1
|
Mançano ASF, Pina JG, Froes BR, Sciani JM. Autophagy-lysosomal pathway impairment and cathepsin dysregulation in Alzheimer's disease. Front Mol Biosci 2024; 11:1490275. [PMID: 39544403 PMCID: PMC11560772 DOI: 10.3389/fmolb.2024.1490275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by neuronal loss, attributed to amyloid-beta (Aβ) aggregation and accumulation. The autophagy-lysosomal pathway, including cathepsins B and D, is crucial for protein degradation and clearance, but it is impaired in some diseases. This review summarizes current knowledge on the dysregulation of this pathway in AD. Accumulating evidence suggests that Aβ overload impairs autophagy-lysosomal function and cathepsin activity, exacerbating Aβ accumulation and neurodegeneration. However, the precise mechanisms underlying these interactions remain elusive. Despite these challenges, targeting the lysosomal pathway emerges as a promising therapeutic strategy, and a comprehensive understanding of the autophagy-lysosomal system is essential to develop effective interventions for AD.
Collapse
Affiliation(s)
| | | | | | - Juliana Mozer Sciani
- Laboratório de Produtos Naturais, Universidade São Francisco, Bragança Paulista, São Paulo, Brazil
| |
Collapse
|
2
|
Davis MR, Robinson E, Koronyo Y, Salobrar-Garcia E, Rentsendorj A, Gaire BP, Mirzaei N, Kayed R, Sadun AA, Ljubimov AV, Schneider LS, Hawes D, Black KL, Fuchs DT, Koronyo-Hamaoui M. Retinal ganglion cell vulnerability to pathogenic tau in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613293. [PMID: 39345568 PMCID: PMC11430098 DOI: 10.1101/2024.09.17.613293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Accumulation of pathological tau isoforms, especially hyperphosphorylated tau at serine 396 (pS396-tau) and tau oligomers, has been demonstrated in the retinas of patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Previous studies have noted a decrease in retinal ganglion cells (RGCs) in AD patients, but the presence and impact of pathological tau isoforms in RGCs and RGC integrity, particularly in early AD stages, have not been explored. To investigate this, we examined retinal superior temporal cross-sections from 25 patients with MCI (due to AD) or AD dementia and 16 cognitively normal (CN) controls, matched for age and gender. We utilized the RGC marker ribonucleic acid binding protein with multiple splicing (RBPMS) and Nissl staining to assess neuronal density in the ganglion cell layer (GCL). Our study found that hypertrophic RGCs containing pS396-tau and T22-positive tau oligomers were more frequently observed in MCI and AD patients compared to CN subjects. Quantitative analyses indicated a decline in RGC integrity, with 46-55% and 55-56% reductions of RBPMS+ RGCs (P<0.01) and Nissl+ GCL neurons (P<0.01-0.001), respectively, in MCI and AD patients. This decrease in RGC count was accompanied by increases in necroptotic-like morphology and the cleaved caspase-3 apoptotic marker in RGCs of AD patients. Furthermore, there was a 2.1 to 3.1-fold increase (P<0.05-0.0001) in pS396-tau-laden RGCs in MCI and AD patients, with a greater abundance observed in individuals with higher Braak stages (V-VI), more severe clinical dementia ratings (CDR=3), and lower mini-mental state examination (MMSE) scores. Strong correlations were noted between the decline in RGCs and the total amount of retinal pS396-tau and pS396-tau+ RGCs, with pS396-tau+ RGC counts correlating significantly with brain neurofibrillary tangle scores (r= 0.71, P= 0.0001), Braak stage (r= 0.65, P= 0.0009), and MMSE scores (r= -0.76, P= 0.0004). These findings suggest that retinal tauopathy, characterized by pS396-tau and oligomeric tau in hypertrophic RGCs, is associated with and may contribute to RGC degeneration in AD. Future research should validate these findings in larger cohorts and explore noninvasive retinal imaging techniques that target tau pathology in RGCs to improve AD detection and monitor disease progression.
Collapse
Affiliation(s)
- Miyah R. Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edward Robinson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elena Salobrar-Garcia
- Institute of Ophthalmologic Research Ramón Castroviejo, Complutense University of Madrid, 28040 Madrid, Spain. Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain. Health Research Institute, Clinico San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bhakta P. Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, TX, USA
- Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfredo A. Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
- Doheny Eye Institute, Los Angeles, CA, USA
| | - Alexander V. Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lon S. Schneider
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Debra Hawes
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
3
|
Li Y, Awasthi S, Bryan L, Ehrlich RS, Tonali N, Balog S, Yang J, Sewald N, Mayer M. Fluorescence-Based Monitoring of Early-Stage Aggregation of Amyloid-β, Amylin Peptide, Tau, and α-Synuclein Proteins. ACS Chem Neurosci 2024; 15:3113-3123. [PMID: 39150403 PMCID: PMC11378287 DOI: 10.1021/acschemneuro.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Early-stage aggregates of amyloid-forming proteins, specifically soluble oligomers, are implicated in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Protein aggregation is typically monitored by fluorescence using the amyloid-binding fluorophore thioflavin T (ThT). Thioflavin T interacts, however, preferentially with fibrillar amyloid structures rather than with soluble, early-stage aggregates. In contrast, the two fluorophores, aminonaphthalene 2-cyanoacrylate-spiropyran (AN-SP) and triazole-containing boron-dipyrromethene (taBODIPY), were reported to bind preferentially to early-stage aggregates of amyloidogenic proteins. The present study compares ThT with AN-SP and taBODIPY with regard to their ability to monitor early stages of aggregation of four different amyloid-forming proteins, including amyloid-β (Aβ), tau protein, amylin, and α-synuclein. The results show that the three fluorophores vary in their suitability to monitor the early aggregation of different amyloid-forming proteins. For instance, in the presence of Aβ and amylin, the fluorescence intensity of AN-SP increased at an earlier stage of aggregation than the fluorescence of ThT, albeit with only a small fluorescence increase in the case of AN-SP. In contrast, in the presence of tau and amylin, the fluorescence intensity of taBODIPY increased at an earlier stage of aggregation than the fluorescence of ThT. Finally, α-synuclein aggregation could only be monitored by ThT fluorescence; neither AN-SP nor taBODIPY showed a significant increase in fluorescence over the course of aggregation of α-synuclein. These results demonstrate the ability of AN-SP and taBODIPY to monitor the formation of early-stage aggregates from specific amyloid-forming proteins at an early stage of aggregation, although moderate increases in fluorescence intensity, relatively large uncertainties in fluorescence values, and limited solubility of both fluorophores limit their usefulness for some amyloid proteins. The capability to monitor early aggregation of some amyloid proteins, such as amylin, might accelerate the discovery of aggregation inhibitors to minimize the formation of toxic oligomeric species for potential therapeutic use.
Collapse
Affiliation(s)
- Yuanjie Li
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Saurabh Awasthi
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, Uttar Pradesh 226002, India
| | - Louise Bryan
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Rachel S. Ehrlich
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093-0358, United States
| | - Nicolo Tonali
- CNRS,
BioCIS, Bâtiment Henri Moissan, Université
Paris-Saclay, 17 Av. des Sciences, Orsay 91400, France
| | - Sandor Balog
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Jerry Yang
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093-0358, United States
| | - Norbert Sewald
- Bielefeld
University, Department of Chemistry P.O. Box 100131, Bielefeld 33501, Germany
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| |
Collapse
|
4
|
Aguado C, Badesso S, Martínez-Hernández J, Martín-Belmonte A, Alfaro-Ruiz R, Fernández M, Moreno-Martínez AE, Cuadrado-Tejedor M, García-Osta A, Luján R. Resilience to structural and molecular changes in excitatory synapses in the hippocampus contributes to cognitive function recovery in Tg2576 mice. Neural Regen Res 2024; 19:2068-2074. [PMID: 38227537 DOI: 10.4103/1673-5374.390963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/18/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00040/figure1/v/2024-01-16T170235Z/r/image-tiff Plaques of amyloid-β (Aβ) and neurofibrillary tangles are the main pathological characteristics of Alzheimer's disease (AD). However, some older adult people with AD pathological hallmarks can retain cognitive function. Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets. Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels, which may underlie healthy cognitive performance in aged AD animals. Utilizing the Morris Water Maze test, we selected resilient (asymptomatic) and cognitively impaired aged Tg2576 mice. While the enzyme-linked immunosorbent assay showed similar levels of Aβ42 in both experimental groups, western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction. To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice, we employed stereological and electron microscopic methods. Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls. Intriguingly, through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice, we uncovered differences in the subcellular localization of glutamate receptors. Specifically, the density of GluA1, GluA2/3, and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls. Notably, the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice. These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice.
Collapse
Affiliation(s)
- Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Sara Badesso
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - José Martínez-Hernández
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Alejandro Martín-Belmonte
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Rocío Alfaro-Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Miriam Fernández
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Mar Cuadrado-Tejedor
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Ana García-Osta
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| |
Collapse
|
5
|
Chang CJ, Taoufiq Z, Yamada H, Takei K, Tomiyama T, Umeda T, Hori T, Takahashi T. The microtubule-dynamin binding inhibitor peptide PHDP5 rescues spatial learning and memory deficits in Alzheimer's disease model mice. Brain Res 2024; 1838:148987. [PMID: 38718851 DOI: 10.1016/j.brainres.2024.148987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
Dynamin is a microtubule (MT) binding protein playing a key role in vesicle endocytosis. In a brain slice model, tau loaded in presynaptic terminals assembles MTs, thereby impairing vesicle endocytosis via depletion of cytosolic dynamin. The peptide PHDP5, derived from the pleckstrin homology domain of dynamin 1, inhibits dynamin-MT interaction and rescues endocytosis and synaptic transmission impaired by tau when co-loaded in presynaptic terminals. We tested whether in vivo administration of PHDP5 could rescue the learning/memory deficits observed in Alzheimer's disease (AD) model mice. A modified PHDP5 incorporating a cell-penetrating peptide (CPP) and a FITC fluorescent marker was delivered intranasally to Tau609 transgenic (Tg) and 3xTg-AD mice. FITC-positive puncta were observed in the hippocampus of mice infused with PHDP5 or scrambled (SPHDP5) peptide, but not in saline-infused controls. In the Morris water maze (MWM) test for spatial learning/memory, AD model mice treated with FITC-PHDP5-CPP showed prominent improvements in learning and memory, performing close to the level of saline-infused WT mice control. In contrast, mice treated with a scrambled construct (FITC-SPHDP5-CPP) showed no significant improvement. We conclude that PHDP5 can be a candidate for human AD therapy.
