1
|
Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y, Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10:71. [PMID: 40025039 PMCID: PMC11873319 DOI: 10.1038/s41392-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial diseases represent one of the most prevalent and debilitating categories of hereditary disorders, characterized by significant genetic, biological, and clinical heterogeneity, which has driven the development of the field of engineered mitochondria. With the growing recognition of the pathogenic role of damaged mitochondria in aging, oxidative disorders, inflammatory diseases, and cancer, the application of engineered mitochondria has expanded to those non-hereditary contexts (sometimes referred to as mitochondria-related diseases). Due to their unique non-eukaryotic origins and endosymbiotic relationship, mitochondria are considered highly suitable for gene editing and intercellular transplantation, and remarkable progress has been achieved in two promising therapeutic strategies-mitochondrial gene editing and artificial mitochondrial transfer (collectively referred to as engineered mitochondria in this review) over the past two decades. Here, we provide a comprehensive review of the mechanisms and recent advancements in the development of engineered mitochondria for therapeutic applications, alongside a concise summary of potential clinical implications and supporting evidence from preclinical and clinical studies. Additionally, an emerging and potentially feasible approach involves ex vivo mitochondrial editing, followed by selection and transplantation, which holds the potential to overcome limitations such as reduced in vivo operability and the introduction of allogeneic mitochondrial heterogeneity, thereby broadening the applicability of engineered mitochondria.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haibo Si
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Zhang J, Yan H, Wang Y, Yue X, Wang M, Liu L, Qiao P, Zhu Y, Li Z. Emerging insights into pulmonary hypertension: the potential role of mitochondrial dysfunction and redox homeostasis. Mol Cell Biochem 2025; 480:1407-1429. [PMID: 39254871 DOI: 10.1007/s11010-024-05096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Pulmonary hypertension (PH) is heterogeneous diseases that can lead to death due to progressive right heart failure. Emerging evidence suggests that, in addition to its role in ATP production, changes in mitochondrial play a central role in their pathogenesis, regulating integrated metabolic and signal transduction pathways. This review focuses on the basic principles of mitochondrial redox status in pulmonary vascular and right ventricular disorders, a series of dysfunctional processes including mitochondrial quality control (mitochondrial biogenesis, mitophagy, mitochondrial dynamics, mitochondrial unfolded protein response) and mitochondrial redox homeostasis. In addition, we will summarize how mitochondrial renewal and dynamic changes provide innovative insights for studying and evaluating PH. This will provide us with a clearer understanding of the initial signal transmission of mitochondria in PH, which would further improve our understanding of the pathogenesis of PH.
Collapse
Affiliation(s)
- Junming Zhang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Huimin Yan
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yan Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Xian Yue
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Meng Wang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Limin Liu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Pengfei Qiao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Yixuan Zhu
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Zhichao Li
- Faculty of Life Science & Medicine, Northwest University, Xi'an, 710127, Shaanxi, China.
| |
Collapse
|
3
|
Sharma N, Heer K, Raychaudhuri S. Substitution of leucine by glutamate perturbs VopE localization to mitochondria: Lessons from yeast model system. Mitochondrion 2025; 81:101999. [PMID: 39675495 DOI: 10.1016/j.mito.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
VopE, a type III effector protein of Vibrio cholerae, modulates host mitochondrial function. Mitochondrial entry of VopE is directly linked with an N-terminal precursor sequence known as the mitochondrial targeting sequence or MTS. MTS of VopE is constituted with 23 amino acids. Earlier studies have shown the importance of leucine residue at position 4 in VopE translocation to mitochondria. In the present study, we have identified another leucine residue at position 15 contributing to the mitochondrial uptake of VopE in the yeast model system. Substitution of leucine15 with glutamate decreases mitochondrial localization and toxicity of the mutants.
Collapse
Affiliation(s)
- Nandita Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kiran Heer
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saumya Raychaudhuri
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Liu Y, Wang H, Zhang S, Peng N, Hai S, Zhao H, Liu J, Liu W. The role of mitochondrial biogenesis, mitochondrial dynamics and mitophagy in gastrointestinal tumors. Cancer Cell Int 2025; 25:46. [PMID: 39955547 PMCID: PMC11829463 DOI: 10.1186/s12935-025-03685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Gastrointestinal tumors remain the leading causes of cancer-related deaths, and their morbidity and mortality remain high, which imposes a great socio-economic burden globally. Mitochondrial homeostasis depend on proper function and interaction of mitochondrial biogenesis, mitochondrial dynamics (fission and fusion) and mitophagy. Recent studies have demonstrated close implication of mitochondrial homeostasis in gastrointestinal tumorigenesis and development. In this review, we summarized the research progress on gastrointestinal tumors and mitochondrial quality control, as well as the underlying molecular mechanisms. It is anticipated that the comprehensive understanding of mitochondrial homeostasis in gastrointestinal carcinogenesis would benefit the application of mitochondria-targeted therapies for gastrointestinal tumors in future.
Collapse
Affiliation(s)
- Yihong Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Hao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shen Zhang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Na Peng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shuangshuang Hai
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Haibo Zhao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Weixin Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
5
|
Yeole M, Majethia P, Siddiqui S, Girisha KM, Shukla A, Radhakrishnan P, Bhat V. Bi-Allelic Splicing Variant, c.153-2A > C in TOMM7 Is Associated With Leigh Syndrome. Am J Med Genet A 2025; 197:e63892. [PMID: 39333057 DOI: 10.1002/ajmg.a.63892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
Translocase of the outer mitochondrial membrane (TOMM) complex plays an important role in the transport of proteins from the cytoplasm into the mitochondria. TOMM7, one of the subunits of the TOMM complex, modulates its assembly and stability. Bi-allelic disease-causing variants in TOMM7 (MIM* 607980) have been previously reported in two unrelated families with a diverse phenotype of short stature, lipodystrophy, progeria, developmental delay, hypotonia, and skeletal dysplasia. We report a 4-month-old female child significantly affected with neonatal-onset hypotonia, lactic acidosis, optic atrophy, and neuroimaging findings suggestive of Leigh disease with a novel canonical splice variant, c.153-2A > C in TOMM7 (NM_019059.5). Further work done on cDNA of parents revealed the presence of shorter transcripts secondary to aberrant splicing.
Collapse
Affiliation(s)
- Mayuri Yeole
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Purvi Majethia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shahyan Siddiqui
- Department of Neuro and Vascular Interventional Radiology, Yashoda Hospitals, Hyderabad, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Department of Genetics, College of Medicine & Health Sciences, Sultan Qaboos University Muscat 112, Oman
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vivekananda Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Tong W, Allison BJ, Brain KL, Patey OV, Niu Y, Botting KJ, Ford SG, Garrud TA, Wooding PFB, Lyu Q, Zhang L, Ma J, Sowton AP, O'Brien KA, Cindrova-Davies T, Yung HW, Burton GJ, Murray AJ, Giussani DA. Placental mitochondrial metabolic adaptation maintains cellular energy balance in pregnancy complicated by gestational hypoxia. J Physiol 2025. [PMID: 39868991 DOI: 10.1113/jp287897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy. We show that hypoxic pregnancy in sheep triggers a shift in capacity away from β-oxidation and complex I-mediated respiration, while maintaining total oxidative phosphorylation capacity. There are also complex-specific changes to electron transport chain composition and a switch in mitochondrial dynamics towards fission. Hypoxic placentas show increased activation of the non-canonical mitochondrial unfolded protein response pathway and enhanced insulin like growth factor 2 signalling. Combined, therefore, the data show that the hypoxic placenta undergoes significant metabolic and morphological adaptations to maintain cellular energy balance. Chronic hypoxia during pregnancy in sheep activated placental mitochondrial stress pathways, leading to alterations in mitochondrial respiration, mitochondrial energy metabolism and mitochondrial dynamics, as seen in the placenta of women with pre-eclampsia. KEY POINTS: Hypoxia shifts mitochondrial respiration away from β-oxidation and complex I. Complex-specific changes occur in the electron transport chain composition. Activation of the non-canonical mitochondrial unfolded protein response pathway is heightened in hypoxic placentas. Enhanced insulin like growth factor 2 signalling is observed in hypoxic placentas. Hypoxic placentas undergo significant functional adaptations for energy balance.
Collapse
Affiliation(s)
- Wen Tong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Beth J Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Kirsty L Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Olga V Patey
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Kimberley J Botting
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Sage G Ford
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tess A Garrud
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Peter F B Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Qiang Lyu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Katie A O'Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Tereza Cindrova-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Hong Wa Yung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Kaushik P, Herrmann JM, Hansen KG. MitoStores: stress-induced aggregation of mitochondrial proteins. Biol Chem 2025:hsz-2024-0148. [PMID: 39828945 DOI: 10.1515/hsz-2024-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and post-translationally imported into mitochondria. If the rate of protein synthesis exceeds the capacity of the mitochondrial import machinery, precursor proteins can transiently accumulate in the cytosol. The cytosolic accumulation of mitochondrial precursors jeopardizes cellular protein homeostasis (proteostasis) and can be the cause of diseases. In order to prevent these toxic effects, most non-imported precursors are rapidly degraded by the ubiquitin-proteasome system. However, cells employ a second layer of defense which is the facilitated sequestration of mitochondrial precursor proteins in transient protein aggregates. The formation of such structures is triggered by nucleation factors such as small heat shock proteins. Disaggregases and chaperones can liberate precursors from cytosolic aggregates to pass them on to the mitochondrial import machinery or, under persistent stress conditions, to the proteasome for degradation. Owing to their role as transient buffering systems, these aggregates were referred to as MitoStores. This review articles provides a general overview about the MitoStore concept and the early stages in mitochondrial protein biogenesis in yeast and, in cases where aspects differ, in mammalian cells.
