1
|
Benarroch E. What Is the Role of Cytokines in Synaptic Transmission? Neurology 2024; 103:e209928. [PMID: 39303183 DOI: 10.1212/wnl.0000000000209928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
|
2
|
Vecchiarelli HA, Lopes LT, Paolicelli RC, Stevens B, Wake H, Tremblay MÈ. Synapse Regulation. ADVANCES IN NEUROBIOLOGY 2024; 37:179-208. [PMID: 39207693 DOI: 10.1007/978-3-031-55529-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.
Collapse
Affiliation(s)
| | | | - Rosa C Paolicelli
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Beth Stevens
- Department of Neurology, Harvard Medical School, Center for Life Science, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | - Hiroaki Wake
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji-cho, Okazaki, Japan
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
3
|
Biţă CE, Scorei IR, Vreju AF, Muşetescu AE, Mogoşanu GD, Biţă A, Dinescu VC, Dinescu ŞC, Criveanu C, Bărbulescu AL, Florescu A, Ciurea PL. Microbiota-Accessible Boron-Containing Compounds in Complex Regional Pain Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1965. [PMID: 38004014 PMCID: PMC10673453 DOI: 10.3390/medicina59111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
The microbiota-gut-brain axis has garnered increasing attention in recent years for its role in various health conditions, including neuroinflammatory disorders like complex regional pain syndrome (CRPS). CRPS is a debilitating condition characterized by chronic neuropathic pain, and its etiology and pathophysiology remain elusive. Emerging research suggests that alterations in the gut microbiota composition and function could play a significant role in CRPS development and progression. Our paper explores the implications of microbiota in CRPS and the potential therapeutic role of boron (B). Studies have demonstrated that individuals with CRPS often exhibit dysbiosis, with imbalances in beneficial and pathogenic gut bacteria. Dysbiosis can lead to increased gut permeability and systemic inflammation, contributing to the chronic pain experienced in CRPS. B, an essential trace element, has shown promise in modulating the gut microbiome positively and exerting anti-inflammatory effects. Recent preclinical and clinical studies suggest that B supplementation may alleviate neuropathic pain and improve CRPS symptoms by restoring microbiota balance and reducing inflammation. Our review highlights the complex interplay between microbiota, inflammation, and neuropathic pain in CRPS and underscores the potential of B as a novel therapeutic approach to target the microbiota-gut-brain axis, offering hope for improved management of this challenging condition.
Collapse
Affiliation(s)
- Cristina Elena Biţă
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., 31B Dunării Street, 207465 Podari, Romania
| | - Ananu Florentin Vreju
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Anca Emanuela Muşetescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (G.D.M.); (A.B.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (G.D.M.); (A.B.)
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Ştefan Cristian Dinescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Cristina Criveanu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Andreea Lili Bărbulescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Alesandra Florescu
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| | - Paulina Lucia Ciurea
- Department of Rheumatology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (C.E.B.); (A.F.V.); (A.E.M.); (Ş.C.D.); (C.C.); (A.L.B.); (A.F.); (P.L.C.)
| |
Collapse
|
4
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
5
|
Zhao J, Huh Y, Bortsov A, Diatchenko L, Ji RR. Immunotherapies in chronic pain through modulation of neuroimmune interactions. Pharmacol Ther 2023; 248:108476. [PMID: 37307899 PMCID: PMC10527194 DOI: 10.1016/j.pharmthera.2023.108476] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
It is generally believed that immune activation can elicit pain through production of inflammatory mediators that can activate nociceptive sensory neurons. Emerging evidence suggests that immune activation may also contribute to the resolution of pain by producing distinct pro-resolution/anti-inflammatory mediators. Recent research into the connection between the immune and nervous systems has opened new avenues for immunotherapy in pain management. This review provides an overview of the most utilized forms of immunotherapies (e.g., biologics) and highlight their potential for immune and neuronal modulation in chronic pain. Specifically, we discuss pain-related immunotherapy mechanisms that target inflammatory cytokine pathways, the PD-L1/PD-1 pathway, and the cGAS/STING pathway. This review also highlights cell-based immunotherapies targeting macrophages, T cells, neutrophils and mesenchymal stromal cells for chronic pain management.
Collapse
Affiliation(s)
- Junli Zhao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrey Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC H3A 0G4, Canada; Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0G4, Canada
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Huang R, Han S, Qiu Y, Zhou T, Wu Y, Du H, Xu J, Wei X. Glucocorticoid regulation of lactate release from spinal astrocytes contributes to the induction of spinal LTP of C-fiber-evoked field potentials and the development of mechanical allodynia. Neuropharmacology 2022; 219:109253. [PMID: 36108796 DOI: 10.1016/j.neuropharm.2022.109253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
High-frequency stimulation (HFS) of the sciatic nerve leads to long-term potentiation (LTP) at C-fiber synapse and long-lasting pain hypersensitivity. The underlying mechanisms, however, are still unclear. In the present study, we investigated the involvement of astrocytes derived l-lactate in the spinal dorsal horn subsequent to glucocorticoid (GC) secretion into the plasma in this process using Sprague-Dawley rats and Aldh1L1-CreERT2 mice of either sex. We found that HFS increased l-lactate and monocarboxylate transporters 1/2 (MCT1/2) in the spinal dorsal horn. Inhibition of glycogenolysis or blocking lactate transport prevented the induction of spinal LTP following HFS. Furthermore, Chemogenetical inhibition of dorsal horn astrocytes, which were activated by HFS, prevented spinal LTP, alleviated the mechanical allodynia and the decreased the level l-lactate and GFAP expression in the dorsal horn following HFS. In contrast, Chemogenetics activation of dorsal horn astrocytes in naïve rats induced spinal LTP as well as mechanical allodynia, and increased GFAP expression and l-lactate. Application of l-lactate directly to the spinal cord of naïve rats induced spinal LTP, mechanical allodynia, and increased spinal expression of p-ERK. Importantly, HFS increased GC in the plasma and glucocorticoid receptor (GR) expression in spinal astrocytes, adrenalectomy or knocking down of GR in astrocytes by using Cre-Loxp system blocked the mechanical allodynia, prevented the spinal LTP and the enhancement of lactate after HFS. These results show that lactate released from spinal astrocytes following glucocorticoid release into the plasma enhance synaptic transmission at the C-fiber synapse and underlie pain chronicity.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuang Han
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxin Qiu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Taihe Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuning Wu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongchun Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Center for Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res 2022; 15:5201-5233. [PMID: 36110505 PMCID: PMC9469940 DOI: 10.2147/jir.s379093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic pain, which affects around 1/3 of the world population and is often comorbid with memory deficit and mood depression, is a leading source of suffering and disability. Studies in past decades have shown that hyperexcitability of primary sensory neurons resulting from abnormal expression of ion channels and central sensitization mediated pathological synaptic plasticity, such as long-term potentiation in spinal dorsal horn, underlie the persistent pain. The memory/emotional deficits are associated with impaired synaptic connectivity in hippocampus. Dysregulation of numerous endogenous proteins including receptors and intracellular signaling molecules is involved in the pathological processes. However, increasing knowledge contributes little to clinical treatment. Emerging evidence has demonstrated that the neuroinflammation, characterized by overproduction of pro-inflammatory cytokines and glial activation, is reliably detected in humans and animals with chronic pain, and is sufficient to induce persistent pain and memory/emotional deficits. The abnormal expression of ion channels and pathological synaptic plasticity in spinal dorsal horn and in hippocampus are resulting from neuroinflammation. The neuroinflammation is initiated and maintained by the interactions of circulating monocytes, glial cells and neurons. Obviously, unlike infectious diseases and cancer, which are caused by pathogens or malignant cells, chronic pain is resulting from alterations of cells and molecules which have numerous physiological functions. Therefore, normalization (counterbalance) but not simple inhibition of the neuroinflammation is the right strategy for treating neuronal disorders. Currently, no such agent is available in clinic. While experimental studies have demonstrated that intracellular Mg2+ deficiency is a common feature of chronic pain in animal models and supplement Mg2+ are capable of normalizing the neuroinflammation, activation of upregulated proteins that promote recovery, such as translocator protein (18k Da) or liver X receptors, has a similar effect. In this article, relevant experimental and clinical evidence is reviewed and discussed.
Collapse
Affiliation(s)
- Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
The Effect of Melatonin on Radicular Pain in a Rat Model of Lumbar Disc Herniation. Spine (Phila Pa 1976) 2022; 47:754-763. [PMID: 35102121 DOI: 10.1097/brs.0000000000004329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Controlled, randomized, animal study. OBJECTIVE To investigate the effect of melatonin and its receptors on radicular pain and the possible mechanisms. SUMMARY OF BACKGROUND DATA Lumbar disc herniation (LDH) may induce radicular pain, but the mechanism is not clear and therapeutic effect is still poor. Previously we report central sensitization meaning potentiation of spinal nociceptive synaptic transmission is the critical cause of radicular pain. Melatonin (Mel) has been reported to promote hippocampal synaptic transmission and thus improve learning ability. But the effect of Mel on spinal synaptic transmission and radicular pain are not clear. METHODS Rat LDH model was induced by autologous nucleus pulposus (NP) implantation. Melatonin was delivered intraperitoneally four times a day, from day 1 to day 3 after surgery. Melatonin receptor agonist and antagonists were delivered intrathecally for 3 days as well. Mechanical and thermal pain thresholds were assessed by von Frey filaments and hotplate test respectively. Electrophysiological recording was employed for survey C-fiber evoked field potentials. The protein level of N- methyl-D-aspartate submit 2A (NR2A), NR2B, melatonin receptor 1 (MT1), and receptor 2 (MT2) was evaluated by western blotting. Spinal expression of calcitonin gene related peptides (CGRP), isolectin b4 (IB4), and neurofilament-200 (NF200) was displayed by immunofluorescence staining. RESULTS Melatonin significantly increased mechanical and thermal pain thresholds, lasting at least to day 5 after surgery. Melatonin decreased C-fiber evoked field potentials; decreased spinal NR2B protein level; reduced spinal CGRP, and IB4 expression. MT2 was upregulated after NP implantation and was co-localized with neuron and microglia. MT2 receptor agonist simulated the effect of Mel, and both MT receptor broadspectrum antagonist and MT2 specific antagonist abolished the effect of MT2 receptor agonist. CONCLUSION Melatonin alleviates radicular pain from LDH by inhibiting central sensitization via binding with its receptor 2, decreasing spinal CGRP, IB4, and NR2B expression.
