1
|
Al-Beltagi M. Nutritional management and autism spectrum disorder: A systematic review. World J Clin Pediatr 2024; 13:99649. [DOI: 10.5409/wjcp.v13.i4.99649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) presents unique challenges related to feeding and nutritional management. Children with ASD often experience feeding difficulties, including food selectivity, refusal, and gastrointestinal issues. Various interventions have been explored to address these challenges, including dietary modifications, vitamin supplementation, feeding therapy, and behavioral interventions.
AIM To provide a comprehensive overview of the current evidence on nutritional management in ASD. We examine the effectiveness of dietary interventions, vitamin supplements, feeding therapy, behavioral interventions, and mealtime practices in addressing the feeding challenges and nutritional needs of children with ASD.
METHODS We systematically searched relevant literature up to June 2024, using databases such as PubMed, PsycINFO, and Scopus. Studies were included if they investigated dietary interventions, nutritional supplements, or behavioral strategies to improve feeding behaviors in children with ASD. We assessed the quality of the studies and synthesized findings on the impact of various interventions on feeding difficulties and nutritional outcomes. Data extraction focused on intervention types, study designs, participant characteristics, outcomes measured, and intervention effectiveness.
RESULTS The review identified 316 studies that met the inclusion criteria. The evidence indicates that while dietary interventions and nutritional supplements may offer benefits in managing specific symptoms or deficiencies, the effectiveness of these approaches varies. Feeding therapy and behavioral interventions, including gradual exposure and positive reinforcement, promise to improve food acceptance and mealtime behaviors. The findings also highlight the importance of creating supportive mealtime environments tailored to the sensory and behavioral needs of children with ASD.
CONCLUSION Nutritional management for children with ASD requires a multifaceted approach that includes dietary modifications, supplementation, feeding therapy, and behavioral strategies. The review underscores the need for personalized interventions and further research to refine treatment protocols and improve outcomes. Collaborative efforts among healthcare providers, educators, and families are essential to optimize this population's nutritional health and feeding practices. Enhancing our understanding of intervention sustainability and long-term outcomes is essential for optimizing care and improving the quality of life for children with ASD and their families.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
2
|
Dhanasiri AK, Siciliani D, Kortner TM, Krogdahl Å. Epigenetic changes in pyloric caeca of Atlantic salmon fed diets containing increasing levels of lipids and choline. Epigenetics 2024; 19:2305079. [PMID: 38281164 PMCID: PMC10824149 DOI: 10.1080/15592294.2024.2305079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
An earlier study of ours investigating the effect of dietary lipid levels on the choline requirement of Atlantic salmon showed increasing severity of intestinal steatosis with increasing lipid levels. As choline is involved in epigenetic regulation by being the key methyl donor, pyloric caeca samples from the study were analysed for epigenetic effects of dietary lipid and choline levels. The diets varied in lipid levels between 16% and 28%, and choline levels between 1.9 and 2.3 g/kg. The diets were fed for 8 weeks to Atlantic salmon of 25 g of initial weight. Using reduced representation bisulfite sequencing (RRBS), this study revealed that increasing dietary lipid levels induced methylation differences in genes involved in membrane transport and signalling pathways, and in microRNAs important for the regulation of lipid homoeostasis. Increasing choline levels also affected genes involved in fatty acid biosynthesis and transport, lipolysis, and lipogenesis, as well as important immune genes. Our observations confirmed that choline is involved in epigenetic regulation in Atlantic salmon, as has been reported for higher vertebrates. This study showed the need for the inclusion of biomarkers of epigenetic processes in studies that must be conducted to define optimal choline levels in diets for Atlantic salmon.
Collapse
Affiliation(s)
- Anusha K.S. Dhanasiri
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Daphne Siciliani
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Trond M. Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
3
|
Ahlström FH, Viisanen H, Karhinen L, Velagapudi V, Blomqvist KJ, Lilius TO, Rauhala PV, Kalso EA. Gene expression in the dorsal root ganglion and the cerebrospinal fluid metabolome in polyneuropathy and opioid tolerance in rats. IBRO Neurosci Rep 2024; 17:38-51. [PMID: 38933596 PMCID: PMC11201153 DOI: 10.1016/j.ibneur.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
First-line pharmacotherapy for peripheral neuropathic pain (NP) of diverse pathophysiology consists of antidepressants and gabapentinoids, but only a minority achieve sufficient analgesia with these drugs. Opioids are considered third-line analgesics in NP due to potential severe and unpredictable adverse effects in long-term use. Also, opioid tolerance and NP may have shared mechanisms, raising further concerns about opioid use in NP. We set out to further elucidate possible shared and separate mechanisms after chronic morphine treatment and oxaliplatin-induced and diabetic polyneuropathies, and to identify potential diagnostic markers and therapeutic targets. We analysed thermal nociceptive behaviour, the transcriptome of dorsal root ganglia (DRG) and the metabolome of cerebrospinal fluid (CSF) in these three conditions, in rats. Several genes were differentially expressed, most following oxaliplatin and least after chronic morphine treatment, compared with saline-treated rats. A few genes were differentially expressed in the DRGs in all three models (e.g. Csf3r and Fkbp5). Some, e.g. Alox15 and Slc12a5, were differentially expressed in both diabetic and oxaliplatin models. Other differentially expressed genes were associated with nociception, inflammation, and glial cells. The CSF metabolome was most significantly affected in the diabetic rats. Interestingly, we saw changes in nicotinamide metabolism, which has been associated with opioid addiction and withdrawal, in the CSF of morphine-tolerant rats. Our results offer new hypotheses for the pathophysiology and treatment of NP and opioid tolerance. In particular, the role of nicotinamide metabolism in opioid addiction deserves further study.
Collapse
Affiliation(s)
- Fredrik H.G. Ahlström
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Leena Karhinen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, University of Helsinki, P.O. Box 20, FI-00014, Finland
| | - Kim J. Blomqvist
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Tuomas O. Lilius
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8C, 00014, Finland
- Department of Emergency Medicine and Services, University of Helsinki and HUS Helsinki University Hospital, Haartmaninkatu 4, Helsinki 00290, Finland
| | - Pekka V. Rauhala
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Eija A. Kalso
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- SleepWell Research Programme, Faculty of Medicine, , University of Helsinki, Haartmaninkatu 3, 00014, Finland
- Department of Anaesthesiology and Intensive Care Medicine, Helsinki University Hospital and University of Helsinki, HUS, Stenbäckinkatu 9, P.O. Box 440, 00029, Finland
| |
Collapse
|
4
|
Zhang J, Lei J, Liu X, Zhang N, Wu L, Li Y. LC-MS simultaneous profiling of acyl-CoA and acyl-carnitine in dynamic metabolic status. Anal Chim Acta 2024; 1329:343235. [PMID: 39396298 DOI: 10.1016/j.aca.2024.343235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xudong Liu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Nan Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
5
|
Tork YJ, Naseri E, Basir HS, Komaki A. Protective effects of L-carnitine against beta-amyloid-induced memory impairment and anxiety-like behavior in a rat model of Alzheimer's disease. Eur J Pharmacol 2024; 982:176879. [PMID: 39128806 DOI: 10.1016/j.ejphar.2024.176879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, leads to neurodegeneration and cognitive decline. We investigated the therapeutic effects of L-carnitine on cognitive performance and anxiety-like behavior in a rat model of AD induced by unilateral intracerebroventricular injection of β-amyloid1-42 (Aβ1-42). L-carnitine (100 mg/kg/day) was administered intraperitoneally for 28 consecutive days. Following this, the open-field test, novel object recognition test, elevated plus-maze test, Barnes maze test, and passive avoidance learning test were used to assess locomotor activity, recognition memory, anxiety-like behavior, spatial memory, and passive avoidance memory, respectively. Plasma and hippocampal oxidative stress markers, including total oxidant status (TOS) and total antioxidant capacity (TAC), were examined. In addition, histological investigations were performed in the dentate gyrus of the hippocampus using Congo red staining and hematoxylin and eosin staining. The injection of Aβ1-42 resulted in cognitive deficits and increased anxiety-like behavior. These changes were associated with an imbalance of oxidants and antioxidants in plasma and the hippocampus. Also, neuronal death and Aβ plaque accumulation were increased in the hippocampal dentate gyrus region. However, injection of L-carnitine improved recognition memory, spatial memory, and passive avoidance memory in AD rats. These findings provide evidence that L-carnitine may alleviate anxiety-like behavior and cognitive deficits induced by Aβ1-42 through modulating oxidative-antioxidant status and preventing Aβ plaque accumulation and neuronal death.
Collapse
Affiliation(s)
- Yekta Jahedi Tork
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Erfan Naseri
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Shokati Basir
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
6
|
Kobayashi K, Tanabe A, Sasaki K. Lespedeza homoloba enhances the immunosuppressive milieu of adipose tissue and suppresses fasting blood glucose. Biomed Rep 2024; 21:164. [PMID: 39268403 PMCID: PMC11391171 DOI: 10.3892/br.2024.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Immune cells migrate to hypertrophied adipocytes and release proinflammatory cytokines, leading to adipocyte dysfunction and diabetes. Numerous species of Lespedeza, which are members of the plant family Fabaceae and distributed primarily in temperate Asia and North America, exhibit binding to peroxisome proliferator-activated receptor (PPAR) γ, a target nuclear receptor for treating diabetes. Therefore, the present study aimed to determine which species of Lespedeza plants exert an anti-inflammatory effect in adipose tissue and suppression of blood glucose increase through PPARγ ligand and radical scavenging activity. PPARγ binding and DPPH radical scavenging assays of L. homoloba (LH), L. thunbergii (LT), L. maximowiczii (LM) and L. thunbergii (LT) were performed. LH and LT showed significant ligand activity towards PPARγ and notable radical scavenging activity. LH exhibited a stronger DPPH radical scavenging activity than LT and thus was measured adiponectin secretion from 3T3-L1-derived adipocytes and IL-10 secretion from murine splenocytes. LH increased the adiponectin and the IL-10 secretions. In flow cytometric analysis, BALB/c male mice administered LH exhibited an increase in regulatory T cells (Tregs) and cytotoxic T lymphocyte-associated protein (CTLA)-4+ Tregs as well as a decrease in T helper (Th)17, Th17/Treg ratio and CD8+ and CD4+ T cells in subcutaneous adipose tissue. Conversely, in the spleen, LH decreased Tregs and increased Th17 cells, Th17/Treg ratio and CD4+ and CD8+ T cells. These findings indicated that LH activated immunoreaction in the spleen and Treg cells that migrate to subcutaneous adipose tissue may suppress inflammation. In fasting blood glucose and adiponectin assays, LH-exposed mice exhibited suppression of fasting glucose levels. Therefore, LH may prevent type 2 diabetes by suppressing adipose tissue inflammation.
Collapse
Affiliation(s)
- Kyoko Kobayashi
- Division of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Airi Tanabe
- Division of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Kenroh Sasaki
- Division of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| |
Collapse
|
7
|
Oltman SP, Rogers EE, Baer RJ, Amsalu R, Bandoli G, Chambers CD, Cho H, Dagle JM, Karvonen KL, Kingsmore SF, McKenzie-Sampson S, Momany A, Ontiveros E, Protopsaltis LD, Rand L, Kobayashi ES, Steurer MA, Ryckman KK, Jelliffe-Pawlowski LL. Early Newborn Metabolic Patterning and Sudden Infant Death Syndrome. JAMA Pediatr 2024; 178:1183-1191. [PMID: 39250160 PMCID: PMC11385317 DOI: 10.1001/jamapediatrics.2024.3033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/12/2024] [Indexed: 09/10/2024]
Abstract
Importance Sudden infant death syndrome (SIDS) is a major cause of infant death in the US. Previous research suggests that inborn errors of metabolism may contribute to SIDS, yet the relationship between SIDS and biomarkers of metabolism remains unclear. Objective To evaluate and model the association between routinely measured newborn metabolic markers and SIDS in combination with established risk factors for SIDS. Design, Setting, and Participants This was a case-control study nested within a retrospective cohort using data from the California Office of Statewide Health Planning and Development and the California Department of Public Health. The study population included infants born in California between 2005 and 2011 with full metabolic data collected as part of routine newborn screening (NBS). SIDS cases were matched to controls at a ratio of 1:4 by gestational age and birth weight z score. Matched data were split into training (2/3) and testing (1/3) subsets. Data were analyzed from January 2005 to December 2011. Exposures Metabolites measured by NBS and established risk factors for SIDS. Main Outcomes and Measures The primary outcome was SIDS. Logistic regression was used to evaluate the association between metabolic markers combined with known risk factors and SIDS. Results Of 2 276 578 eligible infants, 354 SIDS (0.016%) cases (mean [SD] gestational age, 38.3 [2.3] weeks; 220 male [62.1%]) and 1416 controls (mean [SD] gestational age, 38.3 [2.3] weeks; 723 male [51.1%]) were identified. In multivariable analysis, 14 NBS metabolites were significantly associated with SIDS in a univariate analysis: 17-hydroxyprogesterone, alanine, methionine, proline, tyrosine, valine, free carnitine, acetyl-L-carnitine, malonyl carnitine, glutarylcarnitine, lauroyl-L-carnitine, dodecenoylcarnitine, 3-hydroxytetradecanoylcarnitine, and linoleoylcarnitine. The area under the receiver operating characteristic curve for a 14-marker SIDS model, which included 8 metabolites, was 0.75 (95% CI, 0.72-0.79) in the training set and was 0.70 (95% CI, 0.65-0.76) in the test set. Of 32 infants in the test set with model-predicted probability greater than 0.5, a total of 20 (62.5%) had SIDS. These infants had 14.4 times the odds (95% CI, 6.0-34.5) of having SIDS compared with those with a model-predicted probability less than 0.1. Conclusions and Relevance Results from this case-control study showed an association between aberrant metabolic analytes at birth and SIDS. These findings suggest that we may be able to identify infants at increased risk for SIDS soon after birth, which could inform further mechanistic research and clinical efforts focused on monitoring and prevention.