Collapse
Affiliation(s)
- Pragya Kaushik
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Katja G Hansen
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Li Z, Chen W, Yao S, Peng Z, Liu H, Tang Y, Feng Y. Single-cell mitophagy patterns within the tumor microenvironment modulate intercellular communication, impacting the progression and prognosis of hepatocellular carcinoma. Front Immunol 2025; 15:1448878. [PMID: 39835122 PMCID: PMC11742944 DOI: 10.3389/fimmu.2024.1448878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant tumor of the digestive system with a high incidence that seriously threatens patients' lives and health. However, with the rise and application of new treatments, such as immunotherapy, there are still some restrictions in the treatment and diagnosis of HCC, and the therapeutic effects on patients are not ideal. Methods Two single-cell RNA sequencing (scRNA-seq) datasets from HCC patients, encompassing 25,189 cells, were analyzed in the study. We utilized non-negative matrix factorization (NMF) clustering to identify mitophagy patterns in HCC TME cells, including cancer-associated fibroblasts (CAFs), T cells, B cells, and tumor-associated macrophages (TAMs). Cell-to-cell communication was analyzed using the CellChat package, and pseudotime trajectory analysis was performed using the Monocle package. Gene regulatory networks were investigated with the SCENIC package, and survival analyses were conducted with mitophagy-related signatures. Results HCC samples analysis identified 22 clusters, including 7 principal cell types. Complex cell communications were observed among these cell types. Mitophagy-related CAFs, TAMs, CD8+ T cells, and B cells were identified. These subtypes had different biological states, cell-cell communications, and metabolic pathways. Mitophagy levels were elevated in tumor samples. Changes in mitophagy-related genes within specific cell subtypes were associated with different overall survival rates. However, mitophagy did not seem to affect the effectiveness of immunotherapy. Conclusion This study provides evidence that mitophagy within the HCC TME modulates intercellular communication, influencing tumor progression and patient prognosis. Targeting mitophagy may offer a promising approach to improve the long-term prognosis of HCC patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongliang Tang
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Feng
- Department of Hepatobiliary Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Jolivet N, Bertolin G. Revealing mitochondrial architecture and functions with single molecule localization microscopy. Biol Cell 2025; 117:e2400082. [PMID: 39877953 PMCID: PMC11775716 DOI: 10.1111/boc.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
Understanding the spatiotemporal organization of components within living systems requires the highest resolution possible. Microscopy approaches that allow for a resolution below 250 nm include electron and super-resolution microscopy (SRM). The latter combines advanced imaging techniques and the optimization of image processing methods. Over the last two decades, various SRM-related approaches have been introduced, especially those relying on single molecule localization microscopy (SMLM). To develop and apply SMLM approaches, mitochondria are an ideal cellular compartment due to their size, which is below the standard diffraction limit. Furthermore, mitochondria are a dynamic yet narrow compartment, and a resolution below 250 nm is required to study their composition and multifaceted functions. To this end, several SMLM technologies have been used to reveal mitochondrial composition. However, there is still room for improvement in existing techniques to study protein-protein interactions and protein dynamics within this compartment. This review aims to offer an updated overview of the existing SMLM techniques and probes associated with mitochondria to enhance their resolution at the nanoscale. Last, it paves the way for future SMLM improvements to better resolve mitochondrial dynamics and functions.
Collapse
Affiliation(s)
- Nicolas Jolivet
- CNRSUniv Rennes, IGDR [(Institut de Génétique et Développement de Rennes)]‐UMR 6290RennesFrance
| | - Giulia Bertolin
- CNRSUniv Rennes, IGDR [(Institut de Génétique et Développement de Rennes)]‐UMR 6290RennesFrance
| |
Collapse
|
10
|
Elancheliyan P, Maruszczak KK, Serwa RA, Stephan T, Gulgec AS, Borrero-Landazabal MA, Ngati S, Gosk A, Jakobs S, Wasilewski M, Chacinska A. OCIAD1 and prohibitins regulate the stability of the TIM23 protein translocase. Cell Rep 2024; 43:115038. [PMID: 39630581 DOI: 10.1016/j.celrep.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 09/27/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Mitochondrial proteins are transported and sorted to the matrix or inner mitochondrial membrane by the presequence translocase TIM23. In yeast, this essential and highly conserved machinery is composed of the core subunits Tim23 and Tim17. The architecture, assembly, and regulation of the human TIM23 complex are poorly characterized. The human genome encodes two paralogs, TIMM17A and TIMM17B. Here, we describe an unexpected role of the ovarian cancer immunoreactive antigen domain-containing protein 1 (OCIAD1) and the prohibitin complex in the biogenesis of human TIM23. Prohibitins were required to stabilize both the TIMM17A- and TIMM17B-containing variants of the translocase. Interestingly, OCIAD1 assembled with the prohibitin complex to protect the TIMM17A variant from degradation by the YME1L protease. The expression of OCIAD1 was in turn regulated by the status of the TIM23 complex. We postulate that OCIAD1 together with prohibitins constitute a regulatory axis that differentially regulates variants of human TIM23.
Collapse
Affiliation(s)
- Praveenraj Elancheliyan
- IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | | | | | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Frankfurt am Main 60438, Germany
| | | | | | - Sonia Ngati
- IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Aleksandra Gosk
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, 37075 Göttingen, Germany
| | | | - Agnieszka Chacinska
- IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland.
| |
Collapse
|
11
|
Li CY, Chen LW, Tsai MC, Chou YY, Lin PX, Chang YM, Hwu WL, Chien YH, Lin JL, Chen HA, Lee NC, Su PH, Hsieh TC, Klinkhammer H, Wang YC, Huang YT, Krawitz PM, Lin SH, Huang LLH, Chiang PM, Shih MH, Chen PC. Homozygous variant in translocase of outer mitochondrial membrane 7 leads to metabolic reprogramming and microcephalic osteodysplastic dwarfism with moyamoya disease. EBioMedicine 2024; 110:105476. [PMID: 39615461 DOI: 10.1016/j.ebiom.2024.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Impaired mitochondrial protein import machinery leads to phenotypically heterogeneous diseases. Here, we report a recurrent homozygous missense variant in the gene that encodes the translocase of outer mitochondrial membrane 7 (TOMM7) in nine patients with microcephaly, short stature, facial dysmorphia, atrophic macular scarring, and moyamoya disease from seven unrelated families. METHODS To prove the causality of the TOMM7 variant, mitochondrial morphology, proteomics, and respiration were investigated in CRISPR/Cas9-edited iPSCs-derived endothelial cells. Cerebrovascular defects and mitochondrial respiration were also examined in CRISPR/Cas9-edited zebrafish. FINDINGS iPSC-derived endothelial cells with homozygous TOMM7 p.P29L showed increased TOM7 stability, enlarged mitochondria, increased senescence, and defective tube formation. In addition, proteomic analysis revealed a reduced abundance of mitochondrial proteins involved in ATP synthesis or coordinating TCA cycle and gluconeogenesis. Moreover, mitochondrial respiration was slightly decreased while ATP production from glycolysis was significantly increased. Furthermore, deletion of tomm7 in zebrafish caused craniofacial and cerebrovascular defects that recapitulated human phenotypes. Notably, homozygous iPSCs differentially expressed genes involved in glycolysis and response to hypoxia. Finally, the metabolic imbalance was evidenced by decreased oxygen consumption, increased level of hexokinase 2, and enhanced glycolysis in endothelial cells derived from the patient's iPSCs. INTERPRETATION These results revealed the essential role of TOMM7 in balancing cellular sources of energy production at both proteomic and transcriptomic levels and provided the molecular mechanisms through which TOMM7 p.P29L variant leads to an autosomal recessive microcephalic osteodysplastic dwarfism with moyamoya disease. FUNDING This work is supported by National Science and Technology Council grants and National Cheng Kung University Hospital.
Collapse
Affiliation(s)
- Chia-Yi Li
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Wen Chen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Che Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Yin Chou
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Xuan Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ming Chang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wuh-Liang Hwu
- Precision Medical Center, China Medical University Hospital, Taichung City, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ju-Li Lin
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Hui-An Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Yi-Chieh Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lynn L H Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Min-Hsiu Shih
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Chieh Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
12
|
Gomes F, Turano H, Haddad LA, Netto LES. Human mitochondrial peroxiredoxin Prdx3 is dually localized in the intermembrane space and matrix subcompartments. Redox Biol 2024; 78:103436. [PMID: 39591905 PMCID: PMC11626719 DOI: 10.1016/j.redox.2024.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Peroxiredoxin 3 (Prdx3) is the major sink for H2O2 and other hydroperoxides within mitochondria, yet the mechanisms guiding the import of its cytosolic precursor into mitochondrial sub-compartments remain elusive. Prdx3 is synthesized in the cytosol as a precursor with an N-terminal cleavable presequence, which is frequently proposed to target the protein exclusively to the mitochondrial matrix. Here, we present a comprehensive analysis of the human Prdx3 biogenesis, using highly purified mitochondria from HEK293T cells. Subfractionation and probing for specific mitochondrial markers confirmed Prdx3 localization in the matrix, while unexpectedly revealed its presence in the mitochondrial intermembrane space (IMS). Both matrix and IMS isoforms were found to be soluble proteins, as demonstrated by alkaline carbonate extraction. By combining in silico analysis, in organello import assays and heterologous expression in yeast, we found that Prdx3 undergoes sequential proteolytic processing steps by mitochondrial processing peptidase (MPP) and mitochondrial intermediate peptidase (MIP) during its import into the matrix. Additionally, heterologous expression of Prdx3 in yeast revealed that its sorting to the IMS is dependent on the inner membrane peptidase (IMP) complex. Collectively, these findings uncover a complex submitochondrial distribution of Prdx3, supporting its multifaceted role in mitochondrial H2O2 metabolism.
Collapse
Affiliation(s)
- Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil.
| | - Helena Turano
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Luciana A Haddad
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil.
| |
Collapse
|
13
|
Hunter‐Manseau F, Cormier SB, Strang R, Pichaud N. Fasting as a precursor to high-fat diet enhances mitochondrial resilience in Drosophila melanogaster. INSECT SCIENCE 2024; 31:1770-1788. [PMID: 38514255 PMCID: PMC11632299 DOI: 10.1111/1744-7917.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Changes in diet type and nutrient availability can impose significant environmental stress on organisms, potentially compromising physiological functions and reproductive success. In nature, dramatic fluctuations in dietary resources are often observed and adjustments to restore cellular homeostasis are crucial to survive this type of stress. In this study, we exposed male Drosophila melanogaster to two modulated dietary treatments: one without a fasting period before exposure to a high-fat diet and the other with a 24-h fasting period. We then investigated mitochondrial metabolism and molecular responses to these treatments. Exposure to a high-fat diet without a preceding fasting period resulted in disrupted mitochondrial respiration, notably at the level of complex I. On the other hand, a short fasting period before the high-fat diet maintained mitochondrial respiration. Generally, transcript abundance of genes associated with mitophagy, heat-shock proteins, mitochondrial biogenesis, and nutrient sensing pathways increased either slightly or significantly following a fasting period and remained stable when flies were subsequently put on a high-fat diet, whereas a drastic decrease of almost all transcript abundances was observed for all these pathways when flies were exposed directly to a high-fat diet. Moreover, mitochondrial enzymatic activities showed less variation after the fasting period than the treatment without a fasting period. Overall, our study sheds light on the mechanistic protective effects of fasting prior to a high-fat diet and highlights the metabolic flexibility of Drosophila mitochondria in response to abrupt dietary changes and have implication for adaptation of species to their changing environment.
Collapse
Affiliation(s)
- Florence Hunter‐Manseau
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Simon B. Cormier
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Rebekah Strang
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| | - Nicolas Pichaud
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Centre for Precision MedicineMonctonNew BrunswickCanada
| |
Collapse
|
14
|
Jain S, Paz E, Azem A. Hotspots for Disease-Causing Mutations in the Mitochondrial TIM23 Import Complex. Genes (Basel) 2024; 15:1534. [PMID: 39766801 PMCID: PMC11675802 DOI: 10.3390/genes15121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
The human mitochondrial proteome comprises approximately 1500 proteins, with only 13 being encoded by mitochondrial DNA. The remainder are encoded by the nuclear genome, translated by cytosolic ribosomes, and subsequently imported into and sorted within mitochondria. The process of mitochondria-destined protein import is mediated by several intricate protein complexes distributed among the four mitochondrial compartments. The focus of this mini-review is the translocase of the inner membrane 23 (TIM23) complex that assists in the import of ~60% of the mitochondrial proteome, which includes the majority of matrix proteins as well as some inner membrane and intermembrane space proteins. To date, numerous pathogenic mutations have been reported in the genes encoding various components of the TIM23 complex. These diseases exhibit mostly developmental and neurological defects at an early age. Interestingly, accumulating evidence supports the possibility that the gene for Tim50 represents a hotspot for disease-causing mutations among core TIM23 complex components, while genes for the mitochondrial Hsp70 protein (mortalin) and its J domain regulators represent hotspots for mutations affecting presequence translocase-associated motor (PAM) subunits. The potential mechanistic implications of the discovery of disease-causing mutations on the function of the TIM23 complex, in particular Tim50, are discussed.
Collapse
Affiliation(s)
- Sahil Jain
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.P.); (A.A.)
- Bioinformatics Centre, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India
| | - Eyal Paz
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.P.); (A.A.)
| | - Abdussalam Azem
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.P.); (A.A.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Rawnsley DR, Islam M, Zhao C, Kargar Gaz Kooh Y, Mendoza A, Navid H, Kumari M, Guan X, Murphy JT, Nigro J, Kovacs A, Mani K, Huebsch N, Ma X, Diwan A. Mitophagy Facilitates Cytosolic Proteostasis to Preserve Cardiac Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.24.624947. [PMID: 39651239 PMCID: PMC11623534 DOI: 10.1101/2024.11.24.624947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Protein quality control (PQC) is critical for maintaining sarcomere structure and function in cardiac myocytes, and mutations in PQC pathway proteins, such as CRYAB (arginine to glycine at position 120, R120G) and BAG3 (proline to lysine at position 209, P209L) induce protein aggregate pathology with cardiomyopathy in humans. Novel observations in yeast and mammalian cells demonstrate mitochondrial uptake of cytosolic protein aggregates. We hypothesized that mitochondrial uptake of cytosolic protein aggregates and their removal by mitophagy, a lysosomal degradative pathway essential for myocardial homeostasis, facilitates cytosolic protein quality control in cardiac myocytes. Methods Mice with inducible cardiac myocyte specific ablation of TRAF2 (TRAF2icKO), which impairs mitophagy, were assessed for protein aggregates with biochemical fractionation and super-resolution imaging in comparison to floxed controls. Induced pluripotent stem cell (iPSC)-derived cardiac myocytes with R120G knock-in to the CRYAB locus were assessed for localization of the CRYAB protein. Transgenic mice expressing R120G CRYAB protein (R120G-TG) were subjected to both TRAF2 gain-of-function (with AAV9-cardiac Troponin T promoter-driven TRAF2 transduction) and TRAF2 loss-of-function (with tamoxifen-inducible ablation of one Traf2 allele) in cardiac myocytes to determine the effect of mitophagy modulation on cardiac structure, function, and protein aggregate pathology. Results Cardiomyocyte-specific ablation of TRAF2 results accumulation of mitochondrial and cytosolic protein aggregates and DESMIN mis-localization to protein aggregates. Isolated mitochondria take up cardiomyopathy-associated aggregate-prone cytosolic chaperone proteins, namely arginine to glycine (R120G) CRYAB mutant and proline to lysine (P209L) BAG3 mutant. R120G-CRYAB mutant protein increasingly localizes to mitochondria in human and mouse cardiomyocytes. R120G-TG mice demonstrate upregulation of TRAF2 in the mitochondrial fraction with increased mitophagy as compared with wild type. Adult-onset inducible haplo-insufficiency of TRAF2 resulted in accelerated mortality, impaired left ventricular systolic function and increased protein aggregates in R120G-TG mice as compared with controls. Conversely, AAV9-mediated TRAF2 transduction in R120G-TG mice reduced mortality and attenuated left ventricular systolic dysfunction, with reduced protein aggregates and restoration of normal localization of DESMIN, a cytosolic scaffolding protein chaperoned by CRYAB, as compared with control AAV9-GFP group. Conclusions TRAF2-mediated mitophagy in cardiac myocytes facilitates removal of cytosolic protein aggregates and can be stimulated to ameliorate proteotoxic cardiomyopathy.
Collapse
|
16
|
Zuo W, Huang MR, Schmitz F, Boersma AJ. Probing Electrostatic and Hydrophobic Associative Interactions in Cells. J Phys Chem B 2024; 128:10861-10869. [PMID: 39473385 PMCID: PMC11551953 DOI: 10.1021/acs.jpcb.4c05990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
Weak nonspecific interactions between biomacromolecules determine the cytoplasmic organization. Despite their importance, it is challenging to determine these interactions in the intracellular dense and heterogeneous mixture of biomacromolecules. Here, we develop a method to indicate electrostatic and hydrophobic associative interactions and map these interactions. The method relies on a genetically encoded probe containing a sensing peptide and a circularly permuted green fluorescent protein that provides a ratiometric readout. Inside bacterial and mammalian cells, we see that the cytoplasmic components interact strongly with cationic and hydrophobic probes but not with neutral hydrophilic probes, which remain inert. The Escherichia coli cytoplasm interacts strongly with highly negatively charged hydrophilic probes, but the HEK293T cytoplasm does not. These associative interactions are modulated by ATP depletion. Hence, the nonspecific associative interaction profile in cells is condition- and species-dependent.
Collapse
Affiliation(s)
- Weiyan Zuo
- DWI-Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
- Institute
of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Meng-Ruo Huang
- DWI-Leibniz
Institute for Interactive Materials, Aachen 52074, Germany
| | - Fabian Schmitz
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
17
|
Pang B, Dong G, Pang T, Sun X, Liu X, Nie Y, Chang X. Emerging insights into the pathogenesis and therapeutic strategies for vascular endothelial injury-associated diseases: focus on mitochondrial dysfunction. Angiogenesis 2024; 27:623-639. [PMID: 39060773 PMCID: PMC11564294 DOI: 10.1007/s10456-024-09938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
As a vital component of blood vessels, endothelial cells play a key role in maintaining overall physiological function by residing between circulating blood and semi-solid tissue. Various stress stimuli can induce endothelial injury, leading to the onset of corresponding diseases in the body. In recent years, the importance of mitochondria in vascular endothelial injury has become increasingly apparent. Mitochondria, as the primary site of cellular aerobic respiration and the organelle for "energy information transfer," can detect endothelial cell damage by integrating and receiving various external stress signals. The generation of reactive oxygen species (ROS) and mitochondrial dysfunction often determine the evolution of endothelial cell injury towards necrosis or apoptosis. Therefore, mitochondria are closely associated with endothelial cell function, helping to determine the progression of clinical diseases. This article comprehensively reviews the interconnection and pathogenesis of mitochondrial-induced vascular endothelial cell injury in cardiovascular diseases, renal diseases, pulmonary-related diseases, cerebrovascular diseases, and microvascular diseases associated with diabetes. Corresponding therapeutic approaches are also provided. Additionally, strategies for using clinical drugs to treat vascular endothelial injury-based diseases are discussed, aiming to offer new insights and treatment options for the clinical diagnosis of related vascular injuries.