Collapse
Affiliation(s)
- Chia-Jung Chang
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| | - Zacharie Taoufiq
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Hiroshi Yamada
- Department of Neuroscience. Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Kohji Takei
- Department of Neuroscience. Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine School of Medicine, 530-0001 Osaka Japan
| | - Tomohiro Umeda
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine School of Medicine, 530-0001 Osaka Japan
| | - Tetsuya Hori
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
6
|
Rather MA, Khan A, Jahan S, Siddiqui AJ, Wang L. Influence of Tau on Neurotoxicity and Cerebral Vasculature Impairment Associated with Alzheimer's Disease. Neuroscience 2024; 552:1-13. [PMID: 38871021 DOI: 10.1016/j.neuroscience.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease is a fatal chronic neurodegenerative condition marked by a gradual decline in cognitive abilities and impaired vascular function within the central nervous system. This affliction initiates its insidious progression with the accumulation of two aberrant protein entities including Aβ plaques and neurofibrillary tangles. These chronic elements target distinct brain regions, steadily erasing the functionality of the hippocampus and triggering the erosion of memory and neuronal integrity. Several assumptions are anticipated for AD as genetic alterations, the occurrence of Aβ plaques, altered processing of amyloid precursor protein, mitochondrial damage, and discrepancy of neurotropic factors. In addition to Aβ oligomers, the deposition of tau hyper-phosphorylates also plays an indispensable part in AD etiology. The brain comprises a complex network of capillaries that is crucial for maintaining proper function. Tau is expressed in cerebral blood vessels, where it helps to regulate blood flow and sustain the blood-brain barrier's integrity. In AD, tau pathology can disrupt cerebral blood supply and deteriorate the BBB, leading to neuronal neurodegeneration. Neuroinflammation, deficits in the microvasculature and endothelial functions, and Aβ deposition are characteristically detected in the initial phases of AD. These variations trigger neuronal malfunction and cognitive impairment. Intracellular tau accumulation in microglia and astrocytes triggers deleterious effects on the integrity of endothelium and cerebral blood supply resulting in further advancement of the ailment and cerebral instability. In this review, we will discuss the impact of tau on neurovascular impairment, mitochondrial dysfunction, oxidative stress, and the role of hyperphosphorylated tau in neuron excitotoxicity and inflammation.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States.
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 226026, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail City, Saudi Arabia
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States
| |
Collapse
|
7
|
Shastri D, Raj V, Lee S. Revolutionizing Alzheimer's treatment: Harnessing human serum albumin for targeted drug delivery and therapy advancements. Ageing Res Rev 2024; 99:102379. [PMID: 38901740 DOI: 10.1016/j.arr.2024.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder initiated by amyloid-beta (Aβ) accumulation, leading to impaired cognitive function. Several delivery approaches have been improved for AD management. Among them, human serum albumin (HSA) is broadly employed for drug delivery and targeting the Aβ in AD owing to its biocompatibility, Aβ inhibitory effect, and nanoform, which showed blood-brain barrier (BBB) crossing ability via glycoprotein 60 (gp60) receptor and secreted protein acidic and rich in cysteine (SPARC) protein to transfer the drug molecules in the brain. Thus far, there is no previous review focusing on HSA and its drug delivery system in AD. Hence, the reviewed article aimed to critically compile the HSA therapeutic as well as drug delivery role in AD management. It also delivers information on how HSA-incorporated nanoparticles with surfaced embedded ligands such as TAT, GM1, and so on, not only improve BBB permeability but also increase neuron cell targetability in AD brain. Additionally, Aβ and tau pathology, including various metabolic markers likely BACE1 and BACE2, etc., are discussed. Besides, the molecular interaction of HSA with Aβ and its distinctive forms are critically reviewed that HSA can segregate Zn(II) and Cu(II) metal ions from Aβ owing to high affinity. Furthermore, the BBB drug delivery challenges in AD are addressed. Finally, the clinical formulation of HSA for the management of AD is critically discussed on how the HSA inhibits Aβ oligomer and fibril, while glycated HSA participates in amyloid plaque formation, i.e., β-structure sheet formation. This review report provides theoretical background on HSA-based AD drug delivery and makes suggestions for future prospect-related work.
Collapse
Affiliation(s)
- Divya Shastri
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea; College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, the Republic of Korea
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, the Republic of Korea.
| |
Collapse
|
8
|
Awasthi P, Kumar D, Hasan S. Role of 14-3-3 protein family in the pathobiology of EBV in immortalized B cells and Alzheimer's disease. Front Mol Biosci 2024; 11:1353828. [PMID: 39144488 PMCID: PMC11322100 DOI: 10.3389/fmolb.2024.1353828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Background and Aims Several studies have revealed that Epstein-Barr virus (EBV) infection raised the likelihood of developing Alzheimer's disease (AD) via infecting B lymphocytes. The purpose of the current investigation was to assess the possible association between EBV infection and AD. Methods The microarray datasets GSE49628, GSE126379, GSE122063, and GSE132903 were utilized to extract DEGs by using the GEO2R tool of the GEO platform. The STRING tool was used to determine the interaction between the DEGs, and Cytoscape was used to visualize the results. The DEGs that were found underwent function analysis, including pathway and GO, using the DAVID 2021 and ClueGo/CluePedia. By using MNC, MCC, Degree, and Radiality of cytoHubba, we identified seven common key genes. Gene co-expression analysis was performed through the GeneMANIA web tool. Furthermore, expression analysis of key genes was performed through GTEx software, which have been identified in various human brain regions. The miRNA-gene interaction was performed through the miRNet v 2.0 tool. DsigDB on the Enrichr platform was utilized to extract therapeutic drugs connected to key genes. Results In GEO2R analysis of datasets with |log2FC|≥ 0.5 and p-value <0.05, 8386, 10,434, 7408, and 759 genes were identified. A total of 141 common DEGs were identified by combining the extracted genes of different datasets. A total of 141 nodes and 207 edges were found during the PPI analysis. The DEG GO analysis with substantial alterations disclosed that they are associated to molecular functions and biological processes, such as positive regulation of neuron death, autophagy regulation of mitochondrion, response of cell to insulin stimulus, calcium signaling regulation, organelle transport along microtubules, protein kinase activity, and phosphoserine binding. Kyoto Encyclopedia of Genes and Genomes analysis discovered the correlation between the DEGs in pathways of neurodegeneration: multiple disease, cell cycle, and cGMP-PKG signaling pathway. Finally, YWHAH, YWHAG, YWHAB, YWHAZ, MAP2K1, PPP2CA, and TUBB genes were identified that are strongly linked to EBV and AD. Three miRNAs, i.e., hsa-mir-15a-5p, hsa-let-7a-5p, and hsa-mir-7-5p, were identified to regulate most of hub genes that are associated with EBV and AD. Further top 10 significant therapeutic drugs were predicted. Conclusion We have discovered new biomarkers and therapeutic targets for AD, as well as the possible biological mechanisms whereby infection with EBV may be involved in AD susceptibility for the first time.
Collapse
Affiliation(s)
- Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES University Dehradun, Dehradun, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
9
|
Hole KL, Zhu B, Huggon L, Brown JT, Mason JM, Williams RJ. Tau P301L disengages from the proteosome core complex and neurogranin coincident with enhanced neuronal network excitability. Cell Death Dis 2024; 15:429. [PMID: 38890273 PMCID: PMC11189525 DOI: 10.1038/s41419-024-06815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Tauopathies are characterised by the pathological accumulation of misfolded tau. The emerging view is that toxic tau species drive synaptic dysfunction and potentially tau propagation before measurable neurodegeneration is evident, but the underlying molecular events are not well defined. Human non-mutated 0N4R tau (tauWT) and P301L mutant 0N4R tau (tauP301L) were expressed in mouse primary cortical neurons using adeno-associated viruses to monitor early molecular changes and synaptic function before the onset of neuronal loss. In this model tauP301L was differentially phosphorylated relative to tauwt with a notable increase in phosphorylation at ser262. Affinity purification - mass spectrometry combined with tandem mass tagging was used to quantitatively compare the tauWT and tauP301L interactomes. This revealed an enrichment of tauP301L with ribosomal proteins but a decreased interaction with the proteasome core complex and reduced tauP301L degradation. Differences in the interaction of tauP301L with members of a key synaptic calcium-calmodulin signalling pathway were also identified, most notably, increased association with CaMKII but reduced association with calcineurin and the candidate AD biomarker neurogranin. Decreased association of neurogranin to tauP301L corresponded with the appearance of enhanced levels of extracellular neurogranin suggestive of potential release or leakage from synapses. Finally, analysis of neuronal network activity using micro-electrode arrays showed that overexpression of tauP301L promoted basal hyperexcitability coincident with these changes in the tau interactome and implicating tau in specific early alterations in synaptic function.
Collapse
Affiliation(s)
- Katriona L Hole
- Department of Life Sciences, University of Bath, Bath, UK
- The Francis Crick Institute, London, UK
| | - Bangfu Zhu
- Department of Life Sciences, University of Bath, Bath, UK
| | - Laura Huggon
- Department of Life Sciences, University of Bath, Bath, UK
- UK Dementia Research Institute at King's College London, London, UK
| | - Jon T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Bath, UK
| | | |
Collapse
|
10
|
Nabizadeh F. Disruption in functional networks mediated tau spreading in Alzheimer's disease. Brain Commun 2024; 6:fcae198. [PMID: 38978728 PMCID: PMC11227975 DOI: 10.1093/braincomms/fcae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease may be conceptualized as a 'disconnection syndrome', characterized by the breakdown of neural connectivity within the brain as a result of amyloid-beta plaques, tau neurofibrillary tangles and other factors leading to progressive degeneration and shrinkage of neurons, along with synaptic dysfunction. It has been suggested that misfolded tau proteins spread through functional connections (known as 'prion-like' properties of tau). However, the local effect of tau spreading on the synaptic function and communication between regions is not well understood. I aimed to investigate how the spreading of tau aggregates through connections can locally influence functional connectivity. In total, the imaging data of 211 participants including 117 amyloid-beta-negative non-demented and 94 amyloid-beta-positive non-demented participants were recruited from the Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional MRI connectomes were used to model tau spreading through functional connections, and functional MRI of the included participants was used to determine the effect of tau spreading on functional connectivity. I found that lower functional connectivity to tau epicentres is associated with tau spreading through functional connections in both amyloid-beta-negative and amyloid-beta-positive participants. Also, amyloid-beta-PET in tau epicentres mediated the association of tau spreading and functional connectivity to epicentres suggesting a partial mediating effect of amyloid-beta deposition in tau epicentres on the local effect of tau spreading on functional connectivity. My findings provide strong support for the notion that tau spreading through connection is locally associated with disrupted functional connectivity between tau epicentre and non-epicentre regions independent of amyloid-beta pathology. Also, I defined several groups based on the relationship between tau spreading and functional disconnection, which provides quantitative assessment to investigate susceptibility or resilience to functional disconnection related to tau spreading. I showed that amyloid-beta, other copathologies and the apolipoprotein E epsilon 4 allele can be a leading factor towards vulnerability to tau relative functional disconnection.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran 441265421414, Iran
| |
Collapse
|
11
|
Sárkány B, Dávid C, Hortobágyi T, Gombás P, Somogyi P, Acsády L, Viney TJ. Early and selective localization of tau filaments to glutamatergic subcellular domains within the human anterodorsal thalamus. Acta Neuropathol 2024; 147:98. [PMID: 38861157 PMCID: PMC11166832 DOI: 10.1007/s00401-024-02749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.
Collapse
Affiliation(s)
- Barbara Sárkány
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| | - Csaba Dávid
- Lendület Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, 1083, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Tibor Hortobágyi
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Péter Gombás
- Department of Pathology, Szt. Borbála Hospital, Tatabánya, 2800, Hungary
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - László Acsády
- Lendület Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, 1083, Hungary.
| | - Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
12
|
Zubčić K, Franić D, Pravica M, Hof PR, Šimić G, Boban M. Effects of heterologous human tau protein expression in yeast models of proteotoxic stress response. CNS Neurosci Ther 2024; 30:e14304. [PMID: 37341072 PMCID: PMC11163194 DOI: 10.1111/cns.14304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The primary histological characteristic of Alzheimer's disease is the presence of neurofibrillary tangles, which are large aggregates of tau protein. Aging is the primary risk factor for the development of Alzheimer's disease, however, the underlying causes of tau protein aggregation and toxicity are unclear. AIMS Here we investigated tau aggregation and toxicity under the conditions of compromised protein homeostasis. METHODS We used heterologous expression of human tau protein in the unicellular eukaryote yeast Saccharomyces cerevisiae with evolutionarily conserved protein quality control pathways and examined tau-dependent toxicity and aggregation using growth assays, fluorescence microscopy, and a split luciferase-based reporter NanoBiT. RESULTS Tau protein expressed in yeast under mild proteotoxic stress, or in mutants with impaired pathways for proteotoxic stress response, did not lead to synthetic toxicity or the formation of obvious aggregates. Chronologically old cells also did not develop observable tau aggregates. Our examination of tau oligomerization in living cells using NanoBiT reporter suggests that tau does not form significant levels of oligomers under basal conditions or under mild proteotoxic stress. CONCLUSION Together our data suggest that human tau protein does not represent a major burden to the protein quality control system in yeast cells.