Collapse
|
9
|
Dworsky-Fried Z, Faig CA, Vogel HA, Kerr BJ, Taylor AMW. Central amygdala inflammation drives pain hypersensitivity and attenuates morphine analgesia in experimental autoimmune encephalomyelitis. Pain 2022; 163:e49-e61. [PMID: 33863858 DOI: 10.1097/j.pain.0000000000002307] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic pain is a highly prevalent symptom associated with the autoimmune disorder multiple sclerosis (MS). The central nucleus of the amygdala plays a critical role in pain processing and modulation. Neuropathic pain alters nociceptive signaling in the central amygdala, contributing to pain chronicity and opioid tolerance. Here, we demonstrate that activated microglia within the central amygdala disrupt nociceptive sensory processing and contribute to pain hypersensitivity in experimental autoimmune encephalomyelitis (EAE), the most frequently used animal model of MS. Male and female mice with EAE exhibited differences in microglial morphology in the central amygdala, which was associated with heat hyperalgesia, impaired morphine reward, and reduced morphine antinociception in females. Animals with EAE displayed a lack of morphine-evoked activity in cells expressing somatostatin within the central amygdala, which drive antinociception. Induction of focal microglial activation in naïve mice via injection of lipopolysaccharide into the central amygdala produced a loss of morphine analgesia in females, similar to as observed in EAE animals. Our data indicate that activated microglia within the central amygdala may contribute to the sexually dimorphic effects of morphine and may drive neuronal adaptations that lead to pain hypersensitivity in EAE. Our results provide a possible mechanism underlying the decreased efficacy of opioid analgesics in the management of MS-related pain, identifying microglial activation as a potential therapeutic target for pain symptoms in this patient population.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Christian A Faig
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Holly A Vogel
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Bradley J Kerr
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna M W Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Camacho-Hernández P, Lorea-Hernández JJ, Pinedo-Vargas L, Peña-Ortega F. Perinatal inflammation and gestational intermittent hypoxia disturbs respiratory rhythm generation and long-term facilitation in vitro: partial protection by acute minocycline. Respir Physiol Neurobiol 2021; 297:103829. [PMID: 34921999 DOI: 10.1016/j.resp.2021.103829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023]
Abstract
Perinatal inflammation triggers breathing disturbances early in life and affects the respiratory adaptations to challenging conditions, including the generation of amplitude long-term facilitation (LTF) by acute intermittent hypoxia (AIH). Some of these effects can be avoided by anti-inflammatory treatments like minocycline. Since little is known about the effects of perinatal inflammation on the inspiratory rhythm generator, located in the preBötzinger complex (preBötC), we tested the impact of acute lipopolysaccharide (LPS) systemic administration (sLPS), as well as gestational LPS (gLPS) and gestational chronic IH (gCIH), on respiratory rhythm generation and its long-term response to AIH in a brainstem slice preparation from neonatal mice. We also evaluated whether acute minocycline administration could influence these effects. We found that perinatal inflammation induced by sLPS or gLPS, as well as gCIH, modulate the frequency, signal-to-noise ratio and/or amplitude (and their regularity) of the respiratory rhythm recorded from the preBötC in the brainstem slice. Moreover, all these perinatal conditions inhibited frequency LTF and amplitude long-term depression (LTD); gCIH even induced frequency LTD of the respiratory rhythm after AIH. Some of the alterations were not observed in slices pre-treated in vitro with minocycline, when compared with slices obtained from naïve pups, suggesting that ongoing inflammatory conditions affect respiratory rhythm generation and its plasticity. Thus, it is likely that alterations in the inspiratory rhythm generator and its adaptive responses could contribute to the respiratory disturbances observed in neonates that suffered from perinatal inflammatory challenges.
Collapse
Affiliation(s)
- Polet Camacho-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Jonathan Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Laura Pinedo-Vargas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| |
Collapse
|
11
|
Mourão AA, Shimoura CG, Andrade MA, Truong TT, Pedrino GR, Toney GM. Local ionotropic glutamate receptors are required to trigger and sustain ramping of sympathetic nerve activity by hypothalamic paraventricular nucleus TNF α. Am J Physiol Heart Circ Physiol 2021; 321:H580-H591. [PMID: 34355986 DOI: 10.1152/ajpheart.00322.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor necrosis factor-α (TNFα) in the hypothalamic paraventricular nucleus (PVN) contributes to increased sympathetic nerve activity (SNA) in cardiovascular disease models, but mechanisms are incompletely understood. As previously reported, bilateral PVN TNFα (0.6 pmol, 50 nL) induced acute ramping of splanchnic SNA (SSNA) that averaged +64 ± 7% after 60 min and +109 ± 17% after 120 min (P < 0.0001, n = 10). Given that TNFα can rapidly strengthen glutamatergic transmission, we hypothesized that progressive activation of ionotropic glutamate receptors is critically involved. When compared with that of vehicle (n = 5), prior blockade of PVN AMPA or NMDA receptors in anesthetized (urethane/α-chloralose) adult male Sprague-Dawley rats dose-dependently (ED50: 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), 2.48 nmol; D-(-)-2-amino-5-phosphonopentanoic acid (APV), 12.33 nmol), but incompletely (Emax: NBQX, 64%; APV, 41%), attenuated TNFα-induced SSNA ramping (n = 5/dose). By contrast, combined receptor blockade prevented ramping (1.3 ± 2.1%, P < 0.0001, n = 5). Whereas separate blockade of PVN AMPA or NMDA receptors (n = 5/group) had little effect on continued SSNA ramping when performed 60 min after TNFα injection, combined blockade (n = 5) or PVN inhibition with the GABA-A receptor agonist muscimol (n = 5) effectively stalled, without reversing, the SSNA ramp. Notably, PVN TNFα increased local TNFα immunofluorescence after 120, but not 60 min. Findings indicate that AMPA and NMDA receptors each contribute to SSNA ramping to PVN TNFα, and that their collective availability and ongoing activity are required to initiate and sustain the ramping response. We conclude that acute sympathetic activation by PVN TNFα involves progressive local glutamatergic excitation that recruits downstream neurons capable of maintaining heightened SSNA, but incapable of sustaining SSNA ramping.NEW & NOTEWORTHY The proinflammatory cytokine TNFα contributes to heightened SNA in cardiovascular disease models, but mechanisms remain obscure. Here, we demonstrate that TNFα injection into the hypothalamic PVN triggers SNA ramping by mechanisms dependent on local ionotropic glutamate receptor availability, but largely independent of TNFα autoinduction. Continued SNA ramping depends on ionotropic glutamate receptor and neuronal activity in PVN, indicating that strengthening and/or increased efficacy of glutamatergic transmission is necessary for acute sympathoexcitation by PVN TNFα.
Collapse
Affiliation(s)
- Aline A Mourão
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas.,Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goias, Goiania, Goias, Brazil
| | - Caroline G Shimoura
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Tamara T Truong
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Gustavo R Pedrino
- Department of Physiological Sciences, Center for Neuroscience and Cardiovascular Research, Federal University of Goias, Goiania, Goias, Brazil
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas.,Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
12
|
Li Y, Bao Y, Zheng H, Qin Y, Hua B. The nonreceptor protein tyrosine kinase Src participates in every step of cancer-induced bone pain. Biomed Pharmacother 2021; 141:111822. [PMID: 34147901 DOI: 10.1016/j.biopha.2021.111822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer-induced bone pain (CIBP) is a refractory form of pain that has a high incidence in advanced tumors. Src protein tyrosine kinase is mainly composed of six domains, with two states of automatic inhibition and activation. The modular domain allows Src to conveniently regulate by and communicate with a variety of proteins, directly or indirectly participate in each step of the CIBP process. Src is beneficial to the growth and proliferation of tumor cells, and it can promote the metastases of primary tumors to bone. In the microenvironment of bone metastasis, it mainly mediates bone resorption, activates related peripheral receptors to participate in the formation of pain signals, and may promote the generation of pathological sensory nerve fibers. In the process of pain signal transmission, it mainly mediates NMDAR and central glial cells to regulate pain signal intensity and central sensitization, but it is not limited to these two aspects. Both basic experimentation and clinical research have shown encouraging potential, providing new ideas and inspiration for the prevention and treatment of CIBP.
