum for appropriate time intervals. All animals were anesthetized and euthanized. The livers obtained were excised, cut into 3- to 4-mm-thick slices and fixed in cold acetone at 4 °C. The liver specimens were then sliced into 25-µm-thick sections in PBS using an automated microtome (Vibratome 1500 Sectioning System, Vibratome Products, NY, USA). Immunocytochemical staining was performed in free solution, and the results were examined via digital light microscopy (Coolscope, Nikon, Tokyo). RESULTS 3D analysis using a vibratome showed that GST-P is rapidly excreted into the bile of the liver of animals in response to strong carcinogenic stress caused by promoters or initiators. "Rapid biliary excretion of GST-P" was widely and commonly observed in all hepatocytes, GST-P+ single hepatocytes, minifoci, foci and nodules under appropriate conditions. Surprisingly, on the basis of these key findings, a new mechanism of cancer initiation involving the transformation of hepatocytes into GST-P+ single hepatocytes and minifoci in animal livers was identified. In addition, the initiation process was determined to be nongenetic because mutation is an invisible rare event. CONCLUSIONS This short review describes several details about breakthrough findings on cancer initiation in rat livers, the application of 3D analysis to other cancers and the importance in the genetic analysis in malignant diseases.
Collapse
Affiliation(s)
- Kimihiko Satoh
- Department of Biomedical Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
- Department of Medical Welfare, Akita University of Nursing and Welfare, Odate, Japan
| |
Collapse
|
45
|
Narala VR, Narala SR, Aiya Subramani P, Panati K, Kolliputi N. Role of mitochondria in inflammatory lung diseases. Front Pharmacol 2024; 15:1433961. [PMID: 39228517 PMCID: PMC11368744 DOI: 10.3389/fphar.2024.1433961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Mitochondria play a significant and varied role in inflammatory lung disorders. Mitochondria, known as the powerhouse of the cell because of their role in producing energy, are now recognized as crucial regulators of inflammation and immunological responses. Asthma, chronic obstructive pulmonary disease, and acute respiratory distress syndrome are characterized by complex interactions between immune cells, inflammatory substances, and tissue damage. Dysfunctional mitochondria can increase the generation of reactive oxygen species (ROS), triggering inflammatory pathways. Moreover, mitochondrial failure impacts cellular signaling, which in turn affects the expression of molecules that promote inflammation. In addition, mitochondria have a crucial role in controlling the behavior of immune cells, such as their activation and differentiation, which is essential in the development of inflammatory lung diseases. Their dynamic behavior, encompassing fusion, fission, and mitophagy, also impacts cellular responses to inflammation and oxidative stress. Gaining a comprehensive understanding of the intricate correlation between mitochondria and lung inflammation is essential in order to develop accurate treatment strategies. Targeting ROS generation, dynamics, and mitochondrial function may offer novel approaches to treating inflammatory lung diseases while minimizing tissue damage. Additional investigation into the precise contributions of mitochondria to lung inflammation will provide significant knowledge regarding disease mechanisms and potential therapeutic approaches. This review will focus on how mitochondria in the lung regulate these processes and their involvement in acute and chronic lung diseases.