Collapse
Affiliation(s)
- Scott P. Oltman
- California Preterm Birth Initiative, University of California San Francisco, San Francisco
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco
| | - Elizabeth E. Rogers
- Department of Pediatrics, University of California San Francisco, San Francisco
| | - Rebecca J. Baer
- California Preterm Birth Initiative, University of California San Francisco, San Francisco
- Department of Pediatrics, University of California San Diego, La Jolla
| | - Ribka Amsalu
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Francisco, San Francisco
| | - Gretchen Bandoli
- Department of Pediatrics, University of California San Diego, La Jolla
| | | | - Hyunkeun Cho
- Department of Biostatistics, University of Iowa, Iowa City
| | - John M. Dagle
- Department of Pediatrics, University of Iowa, Iowa City
| | - Kayla L. Karvonen
- Department of Pediatrics, University of California San Francisco, San Francisco
| | | | | | - Allison Momany
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City
| | - Eric Ontiveros
- Rady Children’s Institute for Genomic Medicine, San Diego, California
| | | | - Larry Rand
- California Preterm Birth Initiative, University of California San Francisco, San Francisco
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Francisco, San Francisco
| | | | - Martina A. Steurer
- Department of Pediatrics, University of California San Francisco, San Francisco
| | - Kelli K. Ryckman
- Department of Epidemiology, University of Iowa, Iowa City
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington
| | - Laura L. Jelliffe-Pawlowski
- California Preterm Birth Initiative, University of California San Francisco, San Francisco
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco
| |
Collapse
|
8
|
Ma G, Ayalew H, Mahmood T, Mercier Y, Wang J, Lin J, Wu S, Qiu K, Qi G, Zhang H. Methionine and vitamin E supplementation improve production performance, antioxidant potential, and liver health in aged laying hens. Poult Sci 2024; 103:104415. [PMID: 39488017 DOI: 10.1016/j.psj.2024.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Sulfur metabolites of methionine (Met) and vitamin E (VE) have antioxidant potential and can maintain liver health in chickens. This study explored the underlying mechanisms of Met sources, the ratio of total sulfur amino acids to lysine (TSAA: Lys), and VE levels on production performances, antioxidant potential, and hepatic oxidation in aged laying hens. Eight hundred and sixty-four, Hy-Line Brown laying hens (70-week age) were divided into 12 treatment groups, each having 6 repeats and 12 birds/each repeat. The dietary treatments consisted of DL-Met (DL-Met), DL-2-hydroxy-4-(methylthio)-butanoic acid (OH-Met), 3 ratios of TSAA: Lys (0.90, 0.95, and 1.00), and 2 levels of VE (20 and 40 g/ton). Albumen height and Haugh unit significantly increased at a lower level of VE (P < 0.05). Triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) in serum and superoxide dismutase (SOD) and catalase activities (CAT) in the liver significantly reduced at 0.95 TSAA: Lys ratio (P < 0.05). Fatty acid synthase (FAS), lipoprotein lipase (LPL), nuclear factor erythroid 2-related factor 2 (Nrf2), and carnitine palmitoyltransferase-1 alpha (CPT-1α) also upregulated at this TSAA: Lys ratio (P < 0.05). Compared with the DL-Met group, the OH-Met group had lower Dipeptidyl Peptidase 4 (DPP4) and higher TC, LDL, and VLDL concentrations (P < 0.05).The expression of FAS,CPT-1α), glutathione (GSH), glutathione disulfide (GSSG), glutathione synthetase (GSS), and Nrf2 were significantly higher in OH-Met compared with the DL-Met group (P < 0.05). OH-Met at 0.95 and DL-Met at 0.90 TSAA: Lys ratio showed higher CAT and lower aspartate aminotransferase (AST) activities. Moreover, OH-Met at 0.90 and DL-Met at 0.95 of the TSAA: Lys ratio had a significant reduction of malondialdehyde (MDA) (P < 0.05). Overall, these results suggest that OH-Met source with a lower level of VE positively influenced production performance and improved liver health in aged laying hens through improved lipid metabolism and hepatic antioxidant function.
Collapse
Affiliation(s)
- Guangtian Ma
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Veterinary Medicine and Animal Sciences, University of Gondar, Po. Box 196, Gondar, Ethiopia
| | - Tahir Mahmood
- European Laboratory of Innovation, Science and Expertise, Department of R & I in Monogastric Animal Nutrition, Adisseo France S.A.S., 20 rue Prosper Monnet, Saint Fons, 69190, France
| | - Yves Mercier
- European Laboratory of Innovation, Science and Expertise, Department of R & I in Monogastric Animal Nutrition, Adisseo France S.A.S., 20 rue Prosper Monnet, Saint Fons, 69190, France
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Lin
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
9
|
Huang Y, Xu C, Huang X, Tan Y, Li S, Yin Z. Metabolome and Transcriptome Profiling Reveals Age-Associated Variations in Meat Quality and Molecular Mechanisms of Taihe Black-Bone Silky Fowls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21946-21956. [PMID: 39354852 DOI: 10.1021/acs.jafc.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
To explore the changes in meat quality and molecular mechanisms during the growth and development of Taihe black-bone silky fowl, this study employed liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics to elucidate the dynamic changes of key differential metabolites (DMs) affecting meat quality, indicating that chicken at D120 had higher levels of ω-3 polyunsaturated fatty acids (PUFAs), creatine, anserine, and homocarnosine, while D150 had the most stachydrine and D210 had the most acylcarnitines. Additionally, D120 and D180 had more umami and sweet compounds. Furthermore, key metabolic pathways influenced by age included purine metabolism, the pentose phosphate pathway, nicotinate and nicotinamide metabolism, and taurine and hypotaurine metabolism. Transcriptomic identified differential expression genes (DEGs) are predominantly enriched in focal adhesion, the TGF-β signaling pathway, and the MAPK signaling pathway. Integrated metabolomics and transcriptomics revealed complex regulatory networks of DEGs and DMs in key metabolic pathways. This research enhanced our understanding of the biology of Taihe black-bone silky fowl meat quality, revealing possible biomarkers.
Collapse
Affiliation(s)
- Yunyan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Xuan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Yuting Tan
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Shibao Li
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
10
|
Hsu WH, Wang SY, Chao YM, Chang KV, Han DS, Lin YL. Novel metabolic and lipidomic biomarkers of sarcopenia. J Cachexia Sarcopenia Muscle 2024; 15:2175-2186. [PMID: 39169398 PMCID: PMC11446726 DOI: 10.1002/jcsm.13567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The pathophysiology of sarcopenia is complex and multifactorial and has not been fully elucidated. The impact of resistance training and nutritional support (RTNS) on metabolomics and lipodomics in older adults with sarcopenia remains uncertain. This study aimed to explore potential biomarkers of sarcopenia and clinical indicators of RTNS in older sarcopenic adults. METHODS Older individuals diagnosed with sarcopenia through routine health checkups at a community hospital were recruited for a 12-week randomized controlled trial focusing on RTNS. Plasma metabolomic and lipidomic profiles of 45 patients with sarcopenia and 47 matched controls were analysed using 1H-nuclear magnetic resonance (1H-NMR) and liquid chromatography-mass spectrometer (LC-MS). RESULTS At baseline, the patient and control groups had similar age, sex, and height distribution. The patient group had significantly lower weight, BMI, grip strength, gait speed, skeletal muscle index, lean mass of both the upper and lower limbs, and lower limb bone mass. There was a significant difference in 12 metabolites between the control and patient groups. They are isoleucine (patient/control fold change [FC] = 0.86 ± 0.04, P = 0.0005), carnitine (FC = 1.05 ± 0.01, P = 0.0110), 1-methylhistamine/3-methylhistamine (FC = 1.24 ± 0.14, P = 0.0039), creatinine (FC = 0.71 ± 0.04, P < 0.0001), carnosine (FC = 0.71 ± 0.04, P = 0.0007), ureidopropionic acid (FC = 0.61 ± 0.10, P = 0.0107), uric acid (FC = 0.88 ± 0.03, P = 0.0083), PC (18:2/20:0) (FC = 0.69 ± 0.03, P = 0.0010), PC (20:2/18:0) (FC = 0.70 ± 0.06, P = 0.0014), PC (18:1/20:1) (FC = 0.74 ± 0.05, P = 0.0015), PI 32:1 (FC = 4.72 ± 0.17, P = 0.0006), and PI 34:3 (FC = 1.88 ± 0.13, P = 0.0003). Among them, carnitine, 1-methylhistamine/3-methylhistamine, creatinine, ureidopropionic acid, uric acid, PI 32:1, and PI 34:3 were first identified. Notably, PI 32:1 had highest diagnostic accuracy (0.938) for sarcopenia. 1-Methylhistamine/3-methylhistamine, carnosine, PC (18:2/20:0), PI 32:1, and PI 34:3 levels were not different from the control group after RTNS. These metabolites are involved in amino acid metabolism, lipid metabolism, and the PI3K-AKT/mTOR signalling pathway through the ingenuity pathway analysis. CONCLUSIONS These findings provide information on metabolic changes, lipid perturbations, and the role of RTNS in patients with sarcopenia. They reveal new insights into its pathological mechanisms and potential therapies.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang-Ming-Chiao-Tung University, Taipei, Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ming Chao
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
- Health Science and Wellness Center, National Taiwan University, Taipei, Taiwan
| | - Yun-Lian Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- Department of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Aydin Ö, Meijnikman AS, de Jonge PA, van Stralen K, Börger H, Okur K, Iqbal Z, Warmbrunn MV, Acherman YIZ, Bruin S, Winkelmeijer M, Schimmel AWM, Holst JJ, Poulsen SS, Bäckhed F, Nieuwdorp M, Groen AK, Gerdes VEA. Post-Bariatric Hypoglycemia: an Impaired Metabolic Response to a Meal. Obes Surg 2024; 34:3796-3806. [PMID: 39153140 PMCID: PMC11481667 DOI: 10.1007/s11695-024-07309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 08/19/2024]
Abstract
AIMS/HYPOTHESIS Post-bariatric hypoglycemia (PBH) is caused by postprandial hyperinsulinemia, due to anatomical alterations and changes in post-prandial metabolism after bariatric surgery. The mechanisms underlying the failing regulatory and compensatory systems are unclear. In this study, we investigated the differences in post-prandial hormones and metabolic profiles between patients with and without PBH. METHODS We performed a mixed meal test (MMT) in 63 subjects before and 1 year after Roux-en-Y gastric bypass (RYGB) surgery. Blood was withdrawn at 0, 10, 20, 30, 60, and 120 min after ingestion of a standardized meal. Glucose, insulin, GLP-1, FGF-19, and FGF-21 were measured and untargeted metabolomics analysis was performed on blood plasma to analyze which hormonal and metabolic systems were altered between patients with and without PBH. RESULTS Out of 63, a total of 21 subjects (33%) subjects developed PBH (glucose < 3.1 mmol/L) after surgery. Decreased glucose and increased insulin excursions during MMT were seen in PBH (p < 0.05). GLP-1, FGF-19, and FGF-21 were elevated after surgery (p < 0.001), but did not differ between PBH and non-PBH groups. We identified 20 metabolites possibly involved in carbohydrate metabolism which differed between the two groups, including increased carnitine and acylcholines in PBH. CONCLUSION Overall, 33% of the subjects developed PBH 1 year after RYGB surgery. While GLP-1, FGF-19, and FGF-21 were similar in PBH and non-PBH patients, metabolomics analysis revealed changes in carnitine and acyclcholines that are possibly involved in energy metabolism, which may play a role in the occurrence of PBH.
Collapse
Affiliation(s)
- Ömrüm Aydin
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Abraham S Meijnikman
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Patrick A de Jonge
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Karlijn van Stralen
- Department of Scientific Research, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Hanneke Börger
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Kadriye Okur
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Zainab Iqbal
- Cardiometabolic Research, Vrije Universiteit, Amsterdam, the Netherlands
| | - Moritz V Warmbrunn
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Yair I Z Acherman
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Sjoerd Bruin
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - Maaike Winkelmeijer
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Alinda W M Schimmel
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Bäckhed
- Department of Cardiovascular and Metabolic Research, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Albert K Groen
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands
| | - Victor E A Gerdes
- Department of Vascular Medicine, Amsterdam UMC - AMC, Amsterdam, the Netherlands.
- Department of Bariatric Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands.
- Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands.
| |
Collapse
|
12
|
Bassareo V, Maccioni R, Talani G, Zuffa S, El Abiead Y, Lorrai I, Kawamura T, Pantis S, Puliga R, Vargiu R, Lecca D, Enrico P, Peana A, Dazzi L, Dorrestein PC, Sanna PP, Sanna E, Acquas E. Receptor and metabolic insights on the ability of caffeine to prevent alcohol-induced stimulation of mesolimbic dopamine transmission. Transl Psychiatry 2024; 14:391. [PMID: 39341817 PMCID: PMC11438888 DOI: 10.1038/s41398-024-03112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
The consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh). Here we show that caffeine, via antagonistic activity on A2A adenosine receptors (A2AR), prevents alcohol-dependent activation of mesolimbic DA function as assessed, in-vivo, by brain microdialysis of AcbSh DA and, in-vitro, by electrophysiological recordings of pVTA DA neuronal firing. Accordingly, while the A1R antagonist DPCPX fails to prevent the effects of alcohol on DA function, both caffeine and the A2AR antagonist SCH 58261 prevent alcohol-dependent pVTA generation of salsolinol and increase in AcbSh DA in-vivo, as well as alcohol-dependent excitation of pVTA DA neurons in-vitro. However, caffeine also prevents direct salsolinol- and morphine-stimulated DA function, suggesting that it can exert these inhibitory effects also independently from affecting alcohol-induced salsolinol formation or bioavailability. Finally, untargeted metabolomics of the pVTA showcases that caffeine antagonizes alcohol-mediated effects on molecules (e.g. phosphatidylcholines, fatty amides, carnitines) involved in lipid signaling and energy metabolism, which could represent an additional salsolinol-independent mechanism of caffeine in impairing alcohol-mediated stimulation of mesolimbic DA transmission. In conclusion, the outcomes of this study strengthen the potential of caffeine, as well as of A2AR antagonists, for future development of preventive/therapeutic strategies for alcohol use disorder.