Collapse
Affiliation(s)
- Yaoyuan Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinggang Qin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Ma L, Peng S, Wei J, Zhao M, Ahmad KA, Chen J, Wang YX. Spinal microglial β-endorphin signaling mediates IL-10 and exenatide-induced inhibition of synaptic plasticity in neuropathic pain. CNS Neurosci Ther 2021; 27:1157-1172. [PMID: 34111331 PMCID: PMC8446220 DOI: 10.1111/cns.13694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
AIM This study aimed to investigate the regulation of pain hypersensitivity induced by the spinal synaptic transmission mechanisms underlying interleukin (IL)-10 and glucagon-like peptide 1 receptor (GLP-1R) agonist exenatide-induced pain anti-hypersensitivity in neuropathic rats through spinal nerve ligations. METHODS Neuropathic pain model was established by spinal nerve ligation of L5/L6 and verified by electrophysiological recording and immunofluorescence staining. Microglial expression of β-endorphin through autocrine IL-10- and exenatide-induced inhibition of glutamatergic transmission were performed by behavioral tests coupled with whole-cell recording of miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) through application of endogenous and exogenous IL-10 and β-endorphin. RESULTS Intrathecal injections of IL-10, exenatide, and the μ-opioid receptor (MOR) agonists β-endorphin and DAMGO inhibited thermal hyperalgesia and mechanical allodynia in neuropathic rats. Whole-cell recordings of bath application of exenatide, IL-10, and β-endorphin showed similarly suppressed enhanced frequency and amplitude of the mEPSCs in the spinal dorsal horn neurons of laminae II, but did not reduce the frequency and amplitude of mIPSCs in neuropathic rats. The inhibitory effects of IL-10 and exenatide on pain hypersensitive behaviors and spinal synaptic plasticity were totally blocked by pretreatment of IL-10 antibody, β-endorphin antiserum, and MOR antagonist CTAP. In addition, the microglial metabolic inhibitor minocycline blocked the inhibitory effects of IL-10 and exenatide but not β-endorphin on spinal synaptic plasticity. CONCLUSION This suggests that spinal microglial expression of β-endorphin mediates IL-10- and exenatide-induced inhibition of glutamatergic transmission and pain hypersensitivity via presynaptic and postsynaptic MORs in spinal dorsal horn.
Collapse
Affiliation(s)
- Le Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai Mental Health Center, Shanghai, China
| | - Shiyu Peng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai Mental Health Center, Shanghai, China.,School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, China
| | - Jinbao Wei
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Mengjing Zhao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Jinghong Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai Mental Health Center, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
14
|
Qiao O, Ji H, Zhang Y, Zhang X, Zhang X, Liu N, Huang L, Liu C, Gao W. New insights in drug development for Alzheimer's disease based on microglia function. Biomed Pharmacother 2021; 140:111703. [PMID: 34083109 DOI: 10.1016/j.biopha.2021.111703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
One of the biggest challenges in drug development for Alzheimer's disease (AD) is how to effectively remove deposits of amyloid-beta (Aβ). Recently, the relationship between microglia and Aβ has become a research hotspot. Emerging evidence suggests that Aβ-induced microglia-mediated neuroinflammation further aggravates the decline of cognitive function, while microglia are also involved in the process of Aβ clearance. Hence, microglia have become a potential therapeutic target for the treatment or prevention of AD. An in-depth understanding of the role played by microglia in the development of AD will help us to broaden therapeutic strategies for AD. In this review, we provide an overview of the dual roles of microglia in AD progression: the positive effect of phagocytosis of Aβ and its negative effect on neuroinflammation after over-activation. With the advantages of novel structure, high efficiency, and low toxicity, small-molecule compounds as modulators of microglial function have attracted considerable attention in the therapeutic areas of AD. In this review, we also summarize the therapeutic potential of small molecule compounds (SMCs) and their structure-activity relationship for AD treatment through modulating microglial phagocytosis and inhibiting neuroinflammation. For example, the position and number of phenolic hydroxyl groups on the B ring are the key to the activity of flavonoids, and the substitution of hydroxyl groups on the benzene ring enhances the anti-inflammatory activity of phenolic acids. This review is expected to be useful for developing effective modulators of microglial function from SMCs for the amelioration and treatment of AD.
Collapse
Affiliation(s)
- Ou Qiao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Haixia Ji
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Yi Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Xinyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Xueqian Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Na Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China
| | - Luqi Huang
- Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics, Tianjin 300193, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China.
| |
Collapse
|
15
|
Chronic Low Dose Neutron Exposure Results in Altered Neurotransmission Properties of the Hippocampus-Prefrontal Cortex Axis in Both Mice and Rats. Int J Mol Sci 2021; 22:ijms22073668. [PMID: 33915974 PMCID: PMC8036585 DOI: 10.3390/ijms22073668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
The proposed deep space exploration to the moon and later to Mars will result in astronauts receiving significant chronic exposures to space radiation (SR). SR exposure results in multiple neurocognitive impairments. Recently, our cross-species (mouse/rat) studies reported impaired associative memory formation in both species following a chronic 6-month low dose exposure to a mixed field of neutrons (1 mGy/day for a total dose pf 18 cGy). In the present study, we report neutron exposure induced synaptic plasticity in the medial prefrontal cortex, accompanied by microglial activation and significant synaptic loss in the hippocampus. In a parallel study, neutron exposure was also found to alter fluorescence assisted single synaptosome LTP (FASS-LTP) in the hippocampus of rats, that may be related to a reduced ability to insert AMPAR into the post-synaptic membrane, which may arise from increased phosphorylation of the serine 845 residue of the GluA1 subunit. Thus, we demonstrate for the first time, that low dose chronic neutron irradiation impacts homeostatic synaptic plasticity in the hippocampal-cortical circuit in two rodent species, and that the ability to successfully encode associative recognition memory is a dynamic, multicircuit process, possibly involving compensatory changes in AMPAR density on the synaptic surface.
Collapse
|
16
|
Wang H, Huang M, Wang W, Zhang Y, Ma X, Luo L, Xu X, Xu L, Shi H, Xu Y, Wang A, Xu T. Microglial TLR4-induced TAK1 phosphorylation and NLRP3 activation mediates neuroinflammation and contributes to chronic morphine-induced antinociceptive tolerance. Pharmacol Res 2021; 165:105482. [PMID: 33549727 DOI: 10.1016/j.phrs.2021.105482] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE The aim of this work was to investigate the role and signal transduction of toll-like receptor 4 (TLR4), TGF-β-activated kinase 1 (TAK1) and nod-like receptor protein 3 (NLRP3) in microglial in the development of morphine-induced antinociceptive tolerance. METHODS TLR4 and NLRP3 knockout mice and 5Z-7-oxozeaeno (a selective inhibitor against TAK1 activity) were used to observe their effect on the development of morphine tolerance. Intrathecal injections of morphine (0.75 mg/kg once daily for 7 days) were used to establish anti-nociceptive tolerance, which was measured by the tail-flick test. Spinal TLR4, TAK1, and NLRP3 expression levels and phosphorylation of TAK1 were evaluated by Western blotting and immunofluorescence. RESULTS Repeated treatment with morphine increased total expression of spinal TLR4, TAK1, and NLRP3 and phosphorylation of TAK1 in wild-type mice. TLR4 knockout attenuated morphine-induced tolerance and inhibited the chronic morphine-induced increase in NLRP3 and phosphorylation of TAK1. Compared with controls, mice that received 5Z-7-oxozeaenol showed decreased development of morphine tolerance and inhibition on repeated morphine-induced increase of NLRP3 but not TLR4. NLRP3 knockout mice showed resistance to morphine-induced analgesic tolerance with no effect on chronic morphine-induced expression of TLR4 and TAK1. TLR4, TAK1, and NLRP3 were collectively co-localized together and with the microglia marker Iba1. CONCLUSIONS Microglial TLR4 regulates TAK1 expression and phosphorylation and results in NLRP3 activation contributes to the development of morphine tolerance through regulating neuroinflammation. Targeting TLR4-TAK1-NLRP3 signaling to regulate neuro-inflammation will be alternative therapeutics and strategies for chronic morphine-induced antinociceptive tolerance.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, China; Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Min Huang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Wenying Wang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Yu Zhang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaqing Ma
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Limin Luo
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaotao Xu
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Liang Xu
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Yongming Xu
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| | - Aizhong Wang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| | - Tao Xu
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, China; Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| |
Collapse
|
17
|
Reischer G, Heinke B, Sandkühler J. Interferon-γ facilitates the synaptic transmission between primary afferent C-fibres and lamina I neurons in the rat spinal dorsal horn via microglia activation. Mol Pain 2021; 16:1744806920917249. [PMID: 32264753 PMCID: PMC7144669 DOI: 10.1177/1744806920917249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent studies have demonstrated an important role of the pro-inflammatory cytokine interferon-γ in neuropathic pain. Interferon-γ is upregulated in the lumbar spinal cord of nerve-injured rodents and intrathecal injection of interferon-γ has been shown to induce neuropathic pain-like behaviours in naive rodents. A potential mechanism in the pathogenesis of neuropathic pain is a long-lasting amplification of nociceptive synaptic transmission in lamina I of the spinal dorsal horn. Here, we tested the effects of interferon-γ on the properties of the first synapse in nociceptive pathways in the superficial spinal dorsal horn. We performed whole-cell patch-clamp recordings in lamina I neurons in a spinal cord slice preparation with dorsal roots attached from young rats. We determined the effects of acute (at least 25 min) or longer lasting (4–8 h) treatment of the transversal slices with recombinant rat interferon-γ on spontaneous excitatory postsynaptic currents or on monosynaptic Aδ- and C-fibre-evoked excitatory postsynaptic currents, respectively. Prolonged treatment with interferon-γ facilitated monosynaptic C-fibre-evoked excitatory postsynaptic currents and this effect could be blocked by co-application of minocycline an inhibitor of microglial activation. In contrast, Aδ-fibre-evoked excitatory postsynaptic currents were not affected by the prolonged interferon-γ treatment. Acute interferon-γ application in the bathing solution did not change strength of monosynaptic Aδ- or C-fibre synapses in lamina I. However, the rate, but not the amplitude, of spontaneous excitatory postsynaptic currents recorded in lamina I neurons was decreased. This effect could not be blocked by the application of minocycline. Long-lasting treatment of rat spinal cord slices with interferon-γ induced an input specific facilitation of synaptic strength in spinal nociceptive pathways. Enhanced transmission between C-fibres and spinal lamina I neurons was mediated by the activation of microglial cells. We showed that the pro-inflammatory cytokine interferon-γ modifies the processing of information at the first synaptic relay station in nociceptive pathways.