Collapse
Affiliation(s)
| | | | | | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa, India
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
46
|
Tian X, Fu K, Huang X, Zou H, Shi N, Li J, Bao Y, He S, Lv J. Ferroptosis in the adjuvant treatment of lung cancer-the potential of selected botanical drugs and isolated metabolites. Front Pharmacol 2024; 15:1430561. [PMID: 39193342 PMCID: PMC11347298 DOI: 10.3389/fphar.2024.1430561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Ferroptosis represents a distinct form of cell death that is not associated with necrosis, autophagy, apoptosis, or pyroptosis. It is characterised by intracellular iron-dependent lipid peroxidation. The current literature indicates that a number of botanical drugs and isolated metabolites can modulate ferroptosis, thereby exerting inhibitory effects on lung cancer cells or animal models. The aim of this review is to elucidate the mechanisms through which botanical drugs and isolated metabolites regulate ferroptosis in the context of lung cancer, thereby providing potential insights into lung cancer treatment. It is crucial to highlight that these preclinical findings should not be interpreted as evidence that these treatments can be immediately translated into clinical applications. In the future, we will continue to study the pharmacology, pharmacokinetics and toxicology of these drugs, as well as evaluating their efficacy and safety in clinical trials, with the aim of providing new approaches to the development of new agents for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xiaoyan Tian
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunling Fu
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuemin Huang
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Haiyan Zou
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nianmei Shi
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiayang Li
- Office of Drug Clinical Trial Institution, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuxiang Bao
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junyuan Lv
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
47
|
Borah G, Samia BR, Hussain S, Kemprai P, Saikia SP, Haldar S. Eryngial: An α,β-Unsaturated Fatty Aldehyde as the Major Phytotoxin in Spiny Coriander (Eryngium foetidum L.) Essential Oil. Chem Biodivers 2024; 21:e202400195. [PMID: 38837651 DOI: 10.1002/cbdv.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Weed species many times possess allelochemicals as a part of their survival strategy. These metabolites can be potential targets in search of natural phytotoxins. This study aims to evaluate the phytotoxic ability of fatty aldehyde-rich essential oil from spiny coriander (Eryngium foetidum) leaves, also known as fitweed or spiritweed and to further identify the active phytotoxins. This oil dose-dependently inhibited the wheatgrass coleoptile and radicle growth in multiple bioassays with half maximal inhibitory concentration (IC50) 30.6-56.7 μg/mL, while exhibiting a less pronounced effect on the germination (IC50 181.8 μg/mL). The phytotoxicity assessment of two oil constituents identified eryngial (trans-2-dodecenal), exclusively major fatty aldehydic constituent as the potent growth inhibitor with IC50 in the range 20.8-36.2 μg/mL during an early phase of wheatgrass emergence. Eryngial-inspired screening of eleven saturated fatty aldehydes and alcohols did not find a significantly higher phytotoxic potency. In an open vessel, eryngial as the supplementation in agar medium, dose-dependently inhibited the growth of pre-germinated seeds of one monocot (bermudagrass) and one dicot (green amaranth) weed species with IC50 in the range 23.8-65.4 μg/mL. The current study identified eryngial, an α,β-unsaturated fatty aldehyde of coriander origin to be a promising phytotoxic candidate for weed control.
Collapse
Affiliation(s)
- Gitasree Borah
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Begom Rifah Samia
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
| | - Sajjad Hussain
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Phirose Kemprai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Department of Botany, Debraj Roy College, Golaghat, Assam, 785621, India
| | - Siddhartha Proteem Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Saikat Haldar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
| |
Collapse
|
48
|
Guo M, Wang T, Ge W, Ren C, Ko BCB, Zeng X, Cao D. Role of AKR1B10 in inflammatory diseases. Scand J Immunol 2024; 100:e13390. [PMID: 38769661 DOI: 10.1111/sji.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Inflammation is an important pathophysiological process in many diseases; it has beneficial and harmful effects. When exposed to various stimuli, the body triggers an inflammatory response to eliminate invaded pathogens and damaged tissues to maintain homeostasis. However, uncontrollable persistent or excessive inflammatory responses may damage tissues and induce various diseases, such as metabolic diseases (e.g. diabetes), autoimmune diseases, nervous system-related diseases, digestive system-related diseases, and even tumours. Aldo-keto reductase 1B10 (AKR1B10) is an important player in the development and progression of multiple diseases, such as tumours and inflammatory diseases. AKR1B10 is upregulated in solid tumours, such as hepatocellular carcinoma (HCC), non-small cell lung carcinoma, and breast cancer, and is a reliable serum marker. However, information on the role of AKR1B10 in inflammation is limited. In this study, we summarized the role of AKR1B10 in inflammatory diseases, including its expression, functional contribution to inflammatory responses, and regulation of signalling pathways related to inflammation. We also discussed the role of AKR1B10 in glucose and lipid metabolism and oxidative stress. This study provides novel information and increases the understanding of clinical inflammatory diseases.