Collapse
Affiliation(s)
- Boxian Pang
- Beijing University of Chinese Medicine, Beijing, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | | | - Tieliang Pang
- Beijing Anding hospital, Capital Medical University, Beijing, China
| | - Xinyao Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Xin Liu
- Bioscience Department, University of Nottingham, Nottingham, UK
| | - Yifeng Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
| | - Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 5 Beixiagge, Xicheng District, Beijing, China.
| |
Collapse
|
18
|
Snyder M, Liu YK, Shang R, Xu H, Thrift C, Chen X, Chen J, Kim KH, Qiu J, Bi P, Tao WA, Kuang S. LETMD1 regulates mitochondrial protein synthesis and import to guard brown fat mitochondrial integrity and function. iScience 2024; 27:110944. [PMID: 39398236 PMCID: PMC11467678 DOI: 10.1016/j.isci.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Thermogenic brown adipocytes (BAs) catabolize lipids to generate heat, representing powerful agents against the growing global obesity epidemic. We and others reported recently that LETMD1 is a BA-specific protein essential for mitochondrial structure and function, but the mechanisms of action remain unclear. We performed sequential digestion to demonstrate that LETMD1 is a trans-inner mitochondrial membrane protein. We then generated UCP1Cre-driven BA-specific Letmd1 knockout (Letmd1 UKO ) mice to show that Letmd1 UKO leads to protein aggregation, reactive oxidative stress, hyperpolarization, and mitophagy in BAs. We further employed TurboID proximity labeling to identify LETMD1-interacting proteins. Many candidate proteins are associated with mitochondrial ribosomes, protein import machinery, and electron transport chain complexes (ETC-I and ETC-IV). Using quantitative proteomics, we confirmed the elevated aggregations of ETC and mitochondrial ribosomal proteins, impairing mitochondrial protein synthesis in the Letmd1 UKO BAs. Therefore, LETMD1 may function to maintain mitochondrial proteostasis through regulating import of nuclear-encoded proteins and local protein translation in brown fat mitochondria.
Collapse
Affiliation(s)
- Madigan Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yi-Kai Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Renjie Shang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Haowei Xu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Charlie Thrift
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
19
|
Maruszczak KK, Draczkowski P, Wnorowski A, Chacinska A. Structure prediction analysis of human core TIM23 complex reveals conservation of the protein translocation mechanism. FEBS Open Bio 2024; 14:1656-1667. [PMID: 38837610 PMCID: PMC11452300 DOI: 10.1002/2211-5463.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
The majority of mitochondrial proteins are encoded in the nucleus, translated on cytosolic ribosomes, and subsequently targeted to the mitochondrial surface. Their further import into the organelle is facilitated by highly specialized protein translocases. Mitochondrial precursor proteins that are destined to the mitochondrial matrix and, to some extent, the inner membrane, utilize translocase of the inner membrane (TIM23). This indispensable import machinery has been extensively studied in yeast. The translocating unit of the TIM23 complex in yeast consists of two membrane proteins, Tim17 and Tim23. In contrast to previous findings, recent reports demonstrate the primary role of Tim17, rather than Tim23, in the translocation of newly synthesized proteins. Very little is known about human TIM23 translocase. Human cells have two orthologs of yeast Tim17, TIMM17A and TIMM17B. Here, using computational tools, we present the architecture of human core TIM23 variants with either TIMM17A or TIMM17B, forming two populations of highly similar complexes. The structures reveal high conservation of the core TIM23 complex between human and yeast. Interestingly, both TIMM17A and TIMM17B variants interact with TIMM23 and reactive oxygen species modulator 1 (ROMO1); a homolog of yeast Mgr2, a protein that can create a channel-like structure with Tim17. The high structural conservation of proteins that form the core TIM23 complex in yeast and humans raises an interesting question about mechanistic and functional differences that justify existence of the two variants of TIM23 in higher eukaryotes.
Collapse
Affiliation(s)
| | - Piotr Draczkowski
- National Bioinformatics Infrastructure Sweden, SciLifeLabSolnaSweden
- Department of Synthesis and Chemical Technology of Pharmaceutical SubstancesMedical University of LublinPoland
| | | | | |
Collapse
|
20
|
Mussulini BHM, Wasilewski M, Chacinska A. Methods to monitor mitochondrial disulfide bonds. Methods Enzymol 2024; 706:125-158. [PMID: 39455213 DOI: 10.1016/bs.mie.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain numerous proteins that utilize the chemistry of cysteine residues, which can be reversibly oxidized. These proteins are involved in mitochondrial biogenesis, protection against oxidative stress, metabolism, energy transduction to adenosine triphosphate, signaling and cell death among other functions. Many proteins located in the mitochondrial intermembrane space are imported by the mitochondrial import and assembly pathway the activity of which is based on the reversible oxidation of cysteine residues and oxidative trapping of substrates. Oxidative modifications of cysteine residues are particularly difficult to study because of their labile character. Here we present techniques that allow for monitoring the oxidative state of mitochondrial proteins as well as to investigate the mitochondrial import and assembly pathway. This chapter conveys basic concepts on sample preparation and techniques to monitor the redox state of cysteine residues in mitochondrial proteins as well as the strategies to study mitochondrial import and assembly pathway.
Collapse
|
21
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2024:10.1007/s12035-024-04469-x. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
22
|
Jonas E, Mnatsakanyan N, Rivera-Molina F, Robson A, Garfinkel AM, Kumar A, Batter S, Padovano V, Webster K, Cardone R, Berg J, Toomre D, Kibbey R, Caplan M, Khokha M. CALHM2 is a mitochondrial protein import channel that regulates fatty acid metabolism. RESEARCH SQUARE 2024:rs.3.rs-4985689. [PMID: 39315269 PMCID: PMC11419264 DOI: 10.21203/rs.3.rs-4985689/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
For mitochondrial metabolism to occur in the matrix, multiple proteins must be imported across the two (inner and outer) mitochondrial membranes. Classically, two protein import channels, TIM/TOM, are known to perform this function, but whether other protein import channels exist is not known. Here, using super-resolution microscopy, proteomics, and electrophysiological techniques, we identify CALHM2 as the import channel for the ECHA subunit of the mitochondrial trifunctional protein (mTFP), which catalyzes β-oxidation of fatty acids in the mitochondrial matrix. We find that CALHM2 sits specifically at the inner mitochondrial and cristae membranes and is critical for membrane morphology. Depletion of CALHM2 leads to a mislocalization of ECHA outside of the mitochondria leading to severe cellular metabolic defects. These defects include cytosolic accumulation of fatty acids, depletion of tricarboxylic acid cycle enzymes and intermediates, and reduced cellular respiration. Our data identify CALHM2 as an essential protein import channel that is critical for fatty acid- and glucose-dependent aerobic metabolism.
Collapse
|
23
|
Imam FL, Meisinger C, Marada A. Monitoring protein phosphorylation at the mitochondrial protein import machinery by PhosTag electrophoresis. Methods Enzymol 2024; 707:501-517. [PMID: 39488388 DOI: 10.1016/bs.mie.2024.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The mitochondrial import machinery is regulated by several protein kinases that phosphorylate key components. This allows an adjustment of the protein flux to changing cellular demands and allow a dynamic organellar proteome. PhosTag electrophoresis has been proven as highly valuably tool to study these signalling machanisms at the import machinery.
Collapse
Affiliation(s)
- Fatimah Lami Imam
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Maruszczak KK, Chacinska A. Monitoring and analysis of mitochondrial precursor protein aggregates in the cytosol. Methods Enzymol 2024; 706:287-311. [PMID: 39455220 DOI: 10.1016/bs.mie.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The vast majority of mitochondrial precursor proteins is synthesized in the cytosol and subsequently imported into the organelle with the help of targeting signals that are present within these proteins. Disruptions in mitochondrial import will result in the accumulation of the organellar precursors in the cytosol of the cell. If mislocalized proteins exceed their critical concentrations, they become prone to aggregation. Under certain circumstances, protein aggregation becomes an irreversible process, which eventually endangers cellular health. Impairment in mitochondrial biogenesis and its effect on cellular protein homeostasis were recently linked to neurodegeneration, therefore placing this process in the center of attention. In this chapter, we are presenting a set of techniques that allows to monitor and study mitochondrial precursor protein aggregates upon mitochondrial dysfunction in the cytosol of both yeast and human cells.
Collapse
|
25
|
Gao Y, Kwan J, Orofino J, Burrone G, Mitra S, Fan TY, English J, Hekman R, Emili A, Lyons SM, Cardamone MD, Perissi V. Inhibition of K63 ubiquitination by G-Protein pathway suppressor 2 (GPS2) regulates mitochondria-associated translation. Pharmacol Res 2024; 207:107336. [PMID: 39094987 DOI: 10.1016/j.phrs.2024.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
G-Protein Pathway Suppressor 2 (GPS2) is an inhibitor of non-proteolytic K63 ubiquitination mediated by the E2 ubiquitin-conjugating enzyme Ubc13. Previous studies have associated GPS2-mediated restriction of ubiquitination with the regulation of insulin signaling, inflammatory responses and mitochondria-nuclear communication across different tissues and cell types. However, a detailed understanding of the targets of GPS2/Ubc13 activity is lacking. Here, we have dissected the GPS2-regulated K63 ubiquitome in mouse embryonic fibroblasts and human breast cancer cells, unexpectedly finding an enrichment for proteins involved in RNA binding and translation on the outer mitochondrial membrane. Validation of selected targets of GPS2-mediated regulation, including the RNA-binding protein PABPC1 and translation factors RPS1, RACK1 and eIF3M, revealed a mitochondrial-specific strategy for regulating the translation of nuclear-encoded mitochondrial proteins via non-proteolytic ubiquitination. Removal of GPS2-mediated inhibition, either via genetic deletion or stress-induced nuclear translocation, promotes the import-coupled translation of selected mRNAs leading to the increased expression of an adaptive antioxidant program. In light of GPS2 role in nuclear-mitochondria communication, these findings reveal an exquisite regulatory network for modulating mitochondrial gene expression through spatially coordinated transcription and translation.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Julian Kwan
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Center for Network and Systems Biology, Boston University, Boston, MA 02115, United States
| | - Joseph Orofino
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Giulia Burrone
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Department of Computer Science, University of Torino, Torino, Italy; Department of Clinical and Biological Science, University of Torino, Torino, Italy; Graduate Program in Complex Systems for Quantitative Biomedicine, University of Torino, Torino, Italy
| | - Sahana Mitra
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Ting-Yu Fan
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Justin English
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Graduate Program in Pharmacology and Experimental Therapeutics, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Ryan Hekman
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Center for Network and Systems Biology, Boston University, Boston, MA 02115, United States
| | - Andrew Emili
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States; Center for Network and Systems Biology, Boston University, Boston, MA 02115, United States; Biology Department, Boston University, Boston, MA 02115, United States
| | - Shawn M Lyons
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Maria Dafne Cardamone
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States
| | - Valentina Perissi
- Department of Biochemistry and Cell Biology, Chobanian&Avedisian School of Medicine, Boston University, Boston, MA 02115, United States.
