1
|
Giménez-Llorente D, Cuadrado A, Andreu MJ, Sanclemente-Alamán I, Solé-Ferran M, Rodríguez-Corsino M, Losada A. STAG2 loss in Ewing sarcoma alters enhancer-promoter contacts dependent and independent of EWS::FLI1. EMBO Rep 2024:10.1038/s44319-024-00303-6. [PMID: 39487368 DOI: 10.1038/s44319-024-00303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024] Open
Abstract
Cohesin complexes carrying STAG1 or STAG2 organize the genome into chromatin loops. STAG2 loss-of-function mutations promote metastasis in Ewing sarcoma, a pediatric cancer driven by the fusion transcription factor EWS::FLI1. We integrated transcriptomic data from patients and cellular models to identify a STAG2-dependent gene signature associated with worse prognosis. Subsequent genomic profiling and high-resolution chromatin interaction data from Capture Hi-C indicated that cohesin-STAG2 facilitates communication between EWS::FLI1-bound long GGAA repeats, presumably acting as neoenhancers, and their target promoters. Changes in CTCF-dependent chromatin contacts involving signature genes, unrelated to EWS::FLI1 binding, were also identified. STAG1 is unable to compensate for STAG2 loss and chromatin-bound cohesin is severely decreased, while levels of the processivity factor NIPBL remain unchanged, likely affecting DNA looping dynamics. These results illuminate how STAG2 loss modifies the chromatin interactome of Ewing sarcoma cells and provide a list of potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Daniel Giménez-Llorente
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| | - María José Andreu
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Inmaculada Sanclemente-Alamán
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Maria Solé-Ferran
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Hellmuth S, Stemmann O. Requirement of Nek2a and cyclin A2 for Wapl-dependent removal of cohesin from prophase chromatin. EMBO J 2024; 43:5237-5259. [PMID: 39271794 PMCID: PMC11535040 DOI: 10.1038/s44318-024-00228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Sister chromatid cohesion is mediated by the cohesin complex. In mitotic prophase cohesin is removed from chromosome arms in a Wapl- and phosphorylation-dependent manner. Sgo1-PP2A protects pericentromeric cohesion by dephosphorylation of cohesin and its associated Wapl antagonist sororin. However, Sgo1-PP2A relocates to inner kinetochores well before sister chromatids are separated by separase, leaving pericentromeric regions unprotected. Why deprotected cohesin is not removed by Wapl remains enigmatic. By reconstituting Wapl-dependent cohesin removal from chromatin in vitro, we discovered a requirement for Nek2a and Cdk1/2-cyclin A2. These kinases phosphorylate cohesin-bound Pds5b, thereby converting it from a sororin- to a Wapl-interactor. Replacement of endogenous Pds5b by a phosphorylation mimetic variant causes premature sister chromatid separation (PCS). Conversely, phosphorylation-resistant Pds5b impairs chromosome arm separation in prometaphase-arrested cells and suppresses PCS in the absence of Sgo1. Early mitotic degradation of Nek2a and cyclin A2 may therefore explain why only separase, but not Wapl, can trigger anaphase.
Collapse
Affiliation(s)
- Susanne Hellmuth
- Chair of Genetics, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Olaf Stemmann
- Chair of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| |
Collapse
|
3
|
Yan J, Zhang Z, Ge Y, Chen J, Gao Y, Zhang B. Exploring the Blood Biomarkers and Potential Therapeutic Agents for Human Acute Mountain Sickness Based on Transcriptomic Analysis, Inflammatory Infiltrates and Molecular Docking. Int J Mol Sci 2024; 25:11311. [PMID: 39457093 PMCID: PMC11508554 DOI: 10.3390/ijms252011311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
A high-altitude, low-pressure hypoxic environment has severe effects on the health and work efficiency of its residents, and inadequate preventive measures and adaptive training may lead to the occurrence of AMS. Acute exposure to hypoxia conditions can have a less-favorable physiological effect on the human immune system. However, the regulation of the immune system in high-altitude environments is extremely complex and remains elusive. This study integrated system bioinformatics methods to screen for changes in immune cell subtypes and their associated targets. It also sought potential therapeutically effective natural compound candidates. The present study observed that monocytes, M1 macrophages and NK cells play a crucial role in the inflammatory response in AMS. IL15RA, CD5, TNFSF13B, IL21R, JAK2 and CXCR3 were identified as hub genes, and JAK2 was positively correlated with monocytes; TNFSF13B was positively correlated with NK cells. The natural compound monomers of jasminoidin and isoliquiritigenin exhibited good binding affinity with JAK2, while dicumarol and artemotil exhibited good binding affinity with TNFSF13B, and all are expected to become a potential therapeutic agents.
Collapse
Affiliation(s)
- Jiayi Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100080, China; (Z.Z.); (Y.G.); (J.C.)
| | - Zhuo Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100080, China; (Z.Z.); (Y.G.); (J.C.)
| | - Yunxuan Ge
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100080, China; (Z.Z.); (Y.G.); (J.C.)
| | - Junru Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100080, China; (Z.Z.); (Y.G.); (J.C.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100080, China; (Z.Z.); (Y.G.); (J.C.)
| | - Boli Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| |
Collapse
|
4
|
Sharma N, Coticchio G, Borini A, Tachibana K, Nasmyth KA, Schuh M. Changes in DNA repair compartments and cohesin loss promote DNA damage accumulation in aged oocytes. Curr Biol 2024:S0960-9822(24)01281-8. [PMID: 39437784 DOI: 10.1016/j.cub.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/20/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Oocyte loss, a natural process that accelerates as women approach their mid-30s, poses a significant challenge to female reproduction. Recent studies have identified DNA damage as a primary contributor to oocyte loss, but the mechanisms underlying DNA damage accumulation remain unclear. Here, we show that aged oocytes have a lower DNA repair capacity and reduced mobility of DNA damage sites compared to young oocytes. Incomplete DNA repair in aged oocytes results in defective chromosome integrity and partitioning, thereby compromising oocyte quality. We found that DNA repair proteins are arranged in spatially distinct DNA repair compartments that form during the late stages of oocyte growth, accompanied by changes in the activity of DNA repair pathways. We demonstrate alterations in these compartments with age, including substantial changes in the levels of key DNA repair proteins and a shift toward error-prone DNA repair pathways. In addition, we show that reduced cohesin levels make aged oocytes more vulnerable to persistent DNA damage and cause changes in DNA repair compartments. Our study links DNA damage accumulation in aged oocytes, a leading cause of oocyte loss, to cohesin deterioration and changes in the organization, abundance, and response of DNA repair machinery.
Collapse
Affiliation(s)
- Ninadini Sharma
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | | | - Andrea Borini
- IVIRMA Global Research Alliance, 9.baby, Bologna 40125, Italy
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich 82152, Germany
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Melina Schuh
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany.
| |
Collapse
|
5
|
Vitoria Gomes M, Landwerlin P, Diebold-Durand ML, Shaik TB, Durand A, Troesch E, Weber C, Brillet K, Lemée MV, Decroos C, Dulac L, Antony P, Watrin E, Ennifar E, Golzio C, Romier C. The cohesin ATPase cycle is mediated by specific conformational dynamics and interface plasticity of SMC1A and SMC3 ATPase domains. Cell Rep 2024; 43:114656. [PMID: 39240714 DOI: 10.1016/j.celrep.2024.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 09/08/2024] Open
Abstract
Cohesin is key to eukaryotic genome organization and acts throughout the cell cycle in an ATP-dependent manner. The mechanisms underlying cohesin ATPase activity are poorly understood. Here, we characterize distinct steps of the human cohesin ATPase cycle and show that the SMC1A and SMC3 ATPase domains undergo specific but concerted structural rearrangements along this cycle. Specifically, whereas the proximal coiled coil of the SMC1A ATPase domain remains conformationally stable, that of the SMC3 displays an intrinsic flexibility. The ATP-dependent formation of the heterodimeric SMC1A/SMC3 ATPase module (engaged state) favors this flexibility, which is counteracted by NIPBL and DNA binding (clamped state). Opening of the SMC3/RAD21 interface (open-engaged state) stiffens the SMC3 proximal coiled coil, thus constricting together with that of SMC1A the ATPase module DNA-binding chamber. The plasticity of the ATP-dependent interface between the SMC1A and SMC3 ATPase domains enables these structural rearrangements while keeping the ATP gate shut. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Marina Vitoria Gomes
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Pauline Landwerlin
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Marie-Laure Diebold-Durand
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Tajith B Shaik
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Alexandre Durand
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Edouard Troesch
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Chantal Weber
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
| | - Karl Brillet
- Architecture et Réactivité de l'ARN, IBMC CNRS UPR 9002, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Marianne Victoria Lemée
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
| | - Christophe Decroos
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Ludivine Dulac
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
| | - Pierre Antony
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Erwan Watrin
- CNRS, Université de Rennes, IGDR UMR 6290, 35000 Rennes, France
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, IBMC CNRS UPR 9002, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Christelle Golzio
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
| | - Christophe Romier
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France.