Collapse
Affiliation(s)
- Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjun Ge
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chenran Ren
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ben Chi-Bun Ko
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
49
|
Carvalho LCF, Ferreira FM, Dias BV, Azevedo DCD, de Souza GHB, Milagre MM, de Lana M, Vieira PMDA, Carneiro CM, Paula-Gomes SD, Cangussu SD, Costa DC. Silymarin inhibits the lipogenic pathway and reduces worsening of non-alcoholic fatty liver disease (NAFLD) in mice. Arch Physiol Biochem 2024; 130:460-474. [PMID: 36328030 DOI: 10.1080/13813455.2022.2138445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
CONTEXT The role of silymarin in hepatic lipid dysfunction and its possible mechanisms of action were investigated. OBJECTIVE To evaluate the effects of silymarin on hepatic and metabolic profiles in mice fed with 30% fructose for 8 weeks. METHODS We evaluated the antioxidant profile of silymarin; mice consumed 30% fructose and were treated with silymarin (120 mg/kg/day or 240 mg/kg/day). We performed biochemical, redox status, and histopathological assays. RT-qPCR was performed to detect ACC-1, ACC-2, FAS, and CS expression, and western blotting to detect PGC-1α levels. RESULTS Silymarin contains high levels of phenolic compounds and flavonoids and exhibited significant antioxidant capacity in vitro. In vivo, the fructose-fed groups showed increased levels of AST, ALT, SOD/CAT, TBARS, hepatic TG, and cholesterol, as well as hypertriglyceridaemia, hypercholesterolaemia, and increased ACC-1 and FAS. Silymarin treatment reduced these parameters and increased mRNA levels and activity of hepatic citrate synthase. CONCLUSIONS These results suggest that silymarin reduces worsening of NAFLD.
Collapse
Affiliation(s)
| | | | - Bruna Vidal Dias
- Laboratório de Bioquímica Metabólica, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | | | - Matheus Marque Milagre
- Laboratório Doença de Chagas, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, Brazil
| | - Marta de Lana
- Laboratório Doença de Chagas, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, Brazil
| | | | | | - Sílvia de Paula-Gomes
- Laboratório de Bioquímica e Biologia Molecular, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, Brazil
| | - Silvia Dantas Cangussu
- Laboratório de Fisiopatologia Experimental, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, Brazil
| | - Daniela Caldeira Costa
- Laboratório de Bioquímica Metabólica, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
50
|
Nakayama S, Yoda E, Yamashita S, Takamatsu Y, Suzuki Y, Kondo Y, Hara S. Knockdown of iPLA 2γ enhances cisplatin-induced apoptosis by increasing ROS-dependent peroxidation of mitochondrial phospholipids in bladder cancer cells. Free Radic Biol Med 2024; 220:301-311. [PMID: 38734266 DOI: 10.1016/j.freeradbiomed.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cisplatin (CDDP) is a platinum-based drug with anti-cancer activity and is widely used as a standard therapy for bladder cancer. It is well known that CDDP causes cell death by increasing the generation of reactive oxygen species (ROS) and lipid peroxidation, but the mechanism of its anti-cancer effects has not been fully elucidated. There are still some problems such as chemoresistance in CDDP therapy. In the present study, we found the expression of Ca2+-independent phospholipase A2γ (iPLA2γ), which has been reported to regulate cellular redox homeostasis by inhibiting lipid peroxide accumulation, in human bladder cancer tissues. Thus, we investigated the effect of iPLA2γ knockdown on CDDP-induced bladder cancer cell death. As a result, we found that iPLA2γ knockdown significantly enhanced CDDP-induced apoptosis, intracellular and mitochondrial ROS production, cytochrome c release and caspase activation in bladder cancer cells. Moreover, mitochondrial membrane potential was decreased and peroxidation of mitochondrial phospholipids was increased by iPLA2γ knockdown. It was also shown that co-treatment of bromoenol lactone, an iPLA2 inhibitor, increased CDDP-induced apoptosis. These results indicated that iPLA2γ plays an important role in protecting bladder cancer cells from CDDP-induced apoptosis, and that iPLA2γ inhibitors might represent a novel strategy in CDDP-based multi-drug therapy.
Collapse
Affiliation(s)
- Satoko Nakayama
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Saki Yamashita
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yuka Takamatsu
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yasutomo Suzuki
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yukihiro Kondo
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|