Collapse
Affiliation(s)
- Gerda Reischer
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Bernhard Heinke
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Zhu L, Huang Y, Hu Y, Tang Q, Zhong Y. Toll-like receptor 4/nuclear factor-kappa B pathway is involved in radicular pain by encouraging spinal microglia activation and inflammatory response in a rat model of lumbar disc herniation. Korean J Pain 2021; 34:47-57. [PMID: 33380567 PMCID: PMC7783850 DOI: 10.3344/kjp.2021.34.1.47] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background Lumbar disc herniation (LDH) is a common cause of radicular pain, but the mechanism is not clear. In this study, we investigated the engagement of toll-like receptor 4 (TLR4) and the nuclear factor-kappa B (NF-κB) in radicular pain and its possible mechanisms. Methods An LDH model was induced by autologous nucleus pulposus (NP) implantation, which was obtained from coccygeal vertebra, then relocated in the lumbar 4/5 spinal nerve roots of rats. Mechanical and thermal pain behaviors were assessed by using von Frey filaments and hotplate test respectively. The protein level of TLR4 and phosphorylated-p65 (p-p65) was evaluated by western blotting analysis and immunofluorescence staining. Spinal microglia activation was evaluated by immunofluorescence staining of specific relevant markers. The expression of pro- and anti-inflammatory cytokines in the spinal dorsal horn was measured by enzyme linked immunosorbent assay. Results Spinal expression of TLR4 and p-NF-κB (p-p65) was significantly increased after NP implantation, lasting up to 14 days. TLR4 was mainly expressed in spinal microglia, but not astrocytes or neurons. TLR4 antagonist TAK242 decreased spinal expression of p-p65. TAK242 or NF-κB inhibitor pyrrolidinedithiocarbamic acid alleviated mechanical and thermal pain behaviors, inhibited spinal microglia activation, moderated spinal inflammatory response manifested by decreasing interleukin (IL)-1β, IL-6, tumor necrosis factor-α expression and increasing IL-10 expression in the spinal dorsal horn. Conclusions The study revealed that TLR4/NF-κB pathway participated in radicular pain by encouraging spinal microglia activation and inflammatory response.
Collapse
Affiliation(s)
- Lirong Zhu
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangliang Huang
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuming Hu
- Department of Pathology, Vocational Technical School of Nanhai, Foshan, China
| | - Qian Tang
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi Zhong
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Abstract
Opioids are the most powerful analgesics available to date. However, they may also induce adverse effects including paradoxical opioid-induced hyperalgesia. A mechanism that might underlie opioid-induced hyperalgesia is the amplification of synaptic strength at spinal C-fibre synapses after withdrawal from systemic opioids such as remifentanil ("opioid-withdrawal long-term potentiation [LTP]"). Here, we show that both the induction as well as the maintenance of opioid-withdrawal LTP were abolished by pharmacological blockade of spinal glial cells. By contrast, the blockade of TLR4 had no effect on the induction of opioid-withdrawal LTP. D-serine, which may be released upon glial cell activation, was necessary for withdrawal LTP. D-serine is the dominant coagonist for neuronal NMDA receptors, which are required for the amplification of synaptic strength on remifentanil withdrawal. Unexpectedly, opioid-withdrawal LTP was transferable through the cerebrospinal fluid between animals. This suggests that glial-cell-derived mediators accumulate in the extracellular space and reach the cerebrospinal fluid at biologically active concentrations, thereby creating a soluble memory trace that is transferable to another animal ("transfer LTP"). When we enzymatically degraded D-serine in the superfusate, LTP could no longer be transferred. Transfer LTP was insensitive to pharmacological blockade of glial cells in the recipient animal, thus representing a rare form of glial cell-independent LTP in the spinal cord.
Collapse
|
20
|
Zhou LJ, Peng J, Xu YN, Zeng WJ, Zhang J, Wei X, Mai CL, Lin ZJ, Liu Y, Murugan M, Eyo UB, Umpierre AD, Xin WJ, Chen T, Li M, Wang H, Richardson JR, Tan Z, Liu XG, Wu LJ. Microglia Are Indispensable for Synaptic Plasticity in the Spinal Dorsal Horn and Chronic Pain. Cell Rep 2020; 27:3844-3859.e6. [PMID: 31242418 DOI: 10.1016/j.celrep.2019.05.087] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/29/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Spinal long-term potentiation (LTP) at C-fiber synapses is hypothesized to underlie chronic pain. However, a causal link between spinal LTP and chronic pain is still lacking. Here, we report that high-frequency stimulation (HFS; 100 Hz, 10 V) of the mouse sciatic nerve reliably induces spinal LTP without causing nerve injury. LTP-inducible stimulation triggers chronic pain lasting for more than 35 days and increases the number of calcitonin gene-related peptide (CGRP) terminals in the spinal dorsal horn. The behavioral and morphological changes can be prevented by blocking NMDA receptors, ablating spinal microglia, or conditionally deleting microglial brain-derived neurotrophic factor (BDNF). HFS-induced spinal LTP, microglial activation, and upregulation of BDNF are inhibited by antibodies against colony-stimulating factor 1 (CSF-1). Together, our results show that microglial CSF1 and BDNF signaling are indispensable for spinal LTP and chronic pain. The microglia-dependent transition of synaptic potentiation to structural alterations in pain pathways may underlie pain chronicity.
Collapse
Affiliation(s)
- Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| | - Jiyun Peng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ya-Nan Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Jie Zeng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Zhang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ukpong B Eyo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Center, the Fourth Military Medical University, Xi'an 710032, China
| | - Mingtao Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
| | - Hui Wang
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 22600, China
| | - Jason R Richardson
- Departments of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou 510080, China.
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
21
|
Ge MM, Zhou YQ, Tian XB, Manyande A, Tian YK, Ye DW, Yang H. Src-family protein tyrosine kinases: A promising target for treating chronic pain. Biomed Pharmacother 2020; 125:110017. [DOI: 10.1016/j.biopha.2020.110017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
|
22
|
Mai JZ, Liu C, Huang Z, Mai CL, Zhou X, Zhang J, Liu XG. Oral application of bulleyaconitine A attenuates morphine tolerance in neuropathic rats by inhibiting long-term potentiation at C-fiber synapses and protein kinase C gamma in spinal dorsal horn. Mol Pain 2020; 16:1744806920917242. [PMID: 32290780 PMCID: PMC7160774 DOI: 10.1177/1744806920917242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Morphine is frequently used for the treatment of chronic pain, while long-term
use of the drug leads to analgesic tolerance. At present, the prevention of the
side effect remains a big challenge. Bulleyaconitine A, a diterpenoid alkaloid
from Aconitum bulleyanum plants, has been used to treat chronic
pain in China for more than 30 years. In the present study, we tested the effect
of bulleyaconitine A on analgesic tolerance induced by morphine injections
(10 mg/kg s.c., b.i.d.) in the lumbar 5 spinal nerve ligation model of
neuropathic pain. We found that intragastrical application of bulleyaconitine A
(0.4 mg/kg) 30 min before each morphine injection substantially inhibited the
decrease in morphine’s inhibitory effect on mechanical allodynia and thermal
hyperalgesia. Mechanistically, morphine injections further potentiated the
lumbar 5 spinal nerve ligation induced long-term potentiation at C-fiber
synapses in the spinal dorsal horn, a synaptic model of chronic pain. This
effect was completely blocked by intragastrical bulleyaconitine A. It has been
well established that activation of protein kinase C gamma and of glial cells in
the spinal dorsal horn are critical for the development of opioid tolerance and
neuropathic pain. We found that morphine injections exacerbated the upregulation
of phospho-protein kinase C gamma (an active form of protein kinase C gamma),
and the activation of microglia and astrocytes in the spinal dorsal horn induced
by lumbar 5 spinal nerve ligation, and the effects were considerably prohibited
by intragastrical bulleyaconitine A. Thus, spinal long-term potentiation at
C-fiber synapses may underlie morphine tolerance. Oral administration of
bulleyaconitine A may be a novel and simple approach for treating of opioid
tolerance.
Collapse
Affiliation(s)
- Jie-Zhen Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chong Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhuo Huang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xin Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Zhang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
23
|
Dworsky-Fried Z, Kerr BJ, Taylor AMW. Microbes, microglia, and pain. NEUROBIOLOGY OF PAIN 2020; 7:100045. [PMID: 32072077 PMCID: PMC7016021 DOI: 10.1016/j.ynpai.2020.100045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Explore the connection between the gut microbiome and microglia in chronic pain. Discuss mechanisms by which gut bacteria might influence microglia to contribute to chronic pain. Highlight gaps in knowledge and discuss future directions for the field.