Collapse
Affiliation(s)
- Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Riccardo Maccioni
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Giuseppe Talani
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Sofia Pantis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Roberta Puliga
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Romina Vargiu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Daniele Lecca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Paolo Enrico
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandra Peana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Laura Dazzi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Enrico Sanna
- Institute of Neuroscience - National Research Council (C.N.R.) of Italy, Cagliari, Italy
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, Monserrato, CA, Italy
| |
Collapse
|
13
|
Josyula JVN, JeanPierre AR, Jorvekar SB, Adla D, Mariappan V, Pulimamidi SS, Green SR, Pillai AB, Borkar RM, Mutheneni SR. Metabolomic profiling of dengue infection: unraveling molecular signatures by LC-MS/MS and machine learning models. Metabolomics 2024; 20:104. [PMID: 39305446 DOI: 10.1007/s11306-024-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND & OBJECTIVE The progression of dengue fever to severe dengue (SD) is a major public health concern that impairs the capacity of the medical system to predict and treat dengue patients. Hence, the present study used a metabolomic approach integrated with machine models to identify differentially expressed metabolites in patients with SD compared to nonsevere patients and healthy controls. METHODS Comprehensively, the plasma was collected at different clinical phases during dengue without warning signs (DWOW, N = 10), dengue with warning signs (DWW, N = 10), and SD (N = 10) at different stages [i.e., day of admission (DOA), day of defervescence (DOD), and day of convalescent (DOC)] in comparison to healthy control (HC). The samples were subjected to LC‒ESI‒MS/MS to identify metabolites. Statistical and machine learning analyses were performed using R and Python language. Further, biomarker, pathway and correlation analysis was performed to identify potential predictors of dengue. RESULTS & CONCLUSION A total of 423 metabolites were identified in all the study groups. Paired and unpaired t-tests revealed 14 highly differentially expressed metabolites between and across the dengue groups, with four metabolites (shikimic acid, ureidosuccinic acid, propionyl carnitine, and alpha-tocopherol) showing significant differences compared to HC. Furthermore, biomarker (ROC) analysis revealed 11 potential molecules with a significant AUC value of 1 that could serve as potential biomarkers for identifying different dengue clinical stages that are beneficial for predicting dengue disease outcomes. The logistic regression model revealed that S-adenosylhomocysteine, hypotaurine, and shikimic acid metabolites could be beneficial indicators for predicting severe dengue, with an accuracy and AUC of 0.75. The data showed that dengue infection is related to lipid metabolism, oxidative stress, inflammation, metabolomic adaptation, and virus manipulation. Moreover, the biomarkers had a significant correlation with biochemical parameters like platelet count, and hematocrit. These results shed some light on host-derived small-molecule biomarkers that are associated with dengue severity and novel insights into metabolomics mechanisms interlinked with disease severity.
Collapse
Affiliation(s)
- Jhansi Venkata Nagamani Josyula
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aashika Raagavi JeanPierre
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Sachin B Jorvekar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, 781101, India
| | - Deepthi Adla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vignesh Mariappan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Sai Sharanya Pulimamidi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, 781101, India
| | - Siva Ranganathan Green
- Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, 781101, India
| | - Srinivasa Rao Mutheneni
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Zhao W, Liu K, Zhang Y, Sun P, Zeringue E, Meng L, Ma H. The efficacy of orally administered L-carnitine in alleviating ovarian dysfunctions has laid the foundation for targeted in vivo use: a study employing self-control and propensity score matching. Front Endocrinol (Lausanne) 2024; 15:1440182. [PMID: 39359417 PMCID: PMC11445680 DOI: 10.3389/fendo.2024.1440182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Objective This study aimed to evaluate the effectiveness of oral L-carnitine administration in patients after treatment failure to lay the groundwork for targeted in vivo use. Methods and materials A total of 515 In Vitro Fertilization (IVF) patients undergoing subsequent cycles were included after applying exclusion criteria. They were divided into a control group of 362 patients and a study group of 153 patients who received oral L-carnitine until oocyte retrieval.140 patients were matched according to maternal age, infertility duration, body mass index (BMI), day three top-quality embryos rate, by propensity score matching (PSM). The study investigated the relationship between L-carnitine treatment and in vivo oocyte maturation, normal fertilization, and subsequent embryo development. Results Following PSM, initial differences in BMI and Day3 top-quality embryo rate between groups were nullified, we created two comparable cohorts with highly similar characteristics. In the subsequent cycles, the study group showed significant improvements in in vivo oocyte maturation rate at retrieval (p=0.002), normal in vitro fertilization rate (p=0.003), blastocyst formation rate (p=0.003), and usable blastocyst rate compared to controls. Although there was no significant difference in the top-quality embryo rate on Day 3, the study group showed a 10% increase in the upper quartile (55.35% vs. 66.67%). The cumulative clinical pregnancy and live birth rates showed a significant improvement (59.82% vs. 68.42%,p=0.004, 47.41% vs. 59.80%, p=0.002). Furthermore, self-control analysis revealed substantial enhancements (p<0.001) in all outcome measures following L-carnitine administration, resulting in the birth of 74 healthy neonates without congenital anomalies. Conclusion We theorized that daily oral intake of L-carnitine before oocyte retrieval could boost oocyte quality and embryonic development, thus improving IVF outcomes. Ongoing investigations hold the potential to offer valuable insights into the applications and mechanisms underlying the therapeutic effectiveness of L-carnitine.
Collapse
Affiliation(s)
- Wenjie Zhao
- Reproductive Medicine Center, Weifang People’s Hospital, Weifang, Shandong, China
| | - Kunkun Liu
- Reproductive Medicine Center, Weifang People’s Hospital, Weifang, Shandong, China
| | - Yuhua Zhang
- Reproductive Medicine Center, Weifang People’s Hospital, Weifang, Shandong, China
| | - Pingping Sun
- Reproductive Medicine Center, Weifang People’s Hospital, Weifang, Shandong, China
| | - Ernest Zeringue
- IVF Laboratories, California IVF Fertility Center, Sacramento, CA, United States
| | - Li Meng
- IVF Laboratories, California IVF Fertility Center, Sacramento, CA, United States
| | - Huagang Ma
- Reproductive Medicine Center, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
15
|
Gziut T, Thanacoody R. L-carnitine for valproic acid-induced toxicity. Br J Clin Pharmacol 2024. [PMID: 39261302 DOI: 10.1111/bcp.16233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024] Open
Abstract
AIMS Review the effectiveness and dosing of L-carnitine for valproic-acid induced toxicity. METHODS A literature review of the pharmacokinetics and clinical use of L-carnitine was performed. RESULTS Valproic acid is a fatty acid used for numerous therapeutic indications ranging from epilepsy to bipolar disorder. The metabolism of valproic acid produces both therapeutic and toxic metabolites. Whilst it has a good safety profile, adverse effects of valproic acid in chronic use include hepatotoxicity ranging from transient elevation of liver enzymes to fulminant liver failure and hyperammonaemia with resultant encephalopathy. L-carnitine is an essential cofactor for mitochondrial fatty acid metabolism, which is an important source of energy in cardiac and skeletal muscle. Physiological concentrations of L-carnitine are maintained in man by exogenous dietary intake and endogenous synthesis. Following exogenous oral administration of L-carnitine, the bioavailability ranges from 14% to 18%. After bolus intravenous administration of L-carnitine in doses ranging from 20 to 100 mg/kg, the volume of distribution is 0.2-0.3 L/kg, and the fraction excreted unchanged in urine is 0.73-0.95, suggesting that renal clearance of L-carnitine is dose dependent due to saturable renal reabsorption at supraphysiological concentrations. CONCLUSIONS There is evidence supporting the use of L-carnitine in treating hyperammonaemia and hepatotoxicity following chronic therapeutic use and after acute overdose of valproic acid, but the optimal dose and route of administration is unknown. Based on the pharmacokinetics of L-carnitine, we advocate the administration of L-carnitine for valproic-acid induced hyperammonaemia or hepatotoxicity as an intravenous loading dose of 5 mg/kg followed by a continuous intravenous infusion instead of the oral or intravenous boluses that are currently advocated.
Collapse
Affiliation(s)
- Tomasz Gziut
- National Poisons Information Service (Newcastle unit), Newcastle-upon-Tyne Hospitals NHS Foundation Trust, UK
| | - Ruben Thanacoody
- National Poisons Information Service (Newcastle unit), Newcastle-upon-Tyne Hospitals NHS Foundation Trust, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
16
|
Perez JA. Glucose Disorders. Prim Care 2024; 51:375-390. [PMID: 39067965 DOI: 10.1016/j.pop.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Glucose disorders are the most common endocrine condition in the primary care setting. The conditions overlap and are better viewed as a spectrum rather than discrete entities. Multiple treatment agents are now available for diabetes mellitus which include long-acting and short-acting insulins and medications targeting the various pathways of diabetes including liver gluconeogenesis, increasing peripheral insulin sensitivity, stimulating pancreatic insulin production, eliminating glucose renally, decreasing carbohydrate gastrointestinal absorption, and targeting the body's incretin system. Various endocrine conditions can cause secondary hyperglycemia or hypoglycemia. Medications and physiologic stress can affect glucose levels. Genetic syndromes causing enzyme deficiencies underlie a small portion of glucose disorders.
Collapse
Affiliation(s)
- Juan A Perez
- Department of Family and Community Medicine Residency Program, Penn State Health-St. Joseph Hospital, 145 N. 6th Street, 2nd floor, Reading, PA 19601, USA.
| |
Collapse
|
17
|
Gao R, Liu L, Monto AR, Su K, Zhang H, Shi T, Xiong Z, Xu G, Luo Y, Bao Y, Yuan L. Metabolomic profile of muscles from tilapia cultured in recirculating aquaculture systems and traditional aquaculture in ponds and protein stability during freeze-thaw cycles. Food Chem 2024; 451:139325. [PMID: 38657519 DOI: 10.1016/j.foodchem.2024.139325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Muscle protein stability during freeze-thaw (F-T) cycles was investigated with tilapia cultured in recirculating aquaculture systems (RAS) and traditional aquaculture in ponds (TAP). This study found that fatty acids (eg., palmitic acid) were enriched in TAP, while antioxidants (eg., glutathione) were enriched in RAS. Generally, proteins in the RAS group exhibited greater stability against denaturation during the F-T cycle, suggested by a less decrease in haem protein content (77% in RAS and 86% in TAP) and a less increase in surface hydrophobicity of sarcoplasmic protein (63% in RAS and 101% in TAP). There was no significant difference in oxidative stability of myofibrillar protein between the two groups. This study provides a theoretical guide for the quality control of tilapia cultured in RAS during frozen storage.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lu Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kai Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhiyu Xiong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Gangchun Xu
- Key Laboratory of Freshwater, Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu 214081, China
| | - Yongju Luo
- Guangxi Institute of Aquatic Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Farming, Nanning, Guangxi 530021, China
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
18
|
Nan QY, Piao SG, Jin JZ, Chung BH, Yang CW, Li C. Pathogenesis and management of renal fibrosis induced by unilateral ureteral obstruction. Kidney Res Clin Pract 2024; 43:586-599. [PMID: 38325866 PMCID: PMC11467363 DOI: 10.23876/j.krcp.23.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 02/09/2024] Open
Abstract
Regardless of the underlying etiology, renal fibrosis is the final histological outcome of progressive kidney disease. Unilateral ureteral obstruction (UUO) is an ideal and reproducible experimental rodent model of renal fibrosis, which is characterized by tubulointerstitial inflammatory responses, accumulation of extracellular matrix, tubular dilatation and atrophy, and fibrosis. The magnitude of UUO-induced renal fibrosis is experimentally manipulated by the species chosen, animal age, and the severity and duration of the obstruction, while relief of the obstruction allows the animal to recover from fibrosis. The pathogenesis of renal fibrosis is complex and multifactorial and is orchestrated by activation of renin-angiotensin system (RAS), oxidative stress, inflammatory response, transforming growth factor beta 1-Smad pathway, activated myofibroblasts, cell death (apoptosis, autophagy, ferroptosis, and necroptosis), destruction of intracellular organelles, and signaling pathway. The current therapeutic approaches have limited efficacy. Inhibition of RAS and use of antioxidants and antidiabetic drugs, such as inhibitors of sodium-glucose cotransporter 2 and dipeptidyl peptidase-4, have recently gained attention as therapeutic strategies to prevent renal scarring. This literature review highlights the state of the art regarding the molecular mechanisms relevant to the management of renal fibrosis caused by UUO.
Collapse
Affiliation(s)
- Qi Yan Nan
- Department of Nephrology, Yanbian University Hospital, Yanji, China
- Department of Intensive Care Unit, Yanbian University Hospital, Yanji, China
| | - Shang Guo Piao
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Ji Zhe Jin
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Can Li
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
19
|
Shen M, Shi L, Xing M, Jiang H, Ma Y, Ma Y, Zhang L. Unravelling the Metabolic Underpinnings of Gestational Diabetes Mellitus: A Comprehensive Mendelian Randomisation Analysis Identifying Causal Metabolites and Biological Pathways. Diabetes Metab Res Rev 2024; 40:e3839. [PMID: 39216101 DOI: 10.1002/dmrr.3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) has a strong genetic predisposition. Integrating metabolomics with Mendelian randomisation (MR) analysis offers a potent method to uncover the metabolic factors causally linked to GDM pathogenesis. OBJECTIVES This study aims to identify specific metabolites and metabolic pathways causally associated with GDM susceptibility through a comprehensive MR analysis. Additionally, it seeks to explore the potential of these identified metabolites as circulating biomarkers for early GDM detection and risk assessment. Furthermore, it aims to evaluate the implicated metabolic pathways as potential therapeutic targets for preventive or interventional strategies against GDM. METHODS A two-sample MR study was conducted using summary statistics from a metabolite genome-wide association study (GWAS) of 8299 individuals and a GDM GWAS comprising 13,039 cases and 197,831 controls. Rigorous criteria were applied to select robust genetic instruments for 850 metabolites. RESULTS MR analysis revealed 47 metabolites exhibiting putative causal associations with GDM risk. Among these, five metabolites demonstrated statistically significant associations after multiple-testing correction: Beta-citrylglutamate, Isobutyrylcarnitine (c4), 1,2-dilinoleoyl-GPC (18:2/18:2), Alliin and Cis-3,4-methyleneheptanoylcarnitine. Importantly, all these metabolites exhibited protective effects against GDM development. Additionally, metabolic pathway enrichment analysis implicated the methionine metabolism and spermidine and spermine biosynthesis pathways in the pathogenesis of GDM. CONCLUSION This comprehensive MR study has robustly identified specific metabolites and metabolic pathways with causal links to GDM susceptibility. These findings provide novel insights into the metabolic underpinnings of GDM aetiology and offer promising translational implications. The identified metabolites could serve as potential circulating biomarkers for early detection and risk stratification, while the implicated metabolic pathways may represent therapeutic targets for preventive or interventional strategies against GDM.