Collapse
Affiliation(s)
- Klara Zubčić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Dina Franić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Mihaela Pravica
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's DiseaseFriedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Goran Šimić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Mirta Boban
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| |
Collapse
|
13
|
Zheng H, Sun H, Cai Q, Tai HC. The Enigma of Tau Protein Aggregation: Mechanistic Insights and Future Challenges. Int J Mol Sci 2024; 25:4969. [PMID: 38732197 PMCID: PMC11084794 DOI: 10.3390/ijms25094969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tau protein misfolding and aggregation are pathological hallmarks of Alzheimer's disease and over twenty neurodegenerative disorders. However, the molecular mechanisms of tau aggregation in vivo remain incompletely understood. There are two types of tau aggregates in the brain: soluble aggregates (oligomers and protofibrils) and insoluble filaments (fibrils). Compared to filamentous aggregates, soluble aggregates are more toxic and exhibit prion-like transmission, providing seeds for templated misfolding. Curiously, in its native state, tau is a highly soluble, heat-stable protein that does not form fibrils by itself, not even when hyperphosphorylated. In vitro studies have found that negatively charged molecules such as heparin, RNA, or arachidonic acid are generally required to induce tau aggregation. Two recent breakthroughs have provided new insights into tau aggregation mechanisms. First, as an intrinsically disordered protein, tau is found to undergo liquid-liquid phase separation (LLPS) both in vitro and inside cells. Second, cryo-electron microscopy has revealed diverse fibrillar tau conformations associated with different neurodegenerative disorders. Nonetheless, only the fibrillar core is structurally resolved, and the remainder of the protein appears as a "fuzzy coat". From this review, it appears that further studies are required (1) to clarify the role of LLPS in tau aggregation; (2) to unveil the structural features of soluble tau aggregates; (3) to understand the involvement of fuzzy coat regions in oligomer and fibril formation.
Collapse
Affiliation(s)
| | | | | | - Hwan-Ching Tai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
14
|
Huhe H, Shapley SM, Duong D, Wu F, Ha SK, Choi SH, Kofler J, Mou Y, Guimaraes TR, Thathiah A, Schaeffer LKH, Carter GW, Seyfried NT, Silva AC, Sukoff Rizzo SJ. Marmosets as model systems for the study of Alzheimer's disease and related dementias: substantiation of physiological Tau 3R and 4R isoform expression and phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590453. [PMID: 38746277 PMCID: PMC11092449 DOI: 10.1101/2024.04.26.590453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
INTRODUCTION Marmosets have been shown to spontaneously develop pathological hallmarks of Alzheimer's disease (AD) during advanced age, including amyloid-beta plaques, positioning them as a model system to overcome the rodent-to-human translational gap for AD. However, Tau expression in the marmoset brain has been understudied. METHODS To comprehensively investigate Tau isoform expression in marmosets, brain tissue from eight unrelated marmosets across various ages was evaluated and compared to human postmortem AD tissue. Microtubule-associated protein tau ( MAPT ) mRNA expression and splicing were confirmed by RT-PCR. Tau isoforms in the marmoset brain were examined by western blot, mass spectrometry, immunofluorescence, and immunohistochemical staining. Synaptic Tau expression was analyzed from crude synaptosome extractions. RESULTS 3R and 4R Tau isoforms are expressed in marmoset brains at both transcript and protein levels across ages. Results from western blot analysis were confirmed by mass spectrometry, which revealed that Tau peptides in marmoset corresponded to the 3R and 4R peptides in the human AD brain. 3R Tau was primarily enriched in neonate brains, and 4R enhanced in adult and aged brains. Tau was widely distributed in neurons with localization in the soma and synaptic regions. Phosphorylation residues were observed on Thr-181, Thr-217, and Thr-231, Ser202/Thr205, Ser396/Ser404. Paired helical filament (PHF)-like aggregates were also detected in aged marmosets. DISCUSSION Our results confirm the expression of both 3R and 4R Tau isoforms and important phosphorylation residues in the marmoset brain. These data emphasize the significance of marmosets with natural expression of AD-related hallmarks as important translational models for the study of AD.
Collapse
|
15
|
Zhou QY, Ren C, Li JY, Wang L, Duan Y, Yao RQ, Tian YP, Yao YM. The crosstalk between mitochondrial quality control and metal-dependent cell death. Cell Death Dis 2024; 15:299. [PMID: 38678018 PMCID: PMC11055915 DOI: 10.1038/s41419-024-06691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria are the centers of energy and material metabolism, and they also serve as the storage and dispatch hubs of metal ions. Damage to mitochondrial structure and function can cause abnormal levels and distribution of metal ions, leading to cell dysfunction and even death. For a long time, mitochondrial quality control pathways such as mitochondrial dynamics and mitophagy have been considered to inhibit metal-induced cell death. However, with the discovery of new metal-dependent cell death including ferroptosis and cuproptosis, increasing evidence shows that there is a complex relationship between mitochondrial quality control and metal-dependent cell death. This article reviews the latest research results and mechanisms of crosstalk between mitochondrial quality control and metal-dependent cell death in recent years, as well as their involvement in neurodegenerative diseases, tumors and other diseases, in order to provide new ideas for the research and treatment of related diseases.
Collapse
Affiliation(s)
- Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Chao Ren
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing-Yan Li
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou, 423000, China
| | - Ren-Qi Yao
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
- Medical Innovation Research Division, Translational Medicine Research Center and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Ying-Ping Tian
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Yong-Ming Yao
- Medical Innovation Research Division, Translational Medicine Research Center and the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
16
|
Jiang S, Sydney EJ, Runyan AM, Serpe R, Srikanth M, Figueroa HY, Yang M, Myeku N. 5-HT4 receptor agonists treatment reduces tau pathology and behavioral deficit in the PS19 mouse model of tauopathy. Front Cell Neurosci 2024; 18:1338502. [PMID: 38638303 PMCID: PMC11024353 DOI: 10.3389/fncel.2024.1338502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Background Accumulation of tau in synapses in the early stages of Alzheimer's disease (AD) has been shown to cause synaptic damage, synaptic loss, and the spread of tau pathology through trans-synaptically connected neurons. Moreover, synaptic loss correlates with a decline in cognitive function, providing an opportunity to investigate therapeutic strategies to target synapses and synaptic tau to rescue or prevent cognitive decline in AD. One of the promising synaptic targets is the 5-HT4 serotonergic receptor present postsynaptically in the brain structures involved in the memory processes. 5-HT4R stimulation exerts synaptogenic and pro-cognitive effects involving synapse-to-nucleus signaling essential for synaptic plasticity. However, it is not known whether 5-HT4R activation has a therapeutic effect on tau pathology. Methods The goal of this study was to investigate the impact of chronic stimulation of 5-HT4R by two agonists, prucalopride and RS-67333, in PS19 mice, a model of tauopathy. We utilized gradient assays to isolate pre- and post-synaptic compartments, followed by biochemical analyses for tau species and ubiquitinated proteins in the synaptic compartments and total brain tissue. Next, we performed kinetic assays to test the proteasome's hydrolysis capacity in treatment conditions. Moreover, behavioral tests such as the open field and non-maternal nest-building tests were used to evaluate anxiety-like behaviors and hippocampal-related cognitive functioning in the treatment paradigm. Results Our results show that 5-HT4R agonism reduced tauopathy, reduced synaptic tau, increased proteasome activity, and improved cognitive functioning in PS19 mice. Our data suggest that enhanced proteasome activity by synaptic mediated signaling leads to the enhanced turnover of tau initially within synapses where the receptors are localized, and over time, the treatment attenuated the accumulation of tau aggregation and improved cognitive functioning of the PS19 mice. Conclusion Therefore, stimulation of 5-HT4R offers a promising therapy to rescue synapses from the accumulation of toxic synaptic tau, evident in the early stages of AD.
Collapse
Affiliation(s)
- Shan Jiang
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Eric J. Sydney
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Avery M. Runyan
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Rossana Serpe
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Malavika Srikanth
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Helen Y. Figueroa
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Mu Yang
- The Institute for Genomic Medicine and Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
| | - Natura Myeku
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
17
|
Kauwe G, Pareja-Navarro KA, Yao L, Chen JH, Wong I, Saloner R, Cifuentes H, Nana AL, Shah S, Li Y, Le D, Spina S, Grinberg LT, Seeley WW, Kramer JH, Sacktor TC, Schilling B, Gan L, Casaletto KB, Tracy TE. KIBRA repairs synaptic plasticity and promotes resilience to tauopathy-related memory loss. J Clin Invest 2024; 134:e169064. [PMID: 38299587 PMCID: PMC10836803 DOI: 10.1172/jci169064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024] Open
Abstract
Synaptic plasticity is obstructed by pathogenic tau in the brain, representing a key mechanism that underlies memory loss in Alzheimer's disease (AD) and related tauopathies. Here, we found that reduced levels of the memory-associated protein KIdney/BRAin (KIBRA) in the brain and increased KIBRA protein levels in cerebrospinal fluid are associated with cognitive impairment and pathological tau levels in disease. We next defined a mechanism for plasticity repair in vulnerable neurons using the C-terminus of the KIBRA protein (CT-KIBRA). We showed that CT-KIBRA restored plasticity and memory in transgenic mice expressing pathogenic human tau; however, CT-KIBRA did not alter tau levels or prevent tau-induced synapse loss. Instead, we found that CT-KIBRA stabilized the protein kinase Mζ (PKMζ) to maintain synaptic plasticity and memory despite tau-mediated pathogenesis. Thus, our results distinguished KIBRA both as a biomarker of synapse dysfunction and as the foundation for a synapse repair mechanism to reverse cognitive impairment in tauopathy.