Globally, it is estimated that one in five people suffer from chronic pain, with prevalence increasing with age. The pathophysiology of chronic pain encompasses complex sensory, immune, and inflammatory interactions within both the central and peripheral nervous systems. Microglia, the resident macrophages of the central nervous system (CNS), are critically involved in the initiation and persistence of chronic pain. Microglia respond to local signals from the CNS but are also modulated by signals from the gastrointestinal tract. Emerging data from preclinical and clinical studies suggest that communication between the gut microbiome, the community of bacteria residing within the gut, and microglia is involved in producing chronic pain. Targeted strategies that manipulate or restore the gut microbiome have been shown to reduce microglial activation and alleviate symptoms associated with inflammation. These data indicate that manipulations of the gut microbiome in chronic pain patients might be a viable strategy in improving pain outcomes. Herein, we discuss the evidence for a connection between microglia and the gut microbiome and explore the mechanisms by which commensal bacteria might influence microglial reactivity to drive chronic pain.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton T6G2H7, Canada
| | - Bradley J Kerr
- Department of Pharmacology, University of Alberta, Edmonton T6G2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton T6G2H7, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton T6G2H7, Canada
| | - Anna M W Taylor
- Department of Pharmacology, University of Alberta, Edmonton T6G2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton T6G2H7, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton T6G2H7, Canada
| |
Collapse
|
24
|
Araya EI, Turnes JDM, Barroso AR, Chichorro JG. Contribution of intraganglionic CGRP to migraine-like responses in male and female rats. Cephalalgia 2019; 40:689-700. [DOI: 10.1177/0333102419896539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective To evaluate whether intraganglionic calcitonin gene-related peptide induced differential migraine-like responses in male and female rats. Methods Calcitonin gene-related peptide was injected in the trigeminal ganglion of male and female rats followed by assessment of periorbital mechanical allodynia with von Frey hairs. The influence of systemic treatment with sumatriptan or intraganglionic treatment with minocycline and propentofylline was determined on the calcitonin gene-related peptide-induced mechanical allodynia in male and female rats. One additional group was exposed to an aversive light 24 h after calcitonin gene-related peptide priming, followed by evaluation of periorbital mechanical threshold, and another group was tested in the elevated-plus maze. Results Intraganglionar calcitonin gene-related peptide-induced periorbital mechanical allodynia in female (0.5 to 6 h) and male rats (0.5 to 4 h). Systemic sumatriptan briefly attenuated the mechanical allodynia, but intraganglionar minocycline or propentofylline injection was effective only in male rats. Calcitonin gene-related peptide induced photic sensitivity in female and male rats (lasting 4 h and 1 h, respectively), as well as anxiety-like behavior. Conclusions Intraganglionar calcitonin gene-related peptide may play a major role in migraine-like responses, including periorbital mechanical allodynia, light sensitivity and anxiety like-behavior. Female rats are likely to be more susceptible to calcitonin gene-related peptide effects and a better understanding of the sexual dimorphism in calcitonin gene-related peptide signaling may help to improve migraine therapy.
Collapse
Affiliation(s)
- Erika Ivanna Araya
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, PR, Brazil
| | - Joelle de Melo Turnes
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, PR, Brazil
| | - Amanda Ribeiro Barroso
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, PR, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
25
|
SFKs/p38 Pathway is Involved in Radicular Pain by Promoting Spinal Expression of Pro-Inflammatory Cytokines in a Rat Model of Lumbar Disc Herniation. Spine (Phila Pa 1976) 2019; 44:E1112-E1121. [PMID: 31261268 DOI: 10.1097/brs.0000000000003076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A controlled, randomized, animal study. OBJECTIVE The aim of this study was to investigate the role of src-family kinases/p38 pathway in a rat model of lumbar disc herniation (LDH). SUMMARY OF BACKGROUND DATA LDH always generates radicular pain, and the mechanism remains unclear. We have reported that spinal src-family kinases (SFKs) may be involved in the process, but the downstream mechanism needs further investigation. METHODS LDH was induced by implantation of autologous nucleus pulposus (NP), harvest from the tail, in lumbar 4/5 spinal nerve roots of rat. Von Frey filaments and radiant heat tests were performed to determine mechanical and thermal pain threshold respectively. Basso, Beattie, and Bresnahan (BBB) scale was assessed to test the locomotor function. The protein level of p-SFKs, t-SFKs, p-p38, t-p38 in spinal cord was examined by western blotting analysis. Cellular location of p-p38 was determined by immunochemistry staining. Spinal tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 levels were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Rats with NP implantation showed persistent ipsilateral mechanical allodynia and thermal hyperalgesia, which manifested as obvious decrease of paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). BBB scale indicated the locomotor function of hindpaws in rats with NP implantation kept intact. Western blotting and immunohistochemistry staining revealed that phosphorylated SFKs (p-SFKs) and phosphorylated p38 MAPK (p-p38) were sequentially upregulated in ipsilateral spinal dorsal horn, but not in contralateral side of rats with NP. Intrathecal delivery of SFKs inhibitor reduced spinal p-p38 expression. Both SFKs and p38 inhibitors alleviated pain behaviors in a dose-responsive manner without disturbing locomotor function and reduced spinal expression of TNF-α, IL-1β, and IL-6 in rats with NP. CONCLUSION Spinal SFKs contribute to radicular pain by activation of p38 MAPK and increasing pro-inflammatory cytokines expression in rats with NP implantation. Targeting SFKs/p38 pathway may be helpful for alleviating radicular pain. LEVEL OF EVIDENCE N/A.
Collapse
|
26
|
Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 2019; 94:112-120. [PMID: 31077796 DOI: 10.1016/j.semcdb.2019.05.004] [Citation(s) in RCA: 504] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Microglia, being the resident immune cells of the central nervous system, play an important role in maintaining tissue homeostasis and contributes towards brain development under normal conditions. However, when there is a neuronal injury or other insult, depending on the type and magnitude of stimuli, microglia will be activated to secrete either proinflammatory factors that enhance cytotoxicity or anti-inflammatory neuroprotective factors that assist in wound healing and tissue repair. Excessive microglial activation damages the surrounding healthy neural tissue, and the factors secreted by the dead or dying neurons in turn exacerbate the chronic activation of microglia, causing progressive loss of neurons. It is the case observed in many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This review gives a detailed account of the microglia-mediated neuroinflammation in various neurodegenerative diseases. Hence, resolving chronic inflammation mediated by microglia bears great promise as a novel treatment strategy to reduce neuronal damage and to foster a permissive environment for further regeneration effort.
Collapse
Affiliation(s)
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore.
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore.
| |
Collapse
|
27
|
Abstract
Spinal projection neurons convey nociceptive signals to multiple brain regions including the parabrachial (PB) nucleus, which contributes to the emotional valence of pain perception. Despite the clear importance of projection neurons to pain processing, our understanding of the factors that shape their intrinsic membrane excitability remains limited. Here, we investigate a potential role for the Na leak channel NALCN in regulating the activity of spino-PB neurons in the developing rodent. Pharmacological reduction of NALCN current (INALCN), or the genetic deletion of NALCN channels, significantly reduced the intrinsic excitability of lamina I spino-PB neurons. In addition, substance P (SP) activated INALCN in ascending projection neurons through downstream Src kinase signaling, and the knockout of NALCN prevented SP-evoked action potential discharge in this neuronal population. These results identify, for the first time, NALCN as a strong regulator of neuronal activity within central pain circuits and also elucidate an additional ionic mechanism by which SP can modulate spinal nociceptive processing. Collectively, these findings indicate that the level of NALCN conductance within spino-PB neurons tightly governs ascending nociceptive transmission to the brain and thereby potentially influences pain perception.
Collapse
|
28
|
Zhong Y, Huang YL, Hu YM, Zhu LR, Zhao YS. Puerarin alleviate radicular pain from lumbar disc herniation by inhibiting ERK-dependent spinal microglia activation. Neuropeptides 2018; 72:30-37. [PMID: 30466510 DOI: 10.1016/j.npep.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/14/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
Abstract
Lumbar disc herniation is a common cause of radicular pain, but the mechanism remains ambiguous and the treatment stays unsatisfied. Many studies revealed a traditional Chinese medicine puerarin may moderate chronic pain from diabetes and nerve injury. Thus far, the role and mechanism of puerarin in radicular pain is still unknown. In this study, by using a rat model of lumbar disc herniation, which was induced by autologous nucleus pulposus (NP) implantation, the analgesic effect of puerarin on radicular pain was tested. Puerarin was delivered intraperitoneally form 1 h before surgery, and once daily for 7 days. The results demonstrated that NP implantation induced long-lasting pain, characterized by decrease of paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in ipsilateral hindpaws, as long as day 20 after surgery. Spinal phosphorylated extracellular signal-regulated kinase (p-ERK) was up-regulated from day 5 to day 20 after surgery in ipsilateral but not contralateral side, and p-ERK was mainly co-localized with microglia. Puerarin decreased p-ERK expression from day 7 to day 20 after surgery. Puerarin or ERK inhibitor PD98059 alleviated pain behaviors, decreased expression of microglia marker ionized calcium-binding adaptor molecule 1 (Iba-1) in rats with NP implantation. The results suggested puerarin may alleviate radicular pain by inhibiting ERK-dependent or accompanied spinal microglia activation.
Collapse
Affiliation(s)
- Yi Zhong
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China.
| | - Yang-Liang Huang
- Department of Spine Surgery, First Affiliated Hospital of Sun Yet-Sen University, Guangzhou 510080, China
| | - Yu-Ming Hu
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Li-Rong Zhu
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yuan-Shu Zhao
- Key Laboratory of Neuroscience, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| |
Collapse
|
29
|
Morales-Soto W, Gulbransen BD. Enteric Glia: A New Player in Abdominal Pain. Cell Mol Gastroenterol Hepatol 2018; 7:433-445. [PMID: 30739868 PMCID: PMC6369218 DOI: 10.1016/j.jcmgh.2018.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Chronic abdominal pain is the most common gastrointestinal issue and contributes to the pathophysiology of functional bowel disorders and inflammatory bowel disease. Current theories suggest that neuronal plasticity and broad alterations along the brain-gut axis contribute to the development of chronic abdominal pain, but the specific mechanisms involved in chronic abdominal pain remain incompletely understood. Accumulating evidence implicates glial cells in the development and maintenance of chronic pain. Astrocytes and microglia in the central nervous system and satellite glia in dorsal root ganglia contribute to chronic pain states through reactive gliosis, the modification of glial networks, and the synthesis and release of neuromodulators. In addition, new data suggest that enteric glia, a unique type of peripheral glia found within the enteric nervous system, have the potential to modify visceral perception through interactions with neurons and immune cells. Understanding these emerging roles of enteric glia is important to fully understand the mechanisms that drive chronic pain and to identify novel therapeutic targets. In this review, we discuss enteric glial cell signaling mechanisms that have the potential to influence chronic abdominal pain.