Collapse
Affiliation(s)
- Min Shen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengzhen Xing
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hehe Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuning Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxia Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Zuo N, Wang RT, Bian WM, Liu X, Han BQ, Wang JJ, Shen W, Li L. Vigor King mitigates spermatogenic disorders caused by environmental estrogen zearalenone exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116757. [PMID: 39047363 DOI: 10.1016/j.ecoenv.2024.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Zearalenone (ZEN) has been shown to cause reproductive damage by inducing oxidative stress. Astaxanthin and L-carnitine are widely used to alleviate oxidative stress and promote sperm maturation. However, it remains uncertain whether they are effective in mitigating spermatogenesis disorders induced by ZEN. This study aimed to investigate the therapeutic efficacy and potential mechanisms of Vigor King (Vig), a compound preparation primarily consisting of astaxanthin and L-carnitine, in alleviating ZEN-induced spermatogenesis disorders. In the experiment, mice received continuous oral gavage of ZEN (80 μg/kg) for 35 days, accompanied by a rescue strategy with Vig (200 mg/kg). The results showed that Vig effectively reduced the negative impact on semen quality and improved the structural and functional abnormalities of the seminiferous epithelium caused by ZEN. Additionally, the accumulation of reactive oxygen species (ROS), DNA double-strand breaks, apoptosis, and autophagy abnormalities were all significantly ameliorated. Intriguingly, the GSK3β-dependent BTRC-NRF2 signaling pathway was found to play an important role in this process. Furthermore, testing of offspring indicated that Vig could extend its protective effects to the next generation, effectively combating the transgenerational toxic effects of ZEN. In summary, our research suggests that Vig supplementation holds considerable promise in alleviating spermatogenesis disorders induced by zearalenone.
Collapse
Affiliation(s)
- Ning Zuo
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui Ting Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wen Meng Bian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuan Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Bao Quan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Jun Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
21
|
Medikonda J, Wankar N, Asalla S, Raja SO, Yandrapally S, Jindal H, Agarwal A, Pant C, Kalivendi SV, Kumar Dubey H, Mohareer K, Gulyani A, Banerjee S. Rv0547c, a functional oxidoreductase, supports Mycobacterium tuberculosis persistence by reprogramming host mitochondrial fatty acid metabolism. Mitochondrion 2024; 78:101931. [PMID: 38986924 DOI: 10.1016/j.mito.2024.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Mycobacterium tuberculosis (Mtb) successfully thrives in the host by adjusting its metabolism and manipulating the host environment. In this study, we investigated the role of Rv0547c, a protein that carries mitochondria-targeting sequence (MTS), in mycobacterial persistence. We show that Rv0547c is a functional oxidoreductase that targets host-cell mitochondria. Interestingly, the localization of Rv0547c to mitochondria was independent of the predicted MTS but depended on specific arginine residues at the N- and C-terminals. As compared to the mitochondria-localization defective mutant, Rv0547c-2SDM, wild-type Rv0547c increased mitochondrial membrane fluidity and spare respiratory capacity. To comprehend the possible reason, comparative lipidomics was performed that revealed a reduced variability of long-chain and very long-chain fatty acids as well as altered levels of phosphatidylcholine and phosphatidylinositol class of lipids upon expression of Rv0547c, explaining the increased membrane fluidity. Additionally, the over representation of propionate metabolism and β-oxidation intermediates in Rv0547c-targeted mitochondrial fractions indicated altered fatty acid metabolism, which corroborated with changes in oxygen consumption rate (OCR) upon etomoxir treatment in HEK293T cells transiently expressing Rv0547c, resulting in enhanced mitochondrial fatty acid oxidation capacity. Furthermore, Mycobacterium smegmatis over expressing Rv0547c showed increased persistence during infection of THP-1 macrophages, which correlated with its increased expression in Mtb during oxidative and nutrient starvation stresses. This study identified for the first time an Mtb protein that alters mitochondrial metabolism and aids in survival in host macrophages by altering fatty acid metabolism to its benefit and, at the same time increases mitochondrial spare respiratory capacity to mitigate infection stresses and maintain cell viability.
Collapse
Affiliation(s)
- Jayashankar Medikonda
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India 500046
| | - Nandini Wankar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India 500046
| | - Suman Asalla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India 500046
| | - Sufi O Raja
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India 500046
| | - Sriram Yandrapally
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India 500046
| | - Haneesh Jindal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India 500046
| | - Anushka Agarwal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India 500046
| | - Chitrakshi Pant
- CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Hyderabad, India 500007
| | - Shasi V Kalivendi
- CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Hyderabad, India 500007
| | - Harish Kumar Dubey
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India 500046
| | - Krishnaveni Mohareer
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India 500046
| | - Akash Gulyani
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India 500046
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India 500046.
| |
Collapse
|
22
|
Ursulino JS, Silva Filho RC, Rodrigues da Rocha Junior E, Crispim AC, Caldas Santos JC, Rezende Leite AC, Mendonça de Aquino T. NMR-based metabolomics analysis reveals the effect of environmental contamination exposure on fishermen living around the Mundaú Lagoon in Maceió (Alagoas, Brazil). CHEMOSPHERE 2024; 364:143261. [PMID: 39236921 DOI: 10.1016/j.chemosphere.2024.143261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The Mundaú lagoon in Maceió (Alagoas, Brazil) is a crucial resource for the local population, particularly fishing communities. Recent studies have revealed potential toxic metal contamination in the lagoon, particularly with mercury (Hg) levels exceeding the maximum regulated values. This inorganic contaminant may be impacting the health of fishermen and the local population. In this context, metabolomics, a study of small-molecule metabolites, can offer insights into the physiological impact of environmental contamination on humans. Thus, volunteers from the control and exposed groups were selected, considering the main exposure criteria primarily defined by their proximity and interaction with the lagoon. Blood and urine samples were collected from the volunteers and subjected to analysis using NMR spectroscopy. The data underwent Principal Component Analysis (PCA) and Orthogonal Partial Least-Squares Discriminant Analysis (OPLS-DA) based on metabolic patterns to establish group discrimination or identification. Metabolic pathways were assessed through enrichment analysis. The study revealed several metabolic disturbances in the exposed group's urine and plasma samples compared to control group. Noteworthy findings included arginine and proline metabolism disruptions, indicative of ammonia recycling and urea cycle impairment. These changes suggest compromised ammonia detoxification in the exposed group. Disturbances in the tricarboxylic acid (TCA) cycle and the transfer of acetyl groups into mitochondria suggested systemic metabolic stress in energy metabolism. Furthermore, elevated carnitine and ketone levels may indicate compensatory responses to low TCA cycle activity. Alterations in glutamate and glutathione metabolism and imbalances in glutathione levels indicate oxidative stress and impaired detoxification. This study highlights significant metabolic changes in fishermen exposed to contaminated environments, which can affect various metabolic pathways, including energy metabolism and antioxidant processes, potentially making individuals more vulnerable to the adverse effects of environmental contaminants. Finally, this work highlights insights into the relationship between environmental contamination and metabolic pathways, particularly in regions with limited studies.
Collapse
Affiliation(s)
- Jeferson Santana Ursulino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Reginaldo Correia Silva Filho
- Laboratory of Bioenergetics, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Edmilson Rodrigues da Rocha Junior
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Alessandre Carmo Crispim
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Josué Carinhanha Caldas Santos
- Laboratory of Instrumentation and Development in Analytical Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Ana Catarina Rezende Leite
- Laboratory of Bioenergetics, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil.
| | - Thiago Mendonça de Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil.
| |
Collapse
|
23
|
Wang X, Yang C, Huang C, Wang W. Dysfunction of the carnitine cycle in tumor progression. Heliyon 2024; 10:e35961. [PMID: 39211923 PMCID: PMC11357771 DOI: 10.1016/j.heliyon.2024.e35961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The carnitine cycle is responsible for the transport of cytoplasmic fatty acids to the mitochondria for subsequent β-oxidation to maintain intracellular energy homeostasis. Recent studies have identified abnormalities in the carnitine cycle in various types of tumors; these abnormalities include the altered expression levels of carnitine cycle-related metabolic enzymes and transport proteins. Dysfunction of the carnitine cycle has been shown to influence tumorigenesis and progression by altering intracellular oxidative and inflammatory status or regulating tumor metabolic flexibility. Many therapeutic strategies targeting the carnitine cycle are actively being explored to modify the dysfunction of the carnitine cycle in patients with malignant tumors; such approaches include carnitine cycle-related enzyme inhibitors and exogenous carnitine supplementation. Therefore, here, we review the studies of carnitine in tumors, aiming to scientifically illustrate the dysfunction of the carnitine cycle in tumor progression and provide new ideas for further research.
Collapse
Affiliation(s)
- Xiangjun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chuanxin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Huang
- Department of Cell Biology, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
24
|
Smith BI, Vásquez-Hidalgo MA, Li X, Vonnahme KA, Grazul-Bilska AT, Swanson KC, Moore TE, Reed SA, Govoni KE. The Effects of Maternal Nutrient Restriction during Mid to Late Gestation with Realimentation on Fetal Metabolic Profiles in the Liver, Skeletal Muscle, and Blood in Sheep. Metabolites 2024; 14:465. [PMID: 39330472 PMCID: PMC11434268 DOI: 10.3390/metabo14090465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024] Open
Abstract
Poor maternal nutrition during gestation negatively affects offspring growth and metabolism. To evaluate the impact of maternal nutrient restriction and realimentation on metabolism in the fetal liver, skeletal muscle, and circulation, on day 50 of gestation, ewes (n = 48) pregnant with singletons were fed 100% (CON) or 60% (RES) of requirements until day 90 of gestation, when a subset of ewes (n = 7/treatment) were euthanized, and fetal samples were collected. The remaining ewes were maintained on a current diet (CON-CON, n = 6; RES-RES, n = 7) or switched to an alternative diet (CON-RES, RES-CON; n = 7/treatment). On day 130 of gestation, the remaining ewes were euthanized, and fetal samples were collected. Fetal liver, longissimus dorsi (LD), and blood metabolites were analyzed using LC-MS/MS, and pathway enrichment analysis was conducted using MetaboAnalyst. Then, 600, 518, and 524 metabolites were identified in the liver, LD, and blood, respectively, including 345 metabolites that were present in all three. Nutrient restriction was associated with changes in amino acid, carbohydrate, lipid, and transulfuration/methionine metabolic pathways, some of which were alleviated by realimentation. Fetal age also affected metabolite abundance. The differential abundance of metabolites involved in amino acid, methionine, betaine, and bile acid metabolism could impact fetal epigenetic regulation, protein synthesis, lipid metabolism, and signaling associated with glucose and lipid metabolism.
Collapse
Affiliation(s)
- Brandon I. Smith
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA (S.A.R.)
| | - Manuel A. Vásquez-Hidalgo
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (M.A.V.-H.); (A.T.G.-B.); (K.C.S.)
| | - Xiaomeng Li
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA (T.E.M.)
| | - Kimberly A. Vonnahme
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (M.A.V.-H.); (A.T.G.-B.); (K.C.S.)
| | - Anna T. Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (M.A.V.-H.); (A.T.G.-B.); (K.C.S.)
| | - Kendall C. Swanson
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (M.A.V.-H.); (A.T.G.-B.); (K.C.S.)
| | - Timothy E. Moore
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA (T.E.M.)
| | - Sarah A. Reed
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA (S.A.R.)
| | - Kristen E. Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA (S.A.R.)
| |
Collapse
|
25
|
Stanca E, Spedicato F, Giudetti AM, Giannotti L, Di Chiara Stanca B, Damiano F, Siculella L. EPA and DHA Enhance CACT Promoter Activity by GABP/NRF2. Int J Mol Sci 2024; 25:9095. [PMID: 39201781 PMCID: PMC11354350 DOI: 10.3390/ijms25169095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Carnitine-acylcarnitine translocase (CACT) is a nuclear-encoded mitochondrial carrier that catalyzes the transfer of long-chain fatty acids across the inner mitochondrial membrane for β-oxidation. In this study, we conducted a structural and functional characterization of the CACT promoter to investigate the molecular mechanism underlying the transcriptional regulation of the CACT gene by n-3 PUFA, EPA and DHA. In hepatic BRL3A cells, EPA and DHA stimulate CACT mRNA and protein expression. Deletion promoter analysis using a luciferase reporter gene assay identified a n-3 PUFA response region extending from -202 to -29 bp. This region did not contain a response element for PPARα, a well-known PUFA-responsive nuclear receptor. Instead, bioinformatic analysis revealed two highly conserved GABP responsive elements within this region. Overexpression of GABPα and GABPβ subunits, but not PPARα, increased CACT promoter activity, more remarkably upon treatment with EPA and DHA. ChIP assays showed that n3-PUFA enhanced the binding of GABPα to the -202/-29 bp sequence. Furthermore, both EPA and DHA induced nuclear accumulation of GABPα. In conclusion, our findings indicate that the upregulation of CACT by n3-PUFA in hepatic cells is independent from PPARα and could be mediated by GABP activation.
Collapse
Affiliation(s)
- Eleonora Stanca
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (A.M.G.)