| |
Collapse
|
6
|
Yuan X, Yan L, Chen Q, Zhu S, Zhou X, Zeng LH, Liu M, He X, Huang J, Lu W, Zhang L, Yan H, Wang F. Molecular mechanism and functional significance of Wapl interaction with the Cohesin complex. Proc Natl Acad Sci U S A 2024; 121:e2405177121. [PMID: 39110738 PMCID: PMC11331136 DOI: 10.1073/pnas.2405177121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
The ring-shaped Cohesin complex, consisting of core subunits Smc1, Smc3, Scc1, and SA2 (or its paralog SA1), topologically entraps two duplicated sister DNA molecules to establish sister chromatid cohesion in S-phase. It remains largely elusive how the Cohesin release factor Wapl binds the Cohesin complex, thereby inducing Cohesin disassociation from mitotic chromosomes to allow proper resolution and separation of sister chromatids. Here, we show that Wapl uses two structural modules containing the FGF motif and the YNARHWN motif, respectively, to simultaneously bind distinct pockets in the extensive composite interface between Scc1 and SA2. Strikingly, only when both docking modules are mutated, Wapl completely loses the ability to bind the Scc1-SA2 interface and release Cohesin, leading to erroneous chromosome segregation in mitosis. Surprisingly, Sororin, which contains a conserved FGF motif and functions as a master antagonist of Wapl in S-phase and G2-phase, does not bind the Scc1-SA2 interface. Moreover, Sgo1, the major protector of Cohesin at mitotic centromeres, can only compete with the FGF motif but not the YNARHWN motif of Wapl for binding Scc1-SA2 interface. Our data uncover the molecular mechanism by which Wapl binds Cohesin to ensure precise chromosome segregation.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lu Yan
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qinfu Chen
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shukai Zhu
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xinyu Zhou
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Mingjie Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute and MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Weiguo Lu
- Zhejiang Key Laboratory of Maternal and Infant Health, Women's Hospital of Zhejiang University School of Medicine, and Cancer Center of Zhejiang University, Hangzhou, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute and MOE Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, China
| | - Haiyan Yan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Fangwei Wang
- Department of Gynecologic Oncology of Women's Hospital, School of Medicine and MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Oldenkamp R, Rowland BD. Cell biology: Converging paths to cohesion. Curr Biol 2024; 34:R680-R682. [PMID: 39043139 DOI: 10.1016/j.cub.2024.05.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Cohesin holds together the sister chromatids from DNA replication onwards. How cohesion is established has long remained a black box. Through recent studies, a model is emerging in which a replisome-cohesin encounter results in the establishment of cohesive linkages at sites of replication termination.
Collapse
Affiliation(s)
- Roel Oldenkamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Xiong Y, Shi L, Li L, Yang W, Zhang H, Zhao X, Shen N. CDCA5 accelerates progression of breast cancer by promoting the binding of E2F1 and FOXM1. J Transl Med 2024; 22:639. [PMID: 38978058 PMCID: PMC11232132 DOI: 10.1186/s12967-024-05443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most common malignant tumors in women. Cell division cycle associated 5 (CDCA5), a master regulator of sister chromatid cohesion, was reported to be upregulated in several types of cancer. Here, the function and regulation mechanism of CDCA5 in breast cancer were explored. METHODS CDCA5 expression was identified through immunohistochemistry staining in breast cancer specimens. The correlation between CDCA5 expression with clinicopathological features and prognosis of breast cancer patients was analyzed using a tissue microarray. CDCA5 function in breast cancer was explored in CDCA5-overexpressed/knockdown cells and mice models. Co-IP, ChIP and dual-luciferase reporter assay assays were performed to clarify underlying molecular mechanisms. RESULTS We found that CDCA5 was expressed at a higher level in breast cancer tissues and cell lines, and overexpression of CDCA5 was significantly associated with poor prognosis of patients with breast cancer. Moreover, CDCA5 knockdown significantly suppressed the proliferation and migration, while promoted apoptosis in vitro. Mechanistically, we revealed that CDCA5 played an important role in promoting the binding of E2F transcription factor 1 (E2F1) to the forkhead box M1 (FOXM1) promoter. Furthermore, the data of in vitro and in vivo revealed that depletion of FOXM1 alleviated the effect of CDCA5 overexpression on breast cancer. Additionally, we revealed that the Wnt/β-catenin signaling pathway was required for CDCA5 induced progression of breast cancer. CONCLUSIONS We suggested that CDCA5 promoted progression of breast cancer via CDCA5/FOXM1/Wnt axis, CDCA5 might serve as a novel therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Yiquan Xiong
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei, 430022, China
| | - Lan Shi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei, 430022, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei, 430022, China
| | - Wen Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei, 430022, China
| | - Huiqiong Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei, 430022, China
| | - Xiangwang Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei, 430022, China.
| | - Na Shen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei, 430022, China.
| |
Collapse
|
9
|
Grothusen GP, Chang R, Cao Z, Zhou N, Mittal M, Datta A, Wulfridge P, Beer T, Wang B, Zheng N, Tang HY, Sarma K, Greenberg RA, Shi J, Busino L. DCAF15 control of cohesin dynamics sustains acute myeloid leukemia. Nat Commun 2024; 15:5604. [PMID: 38961054 PMCID: PMC11222469 DOI: 10.1038/s41467-024-49882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
The CRL4-DCAF15 E3 ubiquitin ligase complex is targeted by the aryl-sulfonamide molecular glues, leading to neo-substrate recruitment, ubiquitination, and proteasomal degradation. However, the physiological function of DCAF15 remains unknown. Using a domain-focused genetic screening approach, we reveal DCAF15 as an acute myeloid leukemia (AML)-biased dependency. Loss of DCAF15 results in suppression of AML through compromised replication fork integrity and consequent accumulation of DNA damage. Accordingly, DCAF15 loss sensitizes AML to replication stress-inducing therapeutics. Mechanistically, we discover that DCAF15 directly interacts with the SMC1A protein of the cohesin complex and destabilizes the cohesin regulatory factors PDS5A and CDCA5. Loss of PDS5A and CDCA5 removal precludes cohesin acetylation on chromatin, resulting in uncontrolled chromatin loop extrusion, defective DNA replication, and apoptosis. Collectively, our findings uncover an endogenous, cell autonomous function of DCAF15 in sustaining AML proliferation through post-translational control of cohesin dynamics.
Collapse
Affiliation(s)
- Grant P Grothusen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renxu Chang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhendong Cao
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nan Zhou
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monika Mittal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arindam Datta
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Wulfridge
- Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Thomas Beer
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Baiyun Wang
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Ning Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Kavitha Sarma
- Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Harasimov K, Gorry RL, Welp LM, Penir SM, Horokhovskyi Y, Cheng S, Takaoka K, Stützer A, Frombach AS, Taylor Tavares AL, Raabe M, Haag S, Saha D, Grewe K, Schipper V, Rizzoli SO, Urlaub H, Liepe J, Schuh M. The maintenance of oocytes in the mammalian ovary involves extreme protein longevity. Nat Cell Biol 2024; 26:1124-1138. [PMID: 38902423 PMCID: PMC11252011 DOI: 10.1038/s41556-024-01442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
Women are born with all of their oocytes. The oocyte proteome must be maintained with minimal damage throughout the woman's reproductive life, and hence for decades. Here we report that oocyte and ovarian proteostasis involves extreme protein longevity. Mouse ovaries had more extremely long-lived proteins than other tissues, including brain. These long-lived proteins had diverse functions, including in mitochondria, the cytoskeleton, chromatin and proteostasis. The stable proteins resided not only in oocytes but also in long-lived ovarian somatic cells. Our data suggest that mammals increase protein longevity and enhance proteostasis by chaperones and cellular antioxidants to maintain the female germline for long periods. Indeed, protein aggregation in oocytes did not increase with age and proteasome activity did not decay. However, increasing protein longevity cannot fully block female germline senescence. Large-scale proteome profiling of ~8,890 proteins revealed a decline in many long-lived proteins of the proteostasis network in the aging ovary, accompanied by massive proteome remodeling, which eventually leads to female fertility decline.
Collapse
Affiliation(s)
- Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rebecca L Gorry
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Mae Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yehor Horokhovskyi
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katsuyoshi Takaoka
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Alexandra Stützer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ann-Sophie Frombach
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ana Lisa Taylor Tavares
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Monika Raabe
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sara Haag
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translation Alliance Lower Saxony, Hannover, Braunschweig, Göttingen, Germany
| | - Debojit Saha
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katharina Grewe
- Department for Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Vera Schipper
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Silvio O Rizzoli
- Department for Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Göttingen, Göttingen, Germany.
| | - Juliane Liepe
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Di Nardo M, Musio A. Cohesin - bridging the gap among gene transcription, genome stability, and human diseases. FEBS Lett 2024. [PMID: 38852996 DOI: 10.1002/1873-3468.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
The intricate landscape of cellular processes governing gene transcription, chromatin organization, and genome stability is a fascinating field of study. A key player in maintaining this delicate equilibrium is the cohesin complex, a molecular machine with multifaceted roles. This review presents an in-depth exploration of these intricate connections and their significant impact on various human diseases.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
12
|
Sacristan C, Samejima K, Ruiz LA, Deb M, Lambers MLA, Buckle A, Brackley CA, Robertson D, Hori T, Webb S, Kiewisz R, Bepler T, van Kwawegen E, Risteski P, Vukušić K, Tolić IM, Müller-Reichert T, Fukagawa T, Gilbert N, Marenduzzo D, Earnshaw WC, Kops GJPL. Vertebrate centromeres in mitosis are functionally bipartite structures stabilized by cohesin. Cell 2024; 187:3006-3023.e26. [PMID: 38744280 PMCID: PMC11164432 DOI: 10.1016/j.cell.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/30/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.
Collapse
Affiliation(s)
- Carlos Sacristan
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Lorena Andrade Ruiz
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Moonmoon Deb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Maaike L A Lambers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adam Buckle
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chris A Brackley
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Daniel Robertson
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tetsuya Hori
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Shaun Webb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Robert Kiewisz
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA; Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, Cantoblanco, Madrid 28049, Spain
| | - Tristan Bepler
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Eloïse van Kwawegen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Prusén Mota I, Galova M, Schleiffer A, Nguyen TT, Kovacikova I, Farias Saad C, Litos G, Nishiyama T, Gregan J, Peters JM, Schlögelhofer P. Sororin is an evolutionary conserved antagonist of WAPL. Nat Commun 2024; 15:4729. [PMID: 38830897 PMCID: PMC11148194 DOI: 10.1038/s41467-024-49178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
Cohesin mediates sister chromatid cohesion to enable chromosome segregation and DNA damage repair. To perform these functions, cohesin needs to be protected from WAPL, which otherwise releases cohesin from DNA. It has been proposed that cohesin is protected from WAPL by SORORIN. However, in vivo evidence for this antagonism is missing and SORORIN is only known to exist in vertebrates and insects. It is therefore unknown how important and widespread SORORIN's functions are. Here we report the identification of SORORIN orthologs in Schizosaccharomyces pombe (Sor1) and Arabidopsis thaliana (AtSORORIN). sor1Δ mutants display cohesion defects, which are partially alleviated by wpl1Δ. Atsororin mutant plants display dwarfism, tissue specific cohesion defects and chromosome mis-segregation. Furthermore, Atsororin mutant plants are sterile and separate sister chromatids prematurely at anaphase I. The somatic, but not the meiotic deficiencies can be alleviated by loss of WAPL. These results provide in vivo evidence for SORORIN antagonizing WAPL, reveal that SORORIN is present in organisms beyond the animal kingdom and indicate that it has acquired tissue specific functions in plants.