Collapse
Affiliation(s)
- Grant Kauwe
- Buck Institute for Research on Aging, Novato, California, USA
| | | | - Lei Yao
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jackson H. Chen
- Buck Institute for Research on Aging, Novato, California, USA
| | - Ivy Wong
- Buck Institute for Research on Aging, Novato, California, USA
| | - Rowan Saloner
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Helen Cifuentes
- Buck Institute for Research on Aging, Novato, California, USA
| | - Alissa L. Nana
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Samah Shah
- Buck Institute for Research on Aging, Novato, California, USA
| | - Yaqiao Li
- Gladstone Institutes, San Francisco, Califoria, USA
| | - David Le
- Gladstone Institutes, San Francisco, Califoria, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Todd C. Sacktor
- The Robert F. Furchgott Center of Neural and Behavioral Science, Departments of Physiology and Pharmacology, Anesthesiology, and Neurology, State University of New York Health Sciences University, Brooklyn, New York, USA
| | | | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Kaitlin B. Casaletto
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Tara E. Tracy
- Buck Institute for Research on Aging, Novato, California, USA
| |
Collapse
|
18
|
Xiong J, Pang X, Song X, Yang L, Pang C. The coherence between PSMC6 and α-ring in the 26S proteasome is associated with Alzheimer's disease. Front Mol Neurosci 2024; 16:1330853. [PMID: 38357597 PMCID: PMC10864545 DOI: 10.3389/fnmol.2023.1330853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous age-dependent neurodegenerative disorder. Its hallmarks involve abnormal proteostasis, which triggers proteotoxicity and induces neuronal dysfunction. The 26S proteasome is an ATP-dependent proteolytic nanomachine of the ubiquitin-proteasome system (UPS) and contributes to eliminating these abnormal proteins. This study focused on the relationship between proteasome and AD, the hub genes of proteasome, PSMC6, and 7 genes of α-ring, are selected as targets to study. The following three characteristics were observed: 1. The total number of proteasomes decreased with AD progression because the proteotoxicity damaged the expression of proteasome proteins, as evidenced by the downregulation of hub genes. 2. The existing proteasomes exhibit increased activity and efficiency to counterbalance the decline in total proteasome numbers, as evidenced by enhanced global coordination and reduced systemic disorder of proteasomal subunits as AD advances. 3. The synergy of PSMC6 and α-ring subunits is associated with AD. Synergistic downregulation of PSMC6 and α-ring subunits reflects a high probability of AD risk. Regarding the above discovery, the following hypothesis is proposed: The aggregation of pathogenic proteins intensifies with AD progression, then proteasome becomes more active and facilitates the UPS selectively targets the degradation of abnormal proteins to maintain CNS proteostasis. In this paper, bioinformatics and support vector machine learning methods are applied and combined with multivariate statistical analysis of microarray data. Additionally, the concept of entropy was used to detect the disorder of proteasome system, it was discovered that entropy is down-regulated continually with AD progression against system chaos caused by AD. Another conception of the matrix determinant was used to detect the global coordination of proteasome, it was discovered that the coordination is enhanced to maintain the efficiency of degradation. The features of entropy and determinant suggest that active proteasomes resist the attack caused by AD like defenders, on the one hand, to protect themselves (entropy reduces), and on the other hand, to fight the enemy (determinant reduces). It is noted that these are results from biocomputing and need to be supported by further biological experiments.
Collapse
Affiliation(s)
- Jing Xiong
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xianghu Song
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Lin Yang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Chaoyang Pang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
19
|
Shi H, Zhao Y. Modulation of Tau Pathology in Alzheimer's Disease by Dietary Bioactive Compounds. Int J Mol Sci 2024; 25:831. [PMID: 38255905 PMCID: PMC10815728 DOI: 10.3390/ijms25020831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tau is a microtubule-associated protein essential for microtubule assembly and stability in neurons. The abnormal intracellular accumulation of tau aggregates is a major characteristic of brains from patients with Alzheimer's disease (AD) and other tauopathies. In AD, the presence of neurofibrillary tangles (NFTs), which is composed of hyperphosphorylated tau protein, is positively correlated with the severity of the cognitive decline. Evidence suggests that the accumulation and aggregation of tau cause synaptic dysfunction and neuronal degeneration. Thus, the prevention of abnormal tau phosphorylation and elimination of tau aggregates have been proposed as therapeutic strategies for AD. However, currently tau-targeting therapies for AD and other tauopathies are limited. A number of dietary bioactive compounds have been found to modulate the posttranslational modifications of tau, including phosphorylation, small ubiquitin-like modifier (SUMO) mediated modification (SUMOylation) and acetylation, as well as inhibit tau aggregation and/or promote tau degradation. The advantages of using these dietary components over synthetic substances in AD prevention and intervention are their safety and accessibility. This review summarizes the mechanisms leading to tau pathology in AD and highlights the effects of bioactive compounds on the hyperphosphorylation, aggregation and clearance of tau protein. The potential of using these bioactive compounds for AD prevention and intervention is also discussed.
Collapse
Affiliation(s)
- Huahua Shi
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, China;
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
20
|
Kanaan NM. Tau here, tau there, tau almost everywhere: Clarifying the distribution of tau in the adult CNS. Cytoskeleton (Hoboken) 2024; 81:107-115. [PMID: 38102924 PMCID: PMC10851165 DOI: 10.1002/cm.21820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The microtubule-associated protein tau has gained significant attention over the last several decades primarily due to its apparent role in the pathogenesis of several diseases, most notably Alzheimer's disease. While the field has focused largely on tau's potential contributions to disease mechanisms, comparably less work has focused on normal tau physiology. Moreover, as the field has grown, some misconceptions and dogmas regarding normal tau physiology have become engrained in the traditional narrative. Here, one of the most common misconceptions regarding tau, namely its normal cellular/subcellular distribution in the CNS, is discussed. The literature describing the presence of tau in neuronal somata, dendrites, axons and synapses, as well as in glial cells is described. The origins for the erroneous description of tau as an "axon-specific," "axon-enriched" and/or "neuron-specific" protein are discussed as well. The goal of this work is to help address these specific dogmatic misconceptions and provide a concise description of tau's normal cellular/subcellular localization in the adult CNS. This information can help refine our collective understanding of- and hypotheses about tau biology and pathobiology.
Collapse
Affiliation(s)
- Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
21
|
Cai Q, Tai HC. Super-Resolution Imaging of Tau Proteins in Isolated and Immobilized Brain Synaptosomes. Methods Mol Biol 2024; 2754:445-456. [PMID: 38512681 DOI: 10.1007/978-1-0716-3629-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tau protein has important physiological functions at both presynaptic and postsynaptic terminals. Pathological tau species are also associated with synaptic dysfunctions in several neurodegenerative disorders, especially Alzheimer's disease. To understand tau distribution inside synaptic compartments, super-resolution imaging is required. Here, we describe a facile protocol to immobilize and image brain synaptosomes without aggregation artefacts, by substituting the standard fixative paraformaldehyde with ethylene glycol bis(succinimidyl succinate) (EGS). Super-resolution imaging of tau proteins is achieved through three-color direct stochastic optical reconstruction microscopy (dSTORM). Tau protein is found to colocalize with synaptic vesicles as well as postsynaptic densities.
Collapse
Affiliation(s)
- Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Hwan-Ching Tai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
22
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
23
|
Li X, Chen X, Gao X. Copper and cuproptosis: new therapeutic approaches for Alzheimer's disease. Front Aging Neurosci 2023; 15:1300405. [PMID: 38178962 PMCID: PMC10766373 DOI: 10.3389/fnagi.2023.1300405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Copper (Cu) plays a crucial role as a trace element in various physiological processes in humans. Nonetheless, free copper ions accumulate in the brain over time, resulting in a range of pathological changes. Compelling evidence indicates that excessive free copper deposition contributes to cognitive decline in individuals with Alzheimer's disease (AD). Free copper levels in the serum and brain of AD patients are notably elevated, leading to reduced antioxidant defenses and mitochondrial dysfunction. Moreover, free copper accumulation triggers a specific form of cell death, namely copper-dependent cell death (cuproptosis). This article aimed to review the correlation between copper dysregulation and the pathogenesis of AD, along with the primary pathways regulating copper homoeostasis and copper-induced death in AD. Additionally, the efficacy and safety of natural and synthetic agents, including copper chelators, lipid peroxidation inhibitors, and antioxidants, were examined. These treatments can restore copper equilibrium and prevent copper-induced cell death in AD cases. Another aim of this review was to highlight the significance of copper dysregulation and promote the development of pharmaceutical interventions to address it.
Collapse
Affiliation(s)
- Xiao Li
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinwang Chen
- College of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Acupuncture Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiyan Gao
- College of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Acupuncture Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Shaji D, Nagura Y, Sabishiro H, Suzuki R, Kurita N. In Silico Design of Natural Inhibitors of ApoE4 from the Plant Moringa oleifera: Molecular Docking and Ab Initio Fragment Molecular Orbital Calculations. Molecules 2023; 28:8035. [PMID: 38138525 PMCID: PMC10745539 DOI: 10.3390/molecules28248035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological disease, and its signs and symptoms appear slowly over time. Although current Alzheimer's disease treatments can alleviate symptoms, they cannot prevent the disease from progressing. To accurately diagnose and treat Alzheimer's disease, it is therefore necessary to establish effective methods for diagnosis. Apolipoprotein E4 (ApoE4), the most frequent genetic risk factor for AD, is expressed in more than half of patients with AD, making it an attractive target for AD therapy. We used molecular docking simulations, classical molecular mechanics optimizations, and ab initio fragment molecular orbital (FMO) calculations to investigate the specific interactions between ApoE4 and the naturally occurring compounds found in the plant Moringa Oleifera. According to the FMO calculations, quercetin had the highest binding affinity to ApoE4 among the sixteen compounds because its hydroxyl groups generated strong hydrogen bonds with the ApoE4 residues Trp11, Asp12, Arg15, and Asp130. As a result, we proposed various quercetin derivatives by introducing a hydroxyl group into quercetin and studied their ApoE4 binding properties. The FMO data clearly showed that adding a hydroxyl group to quercetin improved its binding capacity to ApoE4. Furthermore, ApoE4 Trp11, Asp12, Arg15, and Asp130 residues were discovered to be required for significant interactions between ApoE4 and quercetin derivatives. They had a higher ApoE4 binding affinity than our previously proposed epicatechin derivatives. Accordingly, the current results evaluated using the ab initio FMO method will be useful for designing potent ApoE4 inhibitors that can be used as a candidate agent for AD treatment.
Collapse
Affiliation(s)
| | | | | | | | - Noriyuki Kurita
- Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Aichi, Japan
| |
Collapse
|
25
|
Shen R, Ardianto C, Celia C, Sidharta VM, Sasmita PK, Satriotomo I, Turana Y. Brain-derived neurotrophic factor interplay with oxidative stress: neuropathology approach in potential biomarker of Alzheimer's disease. Dement Neuropsychol 2023; 17:e20230012. [PMID: 38053647 PMCID: PMC10695442 DOI: 10.1590/1980-5764-dn-2023-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 12/07/2023] Open
Abstract
The aging population poses a serious challenge concerning an increased prevalence of Alzheimer's disease (AD) and its impact on global burden, morbidity, and mortality. Oxidative stress, as a molecular hallmark that causes susceptibility in AD, interplays to other AD-related neuropathology cascades and decreases the expression of central and circulation brain-derived neurotrophic factor (BDNF), an essential neurotrophin that serves as nerve development and survival, and synaptic plasticity in AD. By its significant correlation with the molecular and clinical progression of AD, BDNF can potentially be used as an objectively accurate biomarker for AD diagnosis and progressivity follow-up in future clinical practice. This comprehensive review highlights the oxidative stress interplay with BDNF in AD neuropathology and its potential use as an AD biomarker.
