1
|
Offer S, Di Bucchianico S, Czech H, Pardo M, Pantzke J, Bisig C, Schneider E, Bauer S, Zimmermann EJ, Oeder S, Hartner E, Gröger T, Alsaleh R, Kersch C, Ziehm T, Hohaus T, Rüger CP, Schmitz-Spanke S, Schnelle-Kreis J, Sklorz M, Kiendler-Scharr A, Rudich Y, Zimmermann R. The chemical composition of secondary organic aerosols regulates transcriptomic and metabolomic signaling in an epithelial-endothelial in vitro coculture. Part Fibre Toxicol 2024; 21:38. [PMID: 39300536 DOI: 10.1186/s12989-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM2.5), which has been associated with adverse health effects (e.g., cardiovascular diseases). However, the molecular and cellular effects of atmospheric aging on aerosol toxicity have not been fully elucidated, especially in model systems that enable cell-to-cell signaling. METHODS In this study, we aimed to elucidate the complexity of atmospheric aerosol toxicology by exposing a coculture model system consisting of an alveolar (A549) and an endothelial (EA.hy926) cell line seeded in a 3D orientation at the air‒liquid interface for 4 h to model aerosols. Simulation of atmospheric aging was performed on volatile biogenic (β-pinene) or anthropogenic (naphthalene) precursors of SOA condensing on soot particles. The similar physical properties for both SOA, but distinct differences in chemical composition (e.g., aromatic compounds, oxidation state, unsaturated carbonyls) enabled to determine specifically induced toxic effects of SOA. RESULTS In A549 cells, exposure to naphthalene-derived SOA induced stress-related airway remodeling and an early type I immune response to a greater extent. Transcriptomic analysis of EA.hy926 cells not directly exposed to aerosol and integration with metabolome data indicated generalized systemic effects resulting from the activation of early response genes and the involvement of cardiovascular disease (CVD) -related pathways, such as the intracellular signal transduction pathway (PI3K/AKT) and pathways associated with endothelial dysfunction (iNOS; PDGF). Greater induction following anthropogenic SOA exposure might be causative for the observed secondary genotoxicity. CONCLUSION Our findings revealed that the specific effects of SOA on directly exposed epithelial cells are highly dependent on the chemical identity, whereas non directly exposed endothelial cells exhibit more generalized systemic effects with the activation of early stress response genes and the involvement of CVD-related pathways. However, a greater correlation was made between the exposure to the anthropogenic SOA compared to the biogenic SOA. In summary, our study highlights the importance of chemical aerosol composition and the use of cell systems with cell-to-cell interplay on toxicological outcomes.
Collapse
Affiliation(s)
- Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany.
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Rasha Alsaleh
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Christian Kersch
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| |
Collapse
|
2
|
Silkwood K, Dollinger E, Gervin J, Atwood S, Nie Q, Lander AD. Leveraging gene correlations in single cell transcriptomic data. BMC Bioinformatics 2024; 25:305. [PMID: 39294560 PMCID: PMC11411778 DOI: 10.1186/s12859-024-05926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Many approaches have been developed to overcome technical noise in single cell RNA-sequencing (scRNAseq). As researchers dig deeper into data-looking for rare cell types, subtleties of cell states, and details of gene regulatory networks-there is a growing need for algorithms with controllable accuracy and fewer ad hoc parameters and thresholds. Impeding this goal is the fact that an appropriate null distribution for scRNAseq cannot simply be extracted from data in which ground truth about biological variation is unknown (i.e., usually). RESULTS We approach this problem analytically, assuming that scRNAseq data reflect only cell heterogeneity (what we seek to characterize), transcriptional noise (temporal fluctuations randomly distributed across cells), and sampling error (i.e., Poisson noise). We analyze scRNAseq data without normalization-a step that skews distributions, particularly for sparse data-and calculate p values associated with key statistics. We develop an improved method for selecting features for cell clustering and identifying gene-gene correlations, both positive and negative. Using simulated data, we show that this method, which we call BigSur (Basic Informatics and Gene Statistics from Unnormalized Reads), captures even weak yet significant correlation structures in scRNAseq data. Applying BigSur to data from a clonal human melanoma cell line, we identify thousands of correlations that, when clustered without supervision into gene communities, align with known cellular components and biological processes, and highlight potentially novel cell biological relationships. CONCLUSIONS New insights into functionally relevant gene regulatory networks can be obtained using a statistically grounded approach to the identification of gene-gene correlations.
Collapse
Affiliation(s)
- Kai Silkwood
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Emmanuel Dollinger
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
| | - Joshua Gervin
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Scott Atwood
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
| | - Arthur D Lander
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Romano Ibarra GS, Lei L, Yu W, Thurman AL, Gansemer ND, Meyerholz DK, Pezzulo AA, McCray PB, Thornell IM, Stoltz DA. IL-13 induces loss of CFTR in ionocytes and reduces airway epithelial fluid absorption. J Clin Invest 2024; 134:e181995. [PMID: 39255033 PMCID: PMC11527443 DOI: 10.1172/jci181995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
The airway surface liquid (ASL) plays a crucial role in lung defense mechanisms, and its composition and volume are regulated by the airway epithelium. The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in a rare airway epithelial cell type called an ionocyte. Recently, we demonstrated that ionocytes can increase liquid absorption through apical CFTR and basolateral barttin/chloride channels, while airway secretory cells mediate liquid secretion through apical CFTR channels and basolateral NKCC1 transporters. Th2-driven (IL-4/IL-13) airway diseases, such as asthma, cause goblet cell metaplasia, accompanied by increased mucus production and airway secretions. In this study, we investigate the effect of IL-13 on chloride and liquid transport performed by ionocytes. IL-13 treatment of human airway epithelia was associated with reduced epithelial liquid absorption rates and increased ASL volume. Additionally, IL-13 treatment reduced the abundance of CFTR-positive ionocytes and increased the abundance of CFTR-positive secretory cells. Increasing ionocyte abundance attenuated liquid secretion caused by IL-13. Finally, CFTR-positive ionocytes were less common in asthma and chronic obstructive pulmonary disease and were associated with airflow obstruction. Our findings suggest that loss of CFTR in ionocytes contributes to the liquid secretion observed in IL-13-mediated airway diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul B. McCray
- Department of Internal Medicine
- Department of Pediatrics
- Pappajohn Biomedical Institute, and
| | - Ian M. Thornell
- Department of Internal Medicine
- Pappajohn Biomedical Institute, and
| | - David A. Stoltz
- Department of Internal Medicine
- Pappajohn Biomedical Institute, and
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Li NC, Iannuzo N, Christenson SA, Langlais PR, Kraft M, Ledford JG, Li X. Investigation of lactotransferrin messenger RNA expression levels as an anti-type 2 asthma biomarker. J Allergy Clin Immunol 2024; 154:609-618. [PMID: 38797239 PMCID: PMC11380595 DOI: 10.1016/j.jaci.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Lactotransferrin (LTF) has an immunomodulatory function, and its expression levels are associated with asthma susceptibility. OBJECTIVES We sought to investigate LTF messenger RNA (mRNA) expression levels in human bronchial epithelial cells (BECs) as an anti-type 2 (T2) asthma biomarker. METHODS Association analyses between LTF mRNA expression levels in BECs and asthma-related phenotypes were performed in the Severe Asthma Research Program (SARP) cross-sectional (n = 155) and longitudinal (n = 156) cohorts using a generalized linear model. Correlation analyses of mRNA expression levels between LTF and all other genes were performed by Spearman correlation. RESULTS Low LTF mRNA expression levels were associated with asthma susceptibility and severity (P < .025), retrospective and prospective asthma exacerbations, and low lung function (P < 8.3 × 10-3). Low LTF mRNA expression levels were associated with high airway T2 inflammation biomarkers (sputum eosinophils and fractional exhaled nitric oxide; P < 8.3 × 10-3) but were not associated with blood eosinophils or total serum IgE. LTF mRNA expression levels were negatively correlated with expression levels of TH2 or asthma-associated genes (POSTN, NOS2, and MUC5AC) and eosinophil-related genes (IL1RL1, CCL26, and IKZF2) and positively correlated with expression levels of TH1 and inflammation genes (IL12A, MUC5B, and CC16) and TH17-driven cytokines or chemokines for neutrophils (CXCL1, CXCL6, and CSF3) (P < 3.5 × 10-6). CONCLUSIONS Low LTF mRNA expression levels in BECs are associated with asthma susceptibility, severity, and exacerbations through upregulation of airway T2 inflammation. LTF is a potential anti-T2 biomarker, and its expression levels may help determine the balance of eosinophilic and neutrophilic asthma.
Collapse
Affiliation(s)
- Nicholas C Li
- University of Arizona Internship, Basis Tucson North, Tucson, Ariz
| | - Natalie Iannuzo
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Ariz
| | - Stephanie A Christenson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of California, San Francisco, Calif
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Ariz
| | - Monica Kraft
- Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Julie G Ledford
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Ariz
| | - Xingnan Li
- Samuel Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, Ariz.
| |
Collapse
|
5
|
Macowan M, Pattaroni C, Bonner K, Chatzis R, Daunt C, Gore M, Custovic A, Shields MD, Power UF, Grigg J, Roberts G, Ghazal P, Schwarze J, Turner S, Bush A, Saglani S, Lloyd CM, Marsland BJ. Deep multiomic profiling reveals molecular signatures that underpin preschool wheeze and asthma. J Allergy Clin Immunol 2024:S0091-6749(24)00869-8. [PMID: 39214237 DOI: 10.1016/j.jaci.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Wheezing in childhood is prevalent, with over one-half of all children experiencing at least 1 episode by age 6. The pathophysiology of wheeze, especially why some children develop asthma while others do not, remains unclear. OBJECTIVES This study addresses the knowledge gap by investigating the transition from preschool wheeze to asthma using multiomic profiling. METHODS Unsupervised, group-agnostic integrative multiomic factor analysis was performed using host/bacterial (meta)transcriptomic and bacterial shotgun metagenomic datasets from bronchial brush samples paired with metabolomic/lipidomic data from bronchoalveolar lavage samples acquired from children 1-17 years old. RESULTS Two multiomic factors were identified: one characterizing preschool-aged recurrent wheeze and another capturing an inferred trajectory from health to wheeze and school-aged asthma. Recurrent wheeze was driven by type 1-immune signatures, coupled with upregulation of immune-related and neutrophil-associated lipids and metabolites. Comparatively, progression toward asthma from ages 1 to 18 was dominated by changes related to airway epithelial cell gene expression, type 2-immune responses, and constituents of the airway microbiome, such as increased Haemophilus influenzae. CONCLUSIONS These factors highlighted distinctions between an inflammation-related phenotype in preschool wheeze, and the predominance of airway epithelial-related changes linked with the inferred trajectory toward asthma. These findings provide insights into the differential mechanisms driving the progression from wheeze to asthma and may inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Matthew Macowan
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Céline Pattaroni
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia.
| | - Katie Bonner
- Imperial Centre for Paediatrics and Child Health, and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Roxanne Chatzis
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Carmel Daunt
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Mindy Gore
- Imperial Centre for Paediatrics and Child Health, and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Adnan Custovic
- Imperial Centre for Paediatrics and Child Health, and National Heart and Lung Institute, Imperial College London, London, United Kingdom; Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Michael D Shields
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Ultan F Power
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Jonathan Grigg
- Centre for Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Graham Roberts
- Human Development in Health School, University of Southampton Faculty of Medicine, Southampton, United Kingdom; National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, United Kingdom
| | - Peter Ghazal
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Jürgen Schwarze
- Centre for Inflammation Research, Child Life and Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, United Kingdom; National Health Service Grampian, Aberdeen, United Kingdom
| | - Andrew Bush
- Imperial Centre for Paediatrics and Child Health, and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sejal Saglani
- Royal Brompton Hospital, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
6
|
Berdnikovs S, Newcomb DC, McKernan KE, Kuehnle SN, Haruna NF, Gebretsadik T, McKennan C, Ma S, Cephus JY, Rosas-Salazar C, Anderson LJ, Gern JE, Hartert T. Single cell profiling to determine influence of wheeze and early-life viral infection on developmental programming of airway epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602506. [PMID: 39026695 PMCID: PMC11257436 DOI: 10.1101/2024.07.08.602506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Although childhood asthma is in part an airway epithelial disorder, the development of the airway epithelium in asthma is not understood. We sought to characterize airway epithelial developmental phenotypes in those with and without recurrent wheeze and the impact of infant infection with respiratory syncytial virus (RSV). Nasal airway epithelial cells (NAECs) were collected at age 2-3 years from an a priori designed nested birth cohort of children from four mutually exclusive groups of wheezers/non-wheezers and RSV-infected/uninfected in the first year of life. NAECs were cultured in air-liquid interface differentiation conditions followed by a combined analysis of single cell RNA sequencing (scRNA-seq) and in vitro infection with respiratory syncytial virus (RSV). NAECs from children with a wheeze phenotype were characterized by abnormal differentiation and basal cell activation of developmental pathways, plasticity in precursor differentiation and a delayed onset of maturation. NAECs from children with wheeze also had increased diversity of currently known RSV receptors and blunted anti-viral immune responses to in vitro infection. The most dramatic changes in differentiation of cultured epithelium were observed in NAECs derived from children that had both wheeze and RSV in the first year of life. Together this suggests that airway epithelium in children with wheeze is developmentally reprogrammed and characterized by increased barrier permeability, decreased antiviral response, and increased RSV receptors, which may predispose to and amplify the effects of RSV infection in infancy and susceptibility to other asthma risk factors that interact with the airway mucosa. SUMMARY Nasal airway epithelial cells from children with wheeze are characterized by altered development and increased susceptibility to RSV infection.
Collapse
|
7
|
Jackson ND, Dyjack N, Goleva E, Bin L, Montgomery MT, Rios C, Everman JL, Taylor P, Bronchick C, Richers BN, Leung DY, Seibold MA. Atopic Dermatitis Complicated by Recurrent Eczema Herpeticum Is Characterized by Multiple, Concurrent Epidermal Inflammatory Endotypes. JID INNOVATIONS 2024; 4:100279. [PMID: 39006317 PMCID: PMC11239700 DOI: 10.1016/j.xjidi.2024.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 07/16/2024] Open
Abstract
A subgroup of patients with atopic dermatitis (AD) suffers from recurrent, disseminated herpes simplex virus skin infection, termed eczema herpeticum. To determine the transcriptional mechanisms of the skin and immune system pathobiology that underlie development of AD with eczema herpeticum (ADEH), we performed RNA-sequencing analysis of nonlesional skin (epidermis, dermis) from AD patients with and without a history of ADEH (ADEH+, n = 15; ADEH-, n = 13) along with healthy controls (n = 15). We also performed RNA sequencing on participants' plasmacytoid dendritic cells infected in vitro with herpes simplex virus 1. ADEH+ patients exhibited dysregulated gene expression, limited in the dermis (14 differentially expressed genes) and more widespread in the epidermis (129 differentially expressed genes). ADEH+-upregulated epidermal differentially expressed genes were enriched in type 2 cytokine (IL4R , CCL22, CRLF2, IL7R), interferon (CXCL10, ICAM1, IFI44, IRF7), and IL-36γ (IL36G) inflammatory gene pathways. All ADEH+ participants exhibited type 2 cytokine and inteferon endotypes, and 87% were IL36G-high. In contrast, these endotypes were more variably expressed among ADEH- participants. ADEH+ skin also had dysregulated epidermal differentiation complex gene expression of the late-cornified envelope, S100A, and small proline-rich gene families, which are involved in skin barrier function and antimicrobial activities. Plasmacytoid dendritic cell transcriptional responses to herpes simplex virus 1 infection were unaltered by ADEH status. The study concluded that the pathobiology underlying ADEH+ risk is associated with a unique, multifaceted epidermal inflammation that accompanies dysregulation of epidermal differentiation complex genes. These findings will help direct future studies that define how these inflammatory patterns may drive risk of eczema herpeticum in AD.
Collapse
Affiliation(s)
- Nathan D. Jackson
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Nathan Dyjack
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Lianghua Bin
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Michael T. Montgomery
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Cydney Rios
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Jamie L. Everman
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
| | - Patricia Taylor
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | | | | | - Donald Y.M. Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| | - Max A. Seibold
- Center for Genes, Environment & Health, National Jewish Health, Denver, Colorado, USA
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
8
|
Liegeois MA, Braunreuther M, Charbit AR, Raymond WW, Tang M, Woodruff PG, Christenson SA, Castro M, Erzurum SC, Israel E, Jarjour NN, Levy BD, Moore WC, Wenzel SE, Fuller GG, Fahy JV. Peroxidase-mediated mucin cross-linking drives pathologic mucus gel formation in IL-13-stimulated airway epithelial cells. JCI Insight 2024; 9:e181024. [PMID: 38889046 PMCID: PMC11383604 DOI: 10.1172/jci.insight.181024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Mucus plugs occlