1
|
Peterson SM, O’Byrne TJ, Brennan PC, Jannetto PJ, Pavelko KD, Lewallen DG, Vassilaki M, Maradit Kremers H. Cross-sectional association between systemic metal concentrations and immune markers in patients with total joint arthroplasty. Front Immunol 2023; 14:1130209. [PMID: 36993965 PMCID: PMC10040609 DOI: 10.3389/fimmu.2023.1130209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Total joint arthroplasty (TJA) implants are composed of metal components. Although they are regarded safe, the long-term immunological effects of chronic exposure to the specific implant materials are unknown. We recruited 115 hip and/or knee TJA patients (mean age 68 years) who provided a blood draw for measurement of chromium, cobalt, titanium concentrations, inflammatory markers and systemic distribution of immune cells. We examined differences between the immune markers and the systemic concentrations of chromium, cobalt and titanium. CD66-b neutrophils, early natural killer cells (NK), and eosinophils were present in higher percentages in patients with chromium and cobalt concentrations greater than the median. The opposite pattern was observed with titanium where the percentages of CD66-b neutrophils, early NK, and eosinophils were higher in patients with undetectable titanium. Cobalt concentrations were positively correlated with a higher percentage of gamma delta T cells. Both chromium and cobalt concentrations were positively correlated with higher percentages of plasmablasts. Titanium concentrations were positively correlated with higher CD4 effector memory T cells, regulatory T cell count and Th1 CD4 helper cells. In this exploratory study, we observed altered distribution of immune cells in TJA patients with elevated systemic metal concentrations. Although these correlations were not strong, these exploratory findings warrant further investigation into the role of increased metals circulating in blood and its role in immune modulation.
Collapse
Affiliation(s)
- Stephanie M. Peterson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Thomas J. O’Byrne
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Peter C. Brennan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Paul J. Jannetto
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, MN, United States
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - David G. Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Hilal Maradit Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Hilal Maradit Kremers,
| |
Collapse
|
2
|
Srivastava AK, Snapper DM, Zheng J, Yildrim BS, Srivastava S, Wood SC. Examining the role of nickel and NiTi nanoparticles promoting inflammation and angiogenesis. J Immunotoxicol 2022; 19:61-73. [PMID: 35901199 DOI: 10.1080/1547691x.2022.2080307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nickel titanium (NiTi, or Nitinol) alloy is used in several biomedical applications, including cardiac, peripheral vascular, and fallopian tube stents. There are significant biocompatibility issues of metallic implants to nickel ions and nano-/micro-sized alloy particles. Our laboratories have recently shown that microscale CoCr wear particles from metal-on-metal hips crosslink with the innate immune signaling Toll-like receptor 4 (TLR4), prompting downstream signaling that results in interleukin (IL)-1β and IL-8 gene expression. In vivo, NiTi alloy can also generate wear particles on the nanoscale (NP) that have thus far not been studied for their potential to induce inflammation and angiogenesis that can, in turn, contribute to implant (e.g. stent) failure. Earlier studies by others demonstrated that nickel could induce contact hypersensitivity by crosslinking the human, but not the mouse, TLR4. In the present work, it is demonstrated that NiCl2 ions and NiTi nanoparticles induce pro-inflammatory and pro-angiogenic cytokine/chemokine expression in human endothelial and monocyte cell lines in vitro. These observations prompt concerns about potential mechanisms for stent failure. The data here showed a direct correlation between intracellular uptake of Ni2+ and generation of reactive oxygen species. To determine a role for nickel and NiTi nanoparticles in inducing angiogenesis in vivo, 1-cm silicone angioreactors were implanted subcutaneously into athymic (T-cell-deficient) nude mice. The angioreactors contained Matrigel (a gelatinous protein mixture that resembles extracellular matrix) in addition to one of the following: PBS (negative control), VEGF/FGF-2 (positive control), NiCl2, or NiTi NP. The implantation of angioreactors represents a potential tool for quantification of angiogenic potentials of medical device-derived particles and ions in vivo. By this approach, NiTi NP were found to be markedly angiogenic, while Ni2+ was less-so. The angioreactors may provide a powerful tool to examine if debris shed from medical devices may promote untoward biological effects.
Collapse
Affiliation(s)
- Anup K Srivastava
- Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Dustin M Snapper
- Department of Biochemistry and Molecular Biology, Biochemistry, Uniform Health University, Bethesda, MD, USA
| | - Jiwen Zheng
- Children's National Medical Center, Washington, DC, USA
| | | | | | - Steven C Wood
- Center for Devices and Radiological Health, FDA, Silver Spring, MD, USA
| |
Collapse
|
3
|
Kassarjian A, Isern-Kebschull J, Tomas X. Postoperative Hip MR Imaging. Magn Reson Imaging Clin N Am 2022; 30:673-688. [DOI: 10.1016/j.mric.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Yu B, Hu J, Li Q, Wang F. CircMAP3K11 Contributes to Proliferation, Apoptosis and Migration of Human Periodontal Ligament Stem Cells in Inflammatory Microenvironment by Regulating TLR4 via miR-511 Sponging. Front Pharmacol 2021; 12:633353. [PMID: 33679417 PMCID: PMC7930627 DOI: 10.3389/fphar.2021.633353] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Growing number of studies regarding the role of circRNAs in the development of various diseases have emerged in recent years, but the role of circRNAs in periodontitis pathogenesis remains obscure. Human periodontal ligament stem cells (hPDLSCs) play a critical role in periodontal remodeling, regeneration and repair processes, and their regenerative capacity could be prohibited in local periodontal inflammatory microenvironment. Herein, we sought to uncover the molecular mechanisms of periodontitis pathogenesis by investigating the role of circMAP3K11 (hsa_circ_002284) for regenerative capacity of hPDLSCs under an inflammatory condition. The hPDLSCs isolated from periodontitis patients were used as a cell model of inflammatory microenvironment to study the effect of the circMAP3K11/miR-511-3p/TLR4 axis on the proliferation, apoptosis and migration of hPDLSCs under inflammatory conditions. Compared to the periodontal tissues from normal subjects, those from periodontitis patients exhibited higher expression levels of circMAP3K11 and TLR4, and lower expression level of miR-511-3p. Both the expressions of circMAP3K11 and TLR4 were negatively correlated with the expressions of miR-511-3p in periodontitis. In vitro studies demonstrated that circMAP3K11 is capable of enhancing hPDLSCs proliferation and migration, and reducing the apoptosis of hPDLSCs. We also found that circMAP3K11 could up-regulate the expression of transcription factors that are closely related to periodontal regeneration (Runx2, OSX, ATF4, and BSP). RT-PCR and western blot showed that the inhibitory role of miR-511-3p on TLR4 expression could be reversed by circMAP3K11, which was in line with the results of bioinformatics tools and luciferase reporter assay. Meanwhile, both in vitro and in vivo studies indicated that circMAP3K11 could reverse the effects of miR-511-3p in periodontitis, which further confirmed that circMAP3K11 functioned as a ‘sponge’ of miR-511-3p to positively regulate the expression of TLR4. Taken together, our study preliminarily uncovered a circMAP3K11/miR-511-3p/TLR4 axis that regulates the function of hPDLSCs in periodontitis, providing novel insight and scientific base in the treatment of periodontal tissue regeneration based on stem cells.
Collapse
Affiliation(s)
- Bohan Yu
- Department of Periodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Jiahui Hu
- Department of Periodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Qin Li
- Department of Periodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Fang Wang
- Department of Periodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
5
|
Isern-Kebschull J, Tomas X, García-Díez AI, Morata L, Moya I, Ríos J, Soriano A. Value of multidetector computed tomography for the differentiation of delayed aseptic and septic complications after total hip arthroplasty. Skeletal Radiol 2020; 49:893-902. [PMID: 31900512 DOI: 10.1007/s00256-019-03355-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The differentiation between delayed aseptic and septic complications of total hip arthroplasty is crucial to allow appropriate surgical planning and timely antimicrobial treatment. The aim of this study was to investigate the utility of multidetector computed tomography (CT) findings to diagnose aseptic mechanical loosening, granulomatous reaction, and periprosthetic joint infection in patients who underwent total hip arthroplasty before revision surgery. MATERIALS AND METHODS Ninety-six consecutive patients with a clinical suspicion of periprosthetic complications underwent revision surgery over an 8-year period. All patients had been evaluated preoperatively using multidetector CT without contrast media. Two blinded musculoskeletal radiologists reviewed multidetector CT images, including periprosthetic soft-tissue accumulation, prosthetic acetabular malposition, periprosthetic osteolysis, enlarged iliac lymph nodes, and heterotopic ossification. Risk factors for aseptic and septic loosening were identified using multivariate analysis. RESULTS Multidetector CT-related variables independently associated with periprosthetic joint infection were high periprosthetic soft-tissue accumulation, periprosthetic osteolysis without expansile periosteal reaction and enlarged iliac lymph nodes. On the other hand, the absence of the following radiological signs: low or high periprosthetic soft-tissue accumulation, mild or severe periprosthetic osteolysis, and enlarged iliac lymph nodes, were predictors of aseptic mechanical loosening. Low periprosthetic soft-tissue accumulation, severe periprosthetic osteolysis with expansile periosteal reaction, and mild acetabular malposition were significant variables associated with granulomatosis. CONCLUSION Multidetector CT findings are useful to differentiate between aseptic and septic complications before revision surgery. The presence of osteolysis with expansile periosteal reaction appeared to be a time-dependent variable.
Collapse
Affiliation(s)
- Jaime Isern-Kebschull
- Department of Radiology, Hospital Clinic, University of Barcelona, C/ Villarroel 170, 08036, Barcelona, Spain.
| | - Xavier Tomas
- Department of Radiology, Hospital Clinic, University of Barcelona, C/ Villarroel 170, 08036, Barcelona, Spain
| | - Ana Isabel García-Díez
- Department of Radiology, Hospital Clinic, University of Barcelona, C/ Villarroel 170, 08036, Barcelona, Spain
| | - Laura Morata
- Department of Infectious Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ignacio Moya
- Department of Traumatology and Orthopedic Surgery, University of Barcelona, Barcelona, Spain
| | - José Ríos
- Statistical Unit, Statistics and Methodological Support Service, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Laumonier T, Ruffieux E, Paccaud J, Kindler V, Hannouche D. In vitro evaluation of human myoblast function after exposure to cobalt and chromium ions. J Orthop Res 2020; 38:1398-1406. [PMID: 31883135 DOI: 10.1002/jor.24579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/23/2019] [Indexed: 02/04/2023]
Abstract
The replacement of a native hip joint by a metal-on-metal prosthesis may induce deleterious inflammatory side effects that are associated with the release of wear particles and metal ions. These events are referred to the adverse reaction to metal debris (ARMD) and the adverse local tissue reaction (ALTR). While wear particles seem involved in ARMD, the role of metal ions in ALTR and their impact on myoblasts, located in the prosthesis vicinity, has not been fully identified. To clarify this issue we investigated, using an in vitro culture system, the effect of cobalt and/or chromium ions (Co2+ and/or Cr3+ ) on human myoblast proliferation, cellular differentiation, and inflammatory marker expression. Freshly isolated human myoblasts were cultured in media supplemented with graded concentrations of Co2+ and/or Cr3+ . Co2+ induced a concentration-dependent decrease of both myoblast viability and myogenic differentiation while Cr3+ did not. Co2+ or Co2+ /Cr3+ also induced the upregulation of ICAM-1, whereas HLA-DR expression was unaffected. Moreover, allogenic monocytes induced the synergistic increase of Co2+ -induced ICAM-1 expression. We also found that Co2+ stabilized HIF-1α and increased TLR4, tumor necrosis factor-alpha (TNF-α), and interleukin 1β (IL-1β) expression in a dose and time-dependent manner in human myoblasts. This study showed that Co2+ , but not Cr3+ , was toxic toward myoblasts and induced, in the surviving cells, expression of inflammatory markers such as ICAM-1, TLR4, TNF-α, and IL-1β. This suggests that Co2+ , most efficiently in the presence of monocytes, may be a key inducer of ALTR, which may, if severe and long-lasting, eventually result in prosthesis loosening.
