1
|
Liu M, Long X, Fu S, Zhang Y, Liu Z, Xu X, Wu M. Mitochondrial DNA copy number and the risk of autoimmune diseases: A Mendelian randomization study with meta-analysis. J Transl Autoimmun 2024; 9:100251. [PMID: 39434801 PMCID: PMC11491893 DOI: 10.1016/j.jtauto.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Background Mitochondrial DNA plays a crucial role in the pathophysiology of autoimmune diseases (ADs). However, the association between mitochondrial DNA copy number (mtDNA-CN) and ADs risk is controversial. In this study, Mendelian randomization (MR) analysis and meta-analysis were performed using three sets of independent instrumental variables (IVs) to investigate the potential association between mtDNA-CN and 20 types of ADs. Methods The three sets of IVs were drawn primarily from participants in the UK Biobank and the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium using different methods. Outcome data for ADs were investigated using summary statistics from the FinnGen cohort. The potential causal associations were assessed using inverse-variance weighting (IVW), MR-Egger, and weighted median methods. Sensitivity analysis and the Steiger test were used to verify the robustness of the MR estimates. In addition, a meta-analysis was conducted to pool the results from three IV groups. Results Overall, genetically predicted mtDNA-CN was not associated with ADs risk (OR = 1.046, 95 % CI: 0.964-1.135, P = 0.283). However, subgroup analyses showed positive causal associations of mtDNA-CN with autoimmune hypothyroidism (OR = 1.133, 95 % CI: 1.016-1.262, P = 0.024) and rheumatoid arthritis (OR = 1.219, 95 % CI: 1.028-1.445, P = 0.023). In contrast, there was no causal association between mtDNA-CN and atopic dermatitis as well as psoriasis, ulcerative colitis, adult-onset Still disease, type1 diabetes, Crohn disease, sarcoidosis, ankylosing spondylitis, multiple sclerosis, autoimmune hyperthyroidism, primary sclerosing cholangitis, systemic lupus erythematosus, systemic sclerosis, alopecia areata, myasthenia gravis, Guillain-Barre syndrome, dermatopolymyositis, and vitiligo. Conclusions This MR analysis showed mtDNA-CN is causally associated with an increased risk of autoimmune hypothyroidism and rheumatoid arthritis at the genetic level. The findings have important implications for the use of mtDNA-CN as a biomarker for risk assessment of autoimmune hypothyroidism and rheumatoid arthritis in clinical practice.
Collapse
Affiliation(s)
- Mingzhu Liu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, 410005, China
| | - Xiongquan Long
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, 410005, China
| | - Shuangshuang Fu
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China
| | - Yuyang Zhang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, 410005, China
| | - Zihao Liu
- Department of Endoscopic Diagnosis and Treatment Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410005, China
| | - Xiaoping Xu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, 410005, China
| | - Minghao Wu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, 410005, China
| |
Collapse
|
2
|
Geng Q, Gao R, Sun Y, Chen S, Sun L, Li W, Li Z, Zhao Y, Zhao F, Zhang Y, Li A, Liu H. Mitochondrial DNA content and methylation in sperm of patients with asthenozoospermia. J Assist Reprod Genet 2024; 41:2795-2805. [PMID: 39190228 PMCID: PMC11535106 DOI: 10.1007/s10815-024-03236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
PURPOSE The aim of the current study was to investigate the mtDNA methylation levels and mtDNA copy numbers in the sperm of patients with asthenozoospermia and compare them to those observed in controls with normozoospermia. METHODS Pyrosequencing analysis of the methylation levels of the mitochondrial D-loop and MT-CO1/chr1:631,907-632083/chrX:26,471,887-126,472,063 (hereinafter referred to as "MT-CO1-AVG") region and quantitative PCR analysis of the mtDNA copy number were performed on sperm from 30 patients with asthenozoospermia and 30 controls with normozoospermia. RESULTS Compared with those of controls with normozoospermia, the methylation levels of D-loop and MT-CO1-AVG regions and mtDNA copy number were significantly higher in patients with asthenozoospermia. The methylation level of the D-loop region in patients with asthenozoospermia and controls with normozoospermia and that of MT-CO1-AVG region in patients with asthenozoospermia showed a decreasing tendency with increasing total sperm motility. A significant inverse correlation between the mtDNA copy number and total sperm motility was observed in patients with asthenozoospermia but not in controls with normozoospermia. In patients with asthenozoospermia, but not in controls with normozoospermia, we observed a significant inverse correlation between D-loop methylation levels and mtDNA copy number, while no significant correlation was observed between MT-CO1-AVG methylation levels and mtDNA copy number. CONCLUSION These results reveal the occurrence of mtDNA methylation in human sperm and altered D-loop and MT-CO1-AVG methylation levels in patients with asthenozoospermia. Additional research is needed to determine the function of these features in the etiology and course of asthenozoospermia.
Collapse
Affiliation(s)
- Qiang Geng
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruifang Gao
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China.
| | - Yuan Sun
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shaofeng Chen
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lili Sun
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Wei Li
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Zhong Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yu Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Zhao
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ying Zhang
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China
| | - Anwen Li
- Department of Andrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongbin Liu
- Department of Reproductive Medicine, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Tianjin, China.
- Health Commission of Heping District, Tianjin, China.
| |
Collapse
|
3
|
Ren P, Zhang J, Vijg J. Somatic mutations in aging and disease. GeroScience 2024; 46:5171-5189. [PMID: 38488948 PMCID: PMC11336144 DOI: 10.1007/s11357-024-01113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Time always leaves its mark, and our genome is no exception. Mutations in the genome of somatic cells were first hypothesized to be the cause of aging in the 1950s, shortly after the molecular structure of DNA had been described. Somatic mutation theories of aging are based on the fact that mutations in DNA as the ultimate template for all cellular functions are irreversible. However, it took until the 1990s to develop the methods to test if DNA mutations accumulate with age in different organs and tissues and estimate the severity of the problem. By now, numerous studies have documented the accumulation of somatic mutations with age in normal cells and tissues of mice, humans, and other animals, showing clock-like mutational signatures that provide information on the underlying causes of the mutations. In this review, we will first briefly discuss the recent advances in next-generation sequencing that now allow quantitative analysis of somatic mutations. Second, we will provide evidence that the mutation rate differs between cell types, with a focus on differences between germline and somatic mutation rate. Third, we will discuss somatic mutational signatures as measures of aging, environmental exposure, and activities of DNA repair processes. Fourth, we will explain the concept of clonally amplified somatic mutations, with a focus on clonal hematopoiesis. Fifth, we will briefly discuss somatic mutations in the transcriptome and in our other genome, i.e., the genome of mitochondria. We will end with a brief discussion of a possible causal contribution of somatic mutations to the aging process.
Collapse
Affiliation(s)
- Peijun Ren
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Zhang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jan Vijg
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
4
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
5
|
Stańczyk M, Szubart N, Maslanka R, Zadrag-Tecza R. Mitochondrial Dysfunctions: Genetic and Cellular Implications Revealed by Various Model Organisms. Genes (Basel) 2024; 15:1153. [PMID: 39336744 PMCID: PMC11431519 DOI: 10.3390/genes15091153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Mitochondria play a crucial role in maintaining the energy status and redox homeostasis of eukaryotic cells. They are responsible for the metabolic efficiency of cells, providing both ATP and intermediate metabolic products. They also regulate cell survival and death under stress conditions by controlling the cell response or activating the apoptosis process. This functional diversity of mitochondria indicates their great importance for cellular metabolism. Hence, dysfunctions of these structures are increasingly recognized as an element of the etiology of many human diseases and, therefore, an extremely promising therapeutic target. Mitochondrial dysfunctions can be caused by mutations in both nuclear and mitochondrial DNA, as well as by stress factors or replication errors. Progress in knowledge about the biology of mitochondria, as well as the consequences for the efficiency of the entire organism resulting from the dysfunction of these structures, is achieved through the use of model organisms. They are an invaluable tool for analyzing complex cellular processes, leading to a better understanding of diseases caused by mitochondrial dysfunction. In this work, we review the most commonly used model organisms, discussing both their advantages and limitations in modeling fundamental mitochondrial processes or mitochondrial diseases.
Collapse
Affiliation(s)
| | | | | | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (M.S.); (N.S.); (R.M.)
| |
Collapse
|
6
|
Zhou Q, Yi G, Chang M, Li N, Bai Y, Li H, Yao S. Activation of Sirtuin3 by honokiol ameliorates alveolar epithelial cell senescence in experimental silicosis via the cGAS-STING pathway. Redox Biol 2024; 74:103224. [PMID: 38865904 PMCID: PMC11215422 DOI: 10.1016/j.redox.2024.103224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Silicosis, characterized by interstitial lung inflammation and fibrosis, poses a significant health threat. ATII cells play a crucial role in alveolar epithelial repair and structural integrity maintenance. Inhibiting ATII cell senescence has shown promise in silicosis treatment. However, the mechanism behind silica-induced senescence remains elusive. METHODS The study employed male C57BL/6 N mice and A549 human alveolar epithelial cells to investigate silicosis and its potential treatment. Silicosis was induced in mice via intratracheal instillation of crystalline silica particles, with honokiol administered intraperitoneally for 14 days. Silica-induced senescence in A549 cells was confirmed, and SIRT3 knockout and overexpression cell lines were generated. Various analyses were conducted, including immunoblotting, qRT-PCR, histology, and transmission electron microscopy. Statistical significance was determined using one-way ANOVA with Tukey's post-hoc test. RESULTS This study elucidates how silica induces ATII cell senescence, emphasizing mtDNA damage. Notably, honokiol (HKL) emerges as a promising anti-senescence and anti-fibrosis agent, acting through sirt3. honokiol effectively attenuated senescence in ATII cells, dependent on sirt3 expression, while mitigating mtDNA damage. Sirt3, a class III histone deacetylase, regulates senescence and mitochondrial stress. HKL activates sirt3, protecting against pulmonary fibrosis and mitochondrial damage. Additionally, HKL downregulated cGAS expression in senescent ATII cells induced by silica, suggesting sirt3's role as an upstream regulator of the cGAS/STING signaling pathway. Moreover, honokiol treatment inhibited the activation of the NF-κB signaling pathway, associated with reduced oxidative stress and mtDNA damage. Notably, HKL enhanced the activity of SOD2, crucial for mitochondrial function, through sirt3-mediated deacetylation. Additionally, HKL promoted the deacetylation activity of sirt3, further safeguarding mtDNA integrity. CONCLUSIONS This study uncovers a natural compound, HKL, with significant anti-fibrotic properties through activating sirt3, shedding light on silicosis pathogenesis and treatment avenues.
Collapse
Affiliation(s)
- Qiang Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Guan Yi
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
| | - Meiyu Chang
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
| | - Yichun Bai
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Haibin Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
7
|
Cabané P, Correa C, Bode I, Aguilar R, Elorza AA. Biomarkers in Thyroid Cancer: Emerging Opportunities from Non-Coding RNAs and Mitochondrial Space. Int J Mol Sci 2024; 25:6719. [PMID: 38928426 PMCID: PMC11204084 DOI: 10.3390/ijms25126719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Thyroid cancer diagnosis primarily relies on imaging techniques and cytological analyses. In cases where the diagnosis is uncertain, the quantification of molecular markers has been incorporated after cytological examination. This approach helps physicians to make surgical decisions, estimate cancer aggressiveness, and monitor the response to treatments. Despite the availability of commercial molecular tests, their widespread use has been hindered in our experience due to cost constraints and variability between them. Thus, numerous groups are currently evaluating new molecular markers that ultimately will lead to improved diagnostic certainty, as well as better classification of prognosis and recurrence. In this review, we start reviewing the current preoperative testing methodologies, followed by a comprehensive review of emerging molecular markers. We focus on micro RNAs, long non-coding RNAs, and mitochondrial (mt) signatures, including mtDNA genes and circulating cell-free mtDNA. We envision that a robust set of molecular markers will complement the national and international clinical guides for proper assessment of the disease.
Collapse
Affiliation(s)
- Patricio Cabané
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Claudio Correa
- Department of Head and Neck Surgery, Clinica INDISA, Santiago 7520440, Chile; (P.C.); (C.C.)
- Faculty of Medicine, Universidad Andres Bello, Santiago 8370071, Chile
| | - Ignacio Bode
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile;
| |
Collapse
|
8
|
Sato R, Vatic M, Peixoto da Fonseca GW, Anker SD, von Haehling S. Biological basis and treatment of frailty and sarcopenia. Cardiovasc Res 2024:cvae073. [PMID: 38828887 DOI: 10.1093/cvr/cvae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/05/2024] Open
Abstract
In an ageing society, the importance of maintaining healthy life expectancy has been emphasized. As a result of age-related decline in functional reserve, frailty is a state of increased vulnerability and susceptibility to adverse health outcomes with a serious impact on healthy life expectancy. The decline in skeletal muscle mass and function, also known as sarcopenia, is key in the development of physical frailty. Both frailty and sarcopenia are highly prevalent in patients not only with advanced age but also in patients with illnesses that exacerbate their progression like heart failure (HF), cancer, or dementia, with the prevalence of frailty and sarcopenia in HF patients reaching up to 50-75% and 19.5-47.3%, respectively, resulting in 1.5-3 times higher 1-year mortality. The biological mechanisms of frailty and sarcopenia are multifactorial, complex, and not yet fully elucidated, ranging from DNA damage, proteostasis impairment, and epigenetic changes to mitochondrial dysfunction, cellular senescence, and environmental factors, many of which are further linked to cardiac disease. Currently, there is no gold standard for the treatment of frailty and sarcopenia, however, growing evidence supports that a combination of exercise training and nutritional supplement improves skeletal muscle function and frailty, with a variety of other therapies being devised based on the underlying pathophysiology. In this review, we address the involvement of frailty and sarcopenia in cardiac disease and describe the latest insights into their biological mechanisms as well as the potential for intervention through exercise, diet, and specific therapies.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Mirela Vatic
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Cerantonio A, Citrigno L, Greco BM, De Benedittis S, Passarino G, Maletta R, Qualtieri A, Montesanto A, Spadafora P, Cavalcanti F. The Role of Mitochondrial Copy Number in Neurodegenerative Diseases: Present Insights and Future Directions. Int J Mol Sci 2024; 25:6062. [PMID: 38892250 PMCID: PMC11172615 DOI: 10.3390/ijms25116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative diseases are progressive disorders that affect the central nervous system (CNS) and represent the major cause of premature death in the elderly. One of the possible determinants of neurodegeneration is the change in mitochondrial function and content. Altered levels of mitochondrial DNA copy number (mtDNA-CN) in biological fluids have been reported during both the early stages and progression of the diseases. In patients affected by neurodegenerative diseases, changes in mtDNA-CN levels appear to correlate with mitochondrial dysfunction, cognitive decline, disease progression, and ultimately therapeutic interventions. In this review, we report the main results published up to April 2024, regarding the evaluation of mtDNA-CN levels in blood samples from patients affected by Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). The aim is to show a probable link between mtDNA-CN changes and neurodegenerative disorders. Understanding the causes underlying this association could provide useful information on the molecular mechanisms involved in neurodegeneration and offer the development of new diagnostic approaches and therapeutic interventions.
Collapse
Affiliation(s)
- Annamaria Cerantonio
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Luigi Citrigno
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Beatrice Maria Greco
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, CZ, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, CZ, Italy
| | - Antonio Qualtieri
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Patrizia Spadafora
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| | - Francesca Cavalcanti
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), 87050 Mangone, CS, Italy; (A.C.); (P.S.)
| |
Collapse
|
10
|
Minko I, Luzadder M, Vartanian V, Rice SM, Nguyen M, Sanchez-Contreras M, Van P, Kennedy S, McCullough A, Lloyd R. Frequencies and spectra of aflatoxin B 1-induced mutations in liver genomes of NEIL1-deficient mice as revealed by duplex sequencing. NAR MOLECULAR MEDICINE 2024; 1:ugae006. [PMID: 38779538 PMCID: PMC11105970 DOI: 10.1093/narmme/ugae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Increased risk for the development of hepatocellular carcinoma (HCC) is driven by a number of etiological factors including hepatitis viral infection and dietary exposures to foods contaminated with aflatoxin-producing molds. Intracellular metabolic activation of aflatoxin B1 (AFB1) to a reactive epoxide generates highly mutagenic AFB1-Fapy-dG adducts. Previously, we demonstrated that repair of AFB1-Fapy-dG adducts can be initiated by the DNA glycosylase NEIL1 and that male Neil1-/- mice were significantly more susceptible to AFB1-induced HCC relative to wild-type mice. To investigate the mechanisms underlying this enhanced carcinogenesis, WT and Neil1-/- mice were challenged with a single, 4 mg/kg dose of AFB1 and frequencies and spectra of mutations were analyzed in liver DNAs 2.5 months post-injection using duplex sequencing. The analyses of DNAs from AFB1-challenged mice revealed highly elevated mutation frequencies in the nuclear genomes of both males and females, but not the mitochondrial genomes. In both WT and Neil1-/- mice, mutation spectra were highly similar to the AFB1-specific COSMIC signature SBS24. Relative to wild-type, the NEIL1 deficiency increased AFB1-induced mutagenesis with concomitant elevated HCCs in male Neil1-/- mice. Our data establish a critical role of NEIL1 in limiting AFB1-induced mutagenesis and ultimately carcinogenesis.
Collapse
Affiliation(s)
- Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Michael M Luzadder
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Vladimir L Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Sean P M Rice
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- School of Public Health, Oregon Health & Science University - Portland State University, Portland, OR, USA
| | - Megan M Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Phu Van
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
11
|
Sprason C, Tucker T, Clancy D. MtDNA deletions and aging. FRONTIERS IN AGING 2024; 5:1359638. [PMID: 38425363 PMCID: PMC10902006 DOI: 10.3389/fragi.2024.1359638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Aging is the major risk factor in most of the leading causes of mortality worldwide, yet its fundamental causes mostly remain unclear. One of the clear hallmarks of aging is mitochondrial dysfunction. Mitochondria are best known for their roles in cellular energy generation, but they are also critical biosynthetic and signaling organelles. They also undergo multiple changes with organismal age, including increased genetic errors in their independent, circular genome. A key group of studies looking at mice with increased mtDNA mutations showed that premature aging phenotypes correlated with increased deletions but not point mutations. This generated an interest in mitochondrial deletions as a potential fundamental cause of aging. However, subsequent studies in different models have yielded diverse results. This review summarizes the research on mitochondrial deletions in various organisms to understand their possible roles in causing aging while identifying the key complications in quantifying deletions across all models.
Collapse
Affiliation(s)
| | | | - David Clancy
- Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
12
|
Chen PX, Zhang L, Chen D, Tian Y. Mitochondrial stress and aging: Lessons from C. elegans. Semin Cell Dev Biol 2024; 154:69-76. [PMID: 36863917 DOI: 10.1016/j.semcdb.2023.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Aging is accompanied by a progressive decline in mitochondrial function, which in turn contributes to a variety of age-related diseases. Counterintuitively, a growing number of studies have found that disruption of mitochondrial function often leads to increased lifespan. This seemingly contradictory observation has inspired extensive research into genetic pathways underlying the mitochondrial basis of aging, particularly within the model organism Caenorhabditis elegans. The complex and antagonistic roles of mitochondria in the aging process have altered the view of mitochondria, which not only serve as simple bioenergetic factories but also as signaling platforms for the maintenance of cellular homeostasis and organismal health. Here, we review the contributions of C. elegans to our understanding of mitochondrial function in the aging process over the past decades. In addition, we explore how these insights may promote future research of mitochondrial-targeted strategies in higher organisms to potentially slow aging and delay age-related disease progression.
Collapse
Affiliation(s)
- Peng X Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Leyuan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Di Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, 12 Xuefu Rd, Pukou, Nanjing, Jiangsu 210061, China.
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
13
|
Venkatesan D, Iyer M, Narayanasamy A, Gopalakrishnan AV, Vellingiri B. Plausible Role of Mitochondrial DNA Copy Number in Neurodegeneration-a Need for Therapeutic Approach in Parkinson's Disease (PD). Mol Neurobiol 2023; 60:6992-7008. [PMID: 37523043 DOI: 10.1007/s12035-023-03500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Parkinson's disease (PD) is an advancing age-associated progressive brain disorder which has various diverse factors, among them mitochondrial dysfunction involves in dopaminergic (DA) degeneration. Aging causes a rise in mitochondrial abnormalities which leads to structural and functional modifications in neuronal activity and cell death in PD. This ends in deterioration of mitochondrial function, mitochondrial alterations, mitochondrial DNA copy number (mtDNA CN) and oxidative phosphorylation (OXPHOS) capacity. mtDNA levels or mtDNA CN in PD have reported that mtDNA depletion would be a predisposing factor in PD pathogenesis. To maintain the mtDNA levels, therapeutic approaches have been focused on mitochondrial biogenesis in PD. The depletion of mtDNA levels in PD can be influenced by autophagic dysregulation, apoptosis, neuroinflammation, oxidative stress, sirtuins, and calcium homeostasis. The current review describes the regulation of mtDNA levels and discusses the plausible molecular pathways in mtDNA CN depletion in PD pathogenesis. We conclude by suggesting further research on mtDNA depletion which might show a promising effect in predicting and diagnosing PD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - Balachandar Vellingiri
- Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
14
|
Si W, Ni Y, Jiang Q, Tan L, Sparagano O, Li R, Yang G. Nanopore sequencing identifies differentially methylated genes in the central nervous system in experimental autoimmune encephalomyelitis. J Neuroimmunol 2023; 381:578134. [PMID: 37364516 DOI: 10.1016/j.jneuroim.2023.578134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune-mediated demyelinating disease of the central nervous system (CNS) that might be triggered by aberrant epigenetic changes in the genome. DNA methylation is the most studied epigenetic mechanism that participates in MS pathogenesis. However, the overall methylation level in the CNS of MS patients remains elusive. We used direct long-read nanopore DNA sequencing and characterized the differentially methylated genes in the brain from mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We identified 163 hypomethylated promoters and 327 hypermethylated promoters. These genomic alterations were linked to various biological processes including metabolism, immune responses, neural activities, and mitochondrial dynamics, all of which are vital for EAE development. Our results indicate a great potential of nanopore sequencing in identifying genomic DNA methylation in EAE and provide important guidance for future studies investigating the MS/EAE pathology.
Collapse
Affiliation(s)
- Wen Si
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Ying Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Lu Tan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China.
| |
Collapse
|
15
|
Abstract
According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, California, USA;
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, California, USA;
| |
Collapse
|
16
|
Zhang C, Wang Y, Chen H, Huang J. Comparative Mitochondrial Genomes between the Genera Amiota and Phortica (Diptera: Drosophilidae) with Evolutionary Insights into D-Loop Sequence Variability. Genes (Basel) 2023; 14:1240. [PMID: 37372420 DOI: 10.3390/genes14061240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
To address the limited number of mitochondrial genomes (mitogenomes) in the subfamily Steganinae (Diptera: Drosophilidae), we assembled 12 complete mitogenomes for six representative species in the genus Amiota and six representative species in the genus Phortica. We performed a series of comparative and phylogenetic analyses for these 12 Steganinae mitogenomes, paying special attention to the commonalities and differences in the D-loop sequences. Primarily determined by the lengths of the D-loop regions, the sizes of the Amiota and Phortica mitogenomes ranged from 16,143-16,803 bp and 15,933-16,290 bp, respectively. Our results indicated that the sizes of genes and intergenic nucleotides (IGNs), codon usage and amino acid usage, compositional skewness levels, evolutionary rates of protein-coding genes (PCGs), and D-loop sequence variability all showed unambiguous genus-specific characteristics and provided novel insights into the evolutionary implications between and within Amiota and Phortica. Most of the consensus motifs were found downstream of the D-loop regions, and some of them showed distinct genus-specific patterns. In addition, the D-loop sequences were phylogenetically informative as the data sets of PCGs and/or rRNAs, especially within the genus Phortica.
Collapse
Affiliation(s)
- Caihong Zhang
- Department of Entomology, South China Agricultural University, 483 Wushan-Lu, Guangzhou 510642, China
| | - Yalian Wang
- Department of Entomology, South China Agricultural University, 483 Wushan-Lu, Guangzhou 510642, China
| | - Hongwei Chen
- Department of Entomology, South China Agricultural University, 483 Wushan-Lu, Guangzhou 510642, China
| | - Jia Huang
- Department of Entomology, South China Agricultural University, 483 Wushan-Lu, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
17
|
Peñaherrera S, Ruiz C, Castañeda V, Livingston K, Barba D, Burzio VA, Caicedo A, Singh KK. Exploring the role of mitochondria transfer/transplant and their long-non-coding RNAs in regenerative therapies for skin aging. Mitochondrion 2023; 70:41-53. [PMID: 36921832 PMCID: PMC10400337 DOI: 10.1016/j.mito.2023.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.
Collapse
Affiliation(s)
- Sebastian Peñaherrera
- Biotecnología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Kathryn Livingston
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Purdue University, Weldon School of Biomedical Engineering, Indiana, United States
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica A Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
O’Neill KN, Aubrey E, Howe LD, Stergiakouli E, Rodriguez S, Kearney PM, O’Keeffe LM. Mitochondrial DNA haplogroups and trajectories of cardiometabolic risk factors during childhood and adolescence: A prospective cohort study. PLoS One 2023; 18:e0284226. [PMID: 37043466 PMCID: PMC10096512 DOI: 10.1371/journal.pone.0284226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Mitochondria are organelles responsible for converting glucose into energy. Mitochondrial DNA is exclusively maternally inherited. The role of mitochondrial DNA haplogroups in the aetiology of cardiometabolic disease risk is not well understood. METHODS Sex-specific associations between common European mitochondrial DNA haplogroups (H, U, J, T, K, V, W, I and X) and trajectories of cardiometabolic risk factors from birth to 18 years were examined in a prospective cohort. Cardiometabolic risk factors measured from birth/mid-childhood to 18 years included body mass index (BMI), fat and lean mass, systolic and diastolic blood pressure, pulse rate, high-density lipoprotein cholesterol (HDL-c), non-HDL-c and triglycerides. Fractional polynomial and linear spline multilevel models explored the sex-specific association between haplogroups and risk factor trajectories. RESULTS Among a total of 7,954 participants with 79,178 repeated measures per outcome, we found no evidence that haplogroups U, T, J, K and W were associated with cardiometabolic risk factors compared to haplogroup H. In females, haplogroup V was associated with 4.0% (99% CI: -7.5, -0.6) lower BMI at age one but associations did not persist at age 18. Haplogroup X was associated with 1.3kg (99% CI: -2.5, -0.2) lower lean mass at age 9 which persisted at 18. Haplogroup V and X were associated with 9.3% (99% CI: -0.4, 19.0) and 16.4% (99% CI: -0.5,33.3) lower fat mass at age 9, respectively, although confidence intervals spanned the null and associations did not persist at 18. In males, haplogroup I was associated with 2.4% (99% CI: -0.5, 5.3) higher BMI at age 7; widening to 5.1% (99% CI: -0.5, 10.6) at 18 with confidence intervals spanning the null. CONCLUSIONS Our study demonstrated little evidence of sex-specific associations between mitochondrial DNA haplogroups and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Kate N. O’Neill
- School of Public Health, University College Cork, Cork, Ireland
| | - Emily Aubrey
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | - Laura D. Howe
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | | | - Linda M. O’Keeffe
- School of Public Health, University College Cork, Cork, Ireland
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| |
Collapse
|
19
|
Manna S, Mc Elwain CJ, Maher GM, Giralt Martín M, Musumeci A, McCarthy FP, McCarthy C. Heterogenous Differences in Cellular Senescent Phenotypes in Pre-Eclampsia and IUGR following Quantitative Assessment of Multiple Biomarkers of Senescence. Int J Mol Sci 2023; 24:ijms24043101. [PMID: 36834513 PMCID: PMC9963163 DOI: 10.3390/ijms24043101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
Premature ageing of the placenta in pregnancy outcomes is associated with the persistent presence of oxidative stress and placental insufficiency reducing its functional capacity. In this study, we investigated cellular senescence phenotypes of pre-eclampsia and IUGR pregnancies by simultaneously measuring several biomarkers of senescence. Maternal plasma and placental samples were collected at term gestation from nulliparous women undergoing pre-labour elective caesarean section with pre-eclampsia without intrauterine growth restriction (PE; n = 5), pre-eclampsia associated with intrauterine growth restriction (n = 8), intrauterine growth restriction (IUGR < 10th centile; n = 6), and age-matched controls (n = 20). Placental absolute telomere length and senescence gene analysis was performed by RTqPCR. The expression of cyclin-dependent kinase inhibitors (p21 and p16) was determined by Western blot. Senescence-associated secretory phenotypes (SASPs) were evaluated in maternal plasma by multiplex ELISA assay. Placental expression of senescence-associated genes showed significant increases in CHEK1, PCNA, PTEN, CDKN2A, and CCNB-1 (p < 0.05) in pre-eclampsia, while TBX-2, PCNA, ATM, and CCNB-1 expression were evident (p < 0.05) and were significantly decreased in IUGR compared with controls. Placental p16 protein expression was significantly decreased in pre-eclampsia only compared with controls (p = 0.028). IL-6 was significantly increased in pre-eclampsia (0.54 pg/mL ± 0.271 vs. 0.3 pg/mL ± 0.102; p = 0.017) while IFN-γ was significantly increased in IUGR (4.6 pg/mL ± 2.2 vs. 2.17 pg/mL ± 0.8; p = 0.002) compared with controls. These results provide evidence of premature senescence in IUGR pregnancies, and while cell cycle checkpoint regulators are activated in pre-eclampsia, the cellular phenotype is one of cell repair and subsequent proliferation rather than progression to senescence. The heterogeneity of these cellular phenotypes highlights the complexity of characterising cellular senescence and may equally be indicative of the differing pathophysiological insults unique to each obstetric complication.