Collapse
Affiliation(s)
- Ignacio Prusén Mota
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Marta Galova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tan-Trung Nguyen
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
| | - Ines Kovacikova
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
| | - Carolina Farias Saad
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Gabriele Litos
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tomoko Nishiyama
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Juraj Gregan
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria.
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria.
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| | - Peter Schlögelhofer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria.
| |
Collapse
|
14
|
de Castro JNP, da Silva Costa SM, Camargo ACL, Ito MT, de Souza BB, de Haidar E Bertozzo V, Rodrigues TAR, Lanaro C, de Albuquerque DM, Saez RC, Saad STO, Ozelo MC, Cendes F, Costa FF, de Melo MB. Comparative transcriptomic analysis of circulating endothelial cells in sickle cell stroke. Ann Hematol 2024; 103:1167-1179. [PMID: 38386032 DOI: 10.1007/s00277-024-05655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Ischemic stroke (IS) is one of the most impairing complications of sickle cell anemia (SCA), responsible for 20% of mortality in patients. Rheological alterations, adhesive properties of sickle reticulocytes, leukocyte adhesion, inflammation and endothelial dysfunction are related to the vasculopathy observed prior to ischemic events. The role of the vascular endothelium in this complex cascade of mechanisms is emphasized, as well as in the process of ischemia-induced repair and neovascularization. The aim of the present study was to perform a comparative transcriptomic analysis of endothelial colony-forming cells (ECFCs) from SCA patients with and without IS. Next, to gain further insights of the biological relevance of differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction network (PPI) construction and in silico prediction of regulatory factors were performed. Among the 2469 DEGs, genes related to cell proliferation (AKT1, E2F1, CDCA5, EGFL7), migration (AKT1, HRAS), angiogenesis (AKT1, EGFL7) and defense response pathways (HRAS, IRF3, TGFB1), important endothelial cell molecular mechanisms in post ischemia repair were identified. Despite the severity of IS in SCA, widely accepted molecular targets are still lacking, especially related to stroke outcome. The comparative analysis of the gene expression profile of ECFCs from IS patients versus controls seems to indicate that there is a persistent angiogenic process even after a long time this complication has occurred. Thus, this is an original study which may lead to new insights into the molecular basis of SCA stroke and contribute to a better understanding of the role of endothelial cells in stroke recovery.
Collapse
Affiliation(s)
- Júlia Nicoliello Pereira de Castro
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Sueli Matilde da Silva Costa
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Ana Carolina Lima Camargo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Mirta Tomie Ito
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Bruno Batista de Souza
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Victor de Haidar E Bertozzo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Thiago Adalton Rosa Rodrigues
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil
| | - Carolina Lanaro
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | - Roberta Casagrande Saez
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Margareth Castro Ozelo
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Mônica Barbosa de Melo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering-CBMEG, Universidade Estadual de Campinas-UNICAMP, Campinas, São Paulo, 13083-875, Brazil.
| |
Collapse
|
15
|
Wang T, Zou Y, Meng H, Zheng P, Teng J, Huang N, Chen J. Securin acetylation prevents precocious separase activation and premature sister chromatid separation. Curr Biol 2024; 34:1295-1308.e5. [PMID: 38452759 DOI: 10.1016/j.cub.2024.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Lysine acetylation of non-histone proteins plays crucial roles in many cellular processes. In this study, we examine the role of lysine acetylation during sister chromatid separation in mitosis. We investigate the acetylation of securin at K21 by cell-cycle-dependent acetylome analysis and uncover its role in separase-triggered chromosome segregation during mitosis. Prior to the onset of anaphase, the acetylated securin via TIP60 prevents its degradation by the APC/CCDC20-mediated ubiquitin-proteasome system. This, in turn, restrains precocious activation of separase and premature separation of sister chromatids. Additionally, the acetylation-dependent stability of securin is also enhanced by its dephosphorylation. As anaphase approaches, HDAC1-mediated deacetylation of securin promotes its degradation, allowing released separase to cleave centromeric cohesin. Blocking securin deacetylation leads to longer anaphase duration and errors in chromosome segregation. Thus, this study illustrates the emerging role of securin acetylation dynamics in mitotic progression and genetic stability.
Collapse
Affiliation(s)
- Tianning Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Breast Disease Diagnosis and Treatment Center/Department of Thyroid Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Yuhong Zou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Meng
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Pengli Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Ning Huang
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Ochs F, Green C, Szczurek AT, Pytowski L, Kolesnikova S, Brown J, Gerlich DW, Buckle V, Schermelleh L, Nasmyth KA. Sister chromatid cohesion is mediated by individual cohesin complexes. Science 2024; 383:1122-1130. [PMID: 38452070 DOI: 10.1126/science.adl4606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Eukaryotic genomes are organized by loop extrusion and sister chromatid cohesion, both mediated by the multimeric cohesin protein complex. Understanding how cohesin holds sister DNAs together, and how loss of cohesion causes age-related infertility in females, requires knowledge as to cohesin's stoichiometry in vivo. Using quantitative super-resolution imaging, we identified two discrete populations of chromatin-bound cohesin in postreplicative human cells. Whereas most complexes appear dimeric, cohesin that localized to sites of sister chromatid cohesion and associated with sororin was exclusively monomeric. The monomeric stoichiometry of sororin:cohesin complexes demonstrates that sister chromatid cohesion is conferred by individual cohesin rings, a key prediction of the proposal that cohesion arises from the co-entrapment of sister DNAs.
Collapse
Affiliation(s)
- Fena Ochs
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Charlotte Green
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Lior Pytowski
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Sofia Kolesnikova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna Austria
| | - Jill Brown
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Daniel Wolfram Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna Austria
| | - Veronica Buckle
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | | |
Collapse
|
17
|
Li W, Wang Z. Ubiquitination Process Mediates Prostate Cancer Development and Metastasis through Multiple Mechanisms. Cell Biochem Biophys 2024; 82:77-90. [PMID: 37847340 PMCID: PMC10866789 DOI: 10.1007/s12013-023-01156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/30/2023] [Indexed: 10/18/2023]
Abstract
Prostate cancer (PCa) is a common malignant tumor in men, when the disease progresses to the advanced stage, most patients will develop distant metastasis and develop into castration-resistant prostate cancer (CRPC), resulting in increased mortality. Ubiquitination is a widespread protein post-translational modification process in the biological world, and it plays an important role in the development and transfer of PCa. E3 ubiquitin ligase plays an important role in the specific selection and role of substrates in the process of ubiquitination ligase. This review will briefly introduce the ubiquitination process and E3 ubiquitin ligase, focus on the recently discovered multiple mechanisms by which ubiquitination affects PCa development and metastasis, and a summary of the current emerging proteolysis-targeting chimeras (PROTAC) in the treatment of PCa.
Collapse
Affiliation(s)
- Wen Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
18
|
Nasmyth KA, Lee BG, Roig MB, Löwe J. What AlphaFold tells us about cohesin's retention on and release from chromosomes. eLife 2023; 12:RP88656. [PMID: 37975572 PMCID: PMC10656103 DOI: 10.7554/elife.88656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Cohesin is a trimeric complex containing a pair of SMC proteins (Smc1 and Smc3) whose ATPase domains at the end of long coiled coils (CC) are interconnected by Scc1. During interphase, it organizes chromosomal DNA topology by extruding loops in a manner dependent on Scc1's association with two large hook-shaped proteins called SA (yeast: Scc3) and Nipbl (Scc2). The latter's replacement by Pds5 recruits Wapl, which induces release from chromatin via a process requiring dissociation of Scc1's N-terminal domain (NTD) from Smc3. If blocked by Esco (Eco)-mediated Smc3 acetylation, cohesin containing Pds5 merely maintains pre-existing loops, but a third fate occurs during DNA replication, when Pds5-containing cohesin associates with Sororin and forms structures that hold sister DNAs together. How Wapl induces and Sororin blocks release has hitherto remained mysterious. In the 20 years since their discovery, not a single testable hypothesis has been proposed as to their role. Here, AlphaFold 2 (AF) three-dimensional protein structure predictions lead us to propose formation of a quarternary complex between Wapl, SA, Pds5, and Scc1's NTD, in which the latter is juxtaposed with (and subsequently sequestered by) a highly conserved cleft within Wapl's C-terminal domain. AF also reveals how Scc1's dissociation from Smc3 arises from a distortion of Smc3's CC induced by engagement of SMC ATPase domains, how Esco acetyl transferases are recruited to Smc3 by Pds5, and how Sororin prevents release by binding to the Smc3/Scc1 interface. Our hypotheses explain the phenotypes of numerous existing mutations and are highly testable.
Collapse
Affiliation(s)
- Kim A Nasmyth
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Byung-Gil Lee
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | - Jan Löwe
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
19
|
van Schie JJM, de Lint K, Molenaar TM, Moronta Gines M, Balk J, Rooimans M, Roohollahi K, Pai G, Borghuis L, Ramadhin A, Corazza F, Dorsman J, Wendt K, Wolthuis RF, de Lange J. CRISPR screens in sister chromatid cohesion defective cells reveal PAXIP1-PAGR1 as regulator of chromatin association of cohesin. Nucleic Acids Res 2023; 51:9594-9609. [PMID: 37702151 PMCID: PMC10570055 DOI: 10.1093/nar/gkad756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
The cohesin complex regulates higher order chromosome architecture through maintaining sister chromatid cohesion and folding chromatin by DNA loop extrusion. Impaired cohesin function underlies a heterogeneous group of genetic syndromes and is associated with cancer. Here, we mapped the genetic dependencies of human cell lines defective of cohesion regulators DDX11 and ESCO2. The obtained synthetic lethality networks are strongly enriched for genes involved in DNA replication and mitosis and support the existence of parallel sister chromatid cohesion establishment pathways. Among the hits, we identify the chromatin binding, BRCT-domain containing protein PAXIP1 as a novel cohesin regulator. Depletion of PAXIP1 severely aggravates cohesion defects in ESCO2 mutant cells, leading to mitotic cell death. PAXIP1 promotes global chromatin association of cohesin, independent of DNA replication, a function that cannot be explained by indirect effects of PAXIP1 on transcription or DNA repair. Cohesin regulation by PAXIP1 requires its binding partner PAGR1 and a conserved FDF motif in PAGR1. PAXIP1 co-localizes with cohesin on multiple genomic loci, including active gene promoters and enhancers. Possibly, this newly identified role of PAXIP1-PAGR1 in regulating cohesin occupancy on chromatin is also relevant for previously described functions of PAXIP1 in transcription, immune cell maturation and DNA repair.
Collapse
Affiliation(s)
- Janne J M van Schie
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Klaas de Lint
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Thom M Molenaar
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Jesper A Balk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Martin A Rooimans
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Khashayar Roohollahi
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Govind M Pai
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Lauri Borghuis
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Anisha R Ramadhin
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Francesco Corazza
- Erasmus Medical Centre, Department of Cell Biology, Rotterdam, The Netherlands
| | - Josephine C Dorsman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Kerstin S Wendt
- Erasmus Medical Centre, Department of Cell Biology, Rotterdam, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Job de Lange
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Kaushik A, Than T, Petela NJ, Voulgaris M, Percival C, Daniels P, Rafferty JB, Nasmyth KA, Hu B. Conformational dynamics of cohesin/Scc2 loading complex are regulated by Smc3 acetylation and ATP binding. Nat Commun 2023; 14:5929. [PMID: 37739959 PMCID: PMC10516938 DOI: 10.1038/s41467-023-41596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
The ring-shaped cohesin complex is a key player in sister chromatid cohesion, DNA repair, and gene transcription. The loading of cohesin to chromosomes requires the loader Scc2 and is regulated by ATP. This process is hindered by Smc3 acetylation. However, the molecular mechanism underlying this inhibition remains mysterious. Here, using Saccharomyces cerevisiae as a model system, we identify a novel configuration of Scc2 with pre-engaged cohesin and reveal dynamic conformations of the cohesin/Scc2 complex in the loading reaction. We demonstrate that Smc3 acetylation blocks the association of Scc2 with pre-engaged cohesin by impairing the interaction of Scc2 with Smc3's head. Lastly, we show that ATP binding induces the cohesin/Scc2 complex to clamp DNA by promoting the interaction between Scc2 and Smc3 coiled coil. Our results illuminate a dynamic reconfiguration of the cohesin/Scc2 complex during loading and indicate how Smc3 acetylation and ATP regulate this process.
Collapse
Affiliation(s)
- Aditi Kaushik
- The Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Thane Than
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Naomi J Petela
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Charlotte Percival
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Peter Daniels
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - John B Rafferty
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Bin Hu
- The Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
21
|
Nagasaka K, Davidson IF, Stocsits RR, Tang W, Wutz G, Batty P, Panarotto M, Litos G, Schleiffer A, Gerlich DW, Peters JM. Cohesin mediates DNA loop extrusion and sister chromatid cohesion by distinct mechanisms. Mol Cell 2023; 83:3049-3063.e6. [PMID: 37591243 DOI: 10.1016/j.molcel.2023.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/28/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Cohesin connects CTCF-binding sites and other genomic loci in cis to form chromatin loops and replicated DNA molecules in trans to mediate sister chromatid cohesion. Whether cohesin uses distinct or related mechanisms to perform these functions is unknown. Here, we describe a cohesin hinge mutant that can extrude DNA into loops but is unable to mediate cohesion in human cells. Our results suggest that the latter defect arises during cohesion establishment. The observation that cohesin's cohesion and loop extrusion activities can be partially separated indicates that cohesin uses distinct mechanisms to perform these two functions. Unexpectedly, the same hinge mutant can also not be stopped by CTCF boundaries as well as wild-type cohesin. This suggests that cohesion establishment and cohesin's interaction with CTCF boundaries depend on related mechanisms and raises the possibility that both require transient hinge opening to entrap DNA inside the cohesin ring.
Collapse
Affiliation(s)
- Kota Nagasaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Roman R Stocsits
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Paul Batty
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna 1030, Austria
| | - Melanie Panarotto
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna 1030, Austria
| | - Gabriele Litos
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria.
| |
Collapse
|
22
|
Abstract
Many cellular processes require large-scale rearrangements of chromatin structure. Structural maintenance of chromosomes (SMC) protein complexes are molecular machines that can provide structure to chromatin. These complexes can connect DNA elements in cis, walk along DNA, build and processively enlarge DNA loops and connect DNA molecules in trans to hold together the sister chromatids. These DNA-shaping abilities place SMC complexes at the heart of many DNA-based processes, including chromosome segregation in mitosis, transcription control and DNA replication, repair and recombination. In this Review, we discuss the latest insights into how SMC complexes such as cohesin, condensin and the SMC5-SMC6 complex shape DNA to direct these fundamental chromosomal processes. We also consider how SMC complexes, by building chromatin loops, can counteract the natural tendency of alike chromatin regions to cluster. SMC complexes thus control nuclear organization by participating in a molecular tug of war that determines the architecture of our genome.
Collapse
Affiliation(s)
- Claire Hoencamp
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Corsi F, Rusch E, Goloborodko A. Loop extrusion rules: the next generation. Curr Opin Genet Dev 2023; 81:102061. [PMID: 37354885 DOI: 10.1016/j.gde.2023.102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/26/2023]
Abstract
The interphase genome of vertebrates contains roughly 100 000 dynamic loops formed by cohesins. These loops are thought to play important roles in many functions, but their exact contribution in each case remains hotly disputed. The key challenge in studying these loops is the lack of a single experimental technique that could reliably and comprehensively visualize their locations and dynamics. Yet, we can infer them using theoretical models that integrate complementary experimental observations. Modeling proved instrumental in showing that cohesins form loops via extrusion. The loop extrusion model made numerous successful qualitative and quantitative predictions and inspired many experiments. However, it also demonstrated limited accuracy in predicting contact maps. Recent research suggests that the original model did not fully account for the intricate details of the mechanism of loop extrusion and its complex regulation. Here, we review the progress in visualizing extrusion and characterizing the cohesin cofactors. These discoveries can be summarized as 'rules' of cohesin movement along chromosomes and incorporated into the next generation of models. Such improved models will enable more accurate inferences of positions and dynamics of cohesin loops and generate better predictions for designing experiments.
Collapse
Affiliation(s)
- Flavia Corsi
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria. https://twitter.com/@flavia_corsi
| | - Emma Rusch
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria. https://twitter.com/@emma__rush
| | - Anton Goloborodko
- Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
24
|
Zhang J, Li L, Miao Y, Liu X, Sun H, Jiang M, Li X, Li Z, Liu C, Liu B, Xu X, Cao Q, Hou W, Chen C, Lou H. Symmetric control of sister chromatid cohesion establishment. Nucleic Acids Res 2023; 51:4760-4773. [PMID: 36912084 PMCID: PMC10250241 DOI: 10.1093/nar/gkad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
Besides entrapping sister chromatids, cohesin drives other high-order chromosomal structural dynamics like looping, compartmentalization and condensation. ESCO2 acetylates a subset of cohesin so that cohesion must be established and only be established between nascent sister chromatids. How this process is precisely achieved remains unknown. Here, we report that GSK3 family kinases provide higher hierarchical control through an ESCO2 regulator, CRL4MMS22L. GSK3s phosphorylate Thr105 in MMS22L, resulting in homo-dimerization of CRL4MMS22L and ESCO2 during S phase as evidenced by single-molecule spectroscopy and several biochemical approaches. A single phospho-mimicking mutation on MMS22L (T105D) is sufficient to mediate their dimerization and rescue the cohesion defects caused by GSK3 or MMS22L depletion, whereas non-phosphorylable T105A exerts dominant-negative effects even in wildtype cells. Through cell fractionation and time-course measurements, we show that GSK3s facilitate the timely chromatin association of MMS22L and ESCO2 and subsequently SMC3 acetylation. The necessity of ESCO2 dimerization implicates symmetric control of cohesion establishment in eukaryotes.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lili Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Miao
- School of Life Sciences; Beijing Advanced Innovation Center for Structural Biology; Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China
| | - Xiaojing Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haitao Sun
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meiqian Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoli Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Cong Liu
- Department of Paediatrics, SCU-CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, 610041 Chengdu, China
| | - Baohua Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinhong Cao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenya Hou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Shenzhen University General Hospital and School of Medicine, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Chunlai Chen
- School of Life Sciences; Beijing Advanced Innovation Center for Structural Biology; Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China
| | - Huiqiang Lou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Chen X, Zhou M, Ma S, Wu H, Cai H. KLF5-mediated CDCA5 expression promotes tumor development and progression of epithelial ovarian carcinoma. Exp Cell Res 2023:113645. [PMID: 37247719 DOI: 10.1016/j.yexcr.2023.113645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
Cell division cycle associated 5 (CDCA5) is correlated with the development and progression of many malignant tumors. However, little is known about its role in epithelial ovarian cancer (EOC) progression. In this study, the clinical value, biological function and underlying mechanisms of CDCA5 in EOC were evaluated. CDCA5 mRNA and protein levels were substantially upregulated in EOC and had a significant positive correlation with adverse clinicopathological characteristics and a poor prognosis. CDCA5 facilitated proliferation, invasion, and metastasis and disrupted mitochondrial-mediated endogenous apoptosis by activating the cell cycle pathway and inhibiting the P53 pathway in EOC cells. Conversely, knockdown of CDCA5 expression blocked the malignant activities of EOC cells and suppressed the growth of xenograft tumors in vivo. Mechanistically, the transcription factor KLF5 bound to a specific site in the CDCA5 promoter and promoted CDCA5 expression. Moreover, KLF5 overexpression rescued the negative regulation of inhibited CDCA5 expression on EOC cell proliferation. In conclusion, our findings revealed that CDCA5 promoted tumor progression of EOC via the KLF5/CDCA5/cell cycle and P53 axes, which might provide new insights into the roles of CDCA5 in EOC.