Collapse
Affiliation(s)
- Thomas Laumonier
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Etienne Ruffieux
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Joris Paccaud
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Vincent Kindler
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Didier Hannouche
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
7
|
Liu G, Wang X, Zhou X, Zhang L, Mi J, Shan Z, Huang B, Chen Z, Chen Z. Modulating the cobalt dose range to manipulate multisystem cooperation in bone environment: a strategy to resolve the controversies about cobalt use for orthopedic applications. Theranostics 2020; 10:1074-1089. [PMID: 31938052 PMCID: PMC6956813 DOI: 10.7150/thno.37931] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
The paradoxical effect of cobalt on biological processes has aroused controversy regarding the application of cobalt-based biomaterials in bone regeneration. Tuning the dose range of cobalt ions may be a valid strategy to resolve the controversies about cobalt use for orthopedic applications. Recent progress in bone biology has highlighted the effects of multisystem cooperation (especially of osteoimmune, skeletal, and vascular systems) on bone dynamics. Before the application of this dose-tuning strategy, a deeper understanding of its dose-dependent effect on the cooperation of osteoimmune, skeletal, and vascular systems is needed. However, due to the difficulties with investigating the interaction of multiple systems in vitro, the multimodal effects of cobalt on bone homeostasis were investigated here, in an in vivo scenario. Methods: In vitro CCK8 assay and cytoskeletal staining were preformed to detecte the cell cytotoxic reaction in response to 0.1-100 ppm cobalt stimulation. Blood clot containing 0.1 to 5 ppm of cobalt were implanted in the rat calvarium defect. The gene profile of osteoimmune, skeletal, and vascular system as well as the systemic toxicity were evaluated via RT-qPCR, histological analysis and inductively coupled plasma mass spectrometry. The bone regeneration, osteoclastogenesis and vascularization were assessed by micro-ct and histological analysis. Results: Cobalt concentration below 5 ppm did not cause cell toxicity in vitro. No systemic toxicity was observed in vivo at 0.1-5 ppm cobalt concentration. It was found that the early cytokine profiles of the multiple interacting systems were different in response to different cobalt doses. Most of the anti-inflammatory, osteogenic, and proangiogenic factors were upregulated in the 1 ppm cobalt group at the early stage. In the late stage, the 1ppm group was most superior in bone regenerative effect while the 5 ppm group displayed the strongest osteoclastogenesis activity. Conclusions: The 1 ppm concentration of cobalt yielded the most favorable cooperation of the osteoimmune, skeletal, and vascular systems and subsequently optimal bone regeneration outcomes. Tuning the cobalt dose range to manipulate the cooperation of osteoimmune, skeletal, and vascular systems could be a promising and valuable strategy to prevent paradoxical effects of cobalt while preserving its beneficial effects.
Collapse
Affiliation(s)
- Guanqi Liu
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xiaoshuang Wang
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xuan Zhou
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Linjun Zhang
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Jiaomei Mi
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhengjie Shan
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Baoxin Huang
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhuofan Chen
- Zhujiang New Town Clinic, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zetao Chen
- Institute of Stomatology and Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
8
|
Dukhinova MS, Prilepskii AY, Shtil AA, Vinogradov VV. Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1631. [PMID: 31744137 PMCID: PMC6915518 DOI: 10.3390/nano9111631] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
Macrophages are components of the innate immune system that control a plethora of biological processes. Macrophages can be activated towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the cue; however, polarization may be altered in bacterial and viral infections, cancer, or autoimmune diseases. Metal (zinc, iron, titanium, copper, etc.) oxide nanoparticles are widely used in therapeutic applications as drugs, nanocarriers, and diagnostic tools. Macrophages can recognize and engulf nanoparticles, while the influence of macrophage-nanoparticle interaction on cell polarization remains unclear. In this review, we summarize the molecular mechanisms that drive macrophage activation phenotypes and functions upon interaction with nanoparticles in an inflammatory microenvironment. The manifold effects of metal oxide nanoparticles on macrophages depend on the type of metal and the route of synthesis. While largely considered as drug transporters, metal oxide nanoparticles nevertheless have an immunotherapeutic potential, as they can evoke pro- or anti-inflammatory effects on macrophages and become essential for macrophage profiling in cancer, wound healing, infections, and autoimmunity.
Collapse
Affiliation(s)
- Marina S. Dukhinova
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
| | | | - Alexander A. Shtil
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
- Blokhin National Medical Center of Oncology, Moscow 115478, Russia
| | | |
Collapse
|
9
|
Han C, Yang J, Song P, Wang X, Shi W. Effects of Salvia miltiorrhiza Polysaccharides on Lipopolysaccharide-Induced Inflammatory Factor Release in RAW264.7 Cells. J Interferon Cytokine Res 2019; 38:29-37. [PMID: 29328882 DOI: 10.1089/jir.2017.0087] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study investigated the anti-inflammatory effects and possible underlying mechanisms of Salvia miltiorrhiza polysaccharides (SMP) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The cytotoxicity of SMP was detected by the MTT method. The morphological change of RAW264.7 was observed by Diff-Quik staining. Enzyme-linked immunosorbent assay was used to evaluate the production of cytokines in LPS-induced RAW264.7 cells. The nitric oxide (NO) kit assay detected the NO release from LPS-induced RAW264.7 cells. Real-time polymerase chain reaction was used to detect the transcriptions of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), inducible NO synthase (iNOS), and cyclooxygenase (COX)-2 in LPS-induced RAW264.7 cells. The protein expression of nuclear NF-κB was measured by Western blot. The results showed that the safe medication range of SMP was less than 3 mg/mL. Compared with the LPS model group, SMP (2, 1, and 0.5 mg/mL) improved the degree of cell deformation and reduced the amount of pseudopodia, and statistically reduced the secretions of cytokines in cells induced by LPS (P < 0.01) at different time points. SMP significantly inhibited the mRNA transcriptions of TNF-α, IL-6, iNOS, and COX-2 and the protein expressions of NF-κB, p-p65, and p-IκBa. In conclusion, this study preliminarily proved the protective effect of SMP on LPS-induced RAW264.7 macrophage. Its mechanism might be related to inhibition of NF-κB signal pathway and the gene expressions and secretion of cytokines.
Collapse
Affiliation(s)
- Chao Han
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Jinkai Yang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Pengyan Song
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei , Baoding, China
| |
Collapse
|
10
|
Jonitz-Heincke A, Sellin ML, Seyfarth A, Peters K, Mueller-Hilke B, Fiedler T, Bader R, Klinder A. Analysis of Cellular Activity Short-Term Exposure to Cobalt and Chromium Ions in Mature Human Osteoblasts. MATERIALS 2019; 12:ma12172771. [PMID: 31466377 PMCID: PMC6747798 DOI: 10.3390/ma12172771] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 01/19/2023]
Abstract
In aseptic loosening of endoprosthetic implants, metal particles, as well as their corrosion products, have been shown to elicit a biological response. Due to different metal alloy components, the response may vary depending on the nature of the released corrosion product. Our study aimed to compare the biological effects of different ions released from metal alloys. In order to mimic the corrosion products, different metal salts (CoCl2, NiCl2 and CrCl3 × 6H2O) were dissolved and allowed to equilibrate. Human osteoblasts were incubated with concentrations of 10 µM to 500 µM metal salt solutions under cell culture conditions, whereas untreated cells served as negative controls. Cells exposed to CoCr28Mo6 particles served as positive controls. The cell activity and expression of osteogenic differentiation and pro-osteolytic mediators were determined. Osteoblastic activity revealed concentration- and material-dependent influences. Collagen 1 synthesis was reduced after treatment with Co(2+) and Ni(2+). Additionally, exposure to these ions (500 µM) resulted in significantly reduced OPG protein synthesis, whereas RANKL as well as IL-6 and IL-8 secretion were increased. TLR4 mRNA was significantly induced by Co(2+) and CoCr28Mo6 particles. The results demonstrate the pro-osteolytic capacity of metal ions in osteoblasts. Compared to CoCr28Mo6 particles, the results indicated that metal ions intervene much earlier in inflammatory processes.
Collapse
Affiliation(s)
- Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Marie-Luise Sellin
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057 Rostock, Germany
| | - Anika Seyfarth
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057 Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Brigitte Mueller-Hilke
- Institute for Immunology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
| | - Tomas Fiedler
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057 Rostock, Germany
| | - Annett Klinder
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, 18057 Rostock, Germany
| |
Collapse
|
11
|
Yu B, Li Q, Zhou M. LPS‑induced upregulation of the TLR4 signaling pathway inhibits osteogenic differentiation of human periodontal ligament stem cells under inflammatory conditions. Int J Mol Med 2019; 43:2341-2351. [PMID: 31017254 PMCID: PMC6488177 DOI: 10.3892/ijmm.2019.4165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
Toll‑like receptor 4 (TLR4) is a transmembrane receptor responsible for the activation of a number of signal transduction pathways. Despite its involvement in inflammatory processes, the regulation of TLR4 signaling in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions remains to be fully elucidated. The present study aimed to clarify the regulatory mechanisms of the TLR4 signaling pathway and its role in the differentiation of hPDLSCs under inflammatory conditions. hPDLSCs from the periodontal tissues of healthy subjects and patients with periodontitis were identified by analyzing their cell surface marker molecules, and their osteogenic and adipogenic differentiation abilities. To determine the effect of TLR4 signaling on osteogenic and adipogenic differentiation under inflammatory conditions, cells were challenged with TLR4 agonist and antagonist under pluripotent differentiation conditions. Cell proliferation, apoptosis and migration were then determined using appropriate methods. The alkaline phosphatase (ALP) activity, Alizarin Red staining, Oil red O staining and relative gene and protein levels expression were also determined. The results showed that lipopolysaccharide (LPS)‑induced inflammation inhibited cell proliferation and migration, promoted cell apoptosis and affected the cell cycle. Under inflammatory conditions, the activation of TLR4 decreased the activity of ALP and the expression of osteogenic markers, including osteocalcin, Runt‑related transcription factor 2 and collagen I, compared with the control group, but increased the expression of adipogenesis‑related genes poly (ADP‑ribose) polymerase γ and lipoprotein lipase. The activation of TLR4 also induced the expression of proinflammatory cytokines interleukin‑1β, tumor necrosis factor‑α, nuclear factor‑κBP65 and TLR4, compared with that in the control group and the TLR4 antagonist group. The findings showed that LPS‑induced upregulation of the TLR4 signaling pathway inhibited osteogenic differentiation and induced adipogenesis of the hPDLSCs under inflammatory conditions. The present study provided a novel understanding of the physiopathology of periodontitis, and a novel avenue for targeted treatments based on stem cell regeneration.