Collapse
Affiliation(s)
- Robert Shen
- Atma Jaya Catholic University of Indonesia, School of Medicine and Health Sciences, Jakarta, Indonesia
| | - Christian Ardianto
- Atma Jaya Catholic University of Indonesia, School of Medicine and Health Sciences, Jakarta, Indonesia
| | - Celia Celia
- Atma Jaya Catholic University of Indonesia, School of Medicine and Health Sciences, Jakarta, Indonesia
| | - Veronika Maria Sidharta
- Atma Jaya Catholic University of Indonesia, School of Medicine and Health Sciences, Jakarta, Indonesia
| | - Poppy Kristina Sasmita
- Atma Jaya Catholic University of Indonesia, School of Medicine and Health Sciences, Jakarta, Indonesia
| | - Irawan Satriotomo
- University of Florida, Gainesville, Department of Neurology, Florida, USA
- Satriotomo Foundation, Indonesia Neuroscience Institute, Jakarta, Indonesia
| | - Yuda Turana
- Atma Jaya Catholic University of Indonesia, School of Medicine and Health Sciences, Jakarta, Indonesia
| |
Collapse
|
26
|
Ribeiro FC, Cozachenco D, Heimfarth L, Fortuna JTS, de Freitas GB, de Sousa JM, Alves-Leon SV, Leite REP, Suemoto CK, Grinberg LT, De Felice FG, Lourenco MV, Ferreira ST. Synaptic proteasome is inhibited in Alzheimer's disease models and associates with memory impairment in mice. Commun Biol 2023; 6:1127. [PMID: 37935829 PMCID: PMC10630330 DOI: 10.1038/s42003-023-05511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The proteasome plays key roles in synaptic plasticity and memory by regulating protein turnover, quality control, and elimination of oxidized/misfolded proteins. Here, we investigate proteasome function and localization at synapses in Alzheimer's disease (AD) post-mortem brain tissue and in experimental models. We found a marked increase in ubiquitinylated proteins in post-mortem AD hippocampi compared to controls. Using several experimental models, we show that amyloid-β oligomers (AβOs) inhibit synaptic proteasome activity and trigger a reduction in synaptic proteasome content. We further show proteasome inhibition specifically in hippocampal synaptic fractions derived from APPswePS1ΔE9 mice. Reduced synaptic proteasome activity instigated by AβOs is corrected by treatment with rolipram, a phosphodiesterase-4 inhibitor, in mice. Results further show that dynein inhibition blocks AβO-induced reduction in dendritic proteasome content in hippocampal neurons. Finally, proteasome inhibition induces AD-like pathological features, including reactive oxygen species and dendritic spine loss in hippocampal neurons, inhibition of hippocampal mRNA translation, and memory impairment in mice. Results suggest that proteasome inhibition may contribute to synaptic and memory deficits in AD.
Collapse
Affiliation(s)
- Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana Heimfarth
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana T S Fortuna
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Guilherme B de Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences and Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Jorge M de Sousa
- Division of Neurosurgery, Clementino Chagas Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Soniza V Alves-Leon
- Division of Neurology, Clementino Chagas Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Translational Neuroscience Laboratory, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renata E P Leite
- Department of Pathology, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Claudia K Suemoto
- Department of Pathology, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Lea T Grinberg
- Department of Pathology, University of São Paulo Medical School, São Paulo, SP, Brazil
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences and Department of Psychiatry, Queen's University, Kingston, ON, Canada
- D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
27
|
Taddei RN, Perbet R, Mate de Gerando A, Wiedmer AE, Sanchez-Mico M, Connors Stewart T, Gaona A, Melloni A, Amaral AC, Duff K, Frosch MP, Gómez-Isla T. Tau Oligomer-Containing Synapse Elimination by Microglia and Astrocytes in Alzheimer Disease. JAMA Neurol 2023; 80:1209-1221. [PMID: 37812432 PMCID: PMC10562992 DOI: 10.1001/jamaneurol.2023.3530] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/03/2023] [Indexed: 10/10/2023]
Abstract
Importance Factors associated with synapse loss beyond amyloid-β plaques and neurofibrillary tangles may more closely correlate with the emergence of cognitive deficits in Alzheimer disease (AD) and be relevant for early therapeutic intervention. Objective To investigate whether accumulation of tau oligomers in synapses is associated with excessive synapse elimination by microglia or astrocytes and with cognitive outcomes (dementia vs no dementia [hereinafter termed resilient]) of individuals with equal burdens of AD neuropathologic changes at autopsy. Design, Setting, and Participants This cross-sectional postmortem study included 40 human brains from the Massachusetts Alzheimer Disease Research Center Brain Bank with Braak III to IV stages of tau pathology but divergent antemortem cognition (dementia vs resilient) and cognitively normal controls with negligible AD neuropathologic changes. The visual cortex, a region without tau tangle deposition at Braak III to IV stages, was assessed after expansion microscopy to analyze spatial relationships of synapses with microglia and astrocytes. Participants were matched for age, sex, and apolipoprotein E status. Evidence of Lewy bodies, TDP-43 aggregates, or other lesions different from AD neuropathology were exclusion criteria. Tissue was collected from July 1998 to November 2020, and analyses were conducted from February 1, 2022, through May 31, 2023. Main Outcomes and Measures Amyloid-β plaques, tau neuropil thread burden, synapse density, tau oligomers in synapses, and internalization of tau oligomer-tagged synapses by microglia and astrocytes were quantitated. Analyses were performed using 1-way analysis of variance for parametric variables and the Kruskal-Wallis test for nonparametric variables; between-group differences were evaluated with Holm-Šídák tests. Results Of 40 included participants (mean [SD] age at death, 88 [8] years; 21 [52%] male), 19 had early-stage dementia with Braak stages III to IV, 13 had resilient brains with similar Braak stages III to IV, and 8 had no dementia (Braak stages 0-II). Brains with dementia but not resilient brains had substantial loss of presynaptic (43%), postsynaptic (33%), and colocalized mature synaptic elements (38%) compared with controls and significantly higher percentages of mature synapses internalized by IBA1-positive microglia (mean [SD], 13.3% [3.9%] in dementia vs 2.6% [1.9%] in resilient vs 0.9% [0.5%] in control; P < .001) and by GFAP-positive astrocytes (mean [SD], 17.2% [10.9%] in dementia vs 3.7% [4.0%] in resilient vs 2.7% [1.8%] in control; P = .001). In brains with dementia but not in resilient brains, tau oligomers more often colocalized with synapses, and the proportions of tau oligomer-containing synapses inside microglia (mean [SD] for presynapses, mean [SD], 7.4% [1.8%] in dementia vs 5.1% [1.9%] resilient vs 3.7% [0.8%] control; P = .006; and for postsynapses 11.6% [3.6%] dementia vs 6.8% [1.3%] resilient vs 7.4% [2.5%] control; P = .001) and astrocytes (mean [SD] for presynapses, 7.0% [2.1%] dementia vs 4.3% [2.2%] resilient vs 4.0% [0.7%] control; P = .001; and for postsynapses, 7.9% [2.2%] dementia vs 5.3% [1.8%] resilient vs 3.0% [1.5%] control; P < .001) were significantly increased compared with controls. Those changes in brains with dementia occurred in the absence of tau tangle deposition in visual cortex. Conclusion and Relevance The findings from this cross-sectional study suggest that microglia and astrocytes may excessively engulf synapses in brains of individuals with dementia and that the abnormal presence of tau oligomers in synapses may serve as signals for increased glial-mediated synapse elimination and early loss of brain function in AD.
Collapse
Affiliation(s)
- Raquel N. Taddei
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
- Department of Neurology, Dementia Research Institute, University College London, United Kingdom
| | - Romain Perbet
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | | | - Anne E. Wiedmer
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - Maria Sanchez-Mico
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - Theresa Connors Stewart
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Angelica Gaona
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Alexandra Melloni
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ana C. Amaral
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - Karen Duff
- Department of Neurology, Dementia Research Institute, University College London, United Kingdom
| | - Matthew P. Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Teresa Gómez-Isla
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| |
Collapse
|
28
|
Emmerson JT, Malcolm JC, Do Carmo S, Nguyen P, Breuillaud L, Martinez-Trujillo JC, Cuello AC. Neuronal loss and inflammation preceding fibrillary tau pathology in a rat model with early human-like tauopathy. Neurobiol Dis 2023; 187:106317. [PMID: 37802153 DOI: 10.1016/j.nbd.2023.106317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
In tauopathies such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), the microtubule associated protein tau undergoes conformational and posttranslational modifications in a gradual, staged pathological process. While brain atrophy and cognitive decline are well-established in the advanced stages of tauopathy, it is unclear how the early pathological processes manifest prior to extensive neurodegeneration. For these studies we have applied a transgenic rat model of human-like tauopathy in its heterozygous form, named McGill-R955-hTau. The goal of the present study was to investigate whether lifelong accumulation of mutated human tau could reveal the earliest tau pathological processes in a context of advanced aging, and, at stages before the overt aggregated or fibrillary tau deposition. We characterized the phenotype of heterozygous R955-hTau rats at three endpoints, 10, 18 and 24-26 months of age, focusing on markers of cognitive capabilities, progressive tau pathology, neuronal health, neuroinflammation and brain ultrastructural integrity, using immunohistochemistry and electron microscopy. Heterozygous R955-hTau transgenic rats feature a modest, life-long accumulation of mutated human tau that led to tau hyperphosphorylation and produced deficits in learning and memory tasks after 24 months of age. Such impairments coincided with more extensive tau hyperphosphorylation in the brain at residues pThr231 and with evidence of oligomerization. Importantly, aged R955-hTau rats presented evidence of neuroinflammation, detriments to myelin morphology and detectable hippocampal neuronal loss in the absence of overt neurofibrillary lesions and brain atrophy. The slow-progressing tauopathy of R955-hTau rats should allow to better delineate the temporal progression of tau pathological events and therefore to distinguish early indicators of tauopathy as having the capability to induce degenerative events in the aged CNS.
Collapse
Affiliation(s)
- Joshua T Emmerson
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Janice C Malcolm
- Department of Cell Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Phuoc Nguyen
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Lionel Breuillaud
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Julio C Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Robarts Research Institute and Brain and Mind Institute, University of Western Ontario, ON N6A 5B7, Canada; Lawson Health Research Institute, London, ON N6A 5B7, Canada
| | - A Claudio Cuello
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G 1Y6, Canada; Department of Cell Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada; Visiting Professor, Department of Pharmacology, Oxford University, Oxford, UK, OX1 3QT.
| |
Collapse
|
29
|
Hu J, Sha W, Yuan S, Wu J, Huang Y. Aggregation, Transmission, and Toxicity of the Microtubule-Associated Protein Tau: A Complex Comprehension. Int J Mol Sci 2023; 24:15023. [PMID: 37834471 PMCID: PMC10573976 DOI: 10.3390/ijms241915023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The microtubule-associated protein tau is an intrinsically disordered protein containing a few short and transient secondary structures. Tau physiologically associates with microtubules (MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative diseases known as "tauopathies", such as Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there has been considerable progress in the study of tau in recent years, particularly in the understanding of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the conformational change events in the tau polymerization process. In this review, we summarize the concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.
Collapse
Affiliation(s)
- Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Wenchi Sha
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Shuangshuang Yuan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; (J.H.); (W.S.); (S.Y.)
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
30
|
Lin X, Zhang H, Liu W, Dong X, Sun Y. Methylene Blue-Doped Carbonized Polymer Dots: A Potent Photooxygenation Scavenger Targeting Alzheimer's β-Amyloid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44062-44074. [PMID: 37682558 DOI: 10.1021/acsami.3c06948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The abnormal aggregation of β-amyloid protein (Aβ) is one of the main pathological hallmarks of Alzheimer's disease (AD), and thus development of potent scavengers targeting Aβ is considered an effective strategy for AD treatment. Herein, photosensitizer-doped carbonized polymer dots (PS-CPDs) were synthesized by a one-step hydrothermal method using photosensitizer (PS) and o-phenylenediamine (oPD) as precursors, and furtherly applied to inhibit Aβ aggregation via photooxygenation. The inhibition efficiency of such PS-CPDs can be adjusted by varying the type of photosensitizer, and among them, methylene blue-doped carbonized polymer dots (MB-CPDs) showed the strongest photooxygenation inhibition capability. The results demonstrated that under 650 nm NIR light irradiation, MB-CPDs (2 μg/mL) produced reactive oxygen species (ROS) to efficiently inhibit Aβ fibrillization and disaggregate mature Aβ fibrils and increased the cultured cell viability from 50% to 83%. In vivo studies confirmed that MB-CPDs extended the lifespan of AD nematodes by 4 days. Notably, the inhibitory capability of MB-CPDs is much stronger than that of MB and previously reported carbonized polymer dots. This work indicated that potent photooxygenation carbon dots can be obtained by using a photosensitizer as one of the precursors, and the results have provided new insights into the design of potent photooxygenation carbon nanomaterials targeting Aβ in AD treatment.