Collapse
Affiliation(s)
| | - Brian D. Gulbransen
- Correspondence Address correspondence to: Brian D. Gulbransen, PhD, Neuroscience Program and Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824. fax: (517) 355-5125.
| |
Collapse
|
30
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, Tian YK, Wu W, Ye DW. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res 2018; 134:305-310. [PMID: 30042091 DOI: 10.1016/j.phrs.2018.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/25/2023]
Abstract
Chronic pain remains to be a clinical challenge due to insufficient therapeutic strategies. Minocycline is a member of the tetracycline class of antibiotics, which has been used in clinic for decades. It is frequently reported that minocycline may has many non-antibiotic properties, among which is its anti-nociceptive effect. The results from our lab and others suggest that minocycline exerts strong analgesic effect in animal models of chronic pain including visceral pain, chemotherapy-induced periphery neuropathy, periphery injury induced neuropathic pain, diabetic neuropathic pain, spinal cord injury, inflammatory pain and bone cancer pain. In this review, we summarize the mechanisms underlying the analgesic effect of minocycline in preclinical studies. Due to a good safety record when used chronically, minocycline may become a promising therapeutic strategy for chronic pain in clinic.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Mei Wang
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
31
|
Yang T, Du S, Liu X, Ye X, Wei X. Withdrawal from spinal application of remifentanil induces long-term potentiation of c-fiber-evoked field potentials by activation of Src family kinases in spinal microglia. Neurochem Res 2018; 43:1660-1670. [PMID: 29959648 DOI: 10.1007/s11064-018-2582-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022]
Abstract
It is well known that remifentanil, a widely used intravenous anesthesia drug, can paradoxically induce hyperalgesia. The underlying mechanisms are still not clear despite the wide investigations. The present study demonstrated that withdrawal from spinal application of remifentanil could dose-dependently induce long term potentiation (LTP) of C-fiber evoked field potentials. Remifentanil withdrawal could activate Src family kinases (SFKs) in microglia, and upregulate the expression of tumor necrosis factor alpha (TNFα) in spinal dorsal horn. Furthermore, pretreatment with either microglia inhibitor Minocycline, SFKs inhibitor PP2 or TNF αneutralization antibody could block remifentanil withdrawal induced spinal LTP, whereas supplement of recombinant rat TNFα to the spinal cord could reverse the inhibitory effect of Minocycline or PP2 on remifentanil withdrawal induced LTP. Our results suggested that TNFαrelease following SFKs activation in microglia is involved in the induction of LTP induced by remifentanil withdrawal.
Collapse
Affiliation(s)
- Tao Yang
- Department of Anesthesiology, SunYat-SenMemorial Hospital, SunYat-Sen University, 107 Yanjiang Xi Road, Guangzhou, People's Republic of China
| | - Sujuan Du
- Department of Anesthesiology, SunYat-SenMemorial Hospital, SunYat-Sen University, 107 Yanjiang Xi Road, Guangzhou, People's Republic of China
| | - Xianguo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, People's Republic of China
| | - Xijiu Ye
- Department of Anesthesiology, SunYat-SenMemorial Hospital, SunYat-Sen University, 107 Yanjiang Xi Road, Guangzhou, People's Republic of China.
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
32
|
Chi-Castañeda D, Ortega A. Glial Cells in the Genesis and Regulation of Circadian Rhythms. Front Physiol 2018; 9:88. [PMID: 29483880 PMCID: PMC5816069 DOI: 10.3389/fphys.2018.00088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/26/2018] [Indexed: 12/26/2022] Open
Abstract
Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian "master clock," which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called "clock genes." A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as "clock-controlled genes." In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.,Soluciones para un México Verde S.A. de C.V., Ciudad de Mexico, Mexico
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
33
|
Oral Application of Magnesium-L-Threonate Attenuates Vincristine-induced Allodynia and Hyperalgesia by Normalization of Tumor Necrosis Factor-α/Nuclear Factor-κB Signaling. Anesthesiology 2017; 126:1151-1168. [PMID: 28306698 DOI: 10.1097/aln.0000000000001601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Antineoplastic agents, including vincristine, often induce neuropathic pain and magnesium deficiency clinically, but the causal link between them has not been determined. No drug is available for treating this form of neuropathic pain. METHODS Injection of vincristine (0.1 mg · kg · day, intraperitoneally, for 10 days) was used to induce nociceptive sensitization, which was accessed with von Frey hairs and the plantar tester in adult male Sprague-Dawley rats. Magnesium-L- threonate was administered through drinking water (604 mg · kg · day). Extracellular and intracellular free Mg were measured by Calmagite chromometry and flow cytometry. Molecular biologic and electrophysiologic experiments were performed to expose the underlying mechanisms. RESULTS Vincristine injection induced allodynia and hyperalgesia (n = 12), activated tumor necrosis factor-α/nuclear factor-κB signaling, and reduced free Mg in cerebrospinal fluid by 21.7 ± 6.3% (mean ± SD; n = 13) and in dorsal root ganglion neurons by 27 ± 6% (n = 11). Reducing Mg activated tumor necrosis factor-α/nuclear factor-κB signaling in cultured dorsal root ganglion neurons. Oral application of magnesium-L-threonate prevented magnesium deficiency and attenuated both activation of tumor necrosis factor-α/nuclear factor-κB signaling and nociceptive sensitization (n = 12). Mechanistically, vincristine induced long-term potentiation at C-fiber synapses, up-regulated N-methyl-D-aspartate receptor type 2B subunit of N-methyl-D-aspartate receptor, and led to peptidergic C-fiber sprouting in spinal dorsal horn (n = 6 each). The vincristine-induced pathologic plasticity was blocked by intrathecal injection of nuclear factor-κB inhibitor (n = 6), mimicked by tumor necrosis factor-α, and substantially prevented by oral magnesium-L-threonate (n = 5). CONCLUSIONS Vincristine may activate tumor necrosis factor-α/nuclear factor-κB pathway by reduction of intracellular magnesium, leading to spinal pathologic plasticity and nociceptive sensitization. Oral magnesium-L-threonate that prevents the magnesium deficiency is a novel approach to prevent neuropathic pain induced by chemotherapy.
Collapse
|
34
|
Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura LM, Chowen JA. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals. Front Endocrinol (Lausanne) 2017; 8:51. [PMID: 28377744 PMCID: PMC5359311 DOI: 10.3389/fendo.2017.00051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain
| | - Luis Miguel García-Segura
- Laboratory of Neuroactive Steroids, Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC (Consejo Superior de Investigaciones Científicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
35
|
Liu Y, Zhou LJ, Wang J, Li D, Ren WJ, Peng J, Wei X, Xu T, Xin WJ, Pang RP, Li YY, Qin ZH, Murugan M, Mattson MP, Wu LJ, Liu XG. TNF-α Differentially Regulates Synaptic Plasticity in the Hippocampus and Spinal Cord by Microglia-Dependent Mechanisms after Peripheral Nerve Injury. J Neurosci 2017; 37:871-881. [PMID: 28123022 PMCID: PMC5296781 DOI: 10.1523/jneurosci.2235-16.2016] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/18/2016] [Accepted: 12/02/2016] [Indexed: 12/30/2022] Open
Abstract
Clinical studies show that chronic pain is accompanied by memory deficits and reduction in hippocampal volume. Experimental studies show that spared nerve injury (SNI) of the sciatic nerve induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn, but impairs LTP in the hippocampus. The opposite changes may contribute to neuropathic pain and memory deficits, respectively. However, the cellular and molecular mechanisms underlying the functional synaptic changes are unclear. Here, we show that the dendrite lengths and spine densities are reduced significantly in hippocampal CA1 pyramidal neurons, but increased in spinal neurokinin-1-positive neurons in mice after SNI, indicating that the excitatory synaptic connectivity is reduced in hippocampus but enhanced in spinal dorsal horn in this neuropathic pain model. Mechanistically, tumor necrosis factor-alpha (TNF-α) is upregulated in bilateral hippocampus and in ipsilateral spinal dorsal horn, whereas brain-derived neurotrophic factor (BDNF) is decreased in the hippocampus but increased in the ipsilateral spinal dorsal horn after SNI. Importantly, the SNI-induced opposite changes in synaptic connectivity and BDNF expression are prevented by genetic deletion of TNF receptor 1 in vivo and are mimicked by TNF-α in cultured slices. Furthermore, SNI activated microglia in both spinal dorsal horn and hippocampus; pharmacological inhibition or genetic ablation of microglia prevented the region-dependent synaptic changes, neuropathic pain, and memory deficits induced by SNI. The data suggest that neuropathic pain involves different structural synaptic alterations in spinal and hippocampal neurons that are mediated by overproduction of TNF-α and microglial activation and may underlie chronic pain and memory deficits. SIGNIFICANCE STATEMENT Chronic pain is often accompanied by memory deficits. Previous studies have shown that peripheral nerve injury produces both neuropathic pain and memory deficits and induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn (SDH) but inhibits LTP in hippocampus. The opposite changes in synaptic plasticity may contribute to chronic pain and memory deficits, respectively. However, the structural and molecular bases of these alterations of synaptic plasticity are unclear. Here, we show that the complexity of excitatory synaptic connectivity and brain-derived neurotrophic factor (BDNF) expression are enhanced in SDH but reduced in the hippocampus in neuropathic pain and the opposite changes depend on tumor necrosis factor-alpha/tumor necrosis factor receptor 1 signaling and microglial activation. The region-dependent synaptic alterations may underlie chronic neuropathic pain and memory deficits induced by peripheral nerve injury.