Collapse
Affiliation(s)
- Bohan Yu
- Department of Cosmetic Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Qin Li
- Department of Cosmetic Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Min Zhou
- Department of Cosmetic Dentistry, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| |
Collapse
|
12
|
Mishra PK, Palma M, Buechel B, Moore J, Davra V, Chu N, Millman A, Hallab NJ, Kanneganti TD, Birge RB, Behrens EM, Rivera A, Beebe KS, Benevenia J, Gause WC. Sterile particle-induced inflammation is mediated by macrophages releasing IL-33 through a Bruton's tyrosine kinase-dependent pathway. NATURE MATERIALS 2019; 18:289-297. [PMID: 30664693 PMCID: PMC6581031 DOI: 10.1038/s41563-018-0271-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/07/2018] [Indexed: 05/04/2023]
Abstract
Initiation of the innate sterile inflammatory response that can develop in response to microparticle exposure is little understood. Here, we report that a potent type 2 immune response associated with the accumulation of neutrophils, eosinophils and alternatively activated (M2) macrophages was observed in response to sterile microparticles similar in size to wear debris associated with prosthetic implants. Although elevations in interleukin-33 (IL-33) and type 2 cytokines occurred independently of caspase-1 inflammasome signalling, the response was dependent on Bruton's tyrosine kinase (BTK). IL-33 was produced by macrophages and BTK-dependent expression of IL-33 by macrophages was sufficient to initiate the type 2 response. Analysis of inflammation in patient periprosthetic tissue also revealed type 2 responses under aseptic conditions in patients undergoing revision surgery. These findings indicate that microparticle-induced sterile inflammation is initiated by macrophages activated to produce IL-33. They further suggest that both BTK and IL-33 may provide therapeutic targets for wear debris-induced periprosthetic inflammation.
Collapse
Affiliation(s)
- Pankaj K. Mishra
- Department of Medicine, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Center for Immunity and Inflammation, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Correspondence should be addressed to W.C.G ()
| | - Mark Palma
- Department of Medicine, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Center for Immunity and Inflammation, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Correspondence should be addressed to W.C.G ()
| | - Bonnie Buechel
- Department of Orthopaedic Surgery, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - Jeffrey Moore
- Department of Orthopaedic Surgery, Seton Hall University – St. Joseph’s Regional Medical Center, Paterson, NJ, 07503
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - Niansheng Chu
- Division of Pediatric Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Ariel Millman
- Department of Medicine, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Center for Immunity and Inflammation, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - Nadim J. Hallab
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | | | - Raymond B. Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Cancer Center, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - Edward M. Behrens
- Division of Pediatric Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Amariliz Rivera
- Center for Immunity and Inflammation, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - Kathleen S. Beebe
- Center for Immunity and Inflammation, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Department of Orthopaedic Surgery, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - Joseph Benevenia
- Department of Orthopaedic Surgery, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| | - William C. Gause
- Department of Medicine, Rutgers – New Jersey Medical School, Newark, NJ, 07103
- Center for Immunity and Inflammation, Rutgers – New Jersey Medical School, Newark, NJ, 07103
| |
Collapse
|
13
|
Tello-Olea M, Rosales-Mendoza S, Campa-Córdova AI, Palestino G, Luna-González A, Reyes-Becerril M, Velazquez E, Hernandez-Adame L, Angulo C. Gold nanoparticles (AuNP) exert immunostimulatory and protective effects in shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:756-767. [PMID: 30368027 DOI: 10.1016/j.fsi.2018.10.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles (AuNP) stimulate immune responses in mammals but they have not been tested in species of relevance in aquaculture. In this study the immunostimulant and protective potential of orally administered AuNP against V. parahaemolyticus, the causative agent of Acute Hepatopancreatic Necrosis Disease, was determined in shrimp. Synthetized AuNP (18.57 ± 4.37 nm) were moderately dispersed with a negative ζ potential of -10.3 ± 0.208 mV (pH = 7). AuNP were administered (single dose) at 0.2, 2, and 20 μg/g feed in shrimp. Hemolymph samples were withdrawn daily for 6 days. Hemolymph or hemocytes were used to determine total hemocyte counts, immune-related enzymatic activities, and expression of immune-relevant genes. Hepatopancreas was sampled for the analysis of AuNP biodistribution and histological examination. Survival was recorded daily. No mortality or toxicity signs in hepatopancreas were found. AuNP were detected in hepatopancreas. Early (24-48 h) immunostimulation was mainly related to immune gene up-regulation. Upon a challenge with V. parahaemolyticus, survival was higher (80%) and histopathological damages were lower in shrimp treated with the 2 μg/g dose when compared to the control. Therefore orally administered AuNP are proposed as immunostimulants that protect shrimp against V. parahaemolyticus infection.
Collapse
Affiliation(s)
- M Tello-Olea
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - S Rosales-Mendoza
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, Mexico
| | - A I Campa-Córdova
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - G Palestino
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, Mexico
| | - A Luna-González
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes #250, Guasave, Sinaloa, Mexico
| | - M Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - E Velazquez
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - L Hernandez-Adame
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico; CONACyT-Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico
| | - C Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S, 23090, Mexico.
| |
Collapse
|
14
|
Ng CT, Yu LE, Ong CN, Bay BH, Baeg GH. The use of Drosophila melanogaster as a model organism to study immune-nanotoxicity. Nanotoxicology 2018; 13:429-446. [DOI: 10.1080/17435390.2018.1546413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng Teng Ng
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Liya E Yu
- Department of Civil and Environmental, National University of Singapore, Singapore, Singapore
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Label-Free Monitoring of Uptake and Toxicity of Endoprosthetic Wear Particles in Human Cell Cultures. Int J Mol Sci 2018; 19:ijms19113486. [PMID: 30404169 PMCID: PMC6274933 DOI: 10.3390/ijms19113486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
The evaluation of the biological effects of endoprosthetic wear particles on cells in vitro relies on a variety of test assays. However, most of these methods are susceptible to particle-induced interferences; therefore, label-free testing approaches emerge as more reliable alternatives. In this study, impedance-based real-time monitoring of cellular viability and metabolic activity were performed following exposure to metallic and ceramic wear particles. Moreover, label-free imaging of particle-exposed cells was done by high-resolution darkfield microscopy (HR-ODM) and field emission scanning electron microscopy (FESEM). The isolated human fibroblasts were exposed to CoCr28Mo6 and alumina matrix composite (AMC) ceramic particles. HR-ODM and FESEM revealed ingested particles. For impedance measurements, cells were seeded on gold-plated microelectrodes. Cellular behavior was monitored over a period of 48 h. CoCr28Mo6 and AMC particle exposure affected cell viability in a concentration-dependent manner, i.e., 0.01 mg/mL particle solutions led to small changes in cell viability, while 0.05 mg/mL resulted in a significant reduction of viability. The effects were more pronounced after exposure to CoCr28Mo6 particles. The results were in line with light and darkfield microcopy observations indicating that the chosen methods are valuable tools to assess cytotoxicity and cellular behavior following exposure to endoprosthetic wear particles.
Collapse
|
16
|
Song Y, Ichinose T, Morita K, Yoshida Y. The toll like receptor 4-myeloid differentiation factor 88 pathway is essential for particulate matter-induced activation of CD4-positive cells. J Appl Toxicol 2018; 39:354-364. [PMID: 30289175 DOI: 10.1002/jat.3726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 01/23/2023]
Abstract
Asian sand dust (ASD), a type of particulate matter (PM) found in Asia, can be transported to East Asia. We recently found that acute splenic inflammation is induced by ASD in mouse models. In this study, we examined the effect of sub-chronic ASD exposure on mouse immune cells. Mice were intratracheally administered ASD once every 2 weeks for 8 weeks and killed 24 hours after the final administration. Wild-type (WT) mice showed increased cell viability after ASD administration. In contrast, ASD administration induced splenocyte activation in toll-like receptor (TLR)2-/- , but not TLR4-/- mice. Furthermore, concanavalin A-induced interleukin-2 production increased after ASD administration in WT and TLR2-/- mice, but not in TLR4-/- or myeloid differentiation factor (MyD)88-/- mice. Immunoblotting demonstrated that nuclear factor κB (NF-κB) was activated in WT mice, but not in TLR4-/- or MyD88-/- mice. The NF-κB-dependent gene products CDK2 and intercellular cell adhesion molecule-1 were upregulated upon ASD administration in WT mice, but not in TLR4-/- or MyD88-/- mice. Furthermore, the particles themselves, rather than particle constituents, activated NF-κB in CD4-positive cells through the TLR4 or MyD88 pathway. Taken together, these results indicate that particle-induced splenic inflammation occurs via TLR4-MyD88 signaling.
Collapse
Affiliation(s)
- Yuan Song
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu-shi, Fukuoka, 807-8555, Japan
- Department of Clinical Laboratory, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Notsuharu, Oita, 870-1201, Japan
| | - Kentaro Morita
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu-shi, Fukuoka, 807-8555, Japan
| |
Collapse
|
17
|
Xu J, Yang J, Nyga A, Ehteramyan M, Moraga A, Wu Y, Zeng L, Knight MM, Shelton JC. Cobalt (II) ions and nanoparticles induce macrophage retention by ROS-mediated down-regulation of RhoA expression. Acta Biomater 2018; 72:434-446. [PMID: 29649639 PMCID: PMC5953279 DOI: 10.1016/j.actbio.2018.03.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/15/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
Histological assessments of synovial tissues from patients with failed CoCr alloy hip prostheses demonstrate extensive infiltration and accumulation of macrophages, often loaded with large quantities of particulate debris. The resulting adverse reaction to metal debris (ARMD) frequently leads to early joint revision. Inflammatory response starts with the recruitment of immune cells and requires the egress of macrophages from the inflamed site for resolution of the reaction. Metal ions (Co2+ and Cr3+) have been shown to stimulate the migration of T lymphocytes but their effects on macrophages motility are still poorly understood. To elucidate this, we studied in vitro and in vivo macrophage migration during exposure to cobalt and chromium ions and nanoparticles. We found that cobalt but not chromium significantly reduces macrophage motility. This involves increase in cell spreading, formation of intracellular podosome-type adhesion structures and enhanced cell adhesion to the extracellular matrix (ECM). The formation of podosomes was also associated with the production and activation of matrix metalloproteinase-9 (MMP9) and enhanced ECM degradation. We showed that these were driven by the down-regulation of RhoA signalling through the generation of reactive oxygen species (ROS). These novel findings reveal the key mechanisms driving the wear/corrosion metallic byproducts-induced inflammatory response at non-toxic concentrations. Statement of significance Adverse tissue responses to metal wear and corrosion products from CoCr alloy implants remain a great challenge to surgeons and patients. Macrophages are the key regulators of these adverse responses to the ions and debris generated. We demonstrated that cobalt, rather than chromium, causes macrophage retention by restructuring the cytoskeleton and inhibiting cell migration via ROS production that affects Rho Family GTPase. This distinctive effect of cobalt on macrophage behaviour can help us understand the pathogenesis of ARMD and the cellular response to cobalt based alloys, which provide useful information for future implant design and biocompatibility testing.