Collapse
Affiliation(s)
- Xiaohong Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730030, China; Department of Gynecology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Meiying Zhou
- Department of Gynecology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Shouye Ma
- Department of Gynecology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Huifang Wu
- Department of Gynecology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Hui Cai
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730030, China; Department of Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
26
|
Shin H, Kim Y. Regulation of loop extrusion on the interphase genome. Crit Rev Biochem Mol Biol 2023; 58:1-18. [PMID: 36921088 DOI: 10.1080/10409238.2023.2182273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In the human cell nucleus, dynamically organized chromatin is the substrate for gene regulation, DNA replication, and repair. A central mechanism of DNA loop formation is an ATPase motor cohesin-mediated loop extrusion. The cohesin complexes load and unload onto the chromosome under the control of other regulators that physically interact and affect motor activity. Regulation of the dynamic loading cycle of cohesin influences not only the chromatin structure but also genome-associated human disorders and aging. This review focuses on the recently spotlighted genome organizing factors and the mechanism by which their dynamic interactions shape the genome architecture in interphase.
Collapse
Affiliation(s)
- Hyogyung Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Yoori Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea.,New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
27
|
Yu Z, Kim HJ, Dernburg AF. ATM signaling modulates cohesin behavior in meiotic prophase and proliferating cells. Nat Struct Mol Biol 2023; 30:436-450. [PMID: 36879153 PMCID: PMC10113158 DOI: 10.1038/s41594-023-00929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023]
Abstract
Cohesins are ancient and ubiquitous regulators of chromosome architecture and function, but their diverse roles and regulation remain poorly understood. During meiosis, chromosomes are reorganized as linear arrays of chromatin loops around a cohesin axis. This unique organization underlies homolog pairing, synapsis, double-stranded break induction, and recombination. We report that axis assembly in Caenorhabditis elegans is promoted by DNA-damage response (DDR) kinases that are activated at meiotic entry, even in the absence of DNA breaks. Downregulation of the cohesin-destabilizing factor WAPL-1 by ATM-1 promotes axis association of cohesins containing the meiotic kleisins COH-3 and COH-4. ECO-1 and PDS-5 also contribute to stabilizing axis-associated meiotic cohesins. Further, our data suggest that cohesin-enriched domains that promote DNA repair in mammalian cells also depend on WAPL inhibition by ATM. Thus, DDR and Wapl seem to play conserved roles in cohesin regulation in meiotic prophase and proliferating cells.
Collapse
Affiliation(s)
- Zhouliang Yu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | - Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,California Institute for Quantitative Biosciences, Berkeley, CA, USA.
| |
Collapse
|
28
|
van Schie JJ, de Lint K, Pai GM, Rooimans MA, Wolthuis RM, de Lange J. MMS22L-TONSL functions in sister chromatid cohesion in a pathway parallel to DSCC1-RFC. Life Sci Alliance 2023; 6:e202201596. [PMID: 36622344 PMCID: PMC9733570 DOI: 10.26508/lsa.202201596] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The leading strand-oriented alternative PCNA clamp loader DSCC1-RFC functions in DNA replication, repair, and sister chromatid cohesion (SCC), but how it facilitates these processes is incompletely understood. Here, we confirm that loss of human DSCC1 results in reduced fork speed, increased DNA damage, and defective SCC. Genome-wide CRISPR screens in DSCC1-KO cells reveal multiple synthetically lethal interactions, enriched for DNA replication and cell cycle regulation. We show that DSCC1-KO cells require POLE3 for survival. Co-depletion of DSCC1 and POLE3, which both interact with the catalytic polymerase ε subunit, additively impair DNA replication, suggesting that these factors contribute to leading-strand DNA replication in parallel ways. An additional hit is MMS22L, which in humans forms a heterodimer with TONSL. Synthetic lethality of DSCC1 and MMS22L-TONSL likely results from detrimental SCC loss. We show that MMS22L-TONSL, like DDX11, functions in a SCC establishment pathway parallel to DSCC1-RFC. Because both DSCC1-RFC and MMS22L facilitate ESCO2 recruitment to replication forks, we suggest that distinct ESCO2 recruitment pathways promote SCC establishment following either cohesin conversion or de novo cohesin loading.
Collapse
Affiliation(s)
- Janne Jm van Schie
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Klaas de Lint
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Govind M Pai
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Martin A Rooimans
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Rob Mf Wolthuis
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| | - Job de Lange
- Department of Human Genetics, Section Oncogenetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
| |
Collapse
|
29
|
Mon H, Sato M, Lee JM, Kusakabe T. Construction of gene co-expression networks in cultured silkworm cells and identification of previously uncharacterized lepidopteran-specific genes required for chromosome dynamics. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103875. [PMID: 36410580 DOI: 10.1016/j.ibmb.2022.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Advances in sequencing technology and bioinformatics have accelerated gene discovery and homology-based functional annotation in many species, and numerous targeted gene studies have greatly expanded the understanding of gene functions. Nevertheless, there are still many genes that lack homology with genes in other evolutionary lineages and are left as genes with unknown functions. We constructed a gene co-expression network from the Bombyx mori ovary-derived cell line, BmN4, and attempted to infer the biological roles of uncharacterized genes based on the correlation between the function-known and unknown genes. Within this network, we focused on the co-expression modules involved in chromosome architecture, dynamics, and integrity, and selected the uncharacterized genes for subsequent RNAi-based phenotypic screening. This approach enabled the identification of 5 genes whose knockdown led to abnormalities in chromosome dynamics and spindle morphology in mitosis. One of them was a recently characterized gene, BmCenp-T, which plays a central role in building the kinetochore protein complex on the silkworm holocentric chromosomes. In this study, we suggest a method for constructing the gene co-expression network and selecting candidate genes for small-scale RNAi screening. This approach is complementary to homology-based annotation and may be useful for the analysis of lineage-specific uncharacterized genes such as orphan genes.
Collapse
Affiliation(s)
- Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masanao Sato
- Laboratory of Applied Molecular Entomology, Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
30
|
Cuadrado A, Giménez-Llorente D, De Koninck M, Ruiz-Torres M, Kojic A, Rodríguez-Corsino M, Losada A. Contribution of variant subunits and associated factors to genome-wide distribution and dynamics of cohesin. Epigenetics Chromatin 2022; 15:37. [PMID: 36424654 PMCID: PMC9686121 DOI: 10.1186/s13072-022-00469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The cohesin complex organizes the genome-forming dynamic chromatin loops that impact on all DNA-mediated processes. There are two different cohesin complexes in vertebrate somatic cells, carrying the STAG1 or STAG2 subunit, and two versions of the regulatory subunit PDS5, PDS5A and PDS5B. Mice deficient for any of the variant subunits are embryonic lethal, which indicates that they are not functionally redundant. However, their specific behavior at the molecular level is not fully understood. RESULTS The genome-wide distribution of cohesin provides important information with functional consequences. Here, we have characterized the distribution of cohesin subunits and regulators in mouse embryo fibroblasts (MEFs) either wild type or deficient for cohesin subunits and regulators by chromatin immunoprecipitation and deep sequencing. We identify non-CTCF cohesin-binding sites in addition to the commonly detected CTCF cohesin sites and show that cohesin-STAG2 is the preferred variant at these positions. Moreover, this complex has a more dynamic association with chromatin as judged by fluorescence recovery after photobleaching (FRAP), associates preferentially with WAPL and is more easily extracted from chromatin with salt than cohesin-STAG1. We observe that both PDS5A and PDS5B are exclusively located at cohesin-CTCF positions and that ablation of a single paralog has no noticeable consequences for cohesin distribution while double knocked out cells show decreased accumulation of cohesin at all its binding sites. With the exception of a fraction of cohesin positions in which we find binding of all regulators, including CTCF and WAPL, the presence of NIPBL and PDS5 is mutually exclusive, consistent with our immunoprecipitation analyses in mammalian cell extracts and previous results in yeast. CONCLUSION Our findings support the idea that non-CTCF cohesin-binding sites represent sites of cohesin loading or pausing and are preferentially occupied by the more dynamic cohesin-STAG2. PDS5 proteins redundantly contribute to arrest cohesin at CTCF sites, possibly by preventing binding of NIPBL, but are not essential for this arrest. These results add important insights towards understanding how cohesin regulates genome folding and the specific contributions of the different variants that coexist in the cell.
Collapse
Affiliation(s)
- Ana Cuadrado
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Daniel Giménez-Llorente
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Magali De Koninck
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Miguel Ruiz-Torres
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Aleksandar Kojic
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Ana Losada
- Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
31
|
Kariri YA, Joseph C, Alsaleem MA, Elsharawy KA, Alsaeed S, Toss MS, Mongan NP, Green AR, Rakha EA. Mechanistic and Clinical Evidence Supports a Key Role for Cell Division Cycle Associated 5 (CDCA5) as an Independent Predictor of Outcome in Invasive Breast Cancer. Cancers (Basel) 2022; 14:cancers14225643. [PMID: 36428736 PMCID: PMC9688237 DOI: 10.3390/cancers14225643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cell Division Cycle Associated 5 (CDCA5) plays a role in the phosphoinositide 3-kinase (PI3K)/AKT/mTOR signalling pathway involving cell division, cancer cell migration and apoptosis. This study aims to assess the prognostic and biological value of CDCA5 in breast cancer (BC). METHODS The biological and prognostic value of CDCA5 were evaluated at mRNA (n = 5109) and protein levels (n = 614) utilizing multiple well-characterized early stage BC cohorts. The effects of CDCA5 knockdown (KD) on multiple oncogenic assays were assessed in vitro using a panel of BC cell lines. RESULTS this study examined cohorts showed that high CDCA5 expression was correlated with features characteristic of aggressive behavior and poor prognosis, including the presence of high grade, large tumor size, lymphovascular invasion (LVI), hormone receptor negativity and HER2 positivity. High CDCA5 expression, at both mRNA and protein levels, was associated with shorter BC-specific survival independent of other variables (p = 0.034, Hazard ratio (HR) = 1.6, 95% CI; 1.1-2.3). In line with the clinical data, in vitro models indicated that CDCA5 depletion results in a marked decrease in BC cell invasion and migration abilities and a significant accumulation of the BC cells in the G2/M-phase. CONCLUSIONS These results provide evidence that CDCA5 plays an important role in BC development and metastasis and could be used as a potential biomarker to predict disease progression in BC.
Collapse
Affiliation(s)
- Yousif A. Kariri
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University, Shaqra 11961, Saudi Arabia
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
| | - Chitra Joseph
- School of Medicine, Nottingham City Hospital, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham NG5 1PB, UK
| | - Mansour A. Alsaleem
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- Department of Applied Medical Science, Applied College, Qassim University, Unayzah 56435, Saudi Arabia
| | - Khloud A. Elsharawy
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- Department of Zoology, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - Sami Alsaeed
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- Department of Clinical Laboratory Science, Faculty of Applied Medical Sciences, Northern Border University, Arar 73244, Saudi Arabia
| | - Michael S. Toss
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- School of Medicine, Nottingham City Hospital, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham NG5 1PB, UK
| | - Nigel P. Mongan
- Biodiscovery Institute, Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew R. Green
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
| | - Emad A. Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, Biodiscovery Institute, University Park Campus, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Breast Cancer Research Centre, Nottingham NG7 2RD, UK
- School of Medicine, Nottingham City Hospital, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham NG5 1PB, UK
- Correspondence: or ; Tel.: +44-0115-9691169; Fax: +44-0115-9627768
| |
Collapse
|
32
|
Yu D, Chen G, Wang Y, Wang Y, Lin R, Liu N, Zhu P, Liu H, Hu T, Feng R, Feng H, Lan F, Cai J, Chen H. Regulation of cohesin-mediated chromosome folding by PDS5 in mammals. EMBO Rep 2022; 23:e54853. [PMID: 36129789 PMCID: PMC9638874 DOI: 10.15252/embr.202254853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 09/23/2023] Open
Abstract
Cohesin regulates sister chromatid cohesion but also contributes to chromosome folding by promoting the formation of chromatin loops, a process mediated by loop extrusion. Although PDS5 regulates cohesin dynamics on chromatin, the exact function of PDS5 in cohesin-mediated chromatin looping remains unclear. Two paralogs of PDS5 exist in vertebrates, PDS5A and PDS5B. Here we show that PDS5A and PDS5B co-localize with RAD21 and CTCF at loop anchors. Rapid PDS5A or PDS5B degradation in liver cancer cells using an inducible degron system reduces chromatin loops and increases loop size. RAD21 enrichment at loop anchors is decreased upon depletion of PDS5A or PDS5B. PDS5B loss also reduces CTCF signals at loop anchors and has a stronger effect on loop enlargement compared with PDS5A. Co-depletion of PDS5A and PDS5B reduces RAD21 levels at loop anchors although the amount of cohesin on chromatin is increased. Our study provides insight into how PDS5 proteins regulate cohesin-mediated chromatin looping.
Collapse
Affiliation(s)
- Dingdang Yu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Guoyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji HospitalShanghaiChina
- Renji‐Med X Clinical Stem Cell Research Center, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuci Wang
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yining Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Risheng Lin
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Nanbo Liu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Ping Zhu
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hang Liu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Tao Hu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Rui Feng
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer InstituteRenji HospitalShanghaiChina
- Renji‐Med X Clinical Stem Cell Research Center, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fei Lan
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jiabin Cai
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Hao Chen
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
33
|
Gárate-Rascón M, Recalde M, Rojo C, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. SLU7: A New Hub of Gene Expression Regulation—From Epigenetics to Protein Stability in Health and Disease. Int J Mol Sci 2022; 23:ijms232113411. [PMID: 36362191 PMCID: PMC9658179 DOI: 10.3390/ijms232113411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
SLU7 (Splicing factor synergistic lethal with U5 snRNA 7) was first identified as a splicing factor necessary for the correct selection of 3′ splice sites, strongly impacting on the diversity of gene transcripts in a cell. More recent studies have uncovered new and non-redundant roles of SLU7 as an integrative hub of different levels of gene expression regulation, including epigenetic DNA remodeling, modulation of transcription and protein stability. Here we review those findings, the multiple factors and mechanisms implicated as well as the cellular functions affected. For instance, SLU7 is essential to secure liver differentiation, genome integrity acting at different levels and a correct cell cycle progression. Accordingly, the aberrant expression of SLU7 could be associated with human diseases including cancer, although strikingly, it is an essential survival factor for cancer cells. Finally, we discuss the implications of SLU7 in pathophysiology, with particular emphasis on the progression of liver disease and its possible role as a therapeutic target in human cancer.
Collapse
Affiliation(s)
- María Gárate-Rascón
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Miriam Recalde
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Carla Rojo
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Ávila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - María Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948-194700; Fax: +34-948-194717
| |
Collapse
|
34
|
He J, Zhou X, Wang X, Zhang Q, Zhang L, Wang T, Zhu W, Liu P, Zhu M. Prognostic and Immunological Roles of Cell Cycle Regulator CDCA5 in Human Solid Tumors. Int J Gen Med 2022; 15:8257-8274. [DOI: 10.2147/ijgm.s389275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
|
35
|
Wassmann K. Separase Control and Cohesin Cleavage in Oocytes: Should I Stay or Should I Go? Cells 2022; 11:3399. [PMID: 36359795 PMCID: PMC9656630 DOI: 10.3390/cells11213399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/19/2023] Open
Abstract
The key to gametogenesis is the proper execution of a specialized form of cell division named meiosis. Prior to the meiotic divisions, the recombination of maternal and paternal chromosomes creates new genetic combinations necessary for fitness and adaptation to an ever-changing environment. Two rounds of chromosome segregation -meiosis I and II- have to take place without intermediate S-phase and lead to the creation of haploid gametes harboring only half of the genetic material. Importantly, the segregation patterns of the two divisions are fundamentally different and require adaptation of the mitotic cell cycle machinery to the specificities of meiosis. Separase, the enzyme that cleaves Rec8, a subunit of the cohesin complex constituting the physical connection between sister chromatids, has to be activated twice: once in meiosis I and immediately afterwards, in meiosis II. Rec8 is cleaved on chromosome arms in meiosis I and in the centromere region in meiosis II. This step-wise cohesin removal is essential to generate gametes of the correct ploidy and thus, embryo viability. Hence, separase control and Rec8 cleavage must be perfectly controlled in time and space. Focusing on mammalian oocytes, this review lays out what we know and what we still ignore about this fascinating mechanism.
Collapse
Affiliation(s)
- Katja Wassmann
- Institut Jacques Monod, Université Paris Cité, CNRS, 75013 Paris, France
| |
Collapse
|
36
|
Hu H, Xiang Y, Zhang XY, Deng Y, Wan FJ, Huang Y, Liao XH, Zhang TC. CDCA5 promotes the progression of breast cancer and serves as a potential prognostic biomarker. Oncol Rep 2022; 48:172. [PMID: 36004470 PMCID: PMC9478967 DOI: 10.3892/or.2022.8387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/13/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hao Hu
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Xiao-Yu Zhang
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yang Deng
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Fu-Jian Wan
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - You Huang
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Xing-Hua Liao
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Tong-Cun Zhang
- College of Life and Health Sciences, Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
37
|
Sindlinger J, Schön S, Eirich J, Kirchgäßner S, Finkemeier I, Schwarzer D. Investigating peptide-Coenzyme A-conjugates as chemical probes for proteomic profiling of N-terminal and lysine acetyltransferases. Chembiochem 2022; 23:e202200255. [PMID: 35776679 PMCID: PMC9541820 DOI: 10.1002/cbic.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Indexed: 11/18/2022]
Abstract
Acetyl groups are transferred from acetyl‐coenzyme A (Ac‐CoA) to protein N‐termini and lysine side chains by N‐terminal acetyltransferases (NATs) and lysine acetyltransferases (KATs), respectively. Building on lysine‐CoA conjugates as KAT probes, we have synthesized peptide probes with CoA conjugated to N‐terminal alanine (α‐Ala‐CoA), proline (α‐Pro‐CoA) or tri‐glutamic acid (α‐3Glu‐CoA) units for interactome profiling of NAT complexes. The α‐Ala‐CoA probe enriched the majority of NAT catalytic and auxiliary subunits, while a lysine CoA‐conjugate bound only a subset of endogenous KATs. Interactome profiling with the α‐Pro‐CoA probe showed reduced NAT recruitment in favor of metabolic CoA binding proteins and α‐3Glu‐CoA steered the interactome towards NAA80 and NatB. These findings agreed with the inherent substrate specificities of the target proteins and showed that N‐terminal CoA‐conjugated peptides are versatile probes for NAT complex profiling in lysates of physiological and pathological backgrounds.