Collapse
Affiliation(s)
- Samprikta Manna
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, T12 YE02 Cork, Ireland
- INFANT Research Centre, University College Cork, T12 K8AF Cork, Ireland
| | - Colm J. Mc Elwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Gillian M. Maher
- INFANT Research Centre, University College Cork, T12 K8AF Cork, Ireland
- School of Public Health, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Marta Giralt Martín
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Andrea Musumeci
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, T12 YE02 Cork, Ireland
- INFANT Research Centre, University College Cork, T12 K8AF Cork, Ireland
- Correspondence:
| | - Cathal McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| |
Collapse
|
20
|
Varghese LN, Schwenke DO, Katare R. Role of noncoding RNAs in cardiac ageing. Front Cardiovasc Med 2023; 10:1142575. [PMID: 37034355 PMCID: PMC10073704 DOI: 10.3389/fcvm.2023.1142575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The global population is estimated to reach 9.8 billion by 2050, of which 2.1 billion will comprise individuals above 60 years of age. As the number of elderly is estimated to double from 2017, it is a victory of the modern healthcare system but also worrisome as ageing, and the onset of chronic disease are correlated. Among other chronic conditions, cardiovascular diseases (CVDs) are the leading cause of death in the aged population. While the underlying cause of the age-associated development of CVDs is not fully understood, studies indicate the role of non-coding RNAs such as microRNAs (miRNAs) and long noncoding RNAs (lnc-RNAs) in the development of age-associated CVDs. miRNAs and lnc-RNAs are non-coding RNAs which control gene expression at the post-transcriptional level. The expression of specific miRNAs and lnc-RNAs are reportedly dysregulated with age, leading to cardiovascular system changes and ultimately causing CVDs. Since miRNAs and lnc-RNAs play several vital roles in maintaining the normal functioning of the cardiovascular system, they are also being explored for their therapeutic potential as a treatment for CVDs. This review will first explore the pathophysiological changes associated with ageing. Next, we will review the known mechanisms underlying the development of CVD in ageing with a specific focus on miRNA and lnc-RNAs. Finally, we will discuss the therapeutic options and future challenges towards healthy cardiac ageing. With the global ageing population on the rise, this review will provide a fundamental understanding of some of the underlying molecular mechanisms of cardiac ageing.
Collapse
|
21
|
Approaches to Mitigate Mitochondrial Dysfunction in Sensorineural Hearing Loss. Ann Biomed Eng 2022; 50:1762-1770. [PMID: 36369597 DOI: 10.1007/s10439-022-03103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
Mitochondria are highly dynamic multifaceted organelles with various functions including cellular energy metabolism, reactive oxygen species (ROS) generation, calcium homeostasis, and apoptosis. Because of these diverse functions, mitochondria are key regulators of cell survival and death, and their dysfunction is implicated in numerous diseases, particularly neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. One of the most common neurodegenerative disorders is sensorineural hearing loss (SNHL). SNHL primarily originates from the degenerative changes in the cochlea, which is the auditory portion of the inner ear. Many cochlear cells contain an abundance of mitochondria and are metabolically highly active, rendering them susceptible to mitochondrial dysfunction. Indeed, the causal role of mitochondrial dysfunction in SNHL progression is well established, and therefore, targeted for treatment. In this review, we aim to compile the emerging findings in the literature indicating the role of mitochondrial dysfunction in the progression of sensorineural hearing loss and highlight potential therapeutics targeting mitochondrial dysfunction for hearing loss treatment.
Collapse
|
22
|
ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1225578. [PMID: 36312897 PMCID: PMC9605829 DOI: 10.1155/2022/1225578] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) are bioproducts of cellular metabolism. There is a range of molecules with oxidizing properties known as ROS. Despite those molecules being implied negatively in aging and numerous diseases, their key role in cellular signaling is evident. ROS control several biological processes such as inflammation, proliferation, and cell death. The redox signaling underlying these cellular events is one characteristic of the new generation of scientists aimed at defining the role of ROS in the cellular environment. The control of redox potential, which includes the balance of the sources of ROS and the antioxidant system, implies an important target for understanding the cells' fate derived from redox signaling. In this review, we summarized the chemical, the redox balance, the signaling, and the implications of ROS in biological aging.
Collapse
|
23
|
Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022; 15:974480. [PMID: 36157077 PMCID: PMC9489860 DOI: 10.3389/fnmol.2022.974480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are essential organelles for neuronal function and cell survival. Besides the well-known bioenergetics, additional mitochondrial roles in calcium signaling, lipid biogenesis, regulation of reactive oxygen species, and apoptosis are pivotal in diverse cellular processes. The mitochondrial proteome encompasses about 1,500 proteins encoded by both the nuclear DNA and the maternally inherited mitochondrial DNA. Mutations in the nuclear or mitochondrial genome, or combinations of both, can result in mitochondrial protein deficiencies and mitochondrial malfunction. Therefore, mitochondrial quality control by proteins involved in various surveillance mechanisms is critical for neuronal integrity and viability. Abnormal proteins involved in mitochondrial bioenergetics, dynamics, mitophagy, import machinery, ion channels, and mitochondrial DNA maintenance have been linked to the pathogenesis of a number of neurological diseases. The goal of this review is to give an overview of these pathways and to summarize the interconnections between mitochondrial protein dysfunction and neurological diseases.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyun Yang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China
- Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13:892749. [PMID: 36035464 PMCID: PMC9411786 DOI: 10.3389/fphys.2022.892749] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia, a disorder characterized by age-related muscle loss and reduced muscle strength, is associated with decreased individual independence and quality of life, as well as a high risk of death. Skeletal muscle houses a normally mitotically quiescent population of adult stem cells called muscle satellite cells (MuSCs) that are responsible for muscle maintenance, growth, repair, and regeneration throughout the life cycle. Patients with sarcopenia are often exhibit dysregulation of MuSCs homeostasis. In this review, we focus on the etiology, assessment, and treatment of sarcopenia. We also discuss phenotypic and regulatory mechanisms of MuSC quiescence, activation, and aging states, as well as the controversy between MuSC depletion and sarcopenia. Finally, we give a multi-dimensional treatment strategy for sarcopenia based on improving MuSC function.
Collapse
Affiliation(s)
- Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Hailiang Liu,
| |
Collapse
|
25
|
Castañeda V, Haro-Vinueza A, Salinas I, Caicedo A, Méndez MÁ. The MitoAging Project: Single nucleotide polymorphisms (SNPs) in mitochondrial genes and their association to longevity. Mitochondrion 2022; 66:13-26. [PMID: 35817296 DOI: 10.1016/j.mito.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Mitochondrial dysfunction is a major hallmark of aging. Mitochondrial DNA (mtDNA) mutations (inherited or acquired) may cause a malfunction of the respiratory chain (RC), and thus negatively affect cell metabolism and function. In contrast, certain mtDNA single nucleotide polymorphisms (SNPs) may be beneficial to mitochondrial electron transport chain function and the extension of cellular health as well as lifespan. The goal of the MitoAging project is to detect key physiological characteristics and mechanisms that improve mitochondrial function and use them to develop therapies to increase longevity and a healthy lifespan. We chose to perform a systematic literature review (SLR) as a tool to collect key mtDNA SNPs associated with an increase in lifespan. Then validated our results by comparing them to the MitoMap database. Next, we assessed the effect of relevant SNPs on protein stability. A total of 28 SNPs were found in protein coding regions. These SNPs were reported in Japan, China, Turkey, and India. Among the studied SNPs, the C5178A mutation in the ND2 gene of Complex I of the RC was detected in all the reviewed reports except in Uygur Chinese centenarians. Then, we found that G9055A (ATP6 gene) and A10398G (ND3 gene) polymorphisms have been associated with a protective effect against Parkinson's disease (PD). Additionally, C8414T in ATP8 was significantly associated with longevity in three Japanese reports. Interestingly, using MitoMap we found that G9055A (ATP6 gene) was the only SNP promoting longevity not associated with any pathology. The identification of SNPs associated with an increase in lifespan opens the possibility to better understand individual differences regarding a decrease in illness susceptibility and find strategies that contribute to healthy aging.
Collapse
Affiliation(s)
- Verónica Castañeda
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Alissen Haro-Vinueza
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Ivonne Salinas
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Escuela de Medicina, Colegio de Ciencias de la Salud COCSA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador.
| | - Miguel Ángel Méndez
- Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Grupo de Química Computacional y Teórica, Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Politécnico, Universidad San Francisco de Quito, Quito, Ecuador.
| |
Collapse
|
26
|
Jiang P, Zhu T, Liu J, Tao X, Xue Z, Tao Y, Chen H, Zeng X, Zhu W, Shu Q, Yu L. Mitochondrial DNA variants spectrum and the association with chronic Tic disorders. Eur J Neurol 2022; 29:3187-3196. [PMID: 35781907 DOI: 10.1111/ene.15484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tic disorders (TD) are childhood-onset neuropsychiatric disorders characterized by single or multiple sudden, rapid, recurrent, and motor tics and/or vocal tics. Several nuclear genes that involved in mitochondrial functions suggest potential role of mitochondria in tic deficit. METHODS To evaluate the association of mitochondrial DNA (mtDNA) variants with Tic disorders, we screened the whole mitochondrial genomes in 493 TD patients and 109 age- and sex matched healthy controls using next-generation sequencing technology. RESULTS A total of 1918 mtDNA variants including 1220 variants in patients only, 154 variants in controls only, and 544 variants shared by both cases and controls were identified. We found higher number of overall mtDNA variants in TD patients (P =0.00028). The variant density in MT-ATP6/8 and MT-CYB coding regions had significant difference between TD patients and controls (P=0.0025 and P=0.003, respectively). Furthermore, we observed a significant association of 15 common variants with TD based on additive model, including m.14766C>T, m.14783T>C, m.14905G>A, and m.15301G>A in MT-CYB; m.4769A>G, m.10398A>G, m.12705C>T, and m.12850A>G in MT-ND genes; m.7028C>T in MT-CO1; m.8701A>G in MT-ATP6; two noncoding variants with m.16223C>T, m.5580T>C; and three rRNA variants with m.1438A>G and m.750A>G in RNR1, and m.2352T>C in RNR2. CONCLUSIONS Our data provide the evidence of mtDNA variants associated with tic disorders. The accumulation of the heteroplasmic levels may increase the risk of TD. Replication studies with larger samples are necessary to understand the pathogenesis of TD.