Collapse
Affiliation(s)
- Jing Xu
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Junyao Yang
- Department of Laboratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Agata Nyga
- Division of Surgery and Interventional Sciences, University College London, London NW3 2QG, United Kingdom; Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Mazdak Ehteramyan
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom
| | - Ana Moraga
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom
| | - Yuanhao Wu
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Lingfang Zeng
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom.
| | - Martin M Knight
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| | - Julia C Shelton
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| |
Collapse
|
18
|
Summer B, Ständer S, Thomas P. Cytokine patterns in vitro
, in particular IL-5/IL-8 ratio, to detect patients with nickel contact allergy. J Eur Acad Dermatol Venereol 2018. [DOI: 10.1111/jdv.14931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- B. Summer
- Department of Dermatology and Allergology; Ludwig-Maximilians-University; Munich Germany
| | - S. Ständer
- Department of Dermatology and Allergology; Ludwig-Maximilians-University; Munich Germany
| | - P. Thomas
- Department of Dermatology and Allergology; Ludwig-Maximilians-University; Munich Germany
| |
Collapse
|
19
|
Anjum SA, Lawrence H, Holland JP, Kirby JA, Deehan DJ, Tyson-Capper AJ. Effect of cobalt-mediated Toll-like receptor 4 activation on inflammatory responses in endothelial cells. Oncotarget 2018; 7:76471-76478. [PMID: 27835611 PMCID: PMC5363524 DOI: 10.18632/oncotarget.13260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022] Open
Abstract
Cobalt-containing metal-on-metal hip replacements are associated with adverse reactions to metal debris (ARMD), including inflammatory pseudotumours, osteolysis, and aseptic implant loosening. The exact cellular and molecular mechanisms leading to these responses are unknown. Cobaltions (Co2+) activate human Toll-like receptor 4 (TLR4), an innate immune receptor responsible for inflammatory responses to Gram negative bacterial lipopolysaccharide (LPS). We investigated the effect of Co2+-mediated TLR4 activation on human microvascular endothelial cells (HMEC-1), focusing on the secretion of key inflammatory cytokines and expression of adhesion molecules. We also studied the role of TLR4 in Co2+-mediated adhesion molecule expression in MonoMac 6 macrophages. We show that Co2+ increases secretion of inflammatory cytokines, including IL-6 and IL-8, in HMEC-1. The effects are TLR4-dependent as they can be prevented with a small molecule TLR4 antagonist. Increased TLR4-dependent expression of intercellular adhesion molecule 1 (ICAM1) was also observed in endothelial cells and macrophages. Furthermore, we demonstrate for the first time that Co2+ activation of TLR4 upregulates secretion of a soluble adhesion molecule, sICAM-1, in both endothelial cells and macrophages. Although sICAM-1 can be generated through activity of matrix metalloproteinase-9 (MMP-9), we did not find any changes in MMP9 expression following Co2+ stimulation. In summary we show that Co2+ can induce endothelial inflammation via activation of TLR4. We also identify a role for TLR4 in Co2+-mediated changes in adhesion molecule expression. Finally, sICAM-1 is a novel target for further investigation in ARMD studies.
Collapse
Affiliation(s)
- Sami A Anjum
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Lawrence
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Northern Retrieval Centre, Freeman Hospital, Newcastle upon Tyne, UK
| | - James P Holland
- Department of Orthopaedics, Freeman Hospital, Newcastle upon Tyne, UK.,Northern Retrieval Centre, Freeman Hospital, Newcastle upon Tyne, UK
| | - John A Kirby
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David J Deehan
- Department of Orthopaedics, Freeman Hospital, Newcastle upon Tyne, UK.,Northern Retrieval Centre, Freeman Hospital, Newcastle upon Tyne, UK
| | | |
Collapse
|
20
|
Effects of wear particles of polyether-ether-ketone and cobalt-chromium-molybdenum on CD4- and CD8-T-cell responses. Oncotarget 2017. [PMID: 29541407 PMCID: PMC5834256 DOI: 10.18632/oncotarget.23757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
T-cells, second only to macrophages, are often considered as the potential cells involved in debris-related failure of arthroplasty. Here, we assessed the effects of particulate wear debris on T-cells and inflammatory reactions. Blood samples from 25 donors were incubated with polyether-ether-ketone (PEEK) and cobalt-chromium-molybdenum (CoCrMo) particles generated by custom cryo-milling and pulverization. The T-cell phenotypes were assessed using immunostaining and flow cytometry. For the in vivo study, 0.1 mL of each particle suspension (approximately 1.0 × 108 wear particles) was injected into murine knee joints; the synovium and spleen were collected one week after the operation for histological examination and immunofluorescence staining. The T-cell responses observed included low-level activation of Th1, Th2, Th17, and CD8+ pathways after 72 h of co-culture of the particles with peripheral blood mononuclear cells. Obvious CD8+ T-cell responses were observed in local synovium and peripheral spleen, with higher inflammatory cytokine expression in the CoCrMo group. Relatively minor cytotoxic and immunological reactions were observed in vitro, with PEEK and CoCrMo particle-induced immune responses being primarily mediated by CD8+ T-cells, rather than CD4+ T-cells, in vivo. Overall, PEEK wear particles induced fewer inflammatory reactions than CoCrMo particles. This study verified that PEEK was suitable as a potential alternative for metals in total knee replacements in terms of the immunological reaction to PEEK particles, and shed light on the effects of wear particles from polymer and metal-based implants on immune responses.
Collapse
|
21
|
Lang L, Zhang Z, Jing W, Hwang JS, Lee SC, Wang L. Identification of a novel toll gene (Shtoll3) from the freshwater crab Sinopotamon henanense and its expression pattern changes in response to cadmium followed by Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2017; 71:177-190. [PMID: 29017939 DOI: 10.1016/j.fsi.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Toll signaling is essential for expression of immune genes which are important for defense against bacterial, fungal and viral infections in invertebrates. Although several toll genes have been identified in the crustaceans, none of them has been investigated in freshwater crab Sinopotamon henanense. Moreover, the effect of cadmium (Cd) on toll gene expression has never been examined on the freshwater crabs which live in the sediments and are prone to heavy metal bioaccumulation. Our transcriptomic analysis of hepatopancreas tissue reveals that toll3 gene expression has been decreased when treated with Cd. In this study, we cloned one toll gene (hereby designated Shtoll3) from the crab. The full-length cDNA of Shtoll3 was 4488 bp, with an ORF of 3693 bp encoding a putative protein of 1230 amino acids, a 5'-untranslated region of 414 bp and a 3'-untranslated region of 781 bp. Phylogenetic analysis showed that ShToll3 was clustered into the group of DmToll8. The tissue distribution results showed that Shtoll3 was expressed widely in different tissues, with the highest in gills, and the lowest in hemocytes. Shtoll3 expression was down-regulated only in midguts after Aeromonas hydrophila infection. With Cd presence, Shtoll3 expression in response to A. hydrophila were up-regulated in midguts and gills, which was further confirmed by western blotting analysis. Moreover, the mRNA level of two antimicrobial peptides (AMPs) crustin and c-lys, which possibly responded to Cd and A. hydrophila stimulation through Shtoll3, were analysised. Thus, we conclude that Cd changes the susceptibility of Shtoll3 to A. hydrophila infection in gills and midguts. This suggest that Shtoll3 may contribute to the innate immune defense of S. henanense to A. hydrophila and Cd can modify the immune function in epithelium.
Collapse
Affiliation(s)
- Lang Lang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Zuobing Zhang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Weixin Jing
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Shao-Chin Lee
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Lan Wang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China.
| |
Collapse
|
22
|
Takagi M, Takakubo Y, Pajarinen J, Naganuma Y, Oki H, Maruyama M, Goodman SB. Danger of frustrated sensors: Role of Toll-like receptors and NOD-like receptors in aseptic and septic inflammations around total hip replacements. J Orthop Translat 2017; 10:68-85. [PMID: 29130033 PMCID: PMC5676564 DOI: 10.1016/j.jot.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The innate immune sensors, Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), can recognize not only exogenous pathogen-associated molecular patterns (PAMPs), but also endogenous molecules created upon tissue injury, sterile inflammation, and degeneration. Endogenous ligands are called damage-associated molecular patterns (DAMPs), and include endogenous molecules released from activated and necrotic cells as well as damaged extracellular matrix. TLRs and NLRs can interact with various ligands derived from PAMPs and DAMPs, leading to activation and/or modulation of intracellular signalling pathways. Intensive research on the innate immune sensors, TLRs and NLRs, has brought new insights into the pathogenesis of not only various infectious and rheumatic diseases, but also aseptic foreign body granuloma and septic inflammation of failed total hip replacements (THRs). In this review, recent knowledge is summarized on the innate immune system, including TLRs and NLRs and their danger signals, with special reference to their possible role in the adverse local host response to THRs. Translational potential of this article: A clear understanding of the roles of Toll-like receptors and NOD-like receptors in aseptic and septic loosening of joint replacements will facilitate potential strategies to mitigate these events, thereby extending the longevity of implants in humans.
Collapse
Affiliation(s)
- Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Yuya Takakubo
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Yasushi Naganuma
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Hiroharu Oki
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan.,Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
23
|
Veronesi F, Tschon M, Fini M. Gene Expression in Osteolysis: Review on the Identification of Altered Molecular Pathways in Preclinical and Clinical Studies. Int J Mol Sci 2017; 18:E499. [PMID: 28245614 PMCID: PMC5372515 DOI: 10.3390/ijms18030499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
Aseptic loosening (AL) due to osteolysis is the primary cause of joint prosthesis failure. Currently, a second surgery is still the only available treatment for AL, with its associated drawbacks. The present review aims at identifying genes whose expression is altered in osteolysis, and that could be the target of new pharmacological treatments, with the goal of replacing surgery. This review also aims at identifying the molecular pathways altered by different wear particles. We reviewed preclinical and clinical studies from 2010 to 2016, analyzing gene expression of tissues or cells affected by osteolysis. A total of 32 in vitro, 16 in vivo and six clinical studies were included. These studies revealed that genes belonging to both inflammation and osteoclastogenesis pathways are mainly involved in osteolysis. More precisely, an increase in genes encoding for the following factors were observed: Interleukins 6 and 1β (IL16 and β), Tumor Necrosis Factor α (TNFα), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), Cathepsin K (CATK) and Tartrate-resistant acid phosphatase (TRAP). Titanium (Ti) and Polyethylene (PE) were the most studied particles, showing that Ti up-regulated inflammation and osteoclastogenesis related genes, while PE up-regulated primarily osteoclastogenesis related genes.