Collapse
Affiliation(s)
- Xiaoding Lin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Hui Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
31
|
Tzioras M, Daniels MJD, Davies C, Baxter P, King D, McKay S, Varga B, Popovic K, Hernandez M, Stevenson AJ, Barrington J, Drinkwater E, Borella J, Holloway RK, Tulloch J, Moss J, Latta C, Kandasamy J, Sokol D, Smith C, Miron VE, Káradóttir RT, Hardingham GE, Henstridge CM, Brennan PM, McColl BW, Spires-Jones TL. Human astrocytes and microglia show augmented ingestion of synapses in Alzheimer's disease via MFG-E8. Cell Rep Med 2023; 4:101175. [PMID: 37652017 PMCID: PMC10518633 DOI: 10.1016/j.xcrm.2023.101175] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/30/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-β plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.
Collapse
Affiliation(s)
- Makis Tzioras
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Michael J D Daniels
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Caitlin Davies
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Paul Baxter
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Declan King
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Sean McKay
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Balazs Varga
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Karla Popovic
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Madison Hernandez
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Anna J Stevenson
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Jack Barrington
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Elizabeth Drinkwater
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Julia Borella
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Rebecca K Holloway
- MRC Centre for Reproductive Health, the University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jane Tulloch
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Jonathan Moss
- MRC Centre for Reproductive Health, the University of Edinburgh, Edinburgh EH16 4TJ, UK; The Roslin Institute, the Royal (Dick) School of Veterinary Studies, the University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Clare Latta
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Jothy Kandasamy
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Drahoslav Sokol
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Veronique E Miron
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; MRC Centre for Reproductive Health, the University of Edinburgh, Edinburgh EH16 4TJ, UK; Barlo Multiple Sclerosis Centre at St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, ON M5B 1T8, Canada
| | | | - Giles E Hardingham
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK
| | | | - Paul M Brennan
- Department of Clinical Neurosciences, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK; Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Barry W McColl
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK.
| | - Tara L Spires-Jones
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Discovery Brain Sciences, the University of Edinburgh, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
32
|
Aina A, Hsueh SCC, Gibbs E, Peng X, Cashman NR, Plotkin SS. De Novo Design of a β-Helix Tau Protein Scaffold: An Oligomer-Selective Vaccine Immunogen Candidate for Alzheimer's Disease. ACS Chem Neurosci 2023; 14:2603-2617. [PMID: 37458595 DOI: 10.1021/acschemneuro.3c00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Tau pathology is associated with many neurodegenerative disorders, including Alzheimer's disease (AD), where the spatio-temporal pattern of tau neurofibrillary tangles strongly correlates with disease progression, which motivates therapeutics selective for misfolded tau. Here, we introduce a new avidity-enhanced, multi-epitope approach for protein-misfolding immunogen design, which is predicted to mimic the conformational state of an exposed epitope in toxic tau oligomers. A predicted oligomer-selective tau epitope 343KLDFK347 was scaffolded by designing a β-helix structure that incorporated multiple instances of the 16-residue tau fragment 339VKSEKLDFKDRVQSKI354. Large-scale conformational ensemble analyses involving Jensen-Shannon Divergence and the embedding depth D showed that the multi-epitope scaffolding approach, employed in designing the β-helix scaffold, was predicted to better discriminate toxic tau oligomers than other "monovalent" strategies utilizing a single instance of an epitope for vaccine immunogen design. Using Rosetta, 10,000 sequences were designed and screened for the linker portions of the β-helix scaffold, along with a C-terminal stabilizing α-helix that interacts with the linkers, to optimize the folded structure and stability of the scaffold. Structures were ranked by energy, and the lowest 1% (82 unique sequences) were verified using AlphaFold. Several selection criteria involving AlphaFold are implemented to obtain a lead-designed sequence. The structure was further predicted to have free energetic stability by using Hamiltonian replica exchange molecular dynamics (MD) simulations. The synthesized β-helix scaffold showed direct binding in surface plasmon resonance (SPR) experiments to several antibodies that were raised to the structured epitope using a designed cyclic peptide. Moreover, the strength of binding of these antibodies to in vitro tau oligomers correlated with the strength of binding to the β-helix construct, suggesting that the construct presents an oligomer-like conformation and may thus constitute an effective oligomer-selective immunogen.
Collapse
Affiliation(s)
- Adekunle Aina
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Shawn C C Hsueh
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ebrima Gibbs
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xubiao Peng
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Genome Science and Technology Program, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
33
|
Moyano P, Sola E, Naval MV, Guerra-Menéndez L, Fernández MDLC, del Pino J. Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics 2023; 15:2048. [PMID: 37631262 PMCID: PMC10458078 DOI: 10.3390/pharmaceutics15082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Maria De la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
34
|
Colom-Cadena M, Davies C, Sirisi S, Lee JE, Simzer EM, Tzioras M, Querol-Vilaseca M, Sánchez-Aced É, Chang YY, Holt K, McGeachan RI, Rose J, Tulloch J, Wilkins L, Smith C, Andrian T, Belbin O, Pujals S, Horrocks MH, Lleó A, Spires-Jones TL. Synaptic oligomeric tau in Alzheimer's disease - A potential culprit in the spread of tau pathology through the brain. Neuron 2023; 111:2170-2183.e6. [PMID: 37192625 DOI: 10.1016/j.neuron.2023.04.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
In Alzheimer's disease, fibrillar tau pathology accumulates and spreads through the brain and synapses are lost. Evidence from mouse models indicates that tau spreads trans-synaptically from pre- to postsynapses and that oligomeric tau is synaptotoxic, but data on synaptic tau in human brain are scarce. Here we used sub-diffraction-limit microscopy to study synaptic tau accumulation in postmortem temporal and occipital cortices of human Alzheimer's and control donors. Oligomeric tau is present in pre- and postsynaptic terminals, even in areas without abundant fibrillar tau deposition. Furthermore, there is a higher proportion of oligomeric tau compared with phosphorylated or misfolded tau found at synaptic terminals. These data suggest that accumulation of oligomeric tau in synapses is an early event in pathogenesis and that tau pathology may progress through the brain via trans-synaptic spread in human disease. Thus, specifically reducing oligomeric tau at synapses may be a promising therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Martí Colom-Cadena
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Caitlin Davies
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Sònia Sirisi
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ji-Eun Lee
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, UK; IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4 UU Edinburgh, UK
| | - Elizabeth M Simzer
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Makis Tzioras
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Marta Querol-Vilaseca
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Érika Sánchez-Aced
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ya Yin Chang
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Kristjan Holt
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Robert I McGeachan
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Jamie Rose
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Jane Tulloch
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Lewis Wilkins
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, The University of Edinburgh, Edinburgh, UK
| | - Teodora Andrian
- Nanoscopy for Nanomedicine Lab, Institute of Bioengineering of Catalonia (IBEC Barcelona Institute of Science and Technology), Barcelona, Spain
| | - Olivia Belbin
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sílvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, UK; IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4 UU Edinburgh, UK
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Tara L Spires-Jones
- The University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK.
| |
Collapse
|
35
|
Kauwe G, Pareja-Navarro KA, Yao L, Chen JH, Wong I, Saloner R, Cifuentes H, Nana AL, Shah S, Li Y, Le D, Spina S, Grinberg LT, Seeley WW, Kramer JH, Sacktor TC, Schilling B, Gan L, Casaletto KB, Tracy TE. KIBRA repairs synaptic plasticity and promotes resilience to tauopathy-related memory loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.543777. [PMID: 37398236 PMCID: PMC10312627 DOI: 10.1101/2023.06.12.543777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Synaptic plasticity is obstructed by pathogenic tau in the brain, representing a key mechanism that underlies memory loss in Alzheimer's disease (AD) and related tauopathies. Here, we define a mechanism for plasticity repair in vulnerable neurons using the C-terminus of the KIdney/BRAin (KIBRA) protein (CT-KIBRA). We show that CT-KIBRA restores plasticity and memory in transgenic mice expressing pathogenic human tau; however, CT-KIBRA did not alter tau levels or prevent tau-induced synapse loss. Instead, we find that CT-KIBRA binds to and stabilizes protein kinase Mζ (PKMζ) to maintain synaptic plasticity and memory despite tau-mediated pathogenesis. In humans we find that reduced KIBRA in brain and increased KIBRA in cerebrospinal fluid are associated with cognitive impairment and pathological tau levels in disease. Thus, our results distinguish KIBRA both as a novel biomarker of synapse dysfunction in AD and as the foundation for a synapse repair mechanism to reverse cognitive impairment in tauopathy.
Collapse
Affiliation(s)
- Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA USA
| | | | - Lei Yao
- Buck Institute for Research on Aging, Novato, CA USA
| | | | - Ivy Wong
- Buck Institute for Research on Aging, Novato, CA USA
| | - Rowan Saloner
- Memory and Aging Center, Department of Neurology, University of California, San Francisco USA
| | | | - Alissa L. Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco USA
| | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA USA
| | - Yaqiao Li
- Gladstone Institutes, San Francisco, CA USA
| | - David Le
- Gladstone Institutes, San Francisco, CA USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California, San Francisco USA
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco USA
- Weill Institute for Neurosciences, Department of Pathology, University of California, San Francisco USA
| | - William W. Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco USA
- Weill Institute for Neurosciences, Department of Pathology, University of California, San Francisco USA
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco USA
| | - Todd C. Sacktor
- The Robert F. Furchgott Center of Neural and Behavioral Science, Departments of Physiology and Pharmacology, Anesthesiology, and Neurology, State University of New York Health Sciences University, Brooklyn, NY USA
| | | | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
| | - Kaitlin B. Casaletto
- Memory and Aging Center, Department of Neurology, University of California, San Francisco USA
| | - Tara E. Tracy
- Buck Institute for Research on Aging, Novato, CA USA
| |
Collapse
|
36
|
Petrozziello T, Huntress SS, Castillo-Torres AL, Quinn JP, Connors TR, Auger CA, Mills AN, Kim SE, Liu S, Mahmood F, Boudi A, Wu M, Sapp E, Kivisäkk P, Sunderesh SR, Pouladi MA, Arnold SE, Hyman BT, Rosas HD, DiFiglia M, Pinto RM, Kegel-Gleason K, Sadri-Vakili G. Age-dependent increase in tau phosphorylation at serine 396 in Huntington's disease pre-frontal cortex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.03.23290851. [PMID: 37333415 PMCID: PMC10274990 DOI: 10.1101/2023.06.03.23290851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD post-mortem brain and mouse models. Objectives The goal of this study was to determine whether total tau and pTau levels are altered in HD. Methods Immunohistochemistry, cellular fractionations, and western blots were used to measure tau and pTau levels in a large cohort of HD and control post-mortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau in Htt Q111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. Results Our results revealed that, while there was no difference in tau or pTau levels in HD PFC compared to controls, tau phosphorylated at S396 levels were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, tau or pTau levels were not altered in Htt Q111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. Conclusion Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.