| |
Collapse
|
26
|
Teng X, Wang Y, Liu L, Yang H, Wu M, Chen X, Ren Y, Wang Y, Duan E, Dong H, Jiang L, Zhang Y, Zhang W, Chen R, Liu S, Liu X, Tian Y, Chen L, Wang Y, Wan J. Rice floury endosperm26 encoding a mitochondrial single-stranded DNA-binding protein is essential for RNA-splicing of mitochondrial genes and endosperm development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112151. [PMID: 38848768 DOI: 10.1016/j.plantsci.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Endosperm, the major storage organ in cereal grains, determines the grain yield and quality. Mitochondria provide the energy for dry matter accumulation, in the endosperm development. Although mitochondrial single-stranded DNA-binding proteins (mtSSBs) play a canonical role in the maintenance of single-stranded mitochondrial DNA, their molecular functions in RNA processing and endosperm development remain obscure. Here, we report a defective rice endosperm mutant, floury endosperm26 (flo26), which develops abnormal starch grains in the endosperm. Map-based cloning and complementation experiments showed that FLO26 allele encodes a mitochondrial single-stranded DNA-binding protein, named as mtSSB1.1. Loss of function of mtSSB1.1 affects the transcriptional level of many mitochondrially-encoded genes and RNA splicing of nad1, a core component of respiratory chain complex I in mitochondria. As a result, dysfunctional mature nad1 led to dramatically decreased complex I activity, thereby reducing ATP production. Our results reveal that mtSSB1.1 plays an important role in the maintenance of mitochondrial function and endosperm development by stabilizing the splicing of mitochondrial RNA in rice.
Collapse
Affiliation(s)
- Xuan Teng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yongfei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Linglong Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Hang Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Erchao Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Hui Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Rongbo Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Liangming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
27
|
Ghosh S, Goswami D, Dutta R, Ghatak D, De R. A Comprehensive Pan-Cancer Analysis of Cytochrome C Oxidase Assembly Factor 1 (COA1) Reveals Instrumental Role of Mitochondrial Protein Assembly in Cancer that Modulates Disease Progression and Prognostic Outcome. Cell Biochem Biophys 2024; 82:2533-2555. [PMID: 38907941 DOI: 10.1007/s12013-024-01366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Cytochrome c oxidase assembly factor 1 (COA1), a mitochondrial respiratory chain complex assembly factor protein of inner mitochondrial membrane (IMM), is involved in translating many mitochondrial components and assembling nuclear-encoded components within mitochondria. Given the lack of extensive research on COA1 in cancer, this study undertakes a comprehensive pan-cancer analysis of COA1, which is overexpressed across various cancer types, shedding light on its multifaceted role in tumorigenesis, prognosis, and tumor microenvironment (TME) modulation. Leveraging bioinformatics tools and public databases, we elucidated its potential as a diagnostic cancer biomarker as well as a target for novel anti-cancer therapeutics. Gene expression analysis using "TIMER2.0", "UALCAN" and "GEPIA2" platforms, supported by protein expression data, revealed a significant correlation between COA1 upregulation and poor prognosis in Kaplan-Meir analysis, underscoring its clinical relevance. Additionally, genetic mutation analysis of COA1 with the help of "cBioPortal" warrants further exploration into its functional significance. Moreover, our investigation of the tumor microenvironment unveiled the interplay of COA1 with fibroblast and T cell infiltration implicating the role of COA1 in the tumor immune microenvironment. Furthermore, COA1-related gene enrichment study in "GeneMANIA" and pathway cross-talk analysis with Gene Ontology (GO) gene sets established comprehensive clarifications about the molecular pathways and protein networks associated with COA1 deregulation. Overall, this study lays a sturdy foundation to support future research endeavors targeting COA1, unraveling the molecular mechanisms underlying COA1 deregulation, and exploring its therapeutic potential in cancer.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
28
|
Krieger MR, Abrahamian M, He KL, Atamdede S, Hakimjavadi H, Momcilovic M, Ostrow D, Maggo SD, Tsang YP, Gai X, Chanfreau GF, Shackelford DB, Teitell MA, Koehler CM. Trafficking of mitochondrial double-stranded RNA from mitochondria to the cytosol. Life Sci Alliance 2024; 7:e202302396. [PMID: 38955468 PMCID: PMC11220484 DOI: 10.26508/lsa.202302396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.
Collapse
Affiliation(s)
- Matthew R Krieger
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Kevin L He
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Sean Atamdede
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Milica Momcilovic
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Dejerianne Ostrow
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Simran Ds Maggo
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yik Pui Tsang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Xiaowu Gai
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - David B Shackelford
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Michael A Teitell
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
29
|
Shim G, Youn YS. Precise subcellular targeting approaches for organelle-related disorders. Adv Drug Deliv Rev 2024; 212:115411. [PMID: 39032657 DOI: 10.1016/j.addr.2024.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Pharmacological research has expanded to the nanoscale level with advanced imaging technologies, enabling the analysis of drug distribution at the cellular organelle level. These advances in research techniques have contributed to the targeting of cellular organelles to address the fundamental causes of diseases. Beyond navigating the hurdles of reaching lesion tissues upon administration and identifying target cells within these tissues, controlling drug accumulation at the organelle level is the most refined method of disease management. This approach opens new avenues for the development of more potent therapeutic strategies by delving into the intricate roles and interplay of cellular organelles. Thus, organelle-targeted approaches help overcome the limitations of conventional therapies by precisely regulating functionally compartmentalized spaces based on their environment. This review discusses the basic concepts of organelle targeting research and proposes strategies to target diseases arising from organelle dysfunction. We also address the current challenges faced by organelle targeting and explore future research directions.
Collapse
Affiliation(s)
- Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
30
|
Che T, Yang X, Zhang Y, Zheng Y, Zhang Y, Zhang X, Wu Z. Mitochondria-Regulated Information Processing Nanosystem Promoting Immune Cell Communication for Liver Fibrosis Regression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400413. [PMID: 38721946 DOI: 10.1002/smll.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/23/2024] [Indexed: 10/04/2024]
Abstract
Liver fibrosis is a coordinated response to tissue injury that is mediated by immune cell interactions. A mitochondria-regulated information-processing (MIP) nanosystem that promotes immune cell communication and interactions to inhibit liver fibrosis is designed. The MIP nanosystem mimics the alkaline amino acid domain of mitochondrial precursor proteins, providing precise targeting of the mitochondria. The MIP nanosystem is driven by light to modulate the mitochondria of hepatic stellate cells, resulting in the release of mitochondrial DNA into the fibrotic microenvironment, as detected by macrophages. By activating the STING signaling pathway, the developed nanosystem-induced macrophage phenotype switches to a reparative subtype (Ly6Clow) and downstream immunostimulatory transcriptional activity, fully restoring the fibrotic liver to its normal tissue state. The MIP nanosystem serves as an advanced information transfer system, allowing precise regulation of trained immunity, and offers a promising approach for effective liver fibrosis immunotherapy with the potential for clinical translation.
Collapse
Affiliation(s)
- Tingting Che
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaopeng Yang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, Shandong, 250012, China
| |
Collapse
|
31
|
Crameri JJ, Stojanovski D. Monitoring the in vitro import and assembly of mitochondrial precursor proteins into mammalian mitochondria. Methods Enzymol 2024; 706:365-390. [PMID: 39455224 DOI: 10.1016/bs.mie.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondrial protein import is a complex process governing the delivery of the organelle's proteome. This process, in turn, is essential for maintaining mitochondrial function and cellular homeostasis. Initiated by protein synthesis in the cytoplasm, precursor proteins destined for the mitochondria possess targeting signals that guide them to the mitochondrial surface. At mitochondria, the translocation of proteins across the mitochondrial membranes involves an intricate interplay between translocases, chaperones, and receptors. The mitochondrial import assay offers researchers the opportunity to recapitulate the process of protein import in vitro. The assay has served as an indispensable tool in helping decipher the intricacies of protein translocation into mitochondria, first in fungal models, and subsequently in higher eukaryotic models. In this chapter, we will describe how protein import can be assayed using mammalian mitochondria and provide insight into the types of questions that can be addressed in mammalian mitochondrial biology using this experimental approach.
Collapse
Affiliation(s)
- Jordan J Crameri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia; The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia; The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
32
|
Pathak D, Krishnamoorthy T, Sepuri NBV. Analysis of mitochondrial biogenesis regulation by oxidative stress. Methods Enzymol 2024; 707:519-539. [PMID: 39488389 DOI: 10.1016/bs.mie.2024.07.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Of all the causes of metabolic and neurological disorders, oxidative stress distinguishes itself by its sweeping effect on the dynamic cellular redox homeostasis and, in its wake, exposing the vulnerabilities of the protein machinery of the cell. High levels of Reactive Oxygen Species (ROS) that mitochondria produce during ATP synthesis can damage mtDNA, lipids, and essential mitochondrial proteins. ROS majorly oxidizes cysteine and methionine amino acids in peptides, which can lead to protein unfolding or misfolding of proteins, which ultimately can have a toll on their function. As mitochondrial biogenesis relies on the continuous import of nuclear-encoded proteins into mitochondria mediated by mitochondrial protein import complexes, oxidative stress triggered by mitochondria can rapidly and detrimentally affect mitochondrial biogenesis and homeostasis. Functional Mge1 is a homodimer and acts as a cochaperone and a nucleotide exchange factor of mitochondrial heat shock protein 70 (mHsp70), crucial for mitochondrial protein import. Oxidative stress like ROS, oxidizes Met 155 in Mge1, compromising its ability to dimerize and interact with mHsp70. The cell employs Methionine sulphoxide reductase 2 (Mxr2), a member of the methionine sulphoxide reductase family, to reduce oxidized Met 155 and thereby restore the essential function of Mge1. Oxidation of methionine as a regulated post-translational modification has been gaining traction. Future high throughput studies that can scan the entire mitochondrial proteome to interrogate methionine oxidation and reversal may increase the repertoire of mitochondrial proteins undergoing regulated oxidation and reduction. In this chapter, we describe the methods followed in our laboratory to study the oxidation of Mge1 and its reduction by Mxr2 in vitro.
Collapse
Affiliation(s)
- Dheeraj Pathak
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, TS, India
| | | | - Naresh Babu V Sepuri
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, TS, India.
| |
Collapse
|
33
|
Jain N, Gomkale R, Rehling P. TOM-TIM23 supercomplex formation. Methods Enzymol 2024; 707:3-22. [PMID: 39488380 DOI: 10.1016/bs.mie.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondria import the vast majority of proteins from the cytosol. Protein translocation machineries in outer and inner membranes facilitate precursor recognition and transport. Most mitochondrial proteins utilize N-terminal presequences as targeting signals that eventually direct them across the inner mitochondrial membrane. These precursors are transported by the TOM complex across the outer-, and subsequently by the TIM23 complex across the inner membrane. During this process the translocases align and the polypeptide chain is translocated across both membranes in a coupled manner. A transient precursor-containing TOM-TIM23 supercomplex is formed. This TOM-TIM23 supercomplex provides a fascinating import intermediate which can be stabilized if the precursor contains a tightly folded moiety at the C-terminus that is not able to pass through the TOM complex. Such a supercomplex can be generated during in vitro import, and in vivo. The stabilized TOM-TIM23 supercomplex can be purified for downstream analysis. The possibility of pausing translocation at this step provides a means to understand the mechanisms underlying precursor translocation.
Collapse
Affiliation(s)
- Naintara Jain
- Institute for Cellular Biochemistry, University of Goettingen, Goettingen, Germany
| | - Ridhima Gomkale
- Institute for Cellular Biochemistry, University of Goettingen, Goettingen, Germany
| | - Peter Rehling
- Institute for Cellular Biochemistry, University of Goettingen, Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Goettingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany.
| |
Collapse
|
34
|
Kasperski A, Heng HH. The Spiral Model of Evolution: Stable Life Forms of Organisms and Unstable Life Forms of Cancers. Int J Mol Sci 2024; 25:9163. [PMID: 39273111 PMCID: PMC11395208 DOI: 10.3390/ijms25179163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
If one must prioritize among the vast array of contributing factors to cancer evolution, environmental-stress-mediated chromosome instability (CIN) should easily surpass individual gene mutations. CIN leads to the emergence of genomically unstable life forms, enabling them to grow dominantly within the stable life form of the host. In contrast, stochastic gene mutations play a role in aiding the growth of the cancer population, with their importance depending on the initial emergence of the new system. Furthermore, many specific gene mutations among the many available can perform this function, decreasing the clinical value of any specific gene mutation. Since these unstable life forms can respond to treatment differently than stable ones, cancer often escapes from drug treatment by forming new systems, which leads to problems during the treatment for patients. To understand how diverse factors impact CIN-mediated macroevolution and genome integrity-ensured microevolution, the concept of two-phased cancer evolution is used to reconcile some major characteristics of cancer, such as bioenergetic, unicellular, and multicellular evolution. Specifically, the spiral of life function model is proposed, which integrates major historical evolutionary innovations and conservation with information management. Unlike normal organismal evolution in the microevolutionary phase, where a given species occupies a specific location within the spiral, cancer populations are highly heterogenous at multiple levels, including epigenetic levels. Individual cells occupy different levels and positions within the spiral, leading to supersystems of mixed cellular populations that exhibit both macro and microevolution. This analysis, utilizing karyotype to define the genetic networks of the cellular system and CIN to determine the instability of the system, as well as considering gene mutation and epigenetics as modifiers of the system for information amplification and usage, explores the high evolutionary potential of cancer. It provides a new, unified understanding of cancer as a supersystem, encouraging efforts to leverage the dynamics of CIN to develop improved treatment options. Moreover, it offers a historically contingent model for organismal evolution that reconciles the roles of both evolutionary innovation and conservation through macroevolution and microevolution, respectively.
Collapse
Affiliation(s)
- Andrzej Kasperski
- Department of Biotechnology, Laboratory of Bioinformatics and Control of Bioprocesses, Institute of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516 Zielona Góra, Poland
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
35
|
Needs HI, Yan Y, Niemi NM, Collinson I. The MitoLuc assay for the analysis of the mechanism of mitochondrial protein import. Methods Enzymol 2024; 706:407-436. [PMID: 39455227 PMCID: PMC11756599 DOI: 10.1016/bs.mie.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The NanoLuc split luciferase assay has proven to be a powerful tool for the analysis of protein translocation. Its flexibility has enabled in vivo, ex vivo, and in vitro studies-including systems reconstituting protein transport from pure components. The assay has been particularly useful in the characterization of bacterial secretion and mitochondrial protein import. In the latter case, MitoLuc has been developed for the investigation of the TIM23-pathway via import into the matrix of isolated yeast mitochondria. Subsequent analysis identified three distinct phases of import, rather than in a single continuous step. The assay has also been developed to monitor import into the mitochondrial matrix of intact cultured cells. This latter innovation has laid the foundations for further analysis of the import process in humans, including the consequences of interactions with cytosolic factors and neighboring organelles. The versatility of the MitoLuc assay is conducive for its adaptation to also monitor import into the inter-membrane space (MIA-pathway), and into the inner-membrane via the TIM22- and TIM23-complexes. Here, we present detailed protocols for the application of MitoLuc to mitochondria isolated from yeast and to those within cultured human cells.
Collapse
Affiliation(s)
- Hope I Needs
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Youmian Yan
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States
| | - Natalie M Niemi
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, United States.
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
36
|
Campo ML. Analysis of mitochondrial translocases TOM and TIM by the patch-clamping technique. Methods Enzymol 2024; 707:329-366. [PMID: 39488381 DOI: 10.1016/bs.mie.2024.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondrial protein import and sorting relies on sophisticated molecular machineries or translocases, of which channels are integral. Channels are built upon membrane proteins whose functions are driven by conformational changes. This implies that structural and functional information need to be integrated to gain a deep understanding of their dynamic behavior. Patch-clamp approaches are well suited for this purpose. This chapter provides a detailed description and practical guidance for applying the patch-clamp methodology to the electrophysiological characterization of mitochondrial protein import. Implementing the technique to intact mitochondria, mitoplasts, and reconstituted proteoliposomes, combined with genetically modified yeast strains, expands the scope of these studies. Focused on the TOM, TIM23, and TIM22 translocases, an analysis of the patch-clamp contribution to the field is outlined.
Collapse
Affiliation(s)
- María Luisa Campo
- Department of Biochemistry and Molecular Biology, and Genetics, Faculty of Veterinary Sciences, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
37
|
Sutandy FXR. Monitoring mitochondrial protein import by live cell imaging. Methods Enzymol 2024; 706:437-447. [PMID: 39455228 DOI: 10.1016/bs.mie.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The majority of mitochondrial proteins are synthesized in the cytosol and must be imported into mitochondria to attain their mature forms and execute their functions. Disruption of mitochondrial functions, whether caused by external or internal stress, may compromise mitochondrial protein import. Therefore, monitoring mitochondrial protein import has become a standard approach to assess mitochondrial health and gain insights into mitochondrial biology, especially during stress. This chapter describes a detailed protocol for monitoring mitochondrial import in live cells using microscopy. Co-localization between mitochondria and a genetic reporter of mitochondrially targeted enhanced GFP (eGFP) is employed to evaluate mitochondrial protein import efficiency under different physiological conditions. Overall, this technique provides a simple and robust approach to assess mitochondrial protein import efficiency within its native cellular environment.
Collapse
Affiliation(s)
- F X Reymond Sutandy
- Institute of Molecular Systems Medicine, Goethe University Frankfurt, Faculty of Medicine, Frankfurt am Main, Germany.
| |
Collapse
|
38
|
Herrmann JM, Lenhard S, Hansen KG. Import of mitochondrial precursor proteins into mitochondria of semi-intact yeast cells. Methods Enzymol 2024; 706:391-405. [PMID: 39455226 DOI: 10.1016/bs.mie.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria import hundreds of different precursor proteins from the cytosol and direct each of these to its specific mitochondrial subcompartment. The import routes and mechanisms by which precursors are transported into the outer membrane, the intermembrane space (IMS), the inner membrane and the matrix have been characterized in depth by use of very powerful in vitro assays. In the 'classical' import assays, radiolabeled precursor proteins are incubated with isolated mitochondria and the protein uptake is monitored by one or more of the following observations: intramitochondrial processing, resistance to externally added proteases, or the formation of disulfide bonds. In this chapter, we describe an alternative import assay which employs semi-intact yeast cells. This assay uses spheroplasts from which the cell wall had been removed by enzymatic digestion before the plasma membrane was partially permeabilized by a freeze-thawing step. Since the organellar architecture is largely maintained in semi-intact cells, this in vitro import assay allows to elucidate the targeting of precursor proteins from the cytoplasm to the mitochondrial surface. Thereby the contribution of other compartments such as the endoplasmic reticulum (ER) can be assessed. Here we describe how semi-intact cells are prepared and used in the in vitro import assay and discuss the pros and cons of this approach.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Cell Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany.
| | - Svenja Lenhard
- Cell Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Katja G Hansen
- Cell Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
39
|
Elezaby A, Lin AJ, Vijayan V, Pokhrel S, Kraemer BR, Bechara LRG, Larus I, Sun J, Baena V, Syed ZA, Murphy E, Glancy B, Ostberg NP, Queliconi BB, Campos JC, Ferreira JCB, Haileselassie B, Mochly-Rosen D. Cardiac troponin I directly binds and inhibits mitochondrial ATP synthase with a noncanonical role in the post-ischemic heart. NATURE CARDIOVASCULAR RESEARCH 2024; 3:987-1002. [PMID: 39196031 PMCID: PMC11700703 DOI: 10.1038/s44161-024-00512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/21/2024] [Indexed: 08/29/2024]
Abstract
Cardiac troponin I (cTnI) is a key regulator of cardiomyocyte contraction. However, its role in mitochondria is unknown. Here we show that cTnI localized to mitochondria in the heart, inhibited mitochondrial functions when stably expressed in noncardiac cells and increased the opening of the mitochondrial permeability transition pore under oxidative stress. Direct, specific and saturable binding of cTnI to F1FO-ATP synthase was demonstrated in vitro using immune-captured ATP synthase and in cells using proximity ligation assay. cTnI binding doubled ATPase activity, whereas skeletal troponin I and several human pathogenic cTnI variants associated with familial hypertrophic cardiomyopathy did not. A rationally designed peptide, P888, inhibited cTnI binding to ATP synthase, inhibited cTnI-induced increase in ATPase activity in vitro and reduced cardiac injury following transient ischemia in vivo. We suggest that cTnI-bound ATP synthase results in lower ATP levels, and releasing this interaction during cardiac ischemia-reperfusion may increase the reservoir of functional mitochondria to reduce cardiac injury.