Collapse
Affiliation(s)
- Yong Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Li-Jun Zhou
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Jun Wang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Dai Li
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Jie Ren
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiyun Peng
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Xiao Wei
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Jun Xin
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080 China
| | - Rui-Ping Pang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhi-Hai Qin
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Beijing, 100101 China
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854,
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, and
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou 510080, China,
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080 China
| |
Collapse
|
36
|
Tronson NC, Collette KM. (Putative) sex differences in neuroimmune modulation of memory. J Neurosci Res 2017; 95:472-486. [PMID: 27870428 PMCID: PMC5120654 DOI: 10.1002/jnr.23921] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
Abstract
The neuroimmune system is significantly sexually dimorphic, with sex differences evident in the number and activation states of microglia, in the activation of astrocytes, and in cytokine release and function. Neuroimmune cells and signaling are now recognized as critical for many neural functions throughout the life span, including synaptic plasticity and memory function. Here we address the question of how cytokines, astrocytes, and microglia contribute to memory, and specifically how neuroimmune modulation of memory differentially affects males and females. Understanding sex differences in both normal memory processes and dysregulation of memory in psychiatric and neurological disorders is critical for developing treatment and preventive strategies for memory disorders that are effective for both men and women. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Katie M Collette
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
37
|
Argente-Arizón P, Guerra-Cantera S, Garcia-Segura LM, Argente J, Chowen JA. Glial cells and energy balance. J Mol Endocrinol 2017; 58:R59-R71. [PMID: 27864453 DOI: 10.1530/jme-16-0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022]
Abstract
The search for new strategies and drugs to abate the current obesity epidemic has led to the intensification of research aimed at understanding the neuroendocrine control of appetite and energy expenditure. This intensified investigation of metabolic control has also included the study of how glial cells participate in this process. Glia, the most abundant cell type in the central nervous system, perform a wide spectrum of functions and are vital for the correct functioning of neurons and neuronal circuits. Current evidence indicates that hypothalamic glia, in particular astrocytes, tanycytes and microglia, are involved in both physiological and pathophysiological mechanisms of appetite and metabolic control, at least in part by regulating the signals reaching metabolic neuronal circuits. Glia transport nutrients, hormones and neurotransmitters; they secrete growth factors, hormones, cytokines and gliotransmitters and are a source of neuroprogenitor cells. These functions are regulated, as glia also respond to numerous hormones and nutrients, with the lack of specific hormonal signaling in hypothalamic astrocytes disrupting metabolic homeostasis. Here, we review some of the more recent advances in the role of glial cells in metabolic control, with a special emphasis on the differences between glial cell responses in males and females.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Guerra-Cantera
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jesús Argente
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A Chowen
- Departments of Pediatrics & Pediatric EndocrinologyHospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Department of Pediatrics, Universidad Autónoma de Madrid, CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
38
|
Huang Y, Li Y, Zhong X, Hu Y, Liu P, Zhao Y, Deng Z, Liu X, Liu S, Zhong Y. Src-family kinases activation in spinal microglia contributes to central sensitization and chronic pain after lumbar disc herniation. Mol Pain 2017; 13:1744806917733637. [PMID: 28952414 PMCID: PMC5624351 DOI: 10.1177/1744806917733637] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/06/2017] [Accepted: 08/10/2017] [Indexed: 11/22/2022] Open
Abstract
Background Lumbar disc herniation is a major cause of radicular pain, but the underlying mechanisms remain largely unknown. Spinal activation of src-family kinases are involved in the development of chronic pain from nerve injury, inflammation, and cancer. In the present study, the role of src-family kinases activation in lumbar disc herniation-induced radicular pain was investigated. Results Lumbar disc herniation was induced by implantation of autologous nucleus pulposus, harvest from tail, in lumbar 4/5 spinal nerve roots of rat. Behavior test and electrophysiologic data showed that nucleus pulposus implantation induced persistent mechanical allodynia and thermal hyperalgesia and increased efficiency of synaptic transmission in spinal dorsal horn which underlies central sensitization of pain sensation. Western blotting and immunohistochemistry staining revealed that the expression of phosphorylated src-family kinases was upregulated mainly in spinal microglia of rats with nucleus pulposus. Intrathecal delivery of src-family kinases inhibitor PP2 alleviated pain behaviors, decreased efficiency of spinal synaptic transmission, and reduced phosphorylated src-family kinases expression. Furthermore, we found that the expression of ionized calcium-binding adapter molecule 1 (marker of microglia), tumor necrosis factor-α, interleukin 1 -β in spinal dorsal horn was increased in rats with nucleus pulposus. Therapeutic effect of PP2 may be related to its capacity in reducing the expression of these factors. Conclusions These findings suggested that central sensitization was involved in radicular pain from lumbar disc herniation; src-family kinases-mediated inflammatory response may be responsible for central sensitization and chronic pain after lumbar disc herniation.
Collapse
Affiliation(s)
- Yangliang Huang
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yongyong Li
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiongxiong Zhong
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yuming Hu
- Department of Physiology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Pan Liu
- Department of Physiology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yuanshu Zhao
- Department of Physiology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Zhen Deng
- Department of Physiology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Xianguo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shaoyu Liu
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yi Zhong
- Department of Physiology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
39
|
Abstract
Cannabinoid receptor type-2 (CB2, CB2 receptor or CB2-R) mediates analgesia via two mechanisms. CB2 receptors contained in peripheral immune tissue mediate analgesia by altering cytokine profiles, and thus have little adverse effects on central nervous systems (CNSs). CB2 is also expressed in the neurons and glial cells of the CNS. This neuronal expression may also contribute to pain attenuation. The CB2 receptor has been proposed as a potential target in treating chronic pain of several etiologies.
Collapse
Affiliation(s)
- Yuchao Shang
- a Department of Anesthesiology, West China Second Hospital , Sichuan University , Chengdu , China
| | - Yuying Tang
- a Department of Anesthesiology, West China Second Hospital , Sichuan University , Chengdu , China
| |
Collapse
|
40
|
Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience 2016; 338:160-182. [PMID: 27346146 DOI: 10.1016/j.neuroscience.2016.06.029] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
Opioids produce strong analgesia but their use is limited by a paradoxical hypersensitivity named opioid-induced hyperalgesia (OIH) that may be associated to analgesic tolerance. In the last decades, a significant number of preclinical studies have investigated the factors that modulate OIH development as well as the cellular and molecular mechanisms underlying OIH. Several factors have been shown to influence OIH including the genetic background and sex differences of experimental animals as well as the opioid regimen. Mu opioid receptor (MOR) variants and interactions of MOR with different proteins were shown important. Furthermore, at the cellular level, both neurons and glia play a major role in OIH development. Several neuronal processes contribute to OIH, like activation of neuroexcitatory mechanisms, long-term potentiation (LTP) and descending pain facilitation. Increased nociception is also mediated by neuroinflammation induced by the activation of microglia and astrocytes. Neurons and glial cells exert synergistic effects, which contribute to OIH. The molecular actors identified include the Toll-like receptor 4 and the anti-opioid systems as well as some other excitatory molecules, receptors, channels, chemokines, pro-inflammatory cytokines or lipids. This review summarizes the intracellular and intercellular pathways involved in OIH and highlights some mechanisms that may be challenged to limit OIH in the future.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Glenn-Marie Le Coz
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Claire Gavériaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
41
|
Gui WS, Wei X, Mai CL, Murugan M, Wu LJ, Xin WJ, Zhou LJ, Liu XG. Interleukin-1β overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Mol Pain 2016; 12:12/0/1744806916646784. [PMID: 27175012 PMCID: PMC4956151 DOI: 10.1177/1744806916646784] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic pain is often accompanied by short-term memory deficit and depression. Currently, it is believed that short-term memory deficit and depression are consequences of chronic pain. Here, we test the hypothesis that the symptoms might be caused by overproduction of interleukin-1beta (IL-1β) in the injured nerve independent of neuropathic pain following spared nerve injury in rats and mice. RESULTS Mechanical allodynia, a behavioral sign of neuropathic pain, was not correlated with short-term memory deficit and depressive behavior in spared nerve injury rats. Spared nerve injury upregulated IL-1β in the injured sciatic nerve, plasma, and the regions in central nervous system closely associated with pain, memory and emotion, including spinal dorsal horn, hippocampus, prefrontal cortex, nucleus accumbens, and amygdala. Importantly, the spared nerve injury-induced memory deficits, depressive, and pain behaviors were substantially prevented by peri-sciatic administration of IL-1β neutralizing antibody in rats or deletion of IL-1 receptor type 1 in mice. Furthermore, the behavioral abnormalities induced by spared nerve injury were mimicked in naïve rats by repetitive intravenous injection of re combinant rat IL-1β (rrIL-1β) at a pathological concentration as determined from spared nerve injury rats. In addition, microglia were activated by both spared nerve injury and intravenous injection of rrIL-1β and the effect of spared nerve injury was substantially reversed by peri-sciatic administration of anti-IL-1β. CONCLUSIONS Neuropathic pain was not necessary for the development of cognitive and emotional disorders, while the overproduction of IL-1β in the injured sciatic nerve following peripheral nerve injury may be a common mechanism underlying the generation of neuropathic pain, memory deficit, and depression.
Collapse
Affiliation(s)
- Wen-Shan Gui
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Xiao Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
42
|
Cai Y, Kong H, Pan YB, Jiang L, Pan XX, Hu L, Qian YN, Jiang CY, Liu WT. Procyanidins alleviates morphine tolerance by inhibiting activation of NLRP3 inflammasome in microglia. J Neuroinflammation 2016; 13:53. [PMID: 26931361 PMCID: PMC4774188 DOI: 10.1186/s12974-016-0520-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/22/2016] [Indexed: 12/15/2022] Open
Abstract
Background The development of antinociceptive tolerance following repetitive administration of opioid analgesics significantly hinders their clinical use. Evidence has accumulated indicating that microglia within the spinal cord plays a critical role in morphine tolerance. The inhibitor of microglia is effective to attenuate the tolerance; however, the mechanism is not fully understood. Our present study investigated the effects and possible mechanism of a natural product procyanidins in improving morphine tolerance via its specific inhibition on NOD-like receptor protein3 (NLRP3) inflammasome in microglia. Methods CD-1 mice were used for tail-flick test to evaluate the degree of pain. The microglial cell line BV-2 was used to investigate the effects and the mechanism of procyanidins. Reactive oxygen species (ROS) produced from BV-2 cells was evaluated by flow cytometry. Cell signaling was measured by western blot assay and immunofluorescence assay. Results Co-administration of procyanidins with morphine potentiated its antinociception effect and attenuated the development of acute and chronic morphine tolerance. Procyanidins also inhibited morphine-induced increase of interleukin-1β and activation of NOD-like receptor protein3 (NLRP3) inflammasome. Furthermore, procyanidins decreased the phosphorylation of p38 mitogen-activated protein kinase, inhibited the translocation of nuclear factor-κB (NF-κB), and suppressed the level of reactive oxygen species in microglia. Conclusions Procyanidins suppresses morphine-induced activation of NLRP3 inflammasome and inflammatory responses in microglia, and thus resulting in significant attenuation of morphine antinociceptive tolerance. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0520-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Cai
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Hong Kong
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Yin-Bing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lai Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Xiu-Xiu Pan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chun-Yi Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China.
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China.
| |
Collapse
|
43
|
Peng HZ, Ma LX, Lv MH, Hu T, Liu T. Minocycline enhances inhibitory transmission to substantia gelatinosa neurons of the rat spinal dorsal horn. Neuroscience 2016; 319:183-93. [PMID: 26826332 DOI: 10.1016/j.neuroscience.2016.01.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/02/2016] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmission, which also plays a key role in modulating pain signaling. To examine the effect of minocycline on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) using whole-cell patch-clamp recording at a holding potential of 0 mV. Bath application of minocycline significantly increased the frequency but not the amplitude of sIPSCs in a reversible and concentration-dependent manner with an EC50 of 85. The enhancement of inhibitory synaptic transmission produced by minocycline was not affected by the glutamate receptor antagonists CNQX and D-APV or by the voltage-gated sodium channel blocker tetrodotoxin (TTX). Moreover, the potency of minocycline for facilitating sIPSC frequency was the same in both glycinergic and GABAergic sIPSCs without changing their decay phases. However, the facilitatory effect of minocycline on sIPSCs was eliminated in a Ca(2+)-free Krebs solution or by co-administration with calcium channel blockers. In summary, our data demonstrate that baseline inhibitory synaptic transmission in SG neurons is markedly enhanced by minocycline. This may function to decrease the excitability of SG neurons, thus leading to a modulation of nociceptive transmission.
Collapse
Affiliation(s)
- H-Z Peng
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - L-X Ma
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - M-H Lv
- Center for Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - T Hu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - T Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Center for Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
44
|
Neuropathic Pain: Sensory Nerve Injury or Motor Nerve Injury? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 904:59-75. [DOI: 10.1007/978-94-017-7537-3_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Minocycline does not affect long-term potentiation in the anterior cingulate cortex of normal adult mice. Mol Pain 2015; 11:25. [PMID: 25933605 PMCID: PMC4464617 DOI: 10.1186/s12990-015-0025-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023] Open
Abstract
It has been reported that activated microglia plays important roles in chronic pain-related sensory signaling at the spinal cord dorsal horn. Less is known about the possible contribution of microglia to cortical plasticity that has been found to be important for chronic pain. In the present study, we used a 64-channel multi-electrode array recording system to investigate the role of microglia in cortical plasticity of the anterior cingulate cortex (ACC) in normal adult mice. We found that bath application of minocycline, an inhibitor of microglial activation, had no effect on postsynaptic LTP (post-LTP) induced by theta burst stimulation in the ACC. Furthermore, presynaptic LTP (pre-LTP) induced by the combination of low-frequency stimulation with a GluK1-containing kainate receptor agonist was also not affected. The spatial distribution of post-LTP or pre-LTP among the cingulate network is also unaltered by minocycline. Our results suggest that minocycline does not affect cingulate plasticity and neurons are the major player in pain-related cortical plasticity.
Collapse
|
46
|
Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R, Gerhold KJ, Malcangio M, Sandkühler J. Selective activation of microglia facilitates synaptic strength. J Neurosci 2015; 35:4552-70. [PMID: 25788673 PMCID: PMC4363384 DOI: 10.1523/jneurosci.2061-14.2015] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/13/2015] [Accepted: 01/22/2015] [Indexed: 12/26/2022] Open
Abstract
Synaptic plasticity is thought to be initiated by neurons only, with the prevailing view assigning glial cells mere specify supportive functions for synaptic transmission and plasticity. We now demonstrate that glial cells can control synaptic strength independent of neuronal activity. Here we show that selective activation of microglia in the rat is sufficient to rapidly facilitate synaptic strength between primary afferent C-fibers and lamina I neurons, the first synaptic relay in the nociceptive pathway. Specifically, the activation of the CX3CR1 receptor by fractalkine induces the release of interleukin-1β from microglia, which modulates NMDA signaling in postsynaptic neurons, leading to the release of an eicosanoid messenger, which ultimately enhances presynaptic neurotransmitter release. In contrast to the conventional view, this form of plasticity does not require enhanced neuronal activity to trigger the events leading to synaptic facilitation. Augmentation of synaptic strength in nociceptive pathways represents a cellular model of pain amplification. The present data thus suggest that, under chronic pain states, CX3CR1-mediated activation of microglia drives the facilitation of excitatory synaptic transmission in the dorsal horn, which contributes to pain hypersensitivity in chronic pain states.
Collapse
Affiliation(s)
- Anna K Clark
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria, and Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Doris Gruber-Schoffnegger
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria, and
| | - Ruth Drdla-Schutting
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria, and
| | - Katharina J Gerhold
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria, and
| | - Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria, and
| |
Collapse
|
47
|
Argente-Arizón P, Freire-Regatillo A, Argente J, Chowen JA. Role of non-neuronal cells in body weight and appetite control. Front Endocrinol (Lausanne) 2015; 6:42. [PMID: 25859240 PMCID: PMC4374626 DOI: 10.3389/fendo.2015.00042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Julie A. Chowen, Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Avda. Menéndez Pelayo, 65, Madrid E-28009, Spain e-mail: ;
| |
Collapse
|
48
|
Grishchuk Y, Sri S, Rudinskiy N, Ma W, Stember KG, Cottle MW, Sapp E, Difiglia M, Muzikansky A, Betensky RA, Wong AMS, Bacskai BJ, Hyman BT, Kelleher RJ, Cooper JD, Slaugenhaupt SA. Behavioral deficits, early gliosis, dysmyelination and synaptic dysfunction in a mouse model of mucolipidosis IV. Acta Neuropathol Commun 2014; 2:133. [PMID: 25200117 PMCID: PMC4173007 DOI: 10.1186/s40478-014-0133-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 12/04/2022] Open
Abstract
Mucolipidosis IV (MLIV) is caused by mutations in the gene MCOLN1. Patients with MLIV have severe neurologic deficits and very little is known about the brain pathology in this lysosomal disease. Using an accurate mouse model of mucolipidosis IV, we observed early behavioral deficits which were accompanied by activation of microglia and astrocytes. The glial activation that persisted during the course of disease was not accompanied by neuronal loss even at the late stage. In vivo [Ca2+]-imaging revealed no changes in resting [Ca2+] levels in Mcoln1−/− cortical neurons, implying their physiological health. Despite the absence of neuron loss, we observed alterations in synaptic plasticity, as indicated by elevated paired-pulse facilitation and enhanced long-term potentiation. Myelination deficits and severely dysmorphic corpus callosum were present early and resembled white matter pathology in mucolipidosis IV patients. These results indicate the early involvement of glia, and challenge the traditional view of mucolipidosis IV as an overtly neurodegenerative condition.
Collapse
|
49
|
The role of TNF-alpha/NF-kappa B pathway on the up-regulation of voltage-gated sodium channel Nav1.7 in DRG neurons of rats with diabetic neuropathy. Neurochem Int 2014; 75:112-9. [DOI: 10.1016/j.neuint.2014.05.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/21/2014] [Accepted: 05/26/2014] [Indexed: 12/24/2022]
|
50
|
Abstract
Microglia, the resident innate immune cells in the brain, have long been understood to be crucial to maintenance in the nervous system, by clearing debris, monitoring for infiltration of infectious agents, and mediating the brain's inflammatory and repair response to traumatic injury, stroke, or neurodegeneration. A wave of new research has shown that microglia are also active players in many basic processes in the healthy brain, including cell proliferation, synaptic connectivity, and physiology. Microglia, both in their capacity as phagocytic cells and via secretion of many neuroactive molecules, including cytokines and growth factors, play a central role in early brain development, including sexual differentiation of the brain. In this review, we present the vast roles microglia play in normal brain development and how perturbations in the normal neuroimmune environment during development may contribute to the etiology of brain-based disorders. There are notable differences between microglia and neuroimmune signaling in the male and female brain throughout the life span, and these differences may contribute to the vast differences in the incidence of neuropsychiatric and neurological disorders between males and females.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology and Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|