Collapse
|
37
|
King D, Holt K, Toombs J, HE X, Dando O, Okely JA, Tzioras M, Rose J, Gunn C, Correia A, Montero C, McAlister H, Tulloch J, Lamont D, Taylor AM, Harris SE, Redmond P, Cox SR, Henstridge CM, Deary IJ, Smith C, Spires‐Jones TL. Synaptic resilience is associated with maintained cognition during ageing. Alzheimers Dement 2023; 19:2560-2574. [PMID: 36547260 PMCID: PMC11497288 DOI: 10.1002/alz.12894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION It remains unclear why age increases risk of Alzheimer's disease and why some people experience age-related cognitive decline in the absence of dementia. Here we test the hypothesis that resilience to molecular changes in synapses contribute to healthy cognitive ageing. METHODS We examined post-mortem brain tissue from people in mid-life (n = 15), healthy ageing with either maintained cognition (n = 9) or lifetime cognitive decline (n = 8), and Alzheimer's disease (n = 13). Synapses were examined with high resolution imaging, proteomics, and RNA sequencing. Stem cell-derived neurons were challenged with Alzheimer's brain homogenate. RESULTS Synaptic pathology increased, and expression of genes involved in synaptic signaling decreased between mid-life, healthy ageing and Alzheimer's. In contrast, brain tissue and neurons from people with maintained cognition during ageing exhibited decreases in synaptic signaling genes compared to people with cognitive decline. DISCUSSION Efficient synaptic networks without pathological protein accumulation may contribute to maintained cognition during ageing.
Collapse
Affiliation(s)
- Declan King
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Kris Holt
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Jamie Toombs
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Xin HE
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Owen Dando
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Judith A Okely
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Makis Tzioras
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Jamie Rose
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Ciaran Gunn
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Adele Correia
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Carmen Montero
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Hannah McAlister
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Jane Tulloch
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| | - Douglas Lamont
- FingerPrints Proteomics FacilitySchool of Life SciencesUniversity of DundeeDundeeUK
| | - Adele M Taylor
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Sarah E Harris
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Paul Redmond
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Simon R Cox
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | | | - Ian J Deary
- Lothian Birth CohortsDepartment of PsychologyUniversity of EdinburghEdinburghUK
| | - Colin Smith
- NeuropathologyCentre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Tara L Spires‐Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of EdinburghEdinburghUK
| |
Collapse
|
38
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
39
|
Walker CK, Greathouse KM, Tuscher JJ, Dammer EB, Weber AJ, Liu E, Curtis KA, Boros BD, Freeman CD, Seo JV, Ramdas R, Hurst C, Duong DM, Gearing M, Murchison CF, Day JJ, Seyfried NT, Herskowitz JH. Cross-Platform Synaptic Network Analysis of Human Entorhinal Cortex Identifies TWF2 as a Modulator of Dendritic Spine Length. J Neurosci 2023; 43:3764-3785. [PMID: 37055180 PMCID: PMC10198456 DOI: 10.1523/jneurosci.2102-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Proteomic studies using postmortem human brain tissue samples have yielded robust assessments of the aging and neurodegenerative disease(s) proteomes. While these analyses provide lists of molecular alterations in human conditions, like Alzheimer's disease (AD), identifying individual proteins that affect biological processes remains a challenge. To complicate matters, protein targets may be highly understudied and have limited information on their function. To address these hurdles, we sought to establish a blueprint to aid selection and functional validation of targets from proteomic datasets. A cross-platform pipeline was engineered to focus on synaptic processes in the entorhinal cortex (EC) of human patients, including controls, preclinical AD, and AD cases. Label-free quantification mass spectrometry (MS) data (n = 2260 proteins) was generated on synaptosome fractionated tissue from Brodmann area 28 (BA28; n = 58 samples). In parallel, dendritic spine density and morphology was measured in the same individuals. Weighted gene co-expression network analysis was used to construct a network of protein co-expression modules that were correlated with dendritic spine metrics. Module-trait correlations were used to guide unbiased selection of Twinfilin-2 (TWF2), which was the top hub protein of a module that positively correlated with thin spine length. Using CRISPR-dCas9 activation strategies, we demonstrated that boosting endogenous TWF2 protein levels in primary hippocampal neurons increased thin spine length, thus providing experimental validation for the human network analysis. Collectively, this study describes alterations in dendritic spine density and morphology as well as synaptic proteins and phosphorylated tau from the entorhinal cortex of preclinical and advanced stage AD patients.SIGNIFICANCE STATEMENT Proteomic studies can yield vast lists of molecules that are altered under various experimental or disease conditions. Here, we provide a blueprint to facilitate mechanistic validation of protein targets from human brain proteomic datasets. We conducted a proteomic analysis of human entorhinal cortex (EC) samples spanning cognitively normal and Alzheimer's disease (AD) cases with a comparison of dendritic spine morphology in the same samples. Network integration of proteomics with dendritic spine measurements allowed for unbiased discovery of Twinfilin-2 (TWF2) as a regulator of dendritic spine length. A proof-of-concept experiment in cultured neurons demonstrated that altering Twinfilin-2 protein level induced corresponding changes in dendritic spine length, thus providing experimental validation for the computational framework.
Collapse
Affiliation(s)
- Courtney K Walker
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kelsey M Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer J Tuscher
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Audrey J Weber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Evan Liu
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kendall A Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Benjamin D Boros
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Cameron D Freeman
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jung Vin Seo
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Raksha Ramdas
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Cheyenne Hurst
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Charles F Murchison
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
40
|
Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G. An Insight into Cellular and Molecular Mechanisms Underlying the Pathogenesis of Neurodegeneration in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051398. [PMID: 37239068 DOI: 10.3390/biomedicines11051398] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-β (Aβ)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease's causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. To address the aforementioned challenges, extensive disease modeling is essential to fully comprehend the underlying mechanisms of AD, making it easier to design and develop effective treatment strategies. Emerging evidence over the past few decades supports the critical role of Aβ and tau in AD pathogenesis and the participation of glial cells in different molecular and cellular pathways. This review extensively discusses the current understanding concerning Aβ- and tau-associated molecular mechanisms and glial dysfunction in AD. Moreover, the critical risk factors associated with AD including genetics, aging, environmental variables, lifestyle habits, medical conditions, viral/bacterial infections, and psychiatric factors have been summarized. The present study will entice researchers to more thoroughly comprehend and explore the current status of the molecular mechanism of AD, which may assist in AD drug development in the forthcoming era.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sushmita Maleysm
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
41
|
Rayman JB. Focusing on oligomeric tau as a therapeutic target in Alzheimer's disease and other tauopathies. Expert Opin Ther Targets 2023:1-11. [PMID: 37140480 DOI: 10.1080/14728222.2023.2206561] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Tau has commanded much attention as a potential therapeutic target in neurodegenerative diseases. Tau pathology is a hallmark of primary tauopathies, such as progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and subtypes of frontotemporal dementia (FTD), as well as secondary tauopathies, such as Alzheimer's disease (AD). The development of tau therapeutics must reconcile with the structural complexity of the tau proteome, as well as an incomplete understanding of the role of tau in both physiology and disease. AREAS COVERED This review offers a current perspective on tau biology, discusses key barriers to the development of effective tau-based therapeutics, and promotes the idea that pathogenic (as opposed to merely pathological) tau should be at the center of drug development efforts. EXPERT OPINION An efficacious tau therapeutic will exhibit several primary features: 1) selectivity for pathogenic tau versus other tau species; 2) blood-brain barrier and cell membrane permeability, enabling access to intracellular tau in disease-relevant brain regions; and 3) minimal toxicity. Oligomeric tau is proposed as a major pathogenic form of tau and a compelling drug target in tauopathies.
Collapse
Affiliation(s)
- Joseph B Rayman
- Department of Medicine, Division of Experimental Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
42
|
Gong C, Bonfili L, Zheng Y, Cecarini V, Cuccioloni M, Angeletti M, Dematteis G, Tapella L, Genazzani AA, Lim D, Eleuteri AM. Immortalized Alzheimer's Disease Astrocytes: Characterization of Their Proteolytic Systems. Mol Neurobiol 2023; 60:2787-2800. [PMID: 36729287 PMCID: PMC10039838 DOI: 10.1007/s12035-023-03231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegeneration with dysfunctions in both the ubiquitin-proteasome system (UPS) and autophagy. Astroglia participation in AD is an attractive topic of research, but molecular patterns are partially defined and available in vitro models have technical limitations. Immortalized astrocytes from the hippocampus of 3xTg-AD and wild-type mice (3Tg-iAstro and WT-iAstro, respectively) have been obtained as an attempt to overcome primary cell line limitations and this study aims at characterizing their proteolytic systems, focusing on UPS and autophagy. Both 26S and 20S proteasomal activities were downregulated in 3Tg-iAstro, in which a shift in catalytic subunits from constitutive 20S proteasome to immunoproteasome occurred, with consequences on immune functions. In fact, immunoproteasome is the specific complex in charge of clearing damaged proteins under inflammatory conditions. Parallelly, augmented expression and activity of the lysosomal cathepsin B, enhanced levels of lysosomal-associated membrane protein 1, beclin1, and LC3-II, together with an increased uptake of monodansylcadaverine in autophagic vacuoles, suggested autophagy activation in 3Tg-iAstro. The two proteolytic pathways were linked by p62 that accumulated in 3Tg-iAstro due to both increased synthesis and decreased degradation in the UPS defective astrocytes. Treatment with 4-phenylbutyric acid, a neuroprotective small chemical chaperone, partially restored proteasome and autophagy-mediated proteolysis in 3Tg-iAstro. Our data shed light on the impaired proteostasis in 3Tg-iAstro with proteasome inhibition and autophagic compensatory activation, providing additional validation of this AD in vitro model, and propose a new mechanism of action of 4-phenylbutyric acid in neurodegenerative disorders.
Collapse
Affiliation(s)
- Chunmei Gong
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy.
| | - Yadong Zheng
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Via Bovio 6, 28100, Novara, Italy.