Collapse
Affiliation(s)
- Aly Elezaby
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Amanda J Lin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vijith Vijayan
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin R Kraemer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Luiz R G Bechara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Isabel Larus
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Junhui Sun
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valentina Baena
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zulfeqhar A Syed
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Murphy
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian Glancy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicolai P Ostberg
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bruno B Queliconi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliane C Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Julio C B Ferreira
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Bereketeab Haileselassie
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
40
|
Schubert E, Mun K, Larsson M, Panagiotou S, Idevall-Hagren O, Svensson C, Punga T. Complex regulation of mitochondrial signaling by human adenovirus minor capsid protein VI. J Virol 2024; 98:e0035624. [PMID: 38837380 PMCID: PMC11265209 DOI: 10.1128/jvi.00356-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
The controlled release of mitochondrial content into the cytosol has emerged as one of the key steps in mitochondrial signaling. In particular, the release of mitochondrial DNA (mtDNA) into the cytosol has been shown to activate interferon beta (IFN-β) gene expression to execute the innate immune response. In this report, we show that human adenovirus type 5 (HAdV-C5) infection induces the release of mtDNA into the cytosol. The release of mtDNA is mediated by the viral minor capsid protein VI (pVI), which localizes to mitochondria. The presence of the mitochondrial membrane proteins Bak and Bax are needed for the mtDNA release, whereas the viral E1B-19K protein blocked pVI-mediated mtDNA release. Surprisingly, the pVI-mediated mtDNA release did not increase but inhibited the IFN-β gene expression. Notably, the pVI expression caused mitochondrial leakage of the HSP60 protein. The latter prevented specific phosphorylation of the interferon regulatory factor 3 (IRF3) needed for IFN-β gene expression. Overall, we assign a new mitochondria and IFN-β signaling-modulating function to the HAdV-C5 minor capsid protein VI. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing various self-limiting diseases, including conjunctivitis and the common cold. HAdVs need to interfere with multiple cellular signaling pathways during the infection to gain control over the host cell. In this study, we identified human adenovirus type 5 (HAdV-C5) minor capsid protein VI as a factor modulating mitochondrial membrane integrity and mitochondrial signaling. We show that pVI-altered mitochondrial signaling impedes the cell's innate immune response, which may benefit HAdV growth. Overall, our study provides new detailed insights into the HAdV-mitochondria interactions and signaling. This knowledge is helpful when developing new anti-viral treatments against pathogenic HAdV infections and improving HAdV-based therapeutics.
Collapse
Affiliation(s)
- Erik Schubert
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kwangchol Mun
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Catharina Svensson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Chang YT, Barad BA, Rahmani H, Zid BM, Grotjahn DA. Cytoplasmic ribosomes on mitochondria alter the local membrane environment for protein import. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604013. [PMID: 39071314 PMCID: PMC11275913 DOI: 10.1101/2024.07.17.604013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Most of the mitochondria proteome is nuclear-encoded, synthesized by cytoplasmic ribosomes, and targeted to mitochondria post-translationally. However, a subset of mitochondrial-targeted proteins is imported co-translationally, although the molecular mechanisms governing this process remain unclear. We employ cellular cryo-electron tomography to visualize interactions between cytoplasmic ribosomes and mitochondria in Saccharomyces cerevisiae. We use surface morphometrics tools to identify a subset of ribosomes optimally oriented on mitochondrial membranes for protein import. This allows us to establish the first subtomogram average structure of a cytoplasmic ribosome on the surface of the mitochondria in the native cellular context, which showed three distinct connections with the outer mitochondrial membrane surrounding the peptide exit tunnel. Further, this analysis demonstrated that cytoplasmic ribosomes primed for mitochondrial protein import cluster on the outer mitochondrial membrane at sites of local constrictions of the outer and inner mitochondrial membrane. Overall, our study reveals the architecture and the spatial organization of cytoplasmic ribosomes at the mitochondrial surface, providing a native cellular context to define the mechanisms that mediate efficient mitochondrial co-translational protein import.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin A Barad
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hamidreza Rahmani
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
42
|
Zdanowicz R, Afanasyev P, Pruška A, Harrison JA, Giese C, Boehringer D, Leitner A, Zenobi R, Glockshuber R. Stoichiometry and architecture of the human pyruvate dehydrogenase complex. SCIENCE ADVANCES 2024; 10:eadn4582. [PMID: 39018392 PMCID: PMC466950 DOI: 10.1126/sciadv.adn4582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
The pyruvate dehydrogenase complex (PDHc) is a key megaenzyme linking glycolysis with the citric acid cycle. In mammalian PDHc, dihydrolipoamide acetyltransferase (E2) and the dihydrolipoamide dehydrogenase-binding protein (E3BP) form a 60-subunit core that associates with the peripheral subunits pyruvate dehydrogenase (E1) and dihydrolipoamide dehydrogenase (E3). The structure and stoichiometry of the fully assembled, mammalian PDHc or its core remained elusive. Here, we demonstrate that the human PDHc core is formed by 48 E2 copies that bind 48 E1 heterotetramers and 12 E3BP copies that bind 12 E3 homodimers. Cryo-electron microscopy, together with native and cross-linking mass spectrometry, confirmed a core model in which 8 E2 homotrimers and 12 E2-E2-E3BP heterotrimers assemble into a pseudoicosahedral particle such that the 12 E3BP molecules form six E3BP-E3BP intertrimer interfaces distributed tetrahedrally within the 60-subunit core. The even distribution of E3 subunits in the peripheral shell of PDHc guarantees maximum enzymatic activity of the megaenzyme.
Collapse
Affiliation(s)
- Rafal Zdanowicz
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Pavel Afanasyev
- Cryo-EM Knowledge Hub, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Adam Pruška
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Julian A. Harrison
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Christoph Giese
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Daniel Boehringer
- Cryo-EM Knowledge Hub, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Rudi Glockshuber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
43
|
Hirata R, Mogi Y, Takahashi K, Nozaki H, Higashiyama T, Yoshida Y. Simple prerequisite of presequence for mitochondrial protein import in the unicellular red alga Cyanidioschyzon merolae. J Cell Sci 2024; 137:jcs262042. [PMID: 38940185 PMCID: PMC11298712 DOI: 10.1242/jcs.262042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
Mitochondrial biogenesis relies on hundreds of proteins that are derived from genes encoded in the nucleus. According to the characteristic properties of N-terminal targeting peptides (TPs) and multi-step authentication by the protein translocase called the TOM complex, nascent polypeptides satisfying the requirements are imported into mitochondria. However, it is unknown whether eukaryotic cells with a single mitochondrion per cell have a similar complexity of presequence requirements for mitochondrial protein import compared to other eukaryotes with multiple mitochondria. Based on putative mitochondrial TP sequences in the unicellular red alga Cyanidioschyzon merolae, we designed synthetic TPs and showed that functional TPs must have at least one basic residue and a specific amino acid composition, although their physicochemical properties are not strictly determined. Combined with the simple composition of the TOM complex in C. merolae, our results suggest that a regional positive charge in TPs is verified solely by TOM22 for mitochondrial protein import in C. merolae. The simple authentication mechanism indicates that the monomitochondrial C. merolae does not need to increase the cryptographic complexity of the lock-and-key mechanism for mitochondrial protein import.
Collapse
Affiliation(s)
- Riko Hirata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Mogi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kohei Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yamato Yoshida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), PRESTO, Tokyo 113-0033, Japan
| |
Collapse
|
44
|
Geroyska S, Mejia I, Chan AA, Navarrete M, Pandey V, Kharpatin S, Noguti J, Wang F, Srole D, Chou TF, Wohlschlegel J, Nemeth E, Damoiseaux R, Shackelford DB, Lee DJ, Díaz B. N-Myristoytransferase Inhibition Causes Mitochondrial Iron Overload and Parthanatos in TIM17A-Dependent Aggressive Lung Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1815-1833. [PMID: 38949950 PMCID: PMC11270646 DOI: 10.1158/2767-9764.crc-23-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/09/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Myristoylation is a type of protein acylation by which the fatty acid myristate is added to the N-terminus of target proteins, a process mediated by N-myristoyltransferases (NMT). Myristoylation is emerging as a promising cancer therapeutic target; however, the molecular determinants of sensitivity to NMT inhibition or the mechanism by which it induces cancer cell death are not completely understood. We report that NMTs are a novel therapeutic target in lung carcinoma cells with LKB1 and/or KEAP1 mutations in a KRAS-mutant background. Inhibition of myristoylation decreases cell viability in vitro and tumor growth in vivo. Inhibition of myristoylation causes mitochondrial ferrous iron overload, oxidative stress, elevated protein poly (ADP)-ribosylation, and death by parthanatos. Furthermore, NMT inhibitors sensitized lung carcinoma cells to platinum-based chemotherapy. Unexpectedly, the mitochondrial transporter translocase of inner mitochondrial membrane 17 homolog A (TIM17A) is a critical target of myristoylation inhibitors in these cells. TIM17A silencing recapitulated the effects of NMT inhibition at inducing mitochondrial ferrous iron overload and parthanatos. Furthermore, sensitivity of lung carcinoma cells to myristoylation inhibition correlated with their dependency on TIM17A. This study reveals the unexpected connection between protein myristoylation, the mitochondrial import machinery, and iron homeostasis. It also uncovers myristoylation inhibitors as novel inducers of parthanatos in cancer, and the novel axis NMT-TIM17A as a potential therapeutic target in highly aggressive lung carcinomas. SIGNIFICANCE KRAS-mutant lung carcinomas with LKB1 and/or KEAP1 co-mutations have intrinsic therapeutic resistance. We show that these tumors are sensitive to NMT inhibitors, which slow tumor growth in vivo and sensitize cells to platinum-based chemotherapy in vitro. Inhibition of myristoylation causes death by parthanatos and thus has the potential to kill apoptosis and ferroptosis-resistant cancer cells. Our findings warrant investigation of NMT as a therapeutic target in highly aggressive lung carcinomas.