Collapse
Affiliation(s)
- Julia Sindlinger
- Eberhard Karls Universitat Tubingen Mathematisch-Naturwissenschaftliche Fakultat, Interfaculty Institute of Biochemistry, GERMANY
| | - Stefan Schön
- Eberhard Karls Universitat Tubingen Mathematisch-Naturwissenschaftliche Fakultat, Interfakultäres Institut für Biochemie, GERMANY
| | - Jürgen Eirich
- WWU Münster FB 13 Biologie: Westfalische Wilhelms-Universitat Munster Fachbereich 13 Biologie, Institute of Plant Biology and Biotechnology, GERMANY
| | - Sören Kirchgäßner
- Eberhard Karls Universität Tübingen: Eberhard Karls Universitat Tubingen, Interfakultäres Institut für Biochemie, GERMANY
| | - Iris Finkemeier
- WWU Münster FB 13 Biologie: Westfalische Wilhelms-Universitat Munster Fachbereich 13 Biologie, Institute of Plant Biology and Biotechnology, GERMANY
| | - Dirk Schwarzer
- Interfakultäres Institut für Biochemie Eberhard Karls Universität Tübingen, Chemical Biology, Hoppe-Seyler-Str. 4, 72076, Tübingen, GERMANY
| |
Collapse
|
38
|
Huang X, Huang Y, Lv Z, Wang T, Feng H, Wang H, Du S, Wu S, Shen D, Wang C, Li H, Wang B, Ma X, Zhang X. Loss of cell division cycle‑associated 5 promotes cell apoptosis by activating DNA damage response in clear cell renal cell carcinoma. Int J Oncol 2022; 61:87. [PMID: 35642672 PMCID: PMC9183765 DOI: 10.3892/ijo.2022.5377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022] Open
Abstract
Cell division cycle-associated 5 (CDCA5) protein, which is involved in cohesion, contributes to cell cycle regulation and chromosome segregation by maintaining genomic stability. Accumulating evidence indicates that CDCA5 expression is upregulated in a number of types of cancer associated with a poor prognosis. However, the biological function of CDCA5 in clear cell renal cell carcinoma (ccRCC) remains largely unknown. In the present study, The Cancer Genome Atlas data mining revealed that CDCA5 was more highly expressed in ccRCC than in adjacent normal tissues. Importantly, such a high expression was associated with a higher risk of distant metastasis and poorer clinical outcomes. Moreover, the clinical and prognostic value of CDCA5 expression was further investigated using immunohistochemistry on tissue microarrays containing paired tumor tissues and adjacent normal tissues from 137 patients with ccRCC. Functional analyses revealed that CDCA5 knockdown significantly inhibited the proliferation and migration of ccRCC cells, and suppressed the growth of xenografts in nude mice. Mechanistically, CDCA5 knockdown induced severe DNA damage with the persistent accumulation of γ-H2A histone family member X foci, resulting in G2/M cell cycle arrest and finally, in chromosomal instability and apoptosis. CDCA5 knockdown significantly decreased the phosphorylation levels of Stat3 and NF-κB, suggesting that CDCA5 plays a role in regulating the inflammatory response. Collectively, the findings of the present study indicate that ccRCC cells require CDCA5 for malignant progression, and that CDCA5 inhibition may enhance the outcomes of patients with high-risk ccRCC.
Collapse
Affiliation(s)
- Xing Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yan Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zheng Lv
- Department of Urology, The Third Affiliated Central Hospital of Nankai University, Tianjin 300071, P.R. China
| | - Tao Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Huayi Feng
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hanfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Songliang Du
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shengpan Wu
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Donglai Shen
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Chenfeng Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hongzhao Li
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Baojun Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xu Zhang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital/Medical School of Chinese PLA/State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
39
|
van Ruiten MS, van Gent D, Sedeño Cacciatore Á, Fauster A, Willems L, Hekkelman ML, Hoekman L, Altelaar M, Haarhuis JHI, Brummelkamp TR, de Wit E, Rowland BD. The cohesin acetylation cycle controls chromatin loop length through a PDS5A brake mechanism. Nat Struct Mol Biol 2022; 29:586-591. [PMID: 35710836 PMCID: PMC9205776 DOI: 10.1038/s41594-022-00773-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/05/2022] [Indexed: 12/16/2022]
Abstract
Cohesin structures the genome through the formation of chromatin loops and by holding together the sister chromatids. The acetylation of cohesin's SMC3 subunit is a dynamic process that involves the acetyltransferase ESCO1 and deacetylase HDAC8. Here we show that this cohesin acetylation cycle controls the three-dimensional genome in human cells. ESCO1 restricts the length of chromatin loops, and of architectural stripes emanating from CTCF sites. HDAC8 conversely promotes the extension of such loops and stripes. This role in controlling loop length turns out to be distinct from the canonical role of cohesin acetylation that protects against WAPL-mediated DNA release. We reveal that acetylation controls the interaction of cohesin with PDS5A to restrict chromatin loop length. Our data support a model in which this PDS5A-bound state acts as a brake that enables the pausing and restart of loop enlargement. The cohesin acetylation cycle hereby provides punctuation in the process of genome folding.
Collapse
Affiliation(s)
- Marjon S van Ruiten
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Démi van Gent
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Astrid Fauster
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laureen Willems
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maarten L Hekkelman
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Judith H I Haarhuis
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thijn R Brummelkamp
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
40
|
Hou W, Li Y, Zhang J, Xia Y, Wang X, Chen H, Lou H. Cohesin in DNA damage response and double-strand break repair. Crit Rev Biochem Mol Biol 2022; 57:333-350. [PMID: 35112600 DOI: 10.1080/10409238.2022.2027336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
Cohesin, a four-subunit ring comprising SMC1, SMC3, RAD21 and SA1/2, tethers sister chromatids by DNA replication-coupled cohesion (RC-cohesion) to guarantee correct chromosome segregation during cell proliferation. Postreplicative cohesion, also called damage-induced cohesion (DI-cohesion), is an emerging critical player in DNA damage response (DDR). In this review, we sum up recent progress on how cohesin regulates the DNA damage checkpoint activation and repair pathway choice, emphasizing postreplicative cohesin loading and DI-cohesion establishment in yeasts and mammals. DI-cohesion and RC-cohesion show distinct features in many aspects. DI-cohesion near or far from the break sites might undergo different regulations and execute different tasks in DDR and DSB repair. Furthermore, some open questions in this field and the significance of this new scenario to our understanding of genome stability maintenance and cohesinopathies are discussed.
Collapse
Affiliation(s)
- Wenya Hou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yan Li
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Jiaxin Zhang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yisui Xia
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xueting Wang
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Hongxiang Chen
- Union Shenzhen Hospital, Department of Dermatology, Huazhong University of Science and Technology (Nanshan Hospital), Shenzhen, Guangdong, China
| | - Huiqiang Lou
- Shenzhen University General Hospital, Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
41
|
Donnellan L, Young C, Simpson BS, Dhillon VS, Costabile M, Hoffmann P, Fenech M, Deo P. Methylglyoxal Impairs Sister Chromatid Separation in Lymphocytes. Int J Mol Sci 2022; 23:ijms23084139. [PMID: 35456956 PMCID: PMC9030103 DOI: 10.3390/ijms23084139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
The accurate segregation of sister chromatids is complex, and errors that arise throughout this process can drive chromosomal instability and tumorigenesis. We recently showed that methylglyoxal (MGO), a glycolytic by-product, can cause chromosome missegregation events in lymphocytes. However, the underlying mechanisms of this were not explored. Therefore, in this study, we utilised shotgun proteomics to identify MGO-modified proteins, and label-free quantitation to measure changes in protein abundance following exposure to MGO. We identified numerous mitotic proteins that were modified by MGO, including those involved in the separation and cohesion of sister chromatids. Furthermore, the protein abundance of Securin, an inhibitor of sister chromatid separation, was increased following treatment with MGO. Cytological examination of chromosome spreads showed MGO prevented sister chromatid separation, which was associated with the formation of complex nuclear anomalies. Therefore, results from this study suggest MGO may drive chromosomal instability by preventing sister chromatid separation.
Collapse
Affiliation(s)
- Leigh Donnellan
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (L.D.); (B.S.S.); (V.S.D.); (M.C.)
| | - Clifford Young
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.Y.); (P.H.)
| | - Bradley S. Simpson
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (L.D.); (B.S.S.); (V.S.D.); (M.C.)
| | - Varinderpal S. Dhillon
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (L.D.); (B.S.S.); (V.S.D.); (M.C.)
| | - Maurizio Costabile
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (L.D.); (B.S.S.); (V.S.D.); (M.C.)
- Centre for Cancer Biology, SA Pathology University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Peter Hoffmann
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.Y.); (P.H.)
| | - Michael Fenech
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (L.D.); (B.S.S.); (V.S.D.); (M.C.)
- Genome Health Foundation, North Brighton 5048, Australia
- Correspondence: (M.F.); (P.D.); Tel.: +61-8-8302-1189 (P.D.); Fax: +61-8-8302-2389 (P.D.)
| | - Permal Deo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (L.D.); (B.S.S.); (V.S.D.); (M.C.)
- Correspondence: (M.F.); (P.D.); Tel.: +61-8-8302-1189 (P.D.); Fax: +61-8-8302-2389 (P.D.)
| |
Collapse
|
42
|
Shen W, Tong D, Chen J, Li H, Hu Z, Xu S, He S, Ge Z, Zhang J, Mao Q, Chen H, Xu G. Silencing oncogene cell division cycle associated 5 induces apoptosis and G1 phase arrest of non‐small cell lung cancer cells via p53‐p21 signaling pathway. J Clin Lab Anal 2022; 36:e24396. [PMID: 35373420 PMCID: PMC9102649 DOI: 10.1002/jcla.24396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Wei Shen
- Department of Pulmonary and Critical Care Medicine The Third People’s Hospital of Cixi Ningbo Zhejiang China
| | - Dimin Tong
- Department of Pulmonary and Critical Care Medicine The Third People’s Hospital of Cixi Ningbo Zhejiang China
| | - Jie Chen
- Department of Pulmonary and Critical Care Medicine The Third People’s Hospital of Cixi Ningbo Zhejiang China
| | - Hongxiang Li
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Zeyang Hu
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Shuguang Xu
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Sufang He
- Department of Pulmonary and Critical Care Medicine Guangdong Provincial People's Hospital Ganzhou Hospital Ganzhou Jiangxi China
| | - Zhen Ge
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Jianan Zhang
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Qiqi Mao
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Hang Chen
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Guodong Xu
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| |
Collapse
|
43
|
Osadska M, Selicky T, Kretova M, Jurcik J, Sivakova B, Cipakova I, Cipak L. The Interplay of Cohesin and RNA Processing Factors: The Impact of Their Alterations on Genome Stability. Int J Mol Sci 2022; 23:3939. [PMID: 35409298 PMCID: PMC8999970 DOI: 10.3390/ijms23073939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Cohesin, a multi-subunit protein complex, plays important roles in sister chromatid cohesion, DNA replication, chromatin organization, gene expression, transcription regulation, and the recombination or repair of DNA damage. Recently, several studies suggested that the functions of cohesin rely not only on cohesin-related protein-protein interactions, their post-translational modifications or specific DNA modifications, but that some RNA processing factors also play an important role in the regulation of cohesin functions. Therefore, the mutations and changes in the expression of cohesin subunits or alterations in the interactions between cohesin and RNA processing factors have been shown to have an impact on cohesion, the fidelity of chromosome segregation and, ultimately, on genome stability. In this review, we provide an overview of the cohesin complex and its role in chromosome segregation, highlight the causes and consequences of mutations and changes in the expression of cohesin subunits, and discuss the RNA processing factors that participate in the regulation of the processes involved in chromosome segregation. Overall, an understanding of the molecular determinants of the interplay between cohesin and RNA processing factors might help us to better understand the molecular mechanisms ensuring the integrity of the genome.