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino, MC, Italy.
| |
Collapse
|
43
|
Kostes WW, Brafman DA. The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells 2023; 12:1204. [PMID: 37190113 PMCID: PMC10136584 DOI: 10.3390/cells12081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The evolutionary conserved WNT signaling pathway orchestrates numerous complex biological processes during development and is critical to the maintenance of tissue integrity and homeostasis in the adult. As it relates to the central nervous system, WNT signaling plays several roles as it relates to neurogenesis, synaptic formation, memory, and learning. Thus, dysfunction of this pathway is associated with multiple diseases and disorders, including several neurodegenerative disorders. Alzheimer's disease (AD) is characterized by several pathologies, synaptic dysfunction, and cognitive decline. In this review, we will discuss the various epidemiological, clinical, and animal studies that demonstrate a precise link between aberrant WNT signaling and AD-associated pathologies. In turn, we will discuss the manner in which WNT signaling influences multiple molecular, biochemical, and cellular pathways upstream of these end-point pathologies. Finally, we will discuss how merging tools and technologies can be used to generate next generation cellular models to dissect the relationship between WNT signaling and AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
44
|
Gąssowska-Dobrowolska M, Czapski GA, Cieślik M, Zajdel K, Frontczak-Baniewicz M, Babiec L, Adamczyk A. Microtubule Cytoskeletal Network Alterations in a Transgenic Model of Tuberous Sclerosis Complex: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2023; 24:7303. [PMID: 37108467 PMCID: PMC10138344 DOI: 10.3390/ijms24087303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic multisystem disorder caused by loss-of-function mutations in the tumour suppressors TSC1/TSC2, both of which are negative regulators of the mammalian target of rapamycin (mTOR) kinase. Importantly, mTOR hyperactivity seems to be linked with the pathobiology of autism spectrum disorders (ASD). Recent studies suggest the potential involvement of microtubule (MT) network dysfunction in the neuropathology of "mTORopathies", including ASD. Cytoskeletal reorganization could be responsible for neuroplasticity disturbances in ASD individuals. Thus, the aim of this work was to study the effect of Tsc2 haploinsufficiency on the cytoskeletal pathology and disturbances in the proteostasis of the key cytoskeletal proteins in the brain of a TSC mouse model of ASD. Western-blot analysis indicated significant brain-structure-dependent abnormalities in the microtubule-associated protein Tau (MAP-Tau), and reduced MAP1B and neurofilament light (NF-L) protein level in 2-month-old male B6;129S4-Tsc2tm1Djk/J mice. Alongside, pathological irregularities in the ultrastructure of both MT and neurofilament (NFL) networks as well as swelling of the nerve endings were demonstrated. These changes in the level of key cytoskeletal proteins in the brain of the autistic-like TSC mice suggest the possible molecular mechanisms responsible for neuroplasticity alterations in the ASD brain.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Karolina Zajdel
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
45
|
Saunders TS, Pozzolo FE, Heslegrave A, King D, McGeachan RI, Spires-Jones MP, Harris SE, Ritchie C, Muniz-Terrera G, Deary IJ, Cox SR, Zetterberg H, Spires-Jones TL. Predictive blood biomarkers and brain changes associated with age-related cognitive decline. Brain Commun 2023; 5:fcad113. [PMID: 37180996 PMCID: PMC10167767 DOI: 10.1093/braincomms/fcad113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Growing evidence supports the use of plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and glial fibrillary acidic protein as promising biomarkers for Alzheimer's disease. While these blood biomarkers are promising for distinguishing people with Alzheimer's disease from healthy controls, their predictive validity for age-related cognitive decline without dementia remains unclear. Further, while tau phosphorylated at threonine 181 is a promising biomarker, the distribution of this phospho-epitope of tau in the brain is unknown. Here, we tested whether plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and fibrillary acidic protein predict cognitive decline between ages 72 and 82 in 195 participants in the Lothian birth cohorts 1936 study of cognitive ageing. We further examined post-mortem brain samples from temporal cortex to determine the distribution of tau phosphorylated at threonine 181 in the brain. Several forms of tau phosphorylated at threonine 181 have been shown to contribute to synapse degeneration in Alzheimer's disease, which correlates closely with cognitive decline in this form of dementia, but to date, there have not been investigations of whether tau phosphorylated at threonine 181 is found in synapses in Alzheimer's disease or healthy ageing brain. It was also previously unclear whether tau phosphorylated at threonine 181 accumulated in dystrophic neurites around plaques, which could contribute to tau leakage to the periphery due to impaired membrane integrity in dystrophies. Brain homogenate and biochemically enriched synaptic fractions were examined with western blot to examine tau phosphorylated at threonine 181 levels between groups (n = 10-12 per group), and synaptic and astrocytic localization of tau phosphorylated at threonine 181 were examined using array tomography (n = 6-15 per group), and localization of tau phosphorylated at threonine 181 in plaque-associated dystrophic neurites with associated gliosis were examined with standard immunofluorescence (n = 8-9 per group). Elevated baseline plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein predicted steeper general cognitive decline during ageing. Further, increasing tau phosphorylated at threonine 181 over time predicted general cognitive decline in females only. Change in plasma tau phosphorylated at threonine 181 remained a significant predictor of g factor decline when taking into account Alzheimer's disease polygenic risk score, indicating that the increase of blood tau phosphorylated at threonine 181 in this cohort was not only due to incipient Alzheimer's disease. Tau phosphorylated at threonine 181 was observed in synapses and astrocytes in both healthy ageing and Alzheimer's disease brain. We observed that a significantly higher proportion of synapses contain tau phosphorylated at threonine 181 in Alzheimer's disease relative to aged controls. Aged controls with pre-morbid lifetime cognitive resilience had significantly more tau phosphorylated at threonine 181 in fibrillary acidic protein-positive astrocytes than those with pre-morbid lifetime cognitive decline. Further, tau phosphorylated at threonine 181 was found in dystrophic neurites around plaques and in some neurofibrillary tangles. The presence of tau phosphorylated at threonine 181 in plaque-associated dystrophies may be a source of leakage of tau out of neurons that eventually enters the blood. Together, these data indicate that plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein may be useful biomarkers of age-related cognitive decline, and that efficient clearance of tau phosphorylated at threonine 181 by astrocytes may promote cognitive resilience.
Collapse
Affiliation(s)
- Tyler S Saunders
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Francesca E Pozzolo
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Amanda Heslegrave
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Declan King
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Robert I McGeachan
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Maxwell P Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah E Harris
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Craig Ritchie
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Social Medicine, Ohio University, Athens, Ohio 45701, USA
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago 3485, Chile
| | - Ian J Deary
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Simon R Cox
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Henrik Zetterberg
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Molndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Molndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Tara L Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
46
|
Griffiths J, Grant SGN. Synapse pathology in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:13-23. [PMID: 35690535 DOI: 10.1016/j.semcdb.2022.05.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
Synapse loss and damage are central features of Alzheimer's disease (AD) and contribute to the onset and progression of its behavioural and physiological features. Here we review the literature describing synapse pathology in AD, from what we have learned from microscopy in terms of its impacts on synapse architecture, to the mechanistic role of Aβ, tau and glial cells, mitochondrial dysfunction, and the link with AD risk genes. We consider the emerging view that synapse pathology may operate at a further level, that of synapse diversity, and discuss the prospects for leveraging new synaptome mapping methods to comprehensively understand the molecular properties of vulnerable and resilient synapses. Uncovering AD impacts on brain synapse diversity should inform therapeutic approaches targeted at preserving or replenishing lost and damaged synapses and aid the interpretation of clinical imaging approaches that aim to measure synapse damage.
Collapse
Affiliation(s)
- Jessica Griffiths
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Dementia Research Institute at Imperial College, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
47
|
Hindley N, Sanchez Avila A, Henstridge C. Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. Front Synaptic Neurosci 2023; 15:1130198. [PMID: 37008679 PMCID: PMC10050382 DOI: 10.3389/fnsyn.2023.1130198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.
Collapse
Affiliation(s)
- Nicole Hindley
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
| | - Anna Sanchez Avila
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Henstridge
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
48
|
Kapoor M, Chinnathambi S. TGF-β1 signalling in Alzheimer's pathology and cytoskeletal reorganization: a specialized Tau perspective. J Neuroinflammation 2023; 20:72. [PMID: 36915196 PMCID: PMC10012507 DOI: 10.1186/s12974-023-02751-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Microtubule-associated protein, Tau has been implicated in Alzheimer's disease for its detachment from microtubules and formation of insoluble intracellular aggregates within the neurons. Recent findings have suggested the expulsion of Tau seeds in the extracellular domain and their prion-like propagation between neurons. Transforming Growth Factor-β1 (TGF-β1) is a ubiquitously occurring cytokine reported to carry out immunomodulation and neuroprotection in the brain. TGF-β-mediated regulation occurs at the level of neuronal survival and differentiation, glial activation (astrocyte and microglia), amyloid production-distribution-clearance and neurofibrillary tangle formation, all of which contributes to Alzheimer's pathophysiology. Its role in the reorganization of cytoskeletal architecture and remodelling of extracellular matrix to facilitate cellular migration has been well-documented. Microglia are the resident immune sentinels of the brain responsible for surveying the local microenvironment, migrating towards the beacon of pertinent damage and phagocytosing the cellular debris or patho-protein deposits at the site of insult. Channelizing microglia to target extracellular Tau could be a good strategy to combat the prion-like transmission and seeding problem in Alzheimer's disease. The current review focuses on reaffirming the role of TGF-β1 signalling in Alzheimer's pathology and cytoskeletal reorganization and considers utilizing the approach of TGF-β-triggered microglia-mediated targeting of extracellular patho-protein, Tau, as a possible potential strategy to combat Alzheimer's disease.
Collapse
Affiliation(s)
- Mahima Kapoor
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008, Pune, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. .,Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
49
|
Arjmandi-Rad S, Ebrahimnejad M, Zarrindast MR, Vaseghi S. Do Sleep Disturbances have a Dual Effect on Alzheimer's Disease? Cell Mol Neurobiol 2023; 43:711-727. [PMID: 35568778 DOI: 10.1007/s10571-022-01228-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
Sleep disturbances and Alzheimer's disease have deleterious effects on various physiological and cognitive functions including synaptic plasticity, oxidative stress, neuroinflammation, and memory. In addition, clock genes expression is significantly altered following sleep disturbances, which may be involved in the pathogenesis of Alzheimer's disease. In this review article, we aimed to discuss the role of sleep disturbances and Alzheimer's disease in the regulation of synaptic plasticity, oxidative stress, neuroinflammation, and clock genes expression. Also, we aimed to find significant relationships between sleep disturbances and Alzheimer's disease in the modulation of these mechanisms. We referred to the controversial effects of sleep disturbances (particularly those related to the duration of sleep deprivation) on the modulation of synaptic function and neuroinflammation. We aimed to know that, do sleep disturbances have a dual effect on the progression of Alzheimer's disease? Although numerous studies have discussed the association between sleep disturbances and Alzheimer's disease, the new point of this study was to focus on the controversial effects of sleep disturbances on different biological functions, and to evaluate the potential dualistic role of sleep disturbances in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Shirin Arjmandi-Rad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, PO Box: 1419815477, Karaj, Iran.
| |
Collapse
|
50
|
Phospholipase D1 Attenuation Therapeutics Promotes Resilience against Synaptotoxicity in 12-Month-Old 3xTg-AD Mouse Model of Progressive Neurodegeneration. Int J Mol Sci 2023; 24:ijms24043372. [PMID: 36834781 PMCID: PMC9967100 DOI: 10.3390/ijms24043372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Abrogating synaptotoxicity in age-related neurodegenerative disorders is an extremely promising area of research with significant neurotherapeutic implications in tauopathies including Alzheimer's disease (AD). Our studies using human clinical samples and mouse models demonstrated that aberrantly elevated phospholipase D1 (PLD1) is associated with amyloid beta (Aβ) and tau-driven synaptic dysfunction and underlying memory deficits. While knocking out the lipolytic PLD1 gene is not detrimental to survival across species, elevated expression is implicated in cancer, cardiovascular conditions and neuropathologies, leading to the successful development of well-tolerated mammalian PLD isoform-specific small molecule inhibitors. Here, we address the importance of PLD1 attenuation, achieved using repeated 1 mg/kg of VU0155069 (VU01) intraperitoneally every alternate day for a month in 3xTg-AD mice beginning only from ~11 months of age (with greater influence of tau-driven insults) compared to age-matched vehicle (0.9% saline)-injected siblings. A multimodal approach involving behavior, electrophysiology and biochemistry corroborate the impact of this pre-clinical therapeutic intervention. VU01 proved efficacious in preventing in later stage AD-like cognitive decline affecting perirhinal cortex-, hippocampal- and amygdala-dependent behaviors. Glutamate-dependent HFS-LTP and LFS-LTD improved. Dendritic spine morphology showed the preservation of mushroom and filamentous spine characteristics. Differential PLD1 immunofluorescence and co-localization with Aβ were noted.
Collapse
|