Collapse
Affiliation(s)
- Sofia Geroyska
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Hematology and Oncology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Isabel Mejia
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Hematology and Oncology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Alfred A. Chan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Dermatology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Marian Navarrete
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Dermatology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Samuel Kharpatin
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Juliana Noguti
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Dermatology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Feng Wang
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| | - Daniel Srole
- UCLA Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Tsui-Fen Chou
- Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Elizabeta Nemeth
- UCLA Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California.
- California NanoSystems Institute at UCLA, Los Angeles, California.
- Department for Bioengineering, Samueli School of Engineering, UCLA, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.
| | - David B. Shackelford
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.
| | - Delphine J. Lee
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Dermatology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.
| | - Begoña Díaz
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California.
- Division of Hematology and Oncology at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.
| |
Collapse
|
45
|
An H, Zhou B, Hayakawa K, Durán Laforet V, Park JH, Nakamura Y, Mandeville ET, Liu N, Guo S, Yu Z, Shi J, Wu D, Li W, Lo EH, Ji X. ATF5-Mediated Mitochondrial Unfolded Protein Response (UPR mt) Protects Neurons Against Oxygen-Glucose Deprivation and Cerebral Ischemia. Stroke 2024; 55:1904-1913. [PMID: 38913800 DOI: 10.1161/strokeaha.123.045550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/09/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved mitochondrial response that is critical for maintaining mitochondrial and energetic homeostasis under cellular stress after tissue injury and disease. Here, we ask whether UPRmt may be a potential therapeutic target for ischemic stroke. METHODS We performed the middle cerebral artery occlusion and oxygen-glucose deprivation models to mimic ischemic stroke in vivo and in vitro, respectively. Oligomycin and meclizine were used to trigger the UPRmt. We used 2,3,5-triphenyltetrazolium chloride staining, behavioral tests, and Nissl staining to evaluate cerebral injury in vivo. The Cell Counting Kit-8 assay and the Calcein AM Assay Kit were conducted to test cerebral injury in vitro. RESULTS Inducing UPRmt with oligomycin protected neuronal cultures against oxygen-glucose deprivation. UPRmt could also be triggered with meclizine, and this Food and Drug Administration-approved drug also protected neurons against oxygen-glucose deprivation. Blocking UPRmt with siRNA against activating transcription factor 5 eliminated the neuroprotective effects of meclizine. In a mouse model of focal cerebral ischemia, pretreatment with meclizine was able to induce UPRmt in vivo, which reduced infarction and improved neurological outcomes. CONCLUSIONS These findings suggest that the UPRmt is important in maintaining the survival of neurons facing ischemic/hypoxic stress. The UPRmt mechanism may provide a new therapeutic avenue for ischemic stroke.
Collapse
Affiliation(s)
- Hong An
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, China (H.A.)
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (H.A., J.S., D.W., X.J.)
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, China (B.Z.)
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Violeta Durán Laforet
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre, Spain (V.D.L.)
| | - Ji-Hyun Park
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Yoshihiko Nakamura
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Japan (Y.N.)
| | - Emiri T Mandeville
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA (N.L.)
| | - Shuzhen Guo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Zhanyang Yu
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Jingfei Shi
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (H.A., J.S., D.W., X.J.)
| | - Di Wu
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (H.A., J.S., D.W., X.J.)
| | - Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (H.A., K.H., V.D.L., J.-H.P., Y.N., E.T.M., S.G., Z.Y., J.S., D.W., W.L., E.H.L.)
| | - Xunming Ji
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China (H.A., J.S., D.W., X.J.)
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China (X.J.)
| |
Collapse
|
46
|
Su J, Tian X, Wang Z, Yang J, Sun S, Sui SF. Structure of the intact Tom20 receptor in the human translocase of the outer membrane complex. PNAS NEXUS 2024; 3:pgae269. [PMID: 39071881 PMCID: PMC11273160 DOI: 10.1093/pnasnexus/pgae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The translocase of the outer membrane (TOM) complex serves as the main gate for preproteins entering mitochondria and thus plays a pivotal role in sustaining mitochondrial stability. Precursor proteins, featuring amino-terminal targeting signals (presequences) or internal targeting signals, are recognized by the TOM complex receptors Tom20, Tom22, and Tom70, and then translocated into mitochondria through Tom40. By using chemical cross-linking to stabilize Tom20 in the TOM complex, this study unveils the structure of the human TOM holo complex, encompassing the intact Tom20 component, at a resolution of approximately 6 Å by cryo-electron microscopy. Our structure shows the TOM holo complex containing only one Tom20 subunit, which is located right at the center of the complex and stabilized by extensive interactions with Tom22, Tom40, and Tom6. Based on the structure, we proposed a possible translocation mode of TOM complex, by which different receptors could work simultaneously to ensure that the preproteins recognized by them are all efficiently translocated into the mitochondria.
Collapse
Affiliation(s)
- Jiayue Su
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuyang Tian
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ziyi Wang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawen Yang
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
47
|
Kan KT, Wilcock J, Lu H. Role of Yme1 in mitochondrial protein homeostasis: from regulation of protein import, OXPHOS function to lipid synthesis and mitochondrial dynamics. Biochem Soc Trans 2024; 52:1539-1548. [PMID: 38864432 PMCID: PMC11346431 DOI: 10.1042/bst20240450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria are essential organelles of eukaryotic cells and thus mitochondrial proteome is under constant quality control and remodelling. Yme1 is a multi-functional protein and subunit of the homo-hexametric complex i-AAA proteinase. Yme1 plays vital roles in the regulation of mitochondrial protein homeostasis and mitochondrial plasticity, ranging from substrate degradation to the regulation of protein functions involved in mitochondrial protein biosynthesis, energy production, mitochondrial dynamics, and lipid biosynthesis and signalling. In this mini review, we focus on discussing the current understanding of the roles of Yme1 in mitochondrial protein import via TIM22 and TIM23 pathways, oxidative phosphorylation complex function, as well as mitochondrial lipid biosynthesis and signalling, as well as a brief discussion of the role of Yme1 in modulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Kwan Ting Kan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, U.K
| | - Joel Wilcock
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, U.K
| | - Hui Lu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
48
|
Bose HS. Dry molten globule conformational state of CYP11A1 (SCC) regulates the first step of steroidogenesis in the mitochondrial matrix. iScience 2024; 27:110039. [PMID: 38868187 PMCID: PMC11167429 DOI: 10.1016/j.isci.2024.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Multiple metabolic events occur in mitochondria. Mitochondrial protein translocation from the cytoplasm across compartments depends on the amino acid sequence within the precursor. At the mitochondria associated-ER membrane, misfolding of a mitochondrial targeted protein prior to import ablates metabolism. CYP11A1, cytochrome P450 cholesterol side chain cleavage enzyme (SCC), is imported from the cytoplasm to mitochondrial matrix catalyzing cholesterol to pregnenolone, an essential step for metabolic processes and mammalian survival. Multiple steps regulate the availability of an actively folded SCC; however, the mechanism is unknown. We identified that a dry molten globule state of SCC exists in the matrix by capturing intermediate protein folding steps dictated by its C-terminus. The intermediate dry molten globule state in the mitochondrial matrix of living cells is stable with a limited network of interaction and is inactive. The dry molten globule is activated with hydrogen ions availability, triggering cleavage of cholesterol sidechain, and initiating steroidogenesis.
Collapse
Affiliation(s)
- Himangshu S. Bose
- Laboratory of Biochemistry, Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA
- Anderson Cancer Institute, Memorial University Medical Center, Savannah, GA 31404, USA
| |
Collapse
|
49
|
Marada A, Walter C, Suhm T, Shankar S, Nandy A, Brummer T, Dhaouadi I, Vögtle FN, Meisinger C. DYRK1A signalling synchronizes the mitochondrial import pathways for metabolic rewiring. Nat Commun 2024; 15:5265. [PMID: 38902238 PMCID: PMC11189921 DOI: 10.1038/s41467-024-49611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Mitochondria require an extensive proteome to maintain a variety of metabolic reactions, and changes in cellular demand depend on rapid adaptation of the mitochondrial protein composition. The TOM complex, the organellar entry gate for mitochondrial precursors in the outer membrane, is a target for cytosolic kinases to modulate protein influx. DYRK1A phosphorylation of the carrier import receptor TOM70 at Ser91 enables its efficient docking and thus transfer of precursor proteins to the TOM complex. Here, we probe TOM70 phosphorylation in molecular detail and find that TOM70 is not a CK2 target nor import receptor for MIC19 as previously suggested. Instead, we identify TOM20 as a MIC19 import receptor and show off-target inhibition of the DYRK1A-TOM70 axis with the clinically used CK2 inhibitor CX4945 which activates TOM20-dependent import pathways. Taken together, modulation of DYRK1A signalling adapts the central mitochondrial protein entry gate via synchronization of TOM70- and TOM20-dependent import pathways for metabolic rewiring. Thus, DYRK1A emerges as a cytosolic surveillance kinase to regulate and fine-tune mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Corvin Walter
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Tamara Suhm
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Sahana Shankar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Arpita Nandy
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- German Cancer Consortium DKTK Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ines Dhaouadi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - F-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- Network Aging Research, Heidelberg University, 69120, Heidelberg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
50
|
Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci 2024; 81:250. [PMID: 38847861 PMCID: PMC11335286 DOI: 10.1007/s00018-024-05286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.
Collapse
Affiliation(s)
- Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland.
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|