Collapse
Affiliation(s)
- Peifang Jiang
- Department of Neurology at The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajing Liu
- Department of Neurology at The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaohan Tao
- Department of Neurology at The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ziru Xue
- Department of Neurology at The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yiling Tao
- Department of Neurology at The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hongyu Chen
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaojing Zeng
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weiyi Zhu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lan Yu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
27
|
Wasner K, Smajic S, Ghelfi J, Delcambre S, Prada-Medina CA, Knappe E, Arena G, Mulica P, Agyeah G, Rakovic A, Boussaad I, Badanjak K, Ohnmacht J, Gérardy JJ, Takanashi M, Trinh J, Mittelbronn M, Hattori N, Klein C, Antony P, Seibler P, Spielmann M, Pereira SL, Grünewald A. Parkin Deficiency Impairs Mitochondrial DNA Dynamics and Propagates Inflammation. Mov Disord 2022; 37:1405-1415. [PMID: 35460111 DOI: 10.1002/mds.29025] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/07/2022] [Accepted: 03/27/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional mitochondria. New mitochondria are generated through an interplay of nuclear- and mitochondrial-encoded proteins, and recent studies suggest that parkin influences this process at both levels. In addition, parkin was shown to prevent mitochondrial membrane permeability, impeding mitochondrial DNA (mtDNA) escape and subsequent neuroinflammation. However, parkin's regulatory roles independent of mitophagy are not well described in patient-derived neurons. OBJECTIVES We sought to investigate parkin's role in preventing neuronal mtDNA dyshomeostasis, release, and glial activation at the endogenous level. METHODS We generated induced pluripotent stem cell (iPSC)-derived midbrain neurons from PD patients with parkin (PRKN) mutations and healthy controls. Live-cell imaging, proteomic, mtDNA integrity, and gene expression analyses were employed to investigate mitochondrial biogenesis and genome maintenance. To assess neuroinflammation, we performed single-nuclei RNA sequencing in postmortem tissue and quantified interleukin expression in mtDNA/lipopolysaccharides (LPS)-treated iPSC-derived neuron-microglia co-cultures. RESULTS Neurons from patients with PRKN mutations revealed deficits in the mitochondrial biogenesis pathway, resulting in mtDNA dyshomeostasis. Moreover, the energy sensor sirtuin 1, which controls mitochondrial biogenesis and clearance, was downregulated in parkin-deficient cells. Linking mtDNA disintegration to neuroinflammation, in postmortem midbrain with PRKN mutations, we confirmed mtDNA dyshomeostasis and detected an upregulation of microglia overexpressing proinflammatory cytokines. Finally, parkin-deficient neuron-microglia co-cultures elicited an enhanced immune response when exposed to mtDNA/LPS. CONCLUSIONS Our findings suggest that parkin coregulates mitophagy, mitochondrial biogenesis, and mtDNA maintenance pathways, thereby protecting midbrain neurons from neuroinflammation and degeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kobi Wasner
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | - Semra Smajic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | | | - Evelyn Knappe
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | - Patrycja Mulica
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | - Gideon Agyeah
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | | | - Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette.,Disease Modeling and Screening Platform, Luxembourg Centre of Systems Biomedicine, University of Luxembourg & Luxembourg Institute of Health, Luxembourg
| | - Katja Badanjak
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette
| | - Jochen Ohnmacht
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette.,Department of Life Science and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-Jacques Gérardy
- National Center of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg
| | | | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette.,National Center of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg.,Luxembourg Center of Neuropathology, Dudelange, Luxembourg.,Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette.,Disease Modeling and Screening Platform, Luxembourg Centre of Systems Biomedicine, University of Luxembourg & Luxembourg Institute of Health, Luxembourg
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette.,Department of Neurology, Juntendo University, Tokyo, Japan
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
28
|
Abstract
Mitochondria are the main source of energy used to maintain cellular homeostasis. This aspect of mitochondrial biology underlies their putative role in age-associated tissue dysfunction. Proper functioning of the electron transport chain (ETC), which is partially encoded by the extra-nuclear mitochondrial genome (mtDNA), is key to maintaining this energy production. The acquisition of de novo somatic mutations that interrupt the function of the ETC have long been associated with aging and common diseases of the elderly. Yet, despite over 30 years of study, the exact role(s) mtDNA mutations play in driving aging and its associated pathologies remains under considerable debate. Furthermore, even fundamental aspects of age-related mtDNA mutagenesis, such as when mutations arise during aging, where and how often they occur across tissues, and the specific mechanisms that give rise to them, remain poorly understood. In this review, we address the current understanding of the somatic mtDNA mutations, with an emphasis of when, where, and how these mutations arise during aging. Additionally, we highlight current limitations in our knowledge and critically evaluate the controversies stemming from these limitations. Lastly, we highlight new and emerging technologies that offer potential ways forward in increasing our understanding of somatic mtDNA mutagenesis in the aging process.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
29
|
León BE, Kang S, Franca-Solomon G, Shang P, Choi DS. Alcohol-Induced Neuroinflammatory Response and Mitochondrial Dysfunction on Aging and Alzheimer's Disease. Front Behav Neurosci 2022; 15:778456. [PMID: 35221939 PMCID: PMC8866940 DOI: 10.3389/fnbeh.2021.778456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Mitochondria are essential organelles central to various cellular functions such as energy production, metabolic pathways, signaling transduction, lipid biogenesis, and apoptosis. In the central nervous system, neurons depend on mitochondria for energy homeostasis to maintain optimal synaptic transmission and integrity. Deficiencies in mitochondrial function, including perturbations in energy homeostasis and mitochondrial dynamics, contribute to aging, and Alzheimer's disease. Chronic and heavy alcohol use is associated with accelerated brain aging, and increased risk for dementia, especially Alzheimer's disease. Furthermore, through neuroimmune responses, including pro-inflammatory cytokines, excessive alcohol use induces mitochondrial dysfunction. The direct and indirect alcohol-induced neuroimmune responses, including pro-inflammatory cytokines, are critical for the relationship between alcohol-induced mitochondrial dysfunction. In the brain, alcohol activates microglia and increases inflammatory mediators that can impair mitochondrial energy production, dynamics, and initiate cell death pathways. Also, alcohol-induced cytokines in the peripheral organs indirectly, but synergistically exacerbate alcohol's effects on brain function. This review will provide recent and advanced findings focusing on how alcohol alters the aging process and aggravates Alzheimer's disease with a focus on mitochondrial function. Finally, we will contextualize these findings to inform clinical and therapeutic approaches towards Alzheimer's disease.
Collapse
Affiliation(s)
- Brandon Emanuel León
- Regenerative Sciences Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Shinwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Gabriela Franca-Solomon
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Pei Shang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
30
|
Eaglesfield R, Tokatlidis K. Targeting and Insertion of Membrane Proteins in Mitochondria. Front Cell Dev Biol 2022; 9:803205. [PMID: 35004695 PMCID: PMC8740019 DOI: 10.3389/fcell.2021.803205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial membrane proteins play an essential role in all major mitochondrial functions. The respiratory complexes of the inner membrane are key for the generation of energy. The carrier proteins for the influx/efflux of essential metabolites to/from the matrix. Many other inner membrane proteins play critical roles in the import and processing of nuclear encoded proteins (∼99% of all mitochondrial proteins). The outer membrane provides another lipidic barrier to nuclear-encoded protein translocation and is home to many proteins involved in the import process, maintenance of ionic balance, as well as the assembly of outer membrane components. While many aspects of the import and assembly pathways of mitochondrial membrane proteins have been elucidated, many open questions remain, especially surrounding the assembly of the respiratory complexes where certain highly hydrophobic subunits are encoded by the mitochondrial DNA and synthesised and inserted into the membrane from the matrix side. This review will examine the various assembly pathways for inner and outer mitochondrial membrane proteins while discussing the most recent structural and biochemical data examining the biogenesis process.
Collapse
Affiliation(s)
- Ross Eaglesfield
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Scotland, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Scotland, United Kingdom
| |
Collapse
|
31
|
Huang Y, Shen Z, Huang C, Lin C, Tsai T. Cisd2 slows down liver aging and attenuates age-related metabolic dysfunction in male mice. Aging Cell 2021; 20:e13523. [PMID: 34811857 PMCID: PMC8672792 DOI: 10.1111/acel.13523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/18/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The liver plays a pivotal role in mammalian aging. However, the mechanisms underlying liver aging remain unclear. Cisd2 is a pro‐longevity gene in mice. Cisd2 mediates lifespan and healthspan via regulation of calcium homeostasis and mitochondrial functioning. Intriguingly, the protein level of Cisd2 is significantly decreased by about 50% in the livers of old male mice. This down‐regulation of Cisd2 may result in the aging liver exhibiting non‐alcoholic fatty liver disease (NAFLD) phenotype. Here, we use Cisd2 transgenic mice to investigate whether maintaining Cisd2 protein at a persistently high level is able to slow down liver aging. Our study identifies four major discoveries. Firstly, that Cisd2 expression attenuates age‐related dysregulation of lipid metabolism and other pathological abnormalities. Secondly, revealed by RNA sequencing analysis, the livers of old male mice undergo extensive transcriptomic alterations, and these are associated with steatosis, hepatitis, fibrosis, and xenobiotic detoxification. Intriguingly, a youthful transcriptomic profile, like that of young 3‐month‐old mice, was found in old Cisd2 transgenic male mice at 26 months old. Thirdly, Cisd2 suppresses the age‐associated dysregulation of various transcription regulators (Nrf2, IL‐6, and Hnf4a), which keeps the transcriptional network in a normal pattern. Finally, a high level of Cisd2 protein protects the liver from oxidative stress, and this is associated with a reduction in mitochondrial DNA deletions. These findings demonstrate that Cisd2 is a promising target for the development of therapeutic agents that, by bringing about an effective enhancement of Cisd2 expression, will slow down liver aging.