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (A.M.G.)
| | - Laura Giannotti
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | | | - Fabrizio Damiano
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| | - Luisa Siculella
- Department of Experimental Medicine (DiMeS), University of Salento, 73100 Lecce, Italy (L.S.)
| |
Collapse
|
26
|
Piskol F, Lukat P, Kaufhold L, Heger A, Blankenfeldt W, Jahn D, Moser J. Biochemical and structural elucidation of the L-carnitine degradation pathway of the human pathogen Acinetobacter baumannii. Front Microbiol 2024; 15:1446595. [PMID: 39206375 PMCID: PMC11353897 DOI: 10.3389/fmicb.2024.1446595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic human pathogen which can use host-derived L-carnitine as sole carbon and energy source. Recently, an L-carnitine transporter (Aci1347) and a specific monooxygense (CntA/CntB) for the intracellular cleavage of L-carnitine have been characterized. Subsequent conversion of the resulting malic semialdehyde into the central metabolite L-malate was hypothesized. Alternatively, L-carnitine degradation via D-malate with subsequent oxidation into pyruvate was proposed. Here we describe the in vitro and in vivo reconstitution of the entire pathway, starting from the as yet uncharacterized gene products of the carnitine degradation gene operon. Using recombinantly purified enzymes, enantiomer-specific formation of D-malate by the NAD(P)+-dependent malic semialdehyde dehydrogenase (MSA-DH) is demonstrated. The solved X-ray crystal structure of tetrameric MSA-DH reveals the key catalytic residues Cys290 and Glu256, accessible through opposing substrate and cofactor funnels. Specific substrate binding is enabled by Arg166, Arg284 and Ser447 while dual cofactor specificity for NAD+ and NADP+ is mediated by Asn184. The subsequent conversion of the unusual D-malate reaction product by an uncharacterized NAD+-dependent malate dehydrogenase (MDH) is shown. Tetrameric MDH is a β-decarboxylating dehydrogenase that synthesizes pyruvate. MDH experiments with alternative substrates showed a high degree of substrate specificity. Finally, the entire A. baumannni pathway was heterologously reconstituted, allowing E. coli to grow on L-carnitine as a carbon and energy source. Overall, the metabolic conversion of L-carnitine via malic semialdehyde and D-malate into pyruvate, CO2 and trimethylamine was demonstrated. Trimethylamine is also an important gut microbiota-dependent metabolite that is associated with an increased risk of cardiovascular disease. The pathway reconstitution experiments allowed us to assess the TMA forming capacity of gut microbes which is related to human cardiovascular health.
Collapse
Affiliation(s)
- Fabian Piskol
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Peer Lukat
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laurin Kaufhold
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Alexander Heger
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Biochemistry, Biotechnology and Bioinformatic, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Centre of Integrated Systems Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jürgen Moser
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
27
|
Lim YJ, Xiu SG, Kuruvilla MS, Winquist E, Welch S, Black M, Faught LN, Lee J, Rieder MJ, Blydt-Hansen TD, Zappitelli M, Urquhart BL. Metabolomic identification of predictive and early biomarkers of cisplatin-induced acute kidney injury in adult head and neck cancer patients. Br J Clin Pharmacol 2024; 90:1790-1803. [PMID: 36657745 DOI: 10.1111/bcp.15666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
AIM Cisplatin causes acute kidney injury (AKI) in approximately one third of patients. Serum creatinine and urinary output are poor markers of cisplatin-induced AKI. Metabolomics was utilized to identify predictive or early diagnostic biomarkers of cisplatin-induced AKI. METHODS Thirty-one adult head and neck cancer patients receiving cisplatin (dose ≥70 mg/m2) were recruited for metabolomics analysis. Urine and serum samples were collected prior to cisplatin (pre), 24-48 h after cisplatin (24-48 h) and 5-14 days (post) after cisplatin. Based on serum creatinine concentrations measured at the post timepoint, 11/31 patients were classified with clinical AKI. Untargeted metabolomics was performed using liquid chromatography-mass spectrometry (LC-MS). RESULTS Metabolic discrimination was observed between "AKI" patients and "no AKI" patients at all timepoints. Urinary glycine, hippuric acid sulfate, 3-hydroxydecanedioc acid and suberate were significantly different between AKI patients and no AKI patients prior to cisplatin infusion. Urinary glycine and hippuric acid sulfate were lower (-2.22-fold and -8.85-fold), whereas 3-hydroxydecanedioc acid and suberate were higher (3.62-fold and 1.91-fold) in AKI patients relative to no AKI patients. Several urine and serum metabolites were found to be altered 24-48 h following cisplatin infusion, particularly metabolites involved with mitochondrial energetics. CONCLUSIONS We propose glycine, hippuric acid sulfate, 3-hydroxydecanedioc acid and suberate as predictive biomarkers of predisposition to cisplatin-induced AKI. Metabolites indicative of mitochondrial dysfunction may serve as early markers of subclinical AKI.
Collapse
Affiliation(s)
- Yong Jin Lim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Steven G Xiu
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - M Sara Kuruvilla
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Eric Winquist
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Stephen Welch
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Morgan Black
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lauren N Faught
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jasmine Lee
- Division of Nephrology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Michael J Rieder
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Tom D Blydt-Hansen
- Division of Nephrology, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Michael Zappitelli
- Division of Nephrology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
28
|
Yuan J, Zhang X, Zhang X, Sun Y, Liu C, Li S, Yu Y, Zhang C, Jin S, Wang M, Xiang J, Li F. An ancient whole-genome duplication in barnacles contributes to their diversification and intertidal sessile life adaptation. J Adv Res 2024; 62:91-103. [PMID: 37734567 PMCID: PMC11331182 DOI: 10.1016/j.jare.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
INTRODUCTION Whole-genome duplication (WGD) is one of the most sudden and dramatic events rarely reported in invertebrates, but its occurrence can lead to physiological, morphological, and behavioral diversification. WGD has also never been reported in barnacles, which is one of the most unique groups of crustaceans with extremely speciallized morphology (calcareous shells) and habits (intertidal sessile lifestyle). OBJECTIVES To investigate whether WGD has occurred in barnacles and examine its potential role in driving the adaptive evolution and diversification of barnacles. METHODS Based on a newly sequenced and assembled chromosome-level barnacle genome, a novel WGD event has been identified in barnacles through a comprehensive analysis of interchromosomal synteny, the Hox gene cluster, and synonymous substitution distribution. RESULTS We provide ample evidences for WGD in the barnacle genomes. Comparative genomic analysis indicates that this WGD event predates the divergence of Thoracicalcarea, occurring more than 247 million years ago. The retained ohnologs from the WGD are primarily enriched in various pathways related to environmental information processing, shedding light on the adaptive evolution and diversification of intertidal sessile lifestyle. In addition, transcriptomic analyses show that most of these ohnologs were differentially expressed following the ebb of tide. And the cytochrome P450 ohnologs with differential expression patterns are subject to subfunctionalization and/or neofunctionalization for intertidal adaptation. Besides WGD, parallel evolution underlying intertidal adaptation has also occurred in barnacles. CONCLUSION This study revealed an ancient WGD event in the barnacle genomes, which is potentially associated with the origin and diversification of thoracican barnacles, and may have contributed to the adaptive evolution of their intertidal sessile lifestyle.
Collapse
Affiliation(s)
- Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoxi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, Tianjin 300457, China
| | - Chengzhang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shihao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chengsong Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Songjun Jin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Min Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| | - Jianhai Xiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
29
|
Colnot T, Dekant W. Grouping of short alkyl-chain branched carboxylic acids for developmental toxicity. Regul Toxicol Pharmacol 2024; 151:105662. [PMID: 38866176 DOI: 10.1016/j.yrtph.2024.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Read-across (RAx) and grouping of chemicals into categories are well-known concepts in toxicology. Recently, ECHA proposed a grouping approach for branched-chain carboxylic acids (BCAs) including more than 60 branched-chain saturated carboxylic acids for hazard identification. Grouping was based only on structural considerations. Due to developmental effects of two members, ECHA postulated that "all short carbon chain acids … are likely reproductive and developmental toxicants". This work analyzes available data for BCAs. The number of compounds in the group can be significantly reduced by eliminating metal and organic salts of BCAs, compounds of unknown or variable composition, and complex reaction products or biological materials (UVCB compounds). For the resulting reduced number of compounds, grouping is supported by similar physicochemical data and expected similar biotransformation. However, analysis of adverse effects for compounds in the group and mechanistic information show that BCAs, as a class, do not cause developmental effects in rats. Rather, developmental toxicity is limited to selected BCAs with specific structures that share a common mode of action (histone deacetylase inhibition). Thus, the proposed grouping is unreasonably wide and the more detailed analyses show that structural similarity alone is not sufficient for grouping branched-chain carboxylic acids for developmental toxicity.
Collapse
|
30
|
Weng Y, Huang Y, Qian M, Jin Y. Epoxiconazole disturbed metabolic balance and gut microbiota homeostasis in juvenile zebrafish. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105993. [PMID: 39084794 DOI: 10.1016/j.pestbp.2024.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Epoxiconazole (EPX) is a broad-spectrum fungicide extensively used in agricultural pest control. Emerging evidence suggests that EPX can adversely affect different endpoints in non-target organisms. Here, the toxicity of EPX was assessed using earlier developmental stage of zebrafish as a model to investigate its effects on metabolism and intestinal microbiota after 21 days of exposure. Our findings indicated that EPX exposure resulted in physiological alterations in juvenile zebrafish, including increase in triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and glycose (Glu). Nile red staining demonstrated enhanced lipid accumulation in juvenile, accompanied by a marked upregulation in the expression of genes associated with TG synthesis. Moreover, EPX led to alterations in amino acids and carnitines levels in 21 dpf (days post fertilization) zebrafish. We also observed that EPX disrupted intestinal barrier function in juvenile zebrafish, manifested by decreasing mucus secretion and changing in genes related to tight junctions. Moreover, for a more comprehensive analysis of the intestinal microbiota in 21 dpf zebrafish, the intestine tissues were dissected under a microscope for 16S rRNA sequencing analysis. The results revealed that EPX altered the structure and abundance of intestinal microflora in zebrafish, including decreased alpha diversity indices and shifted in bacteria at phylum and genus levels. Notably, the correlation analysis demonstrated strong associations between alterations in various pathogenic bacterial genera and levels of amino acids and carnitines. Overall, these findings confirm that the fungicide EPX promotes metabolic disorders and alterations in the intestinal micro-environment in 21 dpf zebrafish, shedding light on the toxicologic effects of chemicals to aquatic organisms during the development stage.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yilin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
31
|
Song Z, Bian W, Lin J, Guo Y, Shi W, Meng H, Chen Y, Zhang M, Liu Z, Lin Z, Ma K, Li L. Heart proteomic profiling discovers MYH6 and COX5B as biomarkers for sudden unexplained death. Forensic Sci Int 2024; 361:112121. [PMID: 38971138 DOI: 10.1016/j.forsciint.2024.112121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/03/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Sudden unexplained death (SUD) is not uncommon in forensic pathology. Yet, diagnosis of SUD remains challenging due to lack of specific biomarkers. This study aimed to screen differentially expressed proteins (DEPs) and validate their usefulness as diagnostic biomarkers for SUD cases. We designed a three-phase investigation, where in the discovery phase, formalin-fixed paraffin-embedded (FFPE) heart specimens were screened through label-free proteomic analysis of cases dying from SUD, mechanical injury and carbon monoxide (CO) intoxication. A total of 26 proteins were identified to be DEPs for the SUD cases after rigorous criterion. Bioinformatics and Adaboost-recursive feature elimination (RFE) analysis further revealed that three of the 26 proteins (MYH6, COX5B and TNNT2) were potential discriminative biomarkers. In the training phase, MYH6 and COX5B were verified to be true DEPs in cardiac tissues from 29 independent SUD cases as compared with a serial of control cases (n = 42). Receiver operating characteristic (ROC) analysis illustrated that combination of MYH6 and COX5B achieved optimal diagnostic sensitivity (89.7 %) and specificity (84.4 %), with area under the curve (AUC) being 0.91. A diagnostic software based on the logistic regression formula derived from the training phase was then constructed. In the validation phase, the diagnostic software was applied to eight authentic SUD cases, seven (87.5 %) of which were accurately recognized. Our study provides a valid strategy towards practical diagnosis of SUD by integrating cardiac MYH6 and COX5B as dual diagnostic biomarkers.
Collapse
Affiliation(s)
- Ziyan Song
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Wensi Bian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Junyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Yadong Guo
- Department of Forensic Medicine, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, PR China.
| | - Weibo Shi
- Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei 050017, PR China.
| | - Hang Meng
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security, Bureau, Shanghai 200083, PR China.
| | - Yuanyuan Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China.
| | - Molin Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Zheng Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Zijie Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Kaijun Ma
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security, Bureau, Shanghai 200083, PR China.
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China; Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei 050017, PR China; Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Public Security, Bureau, Shanghai 200083, PR China.
| |
Collapse
|
32
|
Baker CE, Marta AG, Zimmerman ND, Korade Z, Mathy NW, Wilton D, Simeone T, Kochvar A, Kramer KL, Stessman HAF, Shibata A. CPT2 Deficiency Modeled in Zebrafish: Abnormal Neural Development, Electrical Activity, Behavior, and Schizophrenia-Related Gene Expression. Biomolecules 2024; 14:914. [PMID: 39199302 PMCID: PMC11353230 DOI: 10.3390/biom14080914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Carnitine palmitoyltransferase 2 (CPT2) is an inner mitochondrial membrane protein of the carnitine shuttle and is involved in the beta-oxidation of long chain fatty acids. Beta-oxidation provides an alternative pathway of energy production during early development and starvation. CPT2 deficiency is a genetic disorder that we recently showed can be associated with schizophrenia. We hypothesize that CPT2 deficiency during early brain development causes transcriptional, structural, and functional abnormalities that may contribute to a CNS environment that is susceptible to the emergence of schizophrenia. To investigate the effect of CPT2 deficiency on early vertebrate development and brain function, CPT2 was knocked down in a zebrafish model system. CPT2 knockdown resulted in abnormal lipid utilization and deposition, reduction in body size, and abnormal brain development. Axonal projections, neurotransmitter synthesis, electrical hyperactivity, and swimming behavior were disrupted in CPT2 knockdown zebrafish. RT-qPCR analyses showed significant increases in the expression of schizophrenia-associated genes in CPT2 knockdown compared to control zebrafish. Taken together, these data demonstrate that zebrafish are a useful model for studying the importance of beta-oxidation for early vertebrate development and brain function. This study also presents novel findings linking CPT2 deficiency to the regulation of schizophrenia and neurodegenerative disease-associated genes.