Collapse
Affiliation(s)
- Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Matilde Tschon
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
24
|
Lawrence H, Mawdesley AE, Holland JP, Kirby JA, Deehan DJ, Tyson-Capper AJ. Targeting Toll-like receptor 4 prevents cobalt-mediated inflammation. Oncotarget 2016; 7:7578-85. [PMID: 26840091 PMCID: PMC4884939 DOI: 10.18632/oncotarget.7105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/23/2016] [Indexed: 12/19/2022] Open
Abstract
Cobalt-chrome alloy is a widely used biomaterial in joint replacements, dental implants and spinal rods. Although it is an effective and biocompatible material, adverse reactions to metal debris (ARMD) have arisen in a minority of patients, particularly in those with metal-on-metal bearing hip replacements. There is currently no treatment for ARMD and once progressive, early revision surgery of the implant is necessary. Therapeutic agents to prevent, halt or reverse ARMD would therefore be advantageous. Cobalt ions activate Toll-like receptor 4 (TLR4), an innate immune receptor responsible for inflammatory responses to bacterial lipopolysaccharide (LPS) resulting in the production of pro-inflammatory cytokines and chemokines. We hypothesised that anti-TLR4 neutralising antibodies, reported to inhibit TLR4-mediated inflammation, could prevent the inflammatory response to cobalt ions in an in vitro macrophagecell culture model. This study shows that a monoclonal anti-TLR4 antibody inhibited cobalt-mediated increases in pro-inflammatory IL8, CCL20 and IL1A expression, as well as IL-8 secretion. In contrast, a polyclonal antibody did not prevent the effect of cobalt ions on either IL-8 or IL1A expression, although it did have a small effect on the CCL20 response. Interestingly, both antibodies inhibited cobalt-mediated neutrophil migration although the greater effect was observed with the monoclonal antibody. In summary our data shows that a monoclonal anti-TLR4 antibody can inhibit cobalt-mediated inflammatory responses while a polyclonal antibody only inhibits the effect of specific cytokines. Anti-TLR4 antibodies have therapeutic potential in ARMD although careful antibody design is required to ensure that the LPS response is preserved.
Collapse
Affiliation(s)
- Helen Lawrence
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - John Andrew Kirby
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David John Deehan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Musculoskeletal Services, Freeman Hospital, Newcastle upon Tyne, UK
| | | |
Collapse
|
25
|
Overview on experimental models of interactions between nanoparticles and the immune system. Biomed Pharmacother 2016; 83:1365-1378. [DOI: 10.1016/j.biopha.2016.08.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/14/2016] [Accepted: 08/24/2016] [Indexed: 01/05/2023] Open
|
26
|
Laurençon J, Augsburger M, Faouzi M, Becce F, Hassani H, Rüdiger HA. Systemic Metal Ion Levels in Patients With Modular-Neck Stems: A Prospective Cohort Study. J Arthroplasty 2016; 31:1750-5. [PMID: 26880329 DOI: 10.1016/j.arth.2016.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/05/2016] [Accepted: 01/18/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Recent registry data reveal that modular-neck hip prostheses are associated with increased revision rates compared to fixed-neck stems. Poor implant survival has been associated to corrosion at the neck-stem junction, inducing metal ion release and subsequently adverse local tissue reactions. Data on metal ion release on the neck-stem junction of such stems are scarce. The purpose of this study was to evaluate corrosion at this interface by determining metal ion release. METHODS Serum and whole blood metal ion levels of 40 patients after 1 year of implantation of a modular-neck stem (titanium stem and cobalt-chromium neck) were compared with 10 patients with a monobloc version of the stem (all titanium) and 10 patients having no implant at all. RESULTS Seven of 40 patients (18%) with a modular-neck stem had cobalt or chromium concentrations >2 μg/L. These patients underwent magnetic resonance imaging using metal artifact reduction sequences, which revealed a pseudotumor in 1 patient. CONCLUSION Corrosion at the neck-stem junction of modular-neck stems is a reported phenomenon, which is in part reflected by elevated systemic ion levels. The use of such implants should be restricted to a minimum, and screening algorithms of patients with such implants must be developed.
Collapse
Affiliation(s)
- Jonathan Laurençon
- Department of Orthopaedics, Lausanne University Hospital, Lausanne, Switzerland
| | - Marc Augsburger
- Forensic Toxicology and Chemistry Unit, Centre Universitaire Romand de Médecine Légale CURML, Lausanne, Switzerland
| | - Mohamed Faouzi
- Department of Biostatistics, University of Lausanne, Lausanne, Switzerland
| | - Fabio Becce
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Hassen Hassani
- Department of Orthopaedics, Lausanne University Hospital, Lausanne, Switzerland
| | - Hannes A Rüdiger
- Department of Orthopaedics, Lausanne University Hospital, Lausanne, Switzerland; Department of Orthopaedics, Schulthess Clinic, Zürich, Switzerland
| |
Collapse
|
27
|
Ma S, Zhang D, Lou H, Sun L, Ji J. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:193-199. [PMID: 27178632 DOI: 10.1016/j.jep.2016.05.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza var. alba roots are used as the Chinese traditional medicine Danshen for the treatment of cardiovascular diseases in local clinical practice. Tanshinones are the major effective constituents of S. miltiorrhiza var. alba roots, but only tanshinone IIA, tanshinone I, cryptotanshinone, and 15,16-dihydrotanshinone have been investigated for their anti-inflammatory activities. MATERIALS AND METHODS Eleven known compounds were isolated from S. miltiorrhiza var. alba roots, and the structures of all compounds were elucidated by spectroscopic analysis and comparisons with reported data. Immune anti-inflammatory activities were assessed by the ability to inhibit the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and interleukin (IL)-8 using enzyme-linked immunosorbent assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was also used to compare the inhibitory effects of the compounds on TNF-α, IL-1β, and IL-8 mRNA expression with that of tanshinone IIA in lipopolysaccharide-stimulated THP-1 macrophages. RESULTS All tanshinones, except for compound 5, significantly inhibited the mRNA and protein expression of TNF-α, IL-1β, and IL-8, and their anti-inflammatory activities were stronger than that of tanshinone IIA. Compound 9 (5μM) showed the highest inhibitory effects for TNF-α, IL-1β, and IL-8, at 56.3%, 67.6%, and 51.7%, respectively. CONCLUSIONS Ten of the 11 tanshinones were shown to have anti-inflammatory properties superior to those of TSIIA, and which significantly inhibited the expression of TNF-α, IL-1β, and IL-8. The present results provided a referential basis for explaining the use of S. miltiorrhiza var. alba root as a Chinese folk medicine for treating cardiovascular diseases associated with inflammation, and show the importance of trace constituents of this herb.
Collapse
Key Words
- 1,2,6,7,8,9-hexahydro-1,6,6- trimethyl-3,11-dioxanaphtho [2,1-e] azulene-10,12-dione (PubChem CID: 14609845)
- 2-isopropyl-8-methylphenanthrene-3,4-dione (PubChem CID: 135872)
- Anti-inflammatory activity
- Atherosclerosis
- Bioactivity evaluation
- Pro-inflammatory cytokines
- Tanshinones
- arucadiol (PubChem CID: 11011966)
- danshenol A (PubChem CID: 3083514)
- sugiol (PubChem CID: 275529)
- tanshindiol C (PubChem CID: 5321620)
- tanshinone IIA (PubChem CID: 164676)
- tanshinone IIB (PubChem CID: 318797)
Collapse
Affiliation(s)
- Shuli Ma
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Dawei Zhang
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, PR China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Longru Sun
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| | - Jianbo Ji
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| |
Collapse
|
28
|
Song Y, Ichinose T, He M, He C, Morita K, Yoshida Y. Lipopolysaccharide attached to urban particulate matter 10 suppresses immune responses in splenocytes while particulate matter itself activates NF-κB. Toxicol Res (Camb) 2016; 5:1445-1452. [PMID: 30090448 DOI: 10.1039/c6tx00216a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/13/2016] [Indexed: 11/21/2022] Open
Abstract
We previously reported that Asian sand dust (ASD), which contains particulate matter (PM) less than 10 μm in diameter (PM10), induced subacute inflammation in splenocytes. However, it was unclear whether the PM itself or compounds attached to its surface induced the inflammation. Here we characterized the role of organic substances adsorbed onto the PM10 surface in triggering inflammation by comparing the effect on splenocyte activation of PM10 from urban areas (urPM10), which is rich in lipopolysaccharide (LPS) as compared to ASD, with that of heated PM10 (H-PM). BALB/c mice were intratracheally administered urPM10 or H-PM with or without LPS (1 ng and 10 ng) four times at 2-week intervals, and splenocytes were prepared at 24 h after the final administration to assay the immune responses. urPM10 suppressed splenocyte activation, while H-PM activated splenocytes and LPS neutralization by polymyxin B rescued urPM10-induced immunosuppression. Co-administration of LPS with H-PM clearly suppressed mitogen-induced immune responses in the spleen. Consistent with these results, H-PM induced the phosphorylation of nuclear factor κB (NF-κB) p65 and I kappa B kinase (IKK), which was inhibited by co-administration of LPS. In mice deficient in the LPS signal transducer MyD88, splenocyte activation after LPS or H-PM treatment in vivo was comparable to that in the control. Altogether, our results indicate that PM10 itself could activate NF-κB through the MyD88 pathway, which was modulated by the amount of LPS attached.