Collapse
Affiliation(s)
- Yi‐Long Huang
- Department of Life Sciences and Institute of Genome Sciences National Yang Ming Chiao Tung University Taipei Taiwan
- Aging and Health Research Center National Yang Ming Chiao Tung University Taipei Taiwan
| | - Zhao‐Qing Shen
- Department of Life Sciences and Institute of Genome Sciences National Yang Ming Chiao Tung University Taipei Taiwan
| | - Chen‐Hua Huang
- Department of Life Sciences and Institute of Genome Sciences National Yang Ming Chiao Tung University Taipei Taiwan
| | - Chao‐Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences National Yang Ming Chiao Tung University Taipei Taiwan
- Aging and Health Research Center National Yang Ming Chiao Tung University Taipei Taiwan
| | - Ting‐Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences National Yang Ming Chiao Tung University Taipei Taiwan
- Aging and Health Research Center National Yang Ming Chiao Tung University Taipei Taiwan
- Institute of Molecular and Genomic Medicine National Health Research Institutes Zhunan Taiwan
| |
Collapse
|
32
|
Lane SL, Parks JC, Russ JE, Khan SA, Schoolcraft WB, Yuan Y, Katz-Jaffe MG. Increased Systemic Antioxidant Power Ameliorates the Aging-Related Reduction in Oocyte Competence in Mice. Int J Mol Sci 2021; 22:13019. [PMID: 34884824 PMCID: PMC8657807 DOI: 10.3390/ijms222313019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Ovarian aging is associated with elevated oxidative stress and diminished oocyte developmental competence. We aimed to determine the impact of systemic antioxidant treatment in aged mice. Female outbred CF-1 mice were aged for 9 months prior to an 8-week 45 mg Euterpe oleracea (açaí) daily supplement. The açaí treatment induced a threefold increase in serum antioxidant power (FRAP) compared to both young and aged mice (p < 0.0001). Compared to young mice, aged mice had fewer oocytes and reduced blastocyst development (p < 0.0001); açaí did not affect the oocyte numbers, but improved blastocyst formation (p < 0.05). Additionally, açaí alleviated the aging-related decrease in implantation potential (p < 0.01). The aged mice showed evidence of elevated ovarian ER stress (increased whole-ovary PDIA4 expression, granulosa cell and oocyte GRP78 expression, and oocyte PDIA4 protein), reduced oocyte mitochondrial quality (higher PRKN activation and mitochondrial DNA oxidative damage), and dysregulated uterine glandular epithelium. Antioxidant intervention was sufficient to lessen these effects of ovarian aging, likely in part by the upregulation of NRF2. We conclude that açaí treatment is a promising strategy to improve ER and mitochondrial function in the ovaries, thereby ameliorating the decreased oocyte competence that occurs with ovarian aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mandy G. Katz-Jaffe
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA; (S.L.L.); (J.C.P.); (J.E.R.); (S.A.K.); (W.B.S.); (Y.Y.)
| |
Collapse
|
33
|
Sanchez-Contreras M, Sweetwyne MT, Kohrn BF, Tsantilas KA, Hipp MJ, Schmidt EK, Fredrickson J, Whitson JA, Campbell MD, Rabinovitch PS, Marcinek DJ, Kennedy SR. A replication-linked mutational gradient drives somatic mutation accumulation and influences germline polymorphisms and genome composition in mitochondrial DNA. Nucleic Acids Res 2021; 49:11103-11118. [PMID: 34614167 PMCID: PMC8565317 DOI: 10.1093/nar/gkab901] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) cause maternally inherited diseases, while somatic mutations are linked to common diseases of aging. Although mtDNA mutations impact health, the processes that give rise to them are under considerable debate. To investigate the mechanism by which de novo mutations arise, we analyzed the distribution of naturally occurring somatic mutations across the mouse and human mtDNA obtained by Duplex Sequencing. We observe distinct mutational gradients in G→A and T→C transitions delimited by the light-strand origin and the mitochondrial Control Region (mCR). The gradient increases unequally across the mtDNA with age and is lost in the absence of DNA polymerase γ proofreading activity. In addition, high-resolution analysis of the mCR shows that important regulatory elements exhibit considerable variability in mutation frequency, consistent with them being mutational ‘hot-spots’ or ‘cold-spots’. Collectively, these patterns support genome replication via a deamination prone asymmetric strand-displacement mechanism as the fundamental driver of mutagenesis in mammalian DNA. Moreover, the distribution of mtDNA single nucleotide polymorphisms in humans and the distribution of bases in the mtDNA across vertebrate species mirror this gradient, indicating that replication-linked mutations are likely the primary source of inherited polymorphisms that, over evolutionary timescales, influences genome composition during speciation.
Collapse
Affiliation(s)
- Monica Sanchez-Contreras
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth K Schmidt
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeanne Fredrickson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jeremy A Whitson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew D Campbell
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
34
|
Alikhani M, Touati E, Karimipoor M, Vosough M, Mohammadi M. Mitochondrial DNA Copy Number Variations in Gastrointestinal Tract Cancers: Potential Players. J Gastrointest Cancer 2021; 53:770-781. [PMID: 34486088 DOI: 10.1007/s12029-021-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Alterations of mitochondria have been linked to several cancers. Also, the mitochondrial DNA copy number (mtDNA-CN) is altered in various cancers, including gastrointestinal tract (GIT) cancers, and several research groups have investigated its potential as a cancer biomarker. However, the exact causes of mtDNA-CN variations are not yet revealed. This review discussed the conceivable players in this scheme, including reactive oxygen species (ROS), mtDNA genetic variations, DNA methylation, telomere length, autophagy, immune system activation, aging, and infections, and discussed their possible impact in the initiation and progression of cancer. By further exploring such mechanisms, mtDNA-CN variations may be effectively utilized as cancer biomarkers and provide grounds for developing novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Mehdi Alikhani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR2001, Institut Pasteur, 25-28 Rue du Dr Roux cedex 15, 75724, Paris, France
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Mohammadi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
35
|
Dabravolski SA, Bezsonov EE, Orekhov AN. The role of mitochondria dysfunction and hepatic senescence in NAFLD development and progression. Biomed Pharmacother 2021; 142:112041. [PMID: 34411916 DOI: 10.1016/j.biopha.2021.112041] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Senescence is a crucial player in several metabolic disorders and chronic inflammatory diseases. Recent data prove the involvement of hepatocyte senescence in the development of NAFLD (non-alcoholic fatty liver disease). As the main energy and ROS (reactive oxygen species) producing organelle, mitochondria play the central role in accelerated senescence and diseases development. In this review, we focus on the role of regulation of mitochondrial Ca2+ homeostasis, NAD+/NADH ratio, UPRmt (mitochondrial unfolded protein response), phospholipids and fatty acid oxidation in hepatic senescence, lifespan and NAFLD disease susceptibility. Additionally, the involvement of mitochondrial and nuclear mutations in lifespan-modulation and NAFLD development is discussed. While nuclear and mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) can be used as effective diagnostic markers and targets for treatments, advanced age should be considered as an independent risk factor for NAFLD development.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus.
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia.
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia.
| |
Collapse
|
36
|
Redox Homeostasis and Prospects for Therapeutic Targeting in Neurodegenerative Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9971885. [PMID: 34394839 PMCID: PMC8355971 DOI: 10.1155/2021/9971885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022]
Abstract
Reactive species, such as those of oxygen, nitrogen, and sulfur, are considered part of normal cellular metabolism and play significant roles that can impact several signaling processes in ways that lead to either cellular sustenance, protection, or damage. Cellular redox processes involve a balance in the production of reactive species (RS) and their removal because redox imbalance may facilitate oxidative damage. Physiologically, redox homeostasis is essential for the maintenance of many cellular processes. RS may serve as signaling molecules or cause oxidative cellular damage depending on the delicate equilibrium between RS production and their efficient removal through the use of enzymatic or nonenzymatic cellular mechanisms. Moreover, accumulating evidence suggests that redox imbalance plays a significant role in the progression of several neurodegenerative diseases. For example, studies have shown that redox imbalance in the brain mediates neurodegeneration and alters normal cytoprotective responses to stress. Therefore, this review describes redox homeostasis in neurodegenerative diseases with a focus on Alzheimer's and Parkinson's disease. A clearer understanding of the redox-regulated processes in neurodegenerative disorders may afford opportunities for newer therapeutic strategies.
Collapse
|
37
|
Gureev AP, Mashkina OS, Shabanova EA, Vitkalova IY, Sitnikov VV, Popov VN. Study of the amount of oxidative damage to mitochondrial and chloroplast DNA in clones of white poplar (Populus alba L.) during long-term in vitro cultivation for 26 years. PLANT MOLECULAR BIOLOGY 2021; 106:479-489. [PMID: 33970418 DOI: 10.1007/s11103-021-01157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia, 394018.
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia, 394036.
| | - Olga S Mashkina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia, 394018
- Breeding and Biotechnology, All-Russian Research Institute of Forest Genetics, Voronezh, Russia, 394087
| | - Ekaterina A Shabanova
- Breeding and Biotechnology, All-Russian Research Institute of Forest Genetics, Voronezh, Russia, 394087
| | - Inna Yu Vitkalova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia, 394018
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia, 394036
| | - Vadim V Sitnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia, 394018
- Breeding and Biotechnology, All-Russian Research Institute of Forest Genetics, Voronezh, Russia, 394087
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia, 394018
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia, 394036
| |
Collapse
|
38
|
The Jackson Laboratory Nathan Shock Center: impact of genetic diversity on aging. GeroScience 2021; 43:2129-2137. [PMID: 34297313 DOI: 10.1007/s11357-021-00421-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 12/25/2022] Open
Abstract
Healthspan is a complex trait, influenced by many genes and environmental factors that accelerate or delay aging, reduce or increase disease risk, and extend or reduce lifespan. Thus, assessing the role of genetic variation in aging requires an experimental strategy capable of modeling the genetic and biological complexity of human populations. The goal of the The Jackson Laboratory Nathan Shock Center (JAX NSC) is to provide research resources and training for geroscience investigators that seek to understand the role of genetics and genetic diversity on the fundamental process of aging and diseases of human aging using the laboratory mouse as a model system. The JAX NSC has available novel, deeply characterized populations of aged mice, performs state-of-the-art phenotyping of age-relevant traits, provides systems genetics analysis of complex data sets, and provides all of these resources to the geroscience community. The aged animal resources, phenotyping capacity, and genetic expertise available through the JAX NSC benefit the geroscience community by fostering cutting-edge, novel lines of research that otherwise would not be possible. Over the past 15 years, the JAX NSC has transformed aging research across the geroscience community, providing aging mouse resources and tissues to researchers. All JAX NSC data and tools are publicly disseminated on the Mouse Phenome Database and the JAX NSC website, thus ensuring that the resources generated and expertise acquired through the Center are readily available to the aging research community. The JAX NSC will continue to enhance its ability to perform innovative research using a mammalian model to illuminate novel genotype-phenotype relationships and provide a rational basis for designing effective risk assessments and therapeutic interventions to boost longevity and disease-free healthspan.
Collapse
|
39
|
Current and New Next-Generation Sequencing Approaches to Study Mitochondrial DNA. J Mol Diagn 2021; 23:732-741. [DOI: 10.1016/j.jmoldx.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
|
40
|
García-Cordero JM, Martínez-Palma NY, Madrigal-Bujaidar E, Jiménez-Martínez C, Madrigal-Santillán E, Morales-González JA, Paniagua-Pérez R, Álvarez-González I. Phaseolin, a Protein from the Seed of Phaseolus vulgaris, Has Antioxidant, Antigenotoxic, and Chemopreventive Properties. Nutrients 2021; 13:nu13061750. [PMID: 34063915 PMCID: PMC8224085 DOI: 10.3390/nu13061750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
The present report was designed to determine the antioxidant and antigenotoxic effects of phaseolin (isolated from Phaseolus vulgaris) against mouse colon and liver damage induced by azoxymethane (AOM) and its colon chemopreventive effect. Eight groups with 12 mice each were utilized for an eight-week experiment: the control group was intragastrically (ig) administered 0.9% saline solution; the positive control group was intraperitoneally (ip) injected with 7.5 mg/kg AOM twice a week (weeks three and four of the experiment); three groups were ig administered each day with phaseolin (40, 200, and 400 mg/kg); and three groups were ig administered phaseolin daily (40, 200, and 400 mg/kg) plus 7.5 mg/kg AOM twice a week in weeks three and four of the experiment. The results showed that phaseolin did not produce oxidative stress, DNA damage, or aberrant crypts; in contrast, 100% inhibition of lipoperoxidation, protein oxidation, and nitrites induction generated by AOM was found in both organs, and DPPH radical capture occurred. The two highest phaseolin doses reduced DNA damage induced by AOM in both organs by more than 90% and reduced the AOM-induced aberrant crypts by 84%. Therefore, our study demonstrated the strong in vivo antioxidant, antigenotoxic, and chemopreventive potential of phaseolin.
Collapse
Affiliation(s)
- Juan Manuel García-Cordero
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (J.M.G.-C.); (N.Y.M.-P.); (E.M.-B.)
- Laboratorio de Compuestos Bioactivos, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico;
| | - Nikte Y. Martínez-Palma
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (J.M.G.-C.); (N.Y.M.-P.); (E.M.-B.)
- Laboratorio de Compuestos Bioactivos, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico;
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (J.M.G.-C.); (N.Y.M.-P.); (E.M.-B.)
| | - Cristian Jiménez-Martínez
- Laboratorio de Compuestos Bioactivos, Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico;
| | - Eduardo Madrigal-Santillán
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n. Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (E.M.-S.); (J.A.M.-G.)
| | - José A. Morales-González
- Laboratorio de Medicina de la Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n. Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico; (E.M.-S.); (J.A.M.-G.)
| | - Rogelio Paniagua-Pérez
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación, Av. Mexico-Xochimilco 289, Ciudad de Mexico 14389, Mexico;
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n. Zacatenco. Gustavo A. Madero, Ciudad de Mexico 07738, Mexico; (J.M.G.-C.); (N.Y.M.-P.); (E.M.-B.)
- Correspondence: ; Tel.: +52-(1)-5557296300 (ext. 57883)
| |
Collapse
|
41
|
Singh L, Atilano SR, Jager MJ, Kenney MC. Mitochondrial DNA polymorphisms and biogenesis genes in primary and metastatic uveal melanoma cell lines. Cancer Genet 2021; 256-257:91-99. [PMID: 34082186 DOI: 10.1016/j.cancergen.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE This study was designed to identify mitochondrial (mt) DNA variations in primary and metastatic uveal melanoma (UM) cell lines and their relation with cell metabolism to gain insight into metastatic progression. METHOD The entire mtDNA genomes were sequenced using Sanger sequencing from two primary UM cell lines (92.1 and MEL270) and two cell lines (OMM2.3 and OMM2.5) derived from liver metastases of the MEL270 patient. The mtDNA copy numbers determined by the ratio of nDNA versus mtDNA. qRT-PCR was used to evaluate expression levels of mitochondrial biogenesis genes. RESULTS Sequencing showed that cell line MEL270 and metastases-derived OMM2.3 and OMM2.5 cell lines had homoplasmic single nucleotide polymorphisms (SNPs) representing J1c7a haplogroup, whereas 92.1 cells had mtDNA H31a haplogroup. mtDNA copy numbers were significantly higher in primary cell lines. The metastatic UM cells showed down-regulation of POLG, TFAM, NRF-1 and SIRT1 compared to their primary MEL270 cells. PGC-1α was downregulated in 92.1 and upregulated in MEL270, OMM2.3 and OMM2.5. CONCLUSIONS Our finding suggests that within metastatic cells, the heteroplasmic SNPs, copy numbers and mitochondrial biogenesis genes are modulated differentially compared to their primary UM cells. Therefore, investigating pathogenic mtDNA variants associated with cancer metabolic susceptibility may provide future therapeutic strategies in metastatic UM.
Collapse
Affiliation(s)
- Lata Singh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, United States; Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India.
| | - Shari R Atilano
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, United States
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, United States; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, United States.
| |
Collapse
|
42
|
Hägg S, Jylhävä J. Sex differences in biological aging with a focus on human studies. eLife 2021; 10:e63425. [PMID: 33982659 PMCID: PMC8118651 DOI: 10.7554/elife.63425] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Aging is a complex biological process characterized by hallmark features accumulating over the life course, shaping the individual's aging trajectory and subsequent disease risks. There is substantial individual variability in the aging process between men and women. In general, women live longer than men, consistent with lower biological ages as assessed by molecular biomarkers, but there is a paradox. Women are frailer and have worse health at the end of life, while men still perform better in physical function examinations. Moreover, many age-related diseases show sex-specific patterns. In this review, we aim to summarize the current knowledge on sexual dimorphism in human studies, with support from animal research, on biological aging and illnesses. We also attempt to place it in the context of the theories of aging, as well as discuss the explanations for the sex differences, for example, the sex-chromosome linked mechanisms and hormonally driven differences.
Collapse
Affiliation(s)
- Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
| |
Collapse
|
43
|
Mitochondrial DNA Methylation and Human Diseases. Int J Mol Sci 2021; 22:ijms22094594. [PMID: 33925624 PMCID: PMC8123858 DOI: 10.3390/ijms22094594] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.
Collapse
|
44
|
Sharma J, Kumari R, Bhargava A, Tiwari R, Mishra PK. Mitochondrial-induced Epigenetic Modifications: From Biology to Clinical Translation. Curr Pharm Des 2021; 27:159-176. [PMID: 32851956 DOI: 10.2174/1381612826666200826165735] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Mitochondria are maternally inherited semi-autonomous organelles that play a central role in redox balance, energy metabolism, control of integrated stress responses, and cellular homeostasis. The molecular communication between mitochondria and the nucleus is intricate and bidirectional in nature. Though mitochondrial genome encodes for several key proteins involved in oxidative phosphorylation, several regulatory factors encoded by nuclear DNA are prominent contributors to mitochondrial biogenesis and function. The loss of synergy between this reciprocal control of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling, triggers epigenomic imbalance and affects mitochondrial function and global gene expressions. Recent expansions of our knowledge on mitochondrial epigenomics have offered novel perspectives for the study of several non-communicable diseases including cancer. As mitochondria are considered beacons for pharmacological interventions, new frontiers in targeted delivery approaches could provide opportunities for effective disease management and cure through reversible epigenetic reprogramming. This review focuses on recent progress in the area of mitochondrial-nuclear cross-talk and epigenetic regulation of mitochondrial DNA methylation, mitochondrial micro RNAs, and post-translational modification of mitochondrial nucleoid-associated proteins that hold major opportunities for targeted drug delivery and clinical translation.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
45
|
Cerliani MB, Mayordomo AC, Sanchez Dova A, Soarez JN, Fuhr Etcheverry J, Piñero TA, Cajal AR, Jauk F, García-Rivello H, Vaccaro CA, Richard SM, Bravi CM, Pavicic WH. Maternal ancestry and hematological cancer risk: case-control study in an Argentinean population. Per Med 2021; 18:269-281. [PMID: 33728969 DOI: 10.2217/pme-2020-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: We investigated the role of maternal ancestry in neoplastic hematological malignancies (HMs) risk in a population from Central Argentina. Materials & methods: We analyzed 125 cases with HMs and 310 controls from a public hospital, and a set of 202 colorectal, breast, lung, and hematologic cancer patients from a private hospital. Results: A decreased risk for HMs was associated with the Native American haplogroup B2 (odds ratio = 0.49; 95% CI: 0.25-0.92; p = 0.02). The sub-Saharan African parahaplogroup L was associated with higher susceptibility for disease (odds ratio = 3.10; 95% CI: 1.04-9.31; p = 0.043). Although the mean ancestral proportions in the total studied population was as published (61.7% Native American, 34.6% European and 3.7% African), an unequal distribution was observed between hospitals. Conclusion: We confirmed the tri-hybrid nature of the Argentinean population, with proportions varying within the country. Our finding supports the notion that associated haplogroup is population and cancer specific.