Collapse
Affiliation(s)
- Carly E. Baker
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA; (C.E.B.); (K.L.K.)
| | - Aaron G. Marta
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Nathan D. Zimmerman
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Zeljka Korade
- Department of Pediatrics, Department of Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68178, USA;
| | - Nicholas W. Mathy
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Delaney Wilton
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Timothy Simeone
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA; (T.S.); (H.A.F.S.)
| | - Andrew Kochvar
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| | - Kenneth L. Kramer
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA; (C.E.B.); (K.L.K.)
| | - Holly A. F. Stessman
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA; (T.S.); (H.A.F.S.)
| | - Annemarie Shibata
- Department of Biology, Creighton University, Omaha, NE 68178, USA; (A.G.M.); (N.D.Z.); (N.W.M.); (D.W.); (A.K.)
| |
Collapse
|
33
|
Yin Y, Ye L, Chen M, Liu H, Miao J. Unraveling cardiomyocyte responses and intercellular communication alterations in primary carnitine deficiency cardiomyopathy via single-nucleus RNA sequencing. Heliyon 2024; 10:e33581. [PMID: 39091928 PMCID: PMC11292504 DOI: 10.1016/j.heliyon.2024.e33581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Background Primary Carnitine Deficiency (PCD) is a potentially life-threatening autosomal recessive monogenic disorder arising from mutations in the organic cation transporter 2 (OCTN2) gene. Dilated cardiomyopathy (DCM) is a prevalent symptom associated with this condition, and episodes of metabolic disturbance may lead to sudden death. However, the pathogenic mechanism remains unclear. Here, we sought to investigate the response of cardiomyocytes and alterations in the intercellular communication in individuals with PCD DCM. Methods The GSE211650 dataset was downloaded. Subsequently, modular analysis was performed using hdWGCNA. SCENIC was employed for transcription factor analysis. Monocle2 and SCP were applied to conduct trajectory inference and characterize dynamic features. CellChat was used to investigate intercellular interactions. Results OCTN2-deficient cardiomyocytes displayed transcriptomic alterations indicative of reduced contractility, developmental abnormalities, and fibrosis. The reduced expression of genes encoding troponin, myosin, and calcium ion transporters may underlie the observed decrease in contractility. Suppressed Wnt signaling and downregulated transcription factors associated with myocardial development suggest potential developmental disturbances in cardiomyocytes. Growth arrest-specific 6 (GAS6) secreted by TNNC1 high cardiomyocytes is implicated in myocardial inflammation and fibrosis. Macrophages-derived secreted phosphoprotein 1 (SPP1) promotes the activation of fibroblasts. Furthermore, there was a reduction in neuronal genes in the OCTN2-deficient group. Conclusions Our research has unveiled, for the first time, the responses of cardiomyocytes and alterations in the intercellular communication in PCD DCM, offering valuable insights for the precision treatment of this condition.
Collapse
Affiliation(s)
- Yifan Yin
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Ye
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Liu
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jingkun Miao
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing, China
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Imaeda M, Tanaka S, Oya-Ito T, Uematsu M, Fujigaki H, Saito K, Ando M, Ozaki N. Secondary carnitine deficiency during refeeding in severely malnourished patients with eating disorders: a retrospective cohort study. J Eat Disord 2024; 12:97. [PMID: 38982532 PMCID: PMC11232142 DOI: 10.1186/s40337-024-01054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Secondary carnitine deficiency in patients with anorexia nervosa has been rarely reported. This study aimed to investigate the occurrence of carnitine deficiency in severely malnourished patients with eating disorders during refeeding and assess its potential adverse effects on treatment outcomes. METHOD In a cohort study of 56 female inpatients with eating disorders at a single hospital from March 2010 to December 2020, we measured plasma free carnitine (FC) levels and compared to those of a healthy control group (n = 35). The patients were categorized into three groups based on FC levels: FC deficiency (FC< 20 µmol/L), FC pre-deficiency (20 µmol/L ≤ FC< 36 µmol/L), and FC normal (36 µmol/L ≤ FC). RESULTS Upon admission, the patients had a median age of 26 years (interquartile range [IQR]: 21-35) and a median body mass index (BMI) of 13.8 kg/m2 (IQR: 12.8-14.8). Carnitine deficiency or pre-deficiency was identified in 57% of the patients. Hypocarnitinemia was associated with a decline in hemoglobin levels during refeeding (odds ratio [OR]: 0.445; 95% confidence interval [CI]: 0.214-0.926, p = 0.03), BMI at admission (OR: 0.478; 95% CI: 0.217-0.874, p = 0.014), and moderate or greater hepatic impairment at admission (OR: 6.385; 95% CI: 1.170-40.833, p = 0.032). CONCLUSIONS Hypocarnitinemia, particularly in cases of severe undernutrition (BMI< 13 kg/m2 at admission) was observed in severely malnourished patients with eating disorders during refeeding, a critical metabolic transition phase. Moderate or severe hepatic impairment at admission was considered a potential indicator of hypocarnitinemia. Although hypocarnitinemia was not associated with any apparent adverse events other than anemia during refeeding, the possibility that carnitine deficiency may be a risk factor for more serious complications during sudden increases in energy requirements associated with changes in physical status cannot be denied. Further research on the clinical significance of hypocarnitinemia in severely malnourished patients with eating disorders is warranted.
Collapse
Affiliation(s)
- Miho Imaeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, 65 Tsurumai, Showa, Nagoya, 466-8550, Aichi, Japan.
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Aichi, Japan.
| | - Satoshi Tanaka
- NHO Higashiowari National Hospital, 1301, Omorikita 2, Moriyama, Nagoya, 463-0802, Aichi, Japan
- NHO Nagoya Medical Center, 1-1, Sannomaru 4, Naka, Nagoya, 460-0001, Aichi, Japan
| | - Tomoko Oya-Ito
- Department of Nutrition, Shubun University, 6 Nikkocho, Ichinomiya, 491-0938, Aichi, Japan
| | - Mariko Uematsu
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Aichi, Japan
| | - Hidetsugu Fujigaki
- Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, 1-98 dengakugakubo, kutukakecho, Toyoake, 470-1192, Aichi, Japan
| | - Kuniaki Saito
- Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, 1-98 dengakugakubo, kutukakecho, Toyoake, 470-1192, Aichi, Japan
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai, Showa, Nagoya, 466-8550, Aichi, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Institute for Glyco-core Research (iGCORE), Nagoya University, 65 Tsurumai, Showa, Nagoya, 466-8550, Aichi, Japan
| |
Collapse
|
35
|
Dellorusso PV, Proven MA, Calero-Nieto FJ, Wang X, Mitchell CA, Hartmann F, Amouzgar M, Favaro P, DeVilbiss A, Swann JW, Ho TT, Zhao Z, Bendall SC, Morrison S, Göttgens B, Passegué E. Autophagy counters inflammation-driven glycolytic impairment in aging hematopoietic stem cells. Cell Stem Cell 2024; 31:1020-1037.e9. [PMID: 38754428 PMCID: PMC11350610 DOI: 10.1016/j.stem.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Autophagy is central to the benefits of longevity signaling programs and to hematopoietic stem cell (HSC) response to nutrient stress. With age, a subset of HSCs increases autophagy flux and preserves regenerative capacity, but the signals triggering autophagy and maintaining the functionality of autophagy-activated old HSCs (oHSCs) remain unknown. Here, we demonstrate that autophagy is an adaptive cytoprotective response to chronic inflammation in the aging murine bone marrow (BM) niche. We find that inflammation impairs glucose uptake and suppresses glycolysis in oHSCs through Socs3-mediated inhibition of AKT/FoxO-dependent signaling, with inflammation-mediated autophagy engagement preserving functional quiescence by enabling metabolic adaptation to glycolytic impairment. Moreover, we show that transient autophagy induction via a short-term fasting/refeeding paradigm normalizes glycolytic flux and significantly boosts oHSC regenerative potential. Our results identify inflammation-driven glucose hypometabolism as a key driver of HSC dysfunction with age and establish autophagy as a targetable node to reset oHSC regenerative capacity.
Collapse
Affiliation(s)
- Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - Melissa A Proven
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - Fernando J Calero-Nieto
- Welcome and MRC Cambridge Stem Cell Institute, Department of Haematology, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Xiaonan Wang
- Welcome and MRC Cambridge Stem Cell Institute, Department of Haematology, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Carl A Mitchell
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - Felix Hartmann
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meelad Amouzgar
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia Favaro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew DeVilbiss
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James W Swann
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA
| | - Theodore T Ho
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhiyu Zhao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean Morrison
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Berthold Göttgens
- Welcome and MRC Cambridge Stem Cell Institute, Department of Haematology, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
36
|
Dimet-Wiley AL, Latham CM, Brightwell CR, Neelakantan H, Keeble AR, Thomas NT, Noehren H, Fry CS, Watowich SJ. Nicotinamide N-methyltransferase inhibition mimics and boosts exercise-mediated improvements in muscle function in aged mice. Sci Rep 2024; 14:15554. [PMID: 38969654 PMCID: PMC11226645 DOI: 10.1038/s41598-024-66034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Human hallmarks of sarcopenia include muscle weakness and a blunted response to exercise. Nicotinamide N-methyltransferase inhibitors (NNMTis) increase strength and promote the regenerative capacity of aged muscle, thus offering a promising treatment for sarcopenia. Since human hallmarks of sarcopenia are recapitulated in aged (24-month-old) mice, we treated mice from 22 to 24 months of age with NNMTi, intensive exercise, or a combination of both, and compared skeletal muscle adaptations, including grip strength, longitudinal running capacity, plantarflexor peak torque, fatigue, and muscle mass, fiber type, cross-sectional area, and intramyocellular lipid (IMCL) content. Exhaustive proteome and metabolome analyses were completed to identify the molecular mechanisms underlying the measured changes in skeletal muscle pathophysiology. Remarkably, NNMTi-treated aged sedentary mice showed ~ 40% greater grip strength than sedentary controls, while aged exercised mice only showed a 20% increase relative to controls. Importantly, the grip strength improvements resulting from NNMTi treatment and exercise were additive, with NNMTi-treated exercised mice developing a 60% increase in grip strength relative to sedentary controls. NNMTi treatment also promoted quantifiable improvements in IMCL content and, in combination with exercise, significantly increased gastrocnemius fiber CSA. Detailed skeletal muscle proteome and metabolome analyses revealed unique molecular mechanisms associated with NNMTi treatment and distinct molecular mechanisms and cellular processes arising from a combination of NNMTi and exercise relative to those given a single intervention. These studies suggest that NNMTi-based drugs, either alone or combined with exercise, will be beneficial in treating sarcopenia and a wide range of age-related myopathies.
Collapse
Affiliation(s)
| | - Christine M Latham
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Alexander R Keeble
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Haley Noehren
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Stanley J Watowich
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
37
|
Vue Z, Murphy A, Le H, Neikirk K, Garza-Lopez E, Marshall AG, Mungai M, Jenkins B, Vang L, Beasley HK, Ezedimma M, Manus S, Whiteside A, Forni MF, Harris C, Crabtree A, Albritton CF, Jamison S, Demirci M, Prasad P, Oliver A, Actkins KV, Shao J, Zaganjor E, Scudese E, Rodriguez B, Koh A, Rabago I, Moore JE, Nguyen D, Aftab M, Kirk B, Li Y, Wandira N, Ahmad T, Saleem M, Kadam A, Katti P, Koh HJ, Evans C, Koo YD, Wang E, Smith Q, Tomar D, Williams CR, Sweetwyne MT, Quintana AM, Phillips MA, Hubert D, Kirabo A, Dash C, Jadiya P, Kinder A, Ajijola OA, Miller-Fleming TW, McReynolds MR, Hinton A. MICOS Complex Loss Governs Age-Associated Murine Mitochondrial Architecture and Metabolism in the Liver, While Sam50 Dictates Diet Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599846. [PMID: 38979162 PMCID: PMC11230271 DOI: 10.1101/2024.06.20.599846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The liver, the largest internal organ and a metabolic hub, undergoes significant declines due to aging, affecting mitochondrial function and increasing the risk of systemic liver diseases. How the mitochondrial three-dimensional (3D) structure changes in the liver across aging, and the biological mechanisms regulating such changes confers remain unclear. In this study, we employed Serial Block Face-Scanning Electron Microscopy (SBF-SEM) to achieve high-resolution 3D reconstructions of murine liver mitochondria to observe diverse phenotypes and structural alterations that occur with age, marked by a reduction in size and complexity. We also show concomitant metabolomic and lipidomic changes in aged samples. Aged human samples reflected altered disease risk. To find potential regulators of this change, we examined the Mitochondrial Contact Site and Cristae Organizing System (MICOS) complex, which plays a crucial role in maintaining mitochondrial architecture. We observe that the MICOS complex is lost during aging, but not Sam50. Sam50 is a component of the sorting and assembly machinery (SAM) complex that acts in tandem with the MICOS complex to modulate cristae morphology. In murine models subjected to a high-fat diet, there is a marked depletion of the mitochondrial protein SAM50. This reduction in Sam50 expression may heighten the susceptibility to liver disease, as our human biobank studies corroborate that Sam50 plays a genetically regulated role in the predisposition to multiple liver diseases. We further show that changes in mitochondrial calcium dysregulation and oxidative stress accompany the disruption of the MICOS complex. Together, we establish that a decrease in mitochondrial complexity and dysregulated metabolism occur with murine liver aging. While these changes are partially be regulated by age-related loss of the MICOS complex, the confluence of a murine high-fat diet can also cause loss of Sam50, which contributes to liver diseases. In summary, our study reveals potential regulators that affect age-related changes in mitochondrial structure and metabolism, which can be targeted in future therapeutic techniques.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mariaassumpta Ezedimma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sasha Manus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Maria Fernanda Forni
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Claude F. Albritton
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ky’Era V. Actkins
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Izabella Rabago
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Johnathan E. Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Desiree Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Muhammad Aftab
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yahang Li
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taseer Ahmad
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab,40100, Pakistan
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA1
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Dhanendra Tomar
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab,40100, Pakistan
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Nashville, TN, 37232, USA
| | - Chandravanu Dash
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - André Kinder
- Artur Sá Earp Neto University Center – UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Tyne W. Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
38
|
Pavitra E, Acharya RK, Gupta VK, Verma HK, Kang H, Lee JH, Sahu T, Bhaskar L, Raju GSR, Huh YS. Impacts of oxidative stress and anti-oxidants on the development, pathogenesis, and therapy of sickle cell disease: A comprehensive review. Biomed Pharmacother 2024; 176:116849. [PMID: 38823275 DOI: 10.1016/j.biopha.2024.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
Sickle cell disease (SCD) is the most severe monogenic hemoglobinopathy caused by a single genetic mutation that leads to repeated polymerization and depolymerization of hemoglobin resulting in intravascular hemolysis, cell adhesion, vascular occlusion, and ischemia-reperfusion injury. Hemolysis causes oxidative damage indirectly by generating reactive oxygen species through various pathophysiological mechanisms, which include hemoglobin autoxidation, endothelial nitric oxide synthase uncoupling, reduced nitric oxide bioavailability, and elevated levels of asymmetric dimethylarginine. Red blood cells have a built-in anti-oxidant system that includes enzymes like sodium dismutase, catalase, and glutathione peroxidase, along with free radical scavenging molecules, such as vitamin C, vitamin E, and glutathione, which help them to fight oxidative damage. However, these anti-oxidants may not be sufficient to prevent the effects of oxidative stress in SCD patients. Therefore, in line with a recent FDA request that the focus to be placed on the development of innovative therapies for SCD that address the root cause of the disease, there is a need for therapies that target oxidative stress and restore redox balance in SCD patients. This review summarizes the current state of knowledge regarding the role of oxidative stress in SCD and the potential benefits of anti-oxidant therapies. It also discusses the challenges and limitations of these therapies and suggests future directions for research and development.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Rakesh Kumar Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, Munich 85764, Germany
| | - Haneul Kang
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Tarun Sahu
- Department of Physiology, All Indian Institute of Medical Science, Raipur, Chhattisgarh, India
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495009, India.