Collapse
Affiliation(s)
- Yuan Song
- Department of Immunology and Parasitology , School of Medicine , University of Occupational and Environmental Health , Japan , 1-1 Iseigaoka , Yahatanishi-ku , Kitakyushu 807-8555 , Japan . ; ; Tel: +81-93-691-7431.,Department of Clinical Laboratory , the Fourth Hospital of Hebei Medical University , No. 169 Tian Shan Street , Shijiazhuang , 050035 , China
| | - Takamichi Ichinose
- Department of Health Sciences , Oita University of Nursing and Health Sciences , 2944-9 Notsuharu , Oita 870-1201 , Japan
| | - Miao He
- Department of Health Sciences , Oita University of Nursing and Health Sciences , 2944-9 Notsuharu , Oita 870-1201 , Japan
| | - Cuiying He
- Department of Immunology and Parasitology , School of Medicine , University of Occupational and Environmental Health , Japan , 1-1 Iseigaoka , Yahatanishi-ku , Kitakyushu 807-8555 , Japan . ; ; Tel: +81-93-691-7431
| | - Kentaro Morita
- Department of Immunology and Parasitology , School of Medicine , University of Occupational and Environmental Health , Japan , 1-1 Iseigaoka , Yahatanishi-ku , Kitakyushu 807-8555 , Japan . ; ; Tel: +81-93-691-7431
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology , School of Medicine , University of Occupational and Environmental Health , Japan , 1-1 Iseigaoka , Yahatanishi-ku , Kitakyushu 807-8555 , Japan . ; ; Tel: +81-93-691-7431
| |
Collapse
|
29
|
Lawrence H, Deehan DJ, Holland JP, Anjum SA, Mawdesley AE, Kirby JA, Tyson-Capper AJ. Cobalt ions recruit inflammatory cells in vitro through human Toll-like receptor 4. Biochem Biophys Rep 2016; 7:374-378. [PMID: 28955928 PMCID: PMC5613509 DOI: 10.1016/j.bbrep.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/22/2016] [Accepted: 07/07/2016] [Indexed: 11/16/2022] Open
Abstract
Metal-on-metal (MoM) hip replacements, often manufactured from a cobalt-chrome alloy, are associated with adverse reactions including soft tissue necrosis and osteolysis. Histopathological analysis of MoM peri-implant tissues reveals an inflammatory cell infiltrate that includes macrophages, monocytes and neutrophils. Toll-like receptor 4 (TLR4) is an innate immune receptor activated by bacterial lipopolysaccharide. Recent studies have demonstrated that cobalt ions from metal-on-metal joints also activate human TLR4, increasing cellular secretion of inflammatory chemokines including interleukin-8 (IL-8, CXCL8) and CCL2. Chemokines recruit immune cells to the site of inflammation, and their overall effect depends on the chemokine profile produced. This study investigated the effect of cobalt on the secretion of inflammatory cytokines CCL20 and IL-6. The chemotactic potential of conditioned media from a cobalt-stimulated human monocyte cell line on primary monocytes and neutrophils was investigated using an in vitro transwell migration assay. The role of TLR4 in observed effects was studied using a small molecule TLR4-specific antagonist. Cobalt ions significantly increased release of CCL2 and IL-6 by MonoMac 6 cells (P<0.001). Conditioned media from cobalt-stimulated cells significantly increased monocyte and neutrophil chemotaxis in vitro (P<0.001). These effects were abrogated by the TLR4 antagonist (P<0.001) suggesting that they occur through cobalt activation of TLR4. This study demonstrates the role of TLR4 in cobalt-mediated immune cell chemotaxis and provides a potential mechanism by which cobalt ions may contribute to the immune cell infiltrate surrounding failed metal hip replacements. It also highlights the TLR4 signalling pathway as a potential therapeutic target in preventing cobalt-mediated inflammation. Cobalt ions from metal-on-metal hip implants promote migration of primary monocytes. Cobalt ions also increase migration of primary neutrophils. These effects are TLR4-dependent as they were inhibited by a small molecule TLR4 antagonist. These results show the potential role of TLR4 in inflammatory responses to metal hips.
Collapse
Affiliation(s)
- Helen Lawrence
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - David J Deehan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.,Department of Orthopaedics, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - James P Holland
- Department of Orthopaedics, Freeman Hospital, Newcastle upon Tyne NE7 7DN, United Kingdom
| | - Sami A Anjum
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Amy E Mawdesley
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - John A Kirby
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Alison J Tyson-Capper
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
30
|
Okuno H, Satoh M, Takeuchi E, Eshima K, Terashima M, Komotori J, Habu S, Tamauchi H, Iwabuchi K. Inhibitory function of NKT cells during early induction phase of nickel allergy. Immunobiology 2016; 221:833-8. [DOI: 10.1016/j.imbio.2016.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
31
|
Interplay of innate and adaptive immunity in metal-induced hypersensitivity. Curr Opin Immunol 2016; 42:25-30. [PMID: 27228132 DOI: 10.1016/j.coi.2016.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/16/2022]
Abstract
Metal-induced hypersensitivity is driven by T cell sensitization to metal ions. Recent advances in our understanding of the complex interactions between innate and adaptive immunity have expanded our knowledge of the pathogenesis of these diseases. Metals activate the innate immune system through direct binding to pathogen recognition receptors, activation of the inflammasome, or the induction of cellular death and release of alarmins. Certain metals can serve as adjuvants, promoting dendritic cell activation and migration as well as antigen presentation to metal-specific T cells. These T cells can recognize metals as haptens or as altered MHC-peptide complexes. The ability of metals to create these neoantigens emphasizes the similarity between metal-induced hypersensitivity and autoimmunity.
Collapse
|
32
|
Vasconcelos DM, Santos SG, Lamghari M, Barbosa MA. The two faces of metal ions: From implants rejection to tissue repair/regeneration. Biomaterials 2016; 84:262-275. [DOI: 10.1016/j.biomaterials.2016.01.046] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
|
33
|
Bechtel CP, Gebhart JJ, Tatro JM, Kiss-Toth E, Wilkinson JM, Greenfield EM. Particle-Induced Osteolysis Is Mediated by TIRAP/Mal in Vitro and in Vivo: Dependence on Adherent Pathogen-Associated Molecular Patterns. J Bone Joint Surg Am 2016; 98:285-94. [PMID: 26888676 DOI: 10.2106/jbjs.o.00736] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Proinflammatory signaling by toll-like receptors (TLRs) likely contributes to biologic responses to wear particles causing aseptic loosening. We recently reported associations with aseptic loosening in patients with polymorphisms in the locus encoding an adapter protein specific for TLR-2 and TLR-4 known as toll/interleukin-1 receptor domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal). To directly examine the contribution of TIRAP/Mal, we tested the hypothesis that TIRAP/Mal deficiency reduces the activity of wear particles. Signaling by TLR-2 and TLR-4 through TIRAP/Mal can be activated by bacterial pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide or endogenous alarmins. To distinguish between those possibilities, we tested the hypothesis that the effects of TIRAP/Mal depend on the adherence of bacterial PAMPs to the particles. METHODS In vitro mRNA levels and secretion of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were measured after incubating wild-type and TIRAP/Mal(-/-) macrophages in the presence or absence of titanium particles with adherent bacterial debris, so-called endotoxin-free particles, or particles with adherent lipopolysaccharide. In vivo osteolysis was measured after implanting titanium particles on the calvaria of wild-type and TIRAP/Mal(-/-) mice. RESULTS TIRAP/Mal deficiency significantly inhibited the activity of titanium particles with adherent bacterial debris to stimulate in vivo osteolysis and in vitro cytokine mRNAs and secretion. Those effects are dependent on adherent PAMPs because removal of >99% of the adherent bacterial debris from the particles significantly reduced their activity and the remaining activity was not dependent on TIRAP/Mal. Moreover, adherence of highly purified lipopolysaccharide to the endotoxin-free particles reconstituted the activity and the dependence on TIRAP/Mal. CONCLUSIONS TIRAP/Mal deficiency reduces inflammatory responses and osteolysis induced by particles with adherent PAMPs. CLINICAL RELEVANCE Our results, coupled with the genetic associations between aseptic loosening and polymorphisms within the TIRAP/Mal locus, support TLR signaling through TIRAP/Mal as one of the factors that enhances the activity of wear particles and further support the hypothesis that bacterial PAMPs likely contribute to aseptic loosening in a subset of patients.
Collapse
Affiliation(s)
- Christopher P Bechtel
- Departments of Orthopaedics (C.P.B., J.J.G., J.M.T., and E.M.G.) and Pathology (E.M.G.), University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Jeremy J Gebhart
- Departments of Orthopaedics (C.P.B., J.J.G., J.M.T., and E.M.G.) and Pathology (E.M.G.), University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Joscelyn M Tatro
- Departments of Orthopaedics (C.P.B., J.J.G., J.M.T., and E.M.G.) and Pathology (E.M.G.), University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Endre Kiss-Toth
- Departments of Cardiovascular Science (E.K.-T.) and Human Metabolism (J.M.W.), University of Sheffield, Sheffield, United Kingdom
| | - J Mark Wilkinson
- Departments of Cardiovascular Science (E.K.-T.) and Human Metabolism (J.M.W.), University of Sheffield, Sheffield, United Kingdom
| | - Edward M Greenfield
- Departments of Orthopaedics (C.P.B., J.J.G., J.M.T., and E.M.G.) and Pathology (E.M.G.), University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
34
|
Langie SAS, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown DG, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan EP, Ostrosky-Wegman P, Salem HK, Scovassi AI, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 2015; 36 Suppl 1:S61-88. [PMID: 26106144 DOI: 10.1093/carcin/bgv031] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Collapse
Affiliation(s)
- Sabine A S Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium, Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain, Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway, Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia, University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark, Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy, Medical Phys
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium, Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy, Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain, Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA, Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway, Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK, Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy, Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium, Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia, University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark, Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy, Medical Phys
| | - Daniel Desaulniers
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Amelia K Charles
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Firouz Darroudi
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
| | - Lisbeth E Knudsen
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | | | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Carmel Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Emilio Rojas
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Hosni K Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Frederik J Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
| | - Mahara Valverde
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Nik van Larebeke
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium, Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
| | | | | |
Collapse
|
35
|
Petrarca C, Clemente E, Amato V, Pedata P, Sabbioni E, Bernardini G, Iavicoli I, Cortese S, Niu Q, Otsuki T, Paganelli R, Di Gioacchino M. Engineered metal based nanoparticles and innate immunity. Clin Mol Allergy 2015; 13:13. [PMID: 26180517 PMCID: PMC4503298 DOI: 10.1186/s12948-015-0020-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/29/2015] [Indexed: 01/21/2023] Open
Abstract
Almost all people in developed countries are exposed to metal nanoparticles (MeNPs) that are used in a large number of applications including medical (for diagnostic and therapeutic purposes). Once inside the body, absorbed by inhalation, contact, ingestion and injection, MeNPs can translocate to tissues and, as any foreign substance, are likely to encounter the innate immunity system that represent a non-specific first line of defense against potential threats to the host. In this review, we will discuss the possible effects of MeNPs on various components of the innate immunity (both specific cells and barriers). Most important is that there are no reports of immune diseases induced by MeNPs exposure: we are operating in a safe area. However, in vitro assays show that MeNPs have some effects on innate immunity, the main being toxicity (both cyto- and genotoxicity) and interference with the activity of various cells through modification of membrane receptors, gene expression and cytokine production. Such effects can have both negative and positive relevant impacts on humans. On the one hand, people exposed to high levels of MeNPs, as workers of industries producing or applying MeNPs, should be monitored for possible health effects. On the other hand, understanding the modality of the effects on immune responses is essential to develop medical applications for MeNPs. Indeed, those MeNPs that are able to stimulate immune cells could be used to develop of new vaccines, promote immunity against tumors and suppress autoimmunity.
Collapse
Affiliation(s)
- Claudia Petrarca
- Immunotoxicology and Allergy Unit, Ageing Research Center G. d'Annunzio University Foundation, Chieti, Italy
| | - Emanuela Clemente
- Department of Medicine and Science of Ageing, G. d'Annunzio University, Chieti, Italy
| | - Valentina Amato
- Immunotoxicology and Allergy Unit, Ageing Research Center G. d'Annunzio University Foundation, Chieti, Italy
| | - Paola Pedata
- Occupational Medicine, II University, Naples, Italy
| | - Enrico Sabbioni
- Immunotoxicology and Allergy Unit, Ageing Research Center G. d'Annunzio University Foundation, Chieti, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Molecular Biology, University of Insubria, Varese, Italy ; 'Protein Factory', Interuniversity Center of the Politecnico di Milano and University of Insubria, Milan, Italy
| | - Ivo Iavicoli
- Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Sara Cortese
- Department of Medicine and Science of Ageing, G. d'Annunzio University, Chieti, Italy
| | - Qiao Niu
- School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Okayama 7010192 Japan
| | - Roberto Paganelli
- Immunotoxicology and Allergy Unit, Ageing Research Center G. d'Annunzio University Foundation, Chieti, Italy ; Department of Medicine and Science of Ageing, G. d'Annunzio University, Chieti, Italy
| | - Mario Di Gioacchino
- Immunotoxicology and Allergy Unit, Ageing Research Center G. d'Annunzio University Foundation, Chieti, Italy ; Department of Medicine and Science of Ageing, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
36
|
In Vitro Analyses of the Toxicity, Immunological, and Gene Expression Effects of Cobalt-Chromium Alloy Wear Debris and Co Ions Derived from Metal-on-Metal Hip Implants. LUBRICANTS 2015. [DOI: 10.3390/lubricants3030539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Schmidt M, Goebeler M. Zur Immunologie von Metallallergien. J Dtsch Dermatol Ges 2015. [DOI: 10.1111/ddg.110_12673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marc Schmidt
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Würzburg; Deutschland
| | - Matthias Goebeler
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Würzburg; Deutschland
| |
Collapse
|
38
|
Abstract
Allergic contact hypersensitivity to metal allergens is a common health concern worldwide, greatly impacting affected individuals with regard to both quality of life and their ability to work. With an estimated 15-20 % of the Western population hypersensitive to at least one metal allergen, sensitization rates for metallic haptens by far outnumber those reported for other common triggers of allergic contact dermatitis such as fragrances and rubber. Unfortunately, the prevalence of metal-induced hypersensitivity remains high despite extensive legislative efforts to ban/reduce the content of allergy-causing metals in recreational and occupational products. Recently, much progress has been made regarding the perception mechanisms underlying the inflammatory responses to this unique group of contact allergens. This review summarizes recent advances in our understanding of this enigmatic disease. Particular emphasis is put on the mechanisms of innate immune activation and T cell activation by common metal allergens such as nickel, cobalt, palladium, and chromate.
Collapse
Affiliation(s)
- Marc Schmidt
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Germany
| |
Collapse
|
39
|
Dutta DK, Potnis PA, Rhodes K, Wood SC. Wear particles derived from metal hip implants induce the generation of multinucleated giant cells in a 3-dimensional peripheral tissue-equivalent model. PLoS One 2015; 10:e0124389. [PMID: 25894745 PMCID: PMC4403993 DOI: 10.1371/journal.pone.0124389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/13/2015] [Indexed: 11/26/2022] Open
Abstract
Multinucleate giant cells (MGCs) are formed by the fusion of 5 to 15 monocytes or macrophages. MGCs can be generated by hip implants at the site where the metal surface of the device is in close contact with tissue. MGCs play a critical role in the inflammatory processes associated with adverse events such as aseptic loosening of the prosthetic joints and bone degeneration process called osteolysis. Upon interaction with metal wear particles, endothelial cells upregulate pro-inflammatory cytokines and other factors that enhance a localized immune response. However, the role of endothelial cells in the generation of MGCs has not been completely investigated. We developed a three-dimensional peripheral tissue-equivalent model (PTE) consisting of collagen gel, supporting a monolayer of endothelial cells and human peripheral blood mononuclear cells (PBMCs) on top, which mimics peripheral tissue under normal physiological conditions. The cultures were incubated for 14 days with Cobalt chromium alloy (CoCr ASTM F75, 1–5 micron) wear particles. PBMC were allowed to transit the endothelium and harvested cells were analyzed for MGC generation via flow cytometry. An increase in forward scatter (cell size) and in the propidium iodide (PI) uptake (DNA intercalating dye) was used to identify MGCs. Our results show that endothelial cells induce the generation of MGCs to a level 4 fold higher in 3-dimentional PTE system as compared to traditional 2-dimensional culture plates. Further characterization of MGCs showed upregulated expression of tartrate resistant alkaline phosphatase (TRAP) and dendritic cell specific transmembrane protein, (DC-STAMP), which are markers of bone degrading cells called osteoclasts. In sum, we have established a robust and relevant model to examine MGC and osteoclast formation in a tissue like environment using flow cytometry and RT-PCR. With endothelial cells help, we observed a consistent generation of metal wear particle- induced MGCs, which heralds metal on metal hip failures.
Collapse
Affiliation(s)
- Debargh K. Dutta
- Department of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, CDRH, FDA, Silver Spring, Maryland, United States of America
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| | - Pushya A. Potnis
- Department of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, CDRH, FDA, Silver Spring, Maryland, United States of America
| | - Kelly Rhodes
- Department of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, CDRH, FDA, Silver Spring, Maryland, United States of America
- University of Maryland, College Park, Maryland, United States of America
| | - Steven C. Wood
- Department of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, CDRH, FDA, Silver Spring, Maryland, United States of America
| |
Collapse
|
40
|
Bitar D, Parvizi J. Biological response to prosthetic debris. World J Orthop 2015; 6:172-189. [PMID: 25793158 PMCID: PMC4363800 DOI: 10.5312/wjo.v6.i2.172] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/28/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression.
Collapse
|
41
|
Madl AK, Kovochich M, Liong M, Finley BL, Paustenbach DJ, Oberdörster G. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part II: Importance of physicochemical properties and dose in animal and in vitro studies as a basis for risk assessment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1285-98. [PMID: 25735266 DOI: 10.1016/j.nano.2015.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/03/2014] [Indexed: 12/28/2022]
Abstract
The objective of the Part II analysis was to evaluate animal and in vitro toxicology studies of CoCr particles with respect to their physicochemistry and dose relevance to metal-on-metal (MoM) implant patients as derived from Part I. In the various toxicology studies, physicochemical characteristics were infrequently considered and administered doses were orders of magnitude higher than what occurs in patients. Co was consistently shown to rapidly release from CoCr particles for distribution and elimination from the body. CoCr micron sized particles appear more biopersistent in vivo resulting in inflammatory responses that are not seen with similar mass concentrations of nanoparticles. We conclude, that in an attempt to obtain data for a complete risk assessment, future studies need to focus on physicochemical characteristics of nano and micron sized particles and on doses and dose metrics relevant to those generated in patients or in properly conducted hip simulator studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Günter Oberdörster
- University of Rochester, Department of Environmental Medicine, Rochester, NY, USA
| |
Collapse
|
42
|
Do genetic susceptibility, Toll-like receptors, and pathogen-associated molecular patterns modulate the effects of wear? Clin Orthop Relat Res 2014; 472:3709-17. [PMID: 25034980 PMCID: PMC4397765 DOI: 10.1007/s11999-014-3786-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Overwhelming evidence supports the concept that wear particles are the primary initiator of aseptic loosening of orthopaedic implants. It is likely, however, that other factors modulate the biologic response to wear particles. This review focuses on three potential other factors: genetic susceptibility, Toll-like receptors (TLRs), and bacterial pathogen-associated molecular patterns (PAMPs). WHERE ARE WE NOW?: Considerable evidence is emerging that both genetic susceptibility and TLR activation are important factors that modulate the biologic response to wear particles, but it remains controversial whether bacterial PAMPs also do so. WHERE DO WE NEED TO GO?: Detailed understanding of the roles of these other factors may lead to identification of novel therapeutic targets for patients with aseptic loosening. HOW DO WE GET THERE?: Highest priority should be given to polymorphism replication studies with large numbers of patients and studies to replicate the reported correlation between bacterial biofilms and the severity of aseptic loosening.
Collapse
|
43
|
Li L, Huang Z, Gillespie M, Mroz PM, Maier LA. p38 Mitogen-Activated Protein Kinase in beryllium-induced dendritic cell activation. Hum Immunol 2014; 75:1155-62. [PMID: 25454621 PMCID: PMC4258464 DOI: 10.1016/j.humimm.2014.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 06/05/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023]
Abstract
Dendritic cells (DC) play a role in the regulation of immune responses to haptens, which in turn impact DC maturation. Whether beryllium (Be) is able to induce DC maturation and if this occurs via the MAPK pathway is not known. Primary monocyte-derived DCs (moDCs) models were generated from Be non-exposed healthy volunteers as a non-sensitized cell model, while PBMCs from BeS (Be sensitized) and CBD (chronic beryllium disease) were used as disease models. The response of these cells to Be was evaluated. The expression of CD40 was increased significantly (p<0.05) on HLA-DP Glu69+ moDCs after 100 μM BeSO₄-stimulation. BeSO₄ induced p38MAPK phosphorylation, while IκB-α was degraded in Be-stimulated moDCs. The p38 MAPK inhibitor SB203580 blocked Be-induced NF-κB activation in moDCs, suggesting that p38MAPK and NF-κB are dependently activated by BeSO₄. Furthermore, in BeS and CBD subjects, SB203580 downregulated Be-stimulated proliferation in a dose-dependent manner, and decreased Be-stimulated TNF-α and IFNγ cytokine production. Taken together, this study suggests that Be-induces non-sensitized Glu69+ DCs maturation, and that p38MAPK signaling is important in the Be-stimulated DCs activation as well as subsequent T cell proliferation and cytokine production in BeS and CBD. In total, the MAPK pathway may serve as a potential therapeutic target for human granulomatous lung diseases.
Collapse
Affiliation(s)
- L Li
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, United States; Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, Denver, CO, United States.
| | - Z Huang
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - M Gillespie
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - P M Mroz
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - L A Maier
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, United States; Division of Pulmonary and Critical Care Sciences, Department of Medicine, School of Medicine, Denver, CO, United States; Environmental Occupational Health Department, Colorado School of Public Health, University of Colorado, Denver, CO, United States
| |
Collapse
|
44
|
CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells. Toxicol Appl Pharmacol 2014; 281:125-35. [DOI: 10.1016/j.taap.2014.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/27/2014] [Accepted: 09/22/2014] [Indexed: 12/28/2022]
|
45
|
Lawrence H, Deehan D, Holland J, Kirby J, Tyson-Capper A. The immunobiology of cobalt: demonstration of a potential aetiology for inflammatory pseudotumours after metal-on-metal replacement of the hip. Bone Joint J 2014; 96-B:1172-7. [PMID: 25183586 DOI: 10.1302/0301-620x.96b9.33476] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abnormal wear of cobalt-containing metal-on-metal joints is associated with inflammatory pseudotumours. Cobalt ions activate human toll-like receptor 4 (TLR4), which normally responds to bacterial lipopolysaccharide (LPS) in sepsis. Activation of TLR4 by LPS increases the expression of chemokines IL-8 and CXCL10, which recruit leukocytes and activated T-cells, respectively. This study was designed to determine whether cobalt induces a similar inflammatory response to LPS by promoting the expression of IL-8 and CXCL10. A human monocytic cell line, derived from acute monocytic leukaemia, was treated with cobalt ions and expression of IL-8 and CXCL10 measured at mRNA and protein levels. Cobalt-treated macrophages showed a 60-fold increase in IL-8 mRNA, and an eightfold increase in production of the mature chemokine (both p < 0.001); expression of the CXCL10 gene and protein was also significantly increased by cobalt (both p < 0.001). Experiments were also performed in the presence of CLI-095, a TLR4-specific antagonist which abrogated the cobalt-mediated increase in IL-8 and CXCL10 expression. These findings suggest that cobalt ions induce inflammation similar to that observed during sepsis by the simultaneous activation of two TLR4-mediated signalling pathways. These pathways result in increased production of IL-8 and CXCL10, and may be implicated in pseudotumour formation following metal-on-metal replacement.
Collapse
Affiliation(s)
- H Lawrence
- Newcastle University, Institute of Cellular Medicine, 3rd Floor, William Leech Building, Faculty of Medical Sciences, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - D Deehan
- Freeman Hospital, Department of Orthopaedics, Freeman Hospital, Freeman Road, Newcastle upon Tyne, NE7 7DN, UK
| | - J Holland
- Freeman Hospital, Department of Orthopaedics, Freeman Hospital, Freeman Road, Newcastle upon Tyne, NE7 7DN, UK
| | - J Kirby
- Newcastle University, Institute of Cellular Medicine, 3rd Floor, William Leech Building, Faculty of Medical Sciences, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - A Tyson-Capper
- Newcastle University, Institute of Cellular Medicine, 3rd Floor, William Leech Building, Faculty of Medical Sciences, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
46
|
Gustafson K, Jakobsen SS, Lorenzen ND, Thyssen JP, Johansen JD, Bonefeld CM, Stilling M, Baad-Hansen T, Søballe K. Metal release and metal allergy after total hip replacement with resurfacing versus conventional hybrid prosthesis. Acta Orthop 2014; 85:348-54. [PMID: 24930546 PMCID: PMC4105764 DOI: 10.3109/17453674.2014.922730] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Metal-on-metal (MOM) total hip arthroplasties were reintroduced because of the problems with osteolysis and aseptic loosening related to polyethylene wear of early metal-on-polyethylene (MOP) arthroplasties. The volumetric wear rate has been greatly reduced with MOM arthroplasties; however, because of nano-size wear particles, the absolute number has been greatly increased. Thus, a source of metal ion exposure with the potential to sensitize patients is present. We hypothesized that higher amounts of wear particles result in increased release of metal ions and ultimately lead to an increased incidence of metal allergy. METHODS 52 hips in 52 patients (median age 60 (51-64) years, 30 women) were randomized to either a MOM hip resurfacing system (ReCap) or a standard MOP total hip arthoplasty (Mallory Head/Exeter). Spot urine samples were collected preoperatively, postoperatively, after 3 months, and after 1, 2, and 5 years and tested with inductively coupled plasma-sector field mass spectrometry. After 5 years, hypersensitivity to metals was evaluated by patch testing and lymphocyte transformation assay. In addition, the patients answered a questionnaire about hypersensitivity. RESULTS A statistically significant 10- to 20-fold increase in urinary levels of cobalt and chromium was observed throughout the entire follow-up in the MOM group. The prevalence of metal allergy was similar between groups. INTERPRETATION While we observed significantly increased levels of metal ions in the urine during the entire follow-up period, no difference in prevalence of metal allergy was observed in the MOM group. However, the effect of long-term metal exposure remains uncertain.
Collapse
Affiliation(s)
| | | | - Nina D Lorenzen
- Department of Orthopaedic Surgery, Aarhus University Hospital
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermato-allergology, Gentofte University Hospital Copenhagen
| | - Jeanne D Johansen
- National Allergy Research Centre, Department of Dermato-allergology, Gentofte University Hospital Copenhagen
| | - Charlotte M Bonefeld
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | | | | | - Kjeld Søballe
- Department of Orthopaedics, Aarhus University Hospital
| |
Collapse
|
47
|
Lin TH, Kao S, Sato T, Pajarinen J, Zhang R, Loi F, Goodman SB, Yao Z. Exposure of polyethylene particles induces interferon-γ expression in a natural killer T lymphocyte and dendritic cell coculture system in vitro: a preliminary study. J Biomed Mater Res A 2014; 103:71-5. [PMID: 24616165 DOI: 10.1002/jbm.a.35159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 11/10/2022]
Abstract
Two major issues in total joint arthroplasty are loosening of implants and osteolysis caused by wear particle-induced inflammation. Wear particles stimulate the release of pro-inflammatory cytokines, chemokines, and other inflammatory mediators from macrophages and other cells. Although the biological response of macrophages to wear debris is well established, the role of other cell types such as natural killer T lymphocytes (NKT) and dendritic cells (DCs) is limited. Here we show that ultra-high molecular weight polyethylene (UHMWPE) particles stimulate NKT cells to secrete Interferon-γ (IFN-γ); coculture with DCs further enhanced IFN-γ secretion. Furthermore, UHMWPE particles did not stimulate NKT cells to secrete IL-4, while the NKT cell natural ligand α-galactosylceramide (α-GalCer) treatment in the coculture system significantly enhanced both IFN-γ and IL-4 expression by NKT cells. Comparatively, NKT cells and/or DCs exposed to polymethylmethacrylate particles did not stimulate IFN-γ or IL-4 expression. Mouse bone marrow derived macrophage polarization by lipopolysaccharide and conditioned medium from NKT cells and/or DCs exposed to UHMWPE particles increased tumor necrosis factor-α (TNF-α), but reduced arginase-1 expression in macrophages. The current findings indicate that UHMWPE particles stimulate NKT cells/DCs to produce pro-inflammatory cytokines; this pathway is a novel therapeutic target to mitigate wear particle induced peri-prosthetic osteolysis.
Collapse
Affiliation(s)
- Tzu-Hua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Goodman SB, Gibon E, Pajarinen J, Lin TH, Keeney M, Ren PG, Nich C, Yao Z, Egashira K, Yang F, Konttinen YT. Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J R Soc Interface 2014; 11:20130962. [PMID: 24478281 DOI: 10.1098/rsif.2013.0962] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Wear particles and by-products from joint replacements and other orthopaedic implants may result in a local chronic inflammatory and foreign body reaction. This may lead to persistent synovitis resulting in joint pain and swelling, periprosthetic osteolysis, implant loosening and pathologic fracture. Strategies to modulate the adverse effects of wear debris may improve the function and longevity of joint replacements and other orthopaedic implants, potentially delaying or avoiding complex revision surgical procedures. Three novel biological strategies to mitigate the chronic inflammatory reaction to orthopaedic wear particles are reported. These include (i) interference with systemic macrophage trafficking to the local implant site, (ii) modulation of macrophages from an M1 (pro-inflammatory) to an M2 (anti-inflammatory, pro-tissue healing) phenotype in the periprosthetic tissues, and (iii) local inhibition of the transcription factor nuclear factor kappa B (NF-κB) by delivery of an NF-κB decoy oligodeoxynucleotide, thereby interfering with the production of pro-inflammatory mediators. These three approaches have been shown to be viable strategies for mitigating the undesirable effects of wear particles in preclinical studies. Targeted local delivery of specific biologics may potentially extend the lifetime of orthopaedic implants.
Collapse
Affiliation(s)
- S B Goodman
- Department of Orthopaedic Surgery, Stanford University, , Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lin TH, Tamaki Y, Pajarinen J, Waters HA, Woo DK, Yao Z, Goodman SB. Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-κB as a therapeutic target. Acta Biomater 2014; 10:1-10. [PMID: 24090989 DOI: 10.1016/j.actbio.2013.09.034] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 02/08/2023]
Abstract
Biomaterial-induced tissue responses in patients with total joint replacement are associated with the generation of wear particles, which may lead to chronic inflammation and local bone destruction (periprosthetic osteolysis). Inflammatory reactions associated with wear particles are mediated by several important signaling pathways, the most important of which involves the transcription factor NF-κB. NF-κB activation is essential for macrophage recruitment and maturation, as well as the production of pro-inflammatory cytokines and chemokines such as TNF-α, IL-1β, IL-6 and MCP1. In addition, NF-κB activation contributes to osteoclast differentiation and maturation via RANK/RANKL signaling, which increases bone destruction and reduces bone formation. Targeting individual downstream cytokines directly (such as TNF-α or IL-1β) may not effectively prevent wear particle induced osteolysis. A more logical upstream therapeutic approach may be provided by direct modulation of the core IκB/IKKα/β/NF-κB signaling pathway in the local environment. However, the timing, dose and strategy for administration should be considered. Suppression of chronic inflammation via inhibition of NF-κB activity in patients with malfunctioning joint replacements may be an effective strategy to mitigate wear particle induced periprosthetic osteolysis.
Collapse
Affiliation(s)
- Tzu-hua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu ZW, Zhu HT, Chen KL, Qiu C, Tang KF, Niu XL. Selenium attenuates high glucose-induced ROS/TLR-4 involved apoptosis of rat cardiomyocyte. Biol Trace Elem Res 2013; 156:262-70. [PMID: 24214856 DOI: 10.1007/s12011-013-9857-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/30/2013] [Indexed: 01/04/2023]
Abstract
The potential mechanism of high glucose-induced cardiomyocyte apoptosis and selenium's protective effects were investigated in this study. Myocytes isolated from neonate rats were cultured in high-glucose medium (25.5 mmol/L glucose) to mimic sustained hyperglycemia. Before high-glucose incubation, myocytes were pretreated by sodium selenite solution. Cell apoptosis was evaluated by annexin V/propidium iodide (PI) staining and caspase activation. Expression of Toll-like receptor 4 (TLR-4) and myeloid differentiation factor 88 (MyD-88) was examined at both mRNA and protein levels. The intracellular reactive oxygen species (ROS) production and glutathione peroxidase (GPx) activity in myocytes were also detected. We found high glucose-induced cell apoptosis and activation of TLR-4/MyD-88/caspase-8/caspase-3 signaling, accompanied by increased production of ROS. Selenium pretreatment attenuated apoptosis in high glucose-incubated myocytes, and mechanically, this protective effect was found to be associated with attenuating oxidative status by increasing activity of GPx, decreasing the generation of ROS, as well as inhibition of the activation of TLR-4/MyD-88/caspase-8/caspase-3 signaling in myocytes. These results suggest that activation of TLR-4/MyD-88 signaling pathway plays an important role in high glucose-induced cardiomyocyte apoptosis. Additionally, by modulating TLR-4/MyD-88 signaling pathway, which is linked to ROS formation, selenium exerts its antioxidative and antiapoptotic effects in high glucose-incubated myocytes.
Collapse
Affiliation(s)
- Zhong-Wei Liu
- Department of Cardiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | | | | | | | | | | |
Collapse
|