Collapse
Affiliation(s)
- María Belén Cerliani
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA-CONICET-UNLP, La Plata, BsAs, Argentina.,Programa de Cáncer Hereditario (Pro.Can.He.), Hospital Italiano de Buenos Aires, CABA, BsAs, Argentina
| | - Andrea Constanza Mayordomo
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA-CONICET-UNLP, La Plata, BsAs, Argentina.,Programa de Cáncer Hereditario (Pro.Can.He.), Hospital Italiano de Buenos Aires, CABA, BsAs, Argentina
| | - Anaclara Sanchez Dova
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA-CONICET-UNLP, La Plata, BsAs, Argentina
| | - Julieta Natalia Soarez
- Programa de Cáncer Hereditario (Pro.Can.He.), Hospital Italiano de Buenos Aires, CABA, BsAs, Argentina.,Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), IUHI-HIBA-CONICET, CABA, BsAs, Argentina
| | - Josefina Fuhr Etcheverry
- Programa de Cáncer Hereditario (Pro.Can.He.), Hospital Italiano de Buenos Aires, CABA, BsAs, Argentina.,Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), IUHI-HIBA-CONICET, CABA, BsAs, Argentina
| | - Tamara Alejandra Piñero
- Programa de Cáncer Hereditario (Pro.Can.He.), Hospital Italiano de Buenos Aires, CABA, BsAs, Argentina.,Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), IUHI-HIBA-CONICET, CABA, BsAs, Argentina
| | - Andrea Romina Cajal
- Programa de Cáncer Hereditario (Pro.Can.He.), Hospital Italiano de Buenos Aires, CABA, BsAs, Argentina.,Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), IUHI-HIBA-CONICET, CABA, BsAs, Argentina
| | - Federico Jauk
- Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, CABA, BsAs, Argentina.,Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), IUHI-HIBA-CONICET, CABA, BsAs, Argentina
| | - Hernán García-Rivello
- Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, CABA, BsAs, Argentina.,Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), IUHI-HIBA-CONICET, CABA, BsAs, Argentina
| | - Carlos Alberto Vaccaro
- Programa de Cáncer Hereditario (Pro.Can.He.), Hospital Italiano de Buenos Aires, CABA, BsAs, Argentina.,Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), IUHI-HIBA-CONICET, CABA, BsAs, Argentina
| | - Silvina Mariel Richard
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA-CONICET-UNLP, La Plata, BsAs, Argentina
| | - Claudio Marcelo Bravi
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA-CONICET-UNLP, La Plata, BsAs, Argentina
| | - Walter Hernán Pavicic
- Programa de Cáncer Hereditario (Pro.Can.He.), Hospital Italiano de Buenos Aires, CABA, BsAs, Argentina.,Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), IUHI-HIBA-CONICET, CABA, BsAs, Argentina
| |
Collapse
|
46
|
Increased oxidative stress in elderly leprosy patients is related to age but not to bacillary load. PLoS Negl Trop Dis 2021; 15:e0009214. [PMID: 33690671 PMCID: PMC7978340 DOI: 10.1371/journal.pntd.0009214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/19/2021] [Accepted: 02/06/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Leprosy continues to be a public health problem in Brazil. Furthermore, detection rates in elderly people have increased, particularly those of multibacillary (L-Lep) patients, who are responsible for transmitting M. leprae. Part of the decline in physiological function during aging is due to increased oxidative damage and change in T cell subpopulations, which are critical in defense against the disease. It is not still clear how age-related changes like those related to oxidation affect elderly people with leprosy. The aim of this work was to verify whether the elderly leprosy patients have higher ROS production and how it can impact the evolution of leprosy. METHODOLOGY/PRINCIPAL FINDINGS 87 leprosy patients, grouped according to age range and clinical form of leprosy, and 25 healthy volunteers were analyzed. Gene expression analysis of antioxidant and oxidative burst enzymes were performed in whole blood using Biomark's microfluidic-based qPCR. The same genes were evaluated in skin lesion samples by RT-qPCR. The presence of oxidative damage markers (carbonylated proteins and 4-hydroxynonenal) was analyzed by a DNPH colorimetric assay and immunofluorescence. Carbonylated protein content was significantly higher in elderly compared to young patients. One year after multidrug therapy (MDT) discharge and M. leprae clearance, oxidative damage increased in young L-Lep patients but not in elderly ones. Both elderly T and L-Lep patients present higher 4-HNE in cutaneous lesions than the young, mainly surrounding memory CD8+ T cells. Furthermore, young L-Lep demonstrated greater ability to neutralize ROS compared to elderly L-Lep patients, who presented lower gene expression of antioxidant enzymes, mainly glutathione peroxidase. CONCLUSIONS/SIGNIFICANCE We conclude that elderly patients present exacerbated oxidative damage both in blood and in skin lesions and that age-related changes can be an important factor in leprosy immunopathogenesis. Ultimately, elderly patients could benefit from co-supplementation of antioxidants concomitant to MDT, to avoid worsening of the disease.
Collapse
|
47
|
Zheng L, Zhang Z, Sheng P, Mobasheri A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev 2021; 66:101249. [PMID: 33383189 DOI: 10.1016/j.arr.2020.101249] [Citation(s) in RCA: 309] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by low-grade inflammation and high levels of clinical heterogeneity. Aberrant chondrocyte metabolism is a response to changes in the inflammatory microenvironment and may play a key role in cartilage degeneration and OA progression. Under conditions of environmental stress, chondrocytes tend to adapt their metabolism to microenvironmental changes by shifting from one metabolic pathway to another, for example from oxidative phosphorylation to glycolysis. Similar changes occur in other joint cells, including synoviocytes. Switching between these pathways is implicated in metabolic alterations that involve mitochondrial dysfunction, enhanced anaerobic glycolysis, and altered lipid and amino acid metabolism. The shift between oxidative phosphorylation and glycolysis is mainly regulated by the AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) pathways. Chondrocyte metabolic changes are likely to be a feature of different OA phenotypes. Determining the role of chondrocyte metabolism in OA has revealed key features of disease pathogenesis. Future research should place greater emphasis on immunometabolism and altered metabolic pathways as a means to understand the pathophysiology of age-related OA. This knowledge will advance the development of new drugs against therapeutic targets of metabolic significance.
Collapse
Affiliation(s)
- Linli Zheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Ziji Zhang
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China
| | - Puyi Sheng
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China.
| | - Ali Mobasheri
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080 China; Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, PO Box 5000, FI-90014 Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands.
| |
Collapse
|
48
|
Elorza AA, Soffia JP. mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology. Front Cell Dev Biol 2021; 9:625020. [PMID: 33692999 PMCID: PMC7937615 DOI: 10.3389/fcell.2021.625020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The most common aging-associated diseases are cardiovascular diseases which affect 40% of elderly people. Elderly people are prone to suffer aging-associated diseases which are not only related to health and medical cost but also to labor, household productivity and mortality cost. Aging is becoming a world problem and it is estimated that 21.8% of global population will be older than 65 years old in 2050; and for the first time in human history, there will be more elderly people than children. It is well accepted that the origin of aging-associated cardiovascular diseases is mitochondrial dysfunction. Mitochondria have their own genome (mtDNA) that is circular, double-stranded, and 16,569 bp long in humans. There are between 500 to 6000 mtDNA copies per cell which are tissue-specific. As a by-product of ATP production, reactive oxygen species (ROS) are generated which damage proteins, lipids, and mtDNA. ROS-mutated mtDNA co-existing with wild type mtDNA is called mtDNA heteroplasmy. The progressive increase in mtDNA heteroplasmy causes progressive mitochondrial dysfunction leading to a loss in their bioenergetic capacity, disruption in the balance of mitochondrial fusion and fission events (mitochondrial dynamics, MtDy) and decreased mitophagy. This failure in mitochondrial physiology leads to the accumulation of depolarized and ROS-generating mitochondria. Thus, besides attenuated ATP production, dysfunctional mitochondria interfere with proper cellular metabolism and signaling pathways in cardiac cells, contributing to the development of aging-associated cardiovascular diseases. In this context, there is a growing interest to enhance mitochondrial function by decreasing mtDNA heteroplasmy. Reduction in mtDNA heteroplasmy is associated with increased mitophagy, proper MtDy balance and mitochondrial biogenesis; and those processes can delay the onset or progression of cardiovascular diseases. This has led to the development of mitochondrial therapies based on the application of nutritional, pharmacological and genetic treatments. Those seeking to have a positive impact on mtDNA integrity, mitochondrial biogenesis, dynamics and mitophagy in old and sick hearts. This review covers the current knowledge of mitochondrial physiopathology in aging, how disruption of OXPHOS or mitochondrial life cycle alter mtDNA and cardiac cell function; and novel mitochondrial therapies to protect and rescue our heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Alvaro A Elorza
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Juan Pablo Soffia
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
49
|
Ratajczak MZ, Kucia M. Extracellular Adenosine Triphosphate (eATP) and Its Metabolite, Extracellular Adenosine (eAdo), as Opposing "Yin-Yang" Regulators of Nlrp3 Inflammasome in the Trafficking of Hematopoietic Stem/Progenitor Cells. Front Immunol 2021; 11:603942. [PMID: 33584673 PMCID: PMC7878390 DOI: 10.3389/fimmu.2020.603942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Nlrp3 inflammasome plays a pleiotropic role in hematopoietic cells. On the one hand, physiological activation of this intracellular protein complex is crucial to maintaining normal hematopoiesis and the trafficking of hematopoietic stem progenitor cells (HSPCs). On the other hand, its hyperactivation may lead to cell death by pyroptosis, and prolonged activity is associated with sterile inflammation of the BM and, as a consequence, with the HSPCs aging and origination of myelodysplasia and leukemia. Thus, we need to understand better this protein complex’s actions to define the boundaries of its safety window and study the transition from being beneficial to being detrimental. As demonstrated, the Nlrp3 inflammasome is expressed and active both in HSPCs and in the non-hematopoietic cells that are constituents of the bone marrow (BM) microenvironment. Importantly, the Nlrp3 inflammasome responds to mediators of purinergic signaling, and while extracellular adenosine triphosphate (eATP) activates this protein complex, its metabolite extracellular adenosine (eAdo) has the opposite effect. In this review, we will discuss and focus on the physiological consequences of the balance between eATP and eAdo in regulating the trafficking of HSPCs in an Nlrp3 inflammasome-dependent manner, as seen during pharmacological mobilization from BM into peripheral blood (PB) and in the reverse mechanism of homing from PB to BM and engraftment. We propose that both mediators of purinergic signaling and the Nlrp3 inflammasome itself may become important therapeutic targets in optimizing the trafficking of HSPCs in clinical settings.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at Division of Hematology, Department of Medicine and James Graham Brown Cancer Center, University of Louisville, KY, United States.,Center for Preclinical Studies and Technology, Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at Division of Hematology, Department of Medicine and James Graham Brown Cancer Center, University of Louisville, KY, United States.,Center for Preclinical Studies and Technology, Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
50
|
Alikhani M, Touati E, Karimipoor M, Vosough M, Eybpoosh S, Mohammadi M. Dynamic Changes of Mitochondrial DNA Copy Number in Gastrointestinal Tract Cancers: A Systematic Review and Meta-Analysis. Cancer Invest 2021; 39:163-179. [PMID: 33290105 DOI: 10.1080/07357907.2020.1857394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have performed a systematic review and meta-analysis for evaluation of mitochondrial DNA copy number (mtDNA-CN) alterations in peripheral blood leukocytes (PBL), and tumor tissues of gastrointestinal tract (GIT) cancers. Analysis of the PBL demonstrated a significant decrease [OR: 0.6 (0.5, 0.8)] and increase [OR: 1.4 (1.1, 1.9)] prior to and following GIT cancer development, respectively. This trend was more evident in CRC, and GC subgroups. Analysis of tissue yielded high levels of heterogeneity. However, the mean difference for the CRC subgroup was statistically significant [1.5 (1.0, 2.2)]. Our analysis suggests mtDNA-CN deserves further investigations as a GIT-cancer screening tool.
Collapse
Affiliation(s)
- Mehdi Alikhani
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eliette Touati
- Institut Pasteur, Unit of Helicobacter Pathogenesis, CNRS UMR2001, Paris Cedex 15, France
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Marjan Mohammadi
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|