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
39
|
Yang S, Wang Z, Liu Y, Zhang X, Zhang H, Wang Z, Zhou Z, Abliz Z. Dual mass spectrometry imaging and spatial metabolomics to investigate the metabolism and nephrotoxicity of nitidine chloride. J Pharm Anal 2024; 14:100944. [PMID: 39131801 PMCID: PMC11314895 DOI: 10.1016/j.jpha.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 08/13/2024] Open
Abstract
Evaluating toxicity and decoding the underlying mechanisms of active compounds are crucial for drug development. In this study, we present an innovative, integrated approach that combines air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and spatial metabolomics to comprehensively investigate the nephrotoxicity and underlying mechanisms of nitidine chloride (NC), a promising anti-tumor drug candidate. Our quantitive AFADESI-MSI analysis unveiled the region specific of accumulation of NC in the kidney, particularly within the inner cortex (IC) region, following single and repeated dose of NC. High spatial resolution ToF-SIMS analysis further allowed us to precisely map the localization of NC within the renal tubule. Employing spatial metabolomics based on AFADESI-MSI, we identified over 70 discriminating endogenous metabolites associated with chronic NC exposure. These findings suggest the renal tubule as the primary target of NC toxicity and implicate renal transporters (organic cation transporters, multidrug and toxin extrusion, and organic cation transporter 2 (OCT2)), metabolic enzymes (protein arginine N-methyltransferase (PRMT) and nitric oxide synthase), mitochondria, oxidative stress, and inflammation in NC-induced nephrotoxicity. This study offers novel insights into NC-induced renal damage, representing a crucial step towards devising strategies to mitigate renal damage caused by this compound.
Collapse
Affiliation(s)
- Shu Yang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Yanhua Liu
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xin Zhang
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Hang Zhang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Zhaoying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Zeper Abliz
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
40
|
Helgudóttir SS, Mørkholt AS, Lichota J, Bruun-Nyzell P, Andersen MC, Kristensen NMJ, Johansen AK, Zinn MR, Jensdóttir HM, Nieland JDV. Rethinking neurodegenerative diseases: neurometabolic concept linking lipid oxidation to diseases in the central nervous system. Neural Regen Res 2024; 19:1437-1445. [PMID: 38051885 PMCID: PMC10883494 DOI: 10.4103/1673-5374.387965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Currently, there is a lack of effective medicines capable of halting or reversing the progression of neurodegenerative disorders, including amyotrophic lateral sclerosis, Parkinson's disease, multiple sclerosis, or Alzheimer's disease. Given the unmet medical need, it is necessary to reevaluate the existing paradigms of how to target these diseases. When considering neurodegenerative diseases from a systemic neurometabolic perspective, it becomes possible to explain the shared pathological features. This innovative approach presented in this paper draws upon extensive research conducted by the authors and researchers worldwide. In this review, we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases. We provide an overview of the risk factors associated with developing neurodegenerative disorders, including genetic, epigenetic, and environmental factors. Additionally, we examine pathological mechanisms implicated in these diseases such as oxidative stress, accumulation of misfolded proteins, inflammation, demyelination, death of neurons, insulin resistance, dysbiosis, and neurotransmitter disturbances. Finally, we outline a proposal for the restoration of mitochondrial metabolism, a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.
Collapse
Affiliation(s)
| | | | - Jacek Lichota
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Mads Christian Andersen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nanna Marie Juhl Kristensen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Amanda Krøger Johansen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mikela Reinholdt Zinn
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Hulda Maria Jensdóttir
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Vestergaard Nieland
- 2N Pharma ApS, NOVI Science Park, Aalborg, Denmark
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
41
|
Taylor GS, Smith K, Scragg J, McDonald TJ, Shaw JA, West DJ, Roberts LD. The metabolome as a diagnostic for maximal aerobic capacity during exercise in type 1 diabetes. Diabetologia 2024; 67:1413-1428. [PMID: 38662134 PMCID: PMC11153288 DOI: 10.1007/s00125-024-06153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
AIMS/HYPOTHESIS Our aim was to characterise the in-depth metabolic response to aerobic exercise and the impact of residual pancreatic beta cell function in type 1 diabetes. We also aimed to use the metabolome to distinguish individuals with type 1 diabetes with reduced maximal aerobic capacity in exercise defined byV ˙ O 2peak . METHODS Thirty participants with type 1 diabetes (≥3 years duration) and 30 control participants were recruited. Groups did not differ in age or sex. After quantification of peak stimulated C-peptide, participants were categorised into those with undetectable (<3 pmol/l), low (3-200 pmol/l) or high (>200 pmol/l) residual beta cell function. Maximal aerobic capacity was assessed byV ˙ O 2peak test and did not differ between control and type 1 diabetes groups. All participants completed 45 min of incline treadmill walking (60%V ˙ O 2peak ) with venous blood taken prior to exercise, immediately post exercise and after 60 min recovery. Serum was analysed using targeted metabolomics. Metabolomic data were analysed by multivariate statistics to define the metabolic phenotype of exercise in type 1 diabetes. Receiver operating characteristic (ROC) curves were used to identify circulating metabolomic markers of maximal aerobic capacity (V ˙ O 2peak ) during exercise in health and type 1 diabetes. RESULTS Maximal aerobic capacity (V ˙ O 2peak ) inversely correlated with HbA1c in the type 1 diabetes group (r2=0.17, p=0.024). Higher resting serum tricarboxylic acid cycle metabolites malic acid (fold change 1.4, p=0.001) and lactate (fold change 1.22, p=1.23×10-5) differentiated people with type 1 diabetes. Higher serum acylcarnitines (AC) (AC C14:1, F value=12.25, p=0.001345; AC C12, F value=11.055, p=0.0018) were unique to the metabolic response to exercise in people with type 1 diabetes. C-peptide status differentially affected metabolic responses in serum ACs during exercise (AC C18:1, leverage 0.066; squared prediction error 3.07). The malic acid/pyruvate ratio in rested serum was diagnostic for maximal aerobic capacity (V ˙ O 2peak ) in people with type 1 diabetes (ROC curve AUC 0.867 [95% CI 0.716, 0.956]). CONCLUSIONS/INTERPRETATION The serum metabolome distinguishes high and low maximal aerobic capacity and has diagnostic potential for facilitating personalised medicine approaches to manage aerobic exercise and fitness in type 1 diabetes.
Collapse
Affiliation(s)
- Guy S Taylor
- Human Nutrition & Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kieran Smith
- Human Nutrition & Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
| | - Jadine Scragg
- Human Nutrition & Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | - James A Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel J West
- Human Nutrition & Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| |
Collapse
|
42
|
Lukasiewicz M, Zwara A, Kowalski J, Mika A, Hellmann A. The Role of Lipid Metabolism Disorders in the Development of Thyroid Cancer. Int J Mol Sci 2024; 25:7129. [PMID: 39000236 PMCID: PMC11241618 DOI: 10.3390/ijms25137129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Thyroid cancer (TC) is a neoplasm with an increasing incidence worldwide. Its etiology is complex and based on a multi-layered interplay of factors. Among these, disorders of lipid metabolism have emerged as an important area of investigation. Cancer cells are metabolically reprogrammed to promote their rapid growth, proliferation, and survival. This reprogramming is associated with significant changes at the level of lipids, mainly fatty acids (FA), as they play a critical role in maintaining cell structure, facilitating signaling pathways, and providing energy. These lipid-related changes help cancer cells meet the increased demands of continued growth and division while adapting to the tumor microenvironment. In this review, we examine lipid metabolism at different stages, including synthesis, transport, and oxidation, in the context of TC and the effects of obesity and hormones on TC development. Recent scientific efforts have revealed disturbances in lipid homeostasis that are specific to thyroid cancer, opening up potential avenues for early detection and targeted therapeutic interventions. Understanding the intricate metabolic pathways involved in FA metabolism may provide insights into potential interventions to prevent cancer progression and mitigate its effects on surrounding tissues.
Collapse
Affiliation(s)
- Martyna Lukasiewicz
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Agata Zwara
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
| | - Jacek Kowalski
- Department of Pathomorphology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-309 Gdansk, Poland
| | - Adriana Mika
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Andrzej Hellmann
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
43
|
von Maydell D, Wright S, Bonner JM, Staab C, Spitaleri A, Liu L, Pao PC, Yu CJ, Scannail AN, Li M, Boix CA, Mathys H, Leclerc G, Menchaca GS, Welch G, Graziosi A, Leary N, Samaan G, Kellis M, Tsai LH. Single-cell atlas of ABCA7 loss-of-function reveals impaired neuronal respiration via choline-dependent lipid imbalances. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556135. [PMID: 38979214 PMCID: PMC11230156 DOI: 10.1101/2023.09.05.556135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Loss-of-function (LoF) variants in the lipid transporter ABCA7 significantly increase the risk of Alzheimer's disease (odds ratio ∼2), yet the pathogenic mechanisms and the neural cell types affected by these variants remain largely unknown. Here, we performed single-nuclear RNA sequencing of 36 human post-mortem samples from the prefrontal cortex of 12 ABCA7 LoF carriers and 24 matched non-carrier control individuals. ABCA7 LoF was associated with gene expression changes in all major cell types. Excitatory neurons, which expressed the highest levels of ABCA7, showed transcriptional changes related to lipid metabolism, mitochondrial function, cell cycle-related pathways, and synaptic signaling. ABCA7 LoF-associated transcriptional changes in neurons were similarly perturbed in carriers of the common AD missense variant ABCA7 p.Ala1527Gly (n = 240 controls, 135 carriers), indicating that findings from our study may extend to large portions of the at-risk population. Consistent with ABCA7's function as a lipid exporter, lipidomic analysis of isogenic iPSC-derived neurons (iNs) revealed profound intracellular triglyceride accumulation in ABCA7 LoF, which was accompanied by a relative decrease in phosphatidylcholine abundance. Metabolomic and biochemical analyses of iNs further indicated that ABCA7 LoF was associated with disrupted mitochondrial bioenergetics that suggested impaired lipid breakdown by uncoupled respiration. Treatment of ABCA7 LoF iNs with CDP-choline (a rate-limiting precursor of phosphatidylcholine synthesis) reduced triglyceride accumulation and restored mitochondrial function, indicating that ABCA7 LoF-induced phosphatidylcholine dyshomeostasis may directly disrupt mitochondrial metabolism of lipids. Treatment with CDP-choline also rescued intracellular amyloid β -42 levels in ABCA7 LoF iNs, further suggesting a link between ABCA7 LoF metabolic disruptions in neurons and AD pathology. This study provides a detailed transcriptomic atlas of ABCA7 LoF in the human brain and mechanistically links ABCA7 LoF-induced lipid perturbations to neuronal energy dyshomeostasis. In line with a growing body of evidence, our study highlights the central role of lipid metabolism in the etiology of Alzheimer's disease.
Collapse
|
44
|
Cortés-Camacho F, Zambrano-Vásquez OR, Aréchaga-Ocampo E, Castañeda-Sánchez JI, Gonzaga-Sánchez JG, Sánchez-Gloria JL, Sánchez-Lozada LG, Osorio-Alonso H. Sodium-Glucose Cotransporter Inhibitors: Cellular Mechanisms Involved in the Lipid Metabolism and the Treatment of Chronic Kidney Disease Associated with Metabolic Syndrome. Antioxidants (Basel) 2024; 13:768. [PMID: 39061837 PMCID: PMC11274291 DOI: 10.3390/antiox13070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a multifactorial condition that significantly increases the risk of cardiovascular disease and chronic kidney disease (CKD). Recent studies have emphasized the role of lipid dysregulation in activating cellular mechanisms that contribute to CKD progression in the context of MetS. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have demonstrated efficacy in improving various components of MetS, including obesity, dyslipidemia, and insulin resistance. While SGLT2i have shown cardioprotective benefits, the underlying cellular mechanisms in MetS and CKD remain poorly studied. Therefore, this review aims to elucidate the cellular mechanisms by which SGLT2i modulate lipid metabolism and their impact on insulin resistance, mitochondrial dysfunction, oxidative stress, and CKD progression. We also explore the potential benefits of combining SGLT2i with other antidiabetic drugs. By examining the beneficial effects, molecular targets, and cytoprotective mechanisms of both natural and synthetic SGLT2i, this review provides a comprehensive understanding of their therapeutic potential in managing MetS-induced CKD. The information presented here highlights the significance of SGLT2i in addressing the complex interplay between metabolic dysregulation, lipid metabolism dysfunction, and renal impairment, offering clinicians and researchers a valuable resource for developing improved treatment strategies and personalized approaches for patients with MetS and CKD.
Collapse
Affiliation(s)
- Fernando Cortés-Camacho
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (F.C.-C.); (O.R.Z.-V.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - Oscar René Zambrano-Vásquez
- Doctorado en Ciencias Biologicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico; (F.C.-C.); (O.R.Z.-V.)
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Mexico City 05348, Mexico;
| | | | - José Guillermo Gonzaga-Sánchez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - José Luis Sánchez-Gloria
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, México City 14080, Mexico; (J.G.G.-S.); (L.G.S.-L.)
| |
Collapse
|
45
|
Cho H, Huh KM, Cho HJ, Kim B, Shim MS, Cho YY, Lee JY, Lee HS, Kwon YJ, Kang HC. Beyond nanoparticle-based oral drug delivery: transporter-mediated absorption and disease targeting. Biomater Sci 2024; 12:3045-3067. [PMID: 38712883 DOI: 10.1039/d4bm00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Various strategies at the microscale/nanoscale have been developed to improve oral absorption of therapeutics. Among them, gastrointestinal (GI)-transporter/receptor-mediated nanosized drug delivery systems (NDDSs) have drawn attention due to their many benefits, such as improved water solubility, improved chemical/physical stability, improved oral absorption, and improved targetability of their payloads. Their therapeutic potential in disease animal models (e.g., solid tumors, virus-infected lungs, metastasis, diabetes, and so on) has been investigated, and could be expanded to disease targeting after systemic/lymphatic circulation, although the detailed paths and mechanisms of endocytosis, endosomal escape, intracellular trafficking, and exocytosis through the epithelial cell lining in the GI tract are still unclear. Thus, this review summarizes and discusses potential GI transporters/receptors, their absorption and distribution, in vivo studies, and potential sequential targeting (e.g., oral absorption and disease targeting in organs/tissues).
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Ji Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Bogeon Kim
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
- Regulated Cell Death (RCD) Control Material Research Institute, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
46
|
Maccioni R, Bassareo V, Talani G, Zuffa S, El Abiead Y, Lorrai I, Kawamura T, Pantis S, Puliga R, Vargiu R, Lecca D, Enrico P, Peana A, Dazzi L, Dorrestein PC, Sanna PP, Sanna E, Acquas E. Receptor and metabolic insights on the ability of caffeine to prevent alcohol-induced stimulation of mesolimbic dopamine transmission. RESEARCH SQUARE 2024:rs.3.rs-4289552. [PMID: 38946995 PMCID: PMC11213171 DOI: 10.21203/rs.3.rs-4289552/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh). Here we show that caffeine, via antagonistic activity on A2A adenosine receptors (A2AR), prevents alcohol-dependent activation of mesolimbic DA function as assessed, in-vivo, by brain microdialysis of AcbSh DA and, in-vitro, by electrophysiological recordings of pVTA DA neuronal firing. Accordingly, while the A1R antagonist DPCPX fails to prevent the effects of alcohol on DA function, both caffeine and the A2AR antagonist SCH 58261 prevent alcohol-dependent pVTA generation of salsolinol and increase in AcbSh DA in-vivo, as well as alcohol-dependent excitation of pVTA DA neurons in-vitro. However, caffeine also prevents direct salsolinol- and morphine-stimulated DA function, suggesting that it can exert these inhibitory effects also independently from affecting alcohol-induced salsolinol formation or bioavailability. Finally, untargeted metabolomics of the pVTA showcases that caffeine antagonizes alcohol-mediated effects on molecules (e.g. phosphatidylcholines, fatty amides, carnitines) involved in lipid signaling and energy metabolism, which could represent an additional salsolinol-independent mechanism of caffeine in impairing alcohol-mediated stimulation of mesolimbic DA transmission. In conclusion, the outcomes of this study strengthen the potential of caffeine, as well as of A2AR antagonists, for future development of preventive/therapeutic strategies for alcohol use disorder.
Collapse
|
47
|
Parvanovova P, Evinova A, Grofik M, Hnilicova P, Tatarkova Z, Turcanova-Koprusakova M. Mitochondrial Dysfunction in Sporadic Amyotrophic Lateral Sclerosis Patients: Insights from High-Resolution Respirometry. Biomedicines 2024; 12:1294. [PMID: 38927501 PMCID: PMC11201269 DOI: 10.3390/biomedicines12061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic lateral sclerosis is a severe neurodegenerative disease whose exact cause is still unclear. Currently, research attention is turning to the mitochondrion as a critical organelle of energy metabolism. Current knowledge is sufficient to confirm the involvement of the mitochondria in the pathophysiology of the disease, since the mitochondria are involved in many processes in the cell; however, the exact mechanism of involvement is still unclear. We used peripheral blood mononuclear cells isolated from whole fresh blood from patients with amyotrophic lateral sclerosis for measurement and matched an age- and sex-matched set of healthy subjects. The group of patients consisted of patients examined and diagnosed at the neurological clinic of the University Hospital Martin. The set of controls consisted of healthy individuals who were actively searched, and controls were selected on the basis of age and sex. The group consisted of 26 patients with sporadic forms of ALS (13 women, 13 men), diagnosed based on the definitive criteria of El Escorial. The average age of patients was 54 years, and the average age of healthy controls was 56 years. We used a high-resolution O2K respirometry method, Oxygraph-2k, to measure mitochondrial respiration. Basal respiration was lower in patients by 29.48%, pyruvate-stimulated respiration (respiratory chain complex I) was lower by 29.26%, and maximal respiratory capacity was lower by 28.15%. The decrease in succinate-stimulated respiration (respiratory chain complex II) was 26.91%. Our data confirm changes in mitochondrial respiration in ALS patients, manifested by the reduced function of complex I and complex II of the respiratory chain. These defects are severe enough to confirm this disease's hypothesized mitochondrial damage. Therefore, research interest in the future should be directed towards a deeper understanding of the involvement of mitochondria and respiratory complexes in the pathophysiology of the disease. This understanding could develop new biomarkers in diagnostics and subsequent therapeutic interventions.
Collapse
Affiliation(s)
- Petra Parvanovova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (P.P.); (Z.T.)
| | - Andrea Evinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.E.); (P.H.)
| | - Milan Grofik
- Department of Neurology, University Hospital Martin, 036 01 Martin, Slovakia;
| | - Petra Hnilicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (A.E.); (P.H.)
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (P.P.); (Z.T.)
| | | |
Collapse
|
48
|
Ali ML, Ferrieres L, Jass J, Hyötyläinen T. Metabolic Changes in Pseudomonas oleovorans Isolated from Contaminated Construction Material Exposed to Varied Biocide Treatments. Metabolites 2024; 14:326. [PMID: 38921461 PMCID: PMC11205842 DOI: 10.3390/metabo14060326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Biocide resistance poses a significant challenge in industrial processes, with bacteria like Pseudomonas oleovorans exhibiting intrinsic resistance to traditional antimicrobial agents. In this study, the impact of biocide exposure on the metabolome of two P. oleovorans strains, namely, P. oleovorans P4A, isolated from contaminated coating material, and P. oleovorans 1045 reference strain, were investigated. The strains were exposed to 2-Methylisothiazol-3(2H)-one (MI) MIT, 1,2-Benzisothiazol-3(2H)-one (BIT), and 5-chloro-2-methyl-isothiazol-3-one (CMIT) at two different sub-inhibitory concentrations and the lipids and polar and semipolar metabolites were analyzed by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry UPLC-Q-TOF/MS. Exposure to the BIT biocide induced significant metabolic modifications in P. oleovorans. Notable changes were observed in lipid and metabolite profiles, particularly in phospholipids, amino acid metabolism, and pathways related to stress response and adaptation. The 1045 strain showed more pronounced metabolic alterations than the P4A strain, suggesting potential implications for lipid, amino acid metabolism, energy metabolism, and stress adaptation. Improving our understanding of how different substances interact with bacteria is crucial for making antimicrobial chemicals more effective and addressing the challenges of resistance. We observed that different biocides trigged significantly different metabolic responses in these strains. Our study shows that metabolomics can be used as a tool for the investigation of metabolic mechanisms underlying biocide resistance, and thus in the development of targeted biocides. This in turn can have implications in combating biocide resistance in bacteria such as P. oleovorans.
Collapse
Affiliation(s)
- Muatasem Latif Ali
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE 701 82 Örebro, Sweden; (M.L.A.); (J.J.)
- Saint-Gobain SWEDEN AB, SCANSPAC, Kemivägen 7, SE 705 97 Glanshammar, Sweden
| | - Lionel Ferrieres
- Saint-Gobain Recherche, 39 Quai Lucien Lefranc, FR-93303 Aubervilliers Cedex, France;
| | - Jana Jass
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE 701 82 Örebro, Sweden; (M.L.A.); (J.J.)
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE 701 82 Örebro, Sweden; (M.L.A.); (J.J.)
| |
Collapse
|
49
|
Ji W, Xie X, Bai G, He Y, Li L, Zhang L, Qiang D. Metabolomic approaches to dissect dysregulated metabolism in the progression of pre-diabetes to T2DM. Mol Omics 2024; 20:333-347. [PMID: 38686662 DOI: 10.1039/d3mo00130j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Many individuals with pre-diabetes eventually develop diabetes. Therefore, profiling of prediabetic metabolic disorders may be an effective targeted preventive measure. We aimed to elucidate the metabolic mechanism of progression of pre-diabetes to type 2 diabetes mellitus (T2DM) from a metabolic perspective. Four sets of plasma samples (20 subjects per group) collected according to fasting blood glucose (FBG) concentration were subjected to metabolomic analysis. An integrative approach of metabolome and WGCNA was employed to explore candidate metabolites. Compared with the healthy group (FBG < 5.6 mmol L-1), 113 metabolites were differentially expressed in the early stage of pre-diabetes (5.6 mmol L-1 ⩽ FBG < 6.1 mmol L-1), 237 in the late stage of pre-diabetes (6.1 mmol L-1 ⩽ FBG < 7.0 mmol L-1), and 245 in the T2DM group (FBG ⩾ 7.0 mmol L-1). A total of 27 differentially expressed metabolites (DEMs) were shared in all comparisons. Among them, L-norleucine was downregulated, whereas ethionamide, oxidized glutathione, 5-methylcytosine, and alpha-D-glucopyranoside beta-D-fructofuranosyl were increased with the rising levels of FBG. Surprisingly, 15 (11 lyso-phosphatidylcholines, L-norleucine, oxidized glutathione, arachidonic acid, and 5-oxoproline) of the 27 DEMs were ferroptosis-associated metabolites. WGCNA clustered all metabolites into 8 modules and the pathway enrichment analysis of DEMs showed a significant annotation to the insulin resistance-related pathway. Integrated analysis of DEMs, ROC and WGCNA modules determined 12 potential biomarkers for pre-diabetes and T2DM, including L-norleucine, 8 of which were L-arginine or its metabolites. L-Norleucine and L-arginine could serve as biomarkers for pre-diabetes. The inventory of metabolites provided by our plasma metabolome offers insights into T2DM physiology metabolism.
Collapse
Affiliation(s)
- Wenrui Ji
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Xiaomin Xie
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Guirong Bai
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Yanting He
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Ling Li
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Li Zhang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| | - Dan Qiang
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, People's Republic of China.
| |
Collapse
|
50
|
Wang H, Li B, Li A, An C, Liu S, Zhuang Z. Integrative Metabolomics, Enzymatic Activity, and Gene Expression Analysis Provide Insights into the Metabolic Profile Differences between the Slow-Twitch Muscle and Fast-Twitch Muscle of Pseudocaranx dentex. Int J Mol Sci 2024; 25:6131. [PMID: 38892319 PMCID: PMC11172523 DOI: 10.3390/ijms25116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The skeletal muscles of teleost fish encompass heterogeneous muscle types, termed slow-twitch muscle (SM) and fast-twitch muscle (FM), characterized by distinct morphological, anatomical, histological, biochemical, and physiological attributes, driving different swimming behaviors. Despite the central role of metabolism in regulating skeletal muscle types and functions, comprehensive metabolomics investigations focusing on the metabolic differences between these muscle types are lacking. To reveal the differences in metabolic characteristics between the SM and FM of teleost, we conducted an untargeted metabolomics analysis using Pseudocaranx dentex as a representative model and identified 411 differential metabolites (DFMs), of which 345 exhibited higher contents in SM and 66 in FM. KEGG enrichment analysis showed that these DFMs were enriched in the metabolic processes of lipids, amino acids, carbohydrates, purines, and vitamins, suggesting that there were significant differences between the SM and FM in multiple metabolic pathways, especially in the metabolism of energy substances. Furthermore, an integrative analysis of metabolite contents, enzymatic activity assays, and gene expression levels involved in ATP-PCr phosphate, anaerobic glycolysis, and aerobic oxidative energy systems was performed to explore the potential regulatory mechanisms of energy metabolism differences. The results unveiled a set of differential metabolites, enzymes, and genes between the SM and FM, providing compelling molecular evidence of the FM achieving a higher anaerobic energy supply capacity through the ATP-PCr phosphate and glycolysis energy systems, while the SM obtains greater energy supply capacity via aerobic oxidation. These findings significantly advance our understanding of the metabolic profiles and related regulatory mechanisms of skeletal muscles, thereby expanding the knowledge of metabolic physiology and ecological adaptation in teleost fish.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Busu Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Changting An
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhimeng Zhuang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.W.); (B.L.); (A.L.); (C.A.); (Z.Z.)
| |
Collapse
|