Collapse
Affiliation(s)
- Michaela Osadska
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Tomas Selicky
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Miroslava Kretova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Jan Jurcik
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Barbara Sivakova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38 Bratislava, Slovakia;
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia; (M.O.); (T.S.); (M.K.); (J.J.)
| |
Collapse
|
44
|
Roles and regulation of Haspin kinase and its impact on carcinogenesis. Cell Signal 2022; 93:110303. [DOI: 10.1016/j.cellsig.2022.110303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/15/2023]
|
45
|
Chandrasekaran V, Oparina N, Garcia-Bonete MJ, Wasén C, Erlandsson MC, Malmhäll-Bah E, Andersson KME, Jensen M, Silfverswärd ST, Katona G, Bokarewa MI. Cohesin-Mediated Chromatin Interactions and Autoimmunity. Front Immunol 2022; 13:840002. [PMID: 35222432 PMCID: PMC8866859 DOI: 10.3389/fimmu.2022.840002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
Proper physiological functioning of any cell type requires ordered chromatin organization. In this context, cohesin complex performs important functions preventing premature separation of sister chromatids after DNA replication. In partnership with CCCTC-binding factor, it ensures insulator activity to organize enhancers and promoters within regulatory chromatin. Homozygous mutations and dysfunction of individual cohesin proteins are embryonically lethal in humans and mice, which limits in vivo research work to embryonic stem cells and progenitors. Conditional alleles of cohesin complex proteins have been generated to investigate their functional roles in greater detail at later developmental stages. Thus, genome regulation enabled by action of cohesin proteins is potentially crucial in lineage cell development, including immune homeostasis. In this review, we provide current knowledge on the role of cohesin complex in leukocyte maturation and adaptive immunity. Conditional knockout and shRNA-mediated inhibition of individual cohesin proteins in mice demonstrated their importance in haematopoiesis, adipogenesis and inflammation. Notably, these effects occur rather through changes in transcriptional gene regulation than through expected cell cycle defects. This positions cohesin at the crossroad of immune pathways including NF-kB, IL-6, and IFNγ signaling. Cohesin proteins emerged as vital regulators at early developmental stages of thymocytes and B cells and after antigen challenge. Human genome-wide association studies are remarkably concordant with these findings and present associations between cohesin and rheumatoid arthritis, multiple sclerosis and HLA-B27 related chronic inflammatory conditions. Furthermore, bioinformatic prediction based on protein-protein interactions reveal a tight connection between the cohesin complex and immune relevant processes supporting the notion that cohesin will unearth new clues in regulation of autoimmunity.
Collapse
Affiliation(s)
- Venkataragavan Chandrasekaran
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Nina Oparina
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria-Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Wasén
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Eric Malmhäll-Bah
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin M. E. Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maja Jensen
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Sofia T. Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
46
|
Sakuno T, Hiraoka Y. Rec8 Cohesin: A Structural Platform for Shaping the Meiotic Chromosomes. Genes (Basel) 2022; 13:200. [PMID: 35205245 PMCID: PMC8871791 DOI: 10.3390/genes13020200] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Meiosis is critically different from mitosis in that during meiosis, pairing and segregation of homologous chromosomes occur. During meiosis, the morphology of sister chromatids changes drastically, forming a prominent axial structure in the synaptonemal complex. The meiosis-specific cohesin complex plays a central role in the regulation of the processes required for recombination. In particular, the Rec8 subunit of the meiotic cohesin complex, which is conserved in a wide range of eukaryotes, has been analyzed for its function in modulating chromosomal architecture during the pairing and recombination of homologous chromosomes in meiosis. Here, we review the current understanding of Rec8 cohesin as a structural platform for meiotic chromosomes.
Collapse
Affiliation(s)
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan;
| |
Collapse
|
47
|
van Schie JJM, de Lange J. The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells 2021; 10:3455. [PMID: 34943967 PMCID: PMC8700348 DOI: 10.3390/cells10123455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.
Collapse
Affiliation(s)
- Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Human Genetics, Section Oncogenetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
48
|
The Cohesin Complex and Its Interplay with Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040067. [PMID: 34707078 PMCID: PMC8552073 DOI: 10.3390/ncrna7040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
The cohesin complex is a multi-subunit protein complex initially discovered for its role in sister chromatid cohesion. However, cohesin also has several other functions and plays important roles in transcriptional regulation, DNA double strand break repair, and chromosome architecture thereby influencing gene expression and development in organisms from yeast to man. While most of these functions rely on protein–protein interactions, post-translational protein, as well as DNA modifications, non-coding RNAs are emerging as additional players that facilitate and modulate the function or expression of cohesin and its individual components. This review provides a condensed overview about the architecture as well as the function of the cohesin complex and highlights its multifaceted interplay with both short and long non-coding RNAs.
Collapse
|
49
|
Luo Z, Wang J, Zhu Y, Sun X, He C, Cai M, Ma J, Wang Y, Han S. SPOP promotes CDCA5 degradation to regulate prostate cancer progression via the AKT pathway. Neoplasia 2021; 23:1037-1047. [PMID: 34509929 PMCID: PMC8435818 DOI: 10.1016/j.neo.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 12/02/2022]
Abstract
The E3 ubiquitin ligase adaptor Speckle-type POZ protein (SPOP) plays an important tumour suppressor role in prostate cancers (PCa), with mutation rate up to 15%. However, how SPOP mutations regulate prostate tumorigenesis remains elusive. Here, we report the identification of cell division cycle associated 5 (CDCA5) as a SPOP substrate. We found that SPOP interacts with CDCA5 and promotes its polyubiquitin degradation in a degron-dependent manner. This effect was greatly impaired by introducing PCa associated SPOP mutations. Importantly, we found that CDCA5 was essential for PCa cells to survive and proliferate. CDCA5 depletion in PCa cells led to cessation of proliferation, G2M arrest, severe sister chromatid aggregation disturbance, and apoptosis. we also found that CDCA5 knockdown decreased the protein expression of p-GSK3β, increased the activity of caspase-3, caspase-9, and the Bax/Bcl-2 ratio. Besides, we confirmed that CDCA5 interrupted cancer cell behavior via the AKT pathway. In contrast, silencing SPOP or overexpressing CDCA5 increased cell proliferation. Consistently, depleting SPOP along with CDCA5, or overexpressing CDCA5 along with SPOP also caused the growth of cells repressed. Consistent with the functional role of CDCA5, the mRNA and protein levels of CDCA5 were significantly increased in PCa, compared to normal tissues, and its high expression was associated with more severe lymph node metastasis, higher Gleason score, and poorer prognosis. Together, our data showed that SPOP plays a crucial role in inhibiting tumorigenesis and partly achieved this by promoting the degradation of oncoprotein CDCA5.
Collapse
Affiliation(s)
- Zhenzhen Luo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Zhu
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Sun
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenchen He
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengjiao Cai
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinlu Ma
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
50
|
Kawasumi R, Abe T, Psakhye I, Miyata K, Hirota K, Branzei D. Vertebrate CTF18 and DDX11 essential function in cohesion is bypassed by preventing WAPL-mediated cohesin release. Genes Dev 2021; 35:1368-1382. [PMID: 34503989 PMCID: PMC8494208 DOI: 10.1101/gad.348581.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 01/26/2023]
Abstract
The alternative PCNA loader containing CTF18-DCC1-CTF8 facilitates sister chromatid cohesion (SCC) by poorly defined mechanisms. Here we found that in DT40 cells, CTF18 acts complementarily with the Warsaw breakage syndrome DDX11 helicase in mediating SCC and proliferation. We uncover that the lethality and cohesion defects of ctf18 ddx11 mutants are associated with reduced levels of chromatin-bound cohesin and rescued by depletion of WAPL, a cohesin-removal factor. On the contrary, high levels of ESCO1/2 acetyltransferases that acetylate cohesin to establish SCC do not rescue ctf18 ddx11 phenotypes. Notably, the tight proximity of sister centromeres and increased anaphase bridges characteristic of WAPL-depleted cells are abrogated by loss of both CTF18 and DDX11 The results reveal that vertebrate CTF18 and DDX11 collaborate to provide sufficient amounts of chromatin-loaded cohesin available for SCC generation in the presence of WAPL-mediated cohesin-unloading activity. This process modulates chromosome structure and is essential for cellular proliferation in vertebrates.
Collapse
Affiliation(s)
- Ryotaro Kawasumi
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Takuya Abe
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ivan Psakhye
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
| | - Keiji Miyata
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Dana Branzei
- International Foundation of Medicine (IFOM), the Fondazione Italiana per la Ricerca sul Cancro (FIRC) Institute for Molecular Oncology Foundation, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia 27100, Italy
| |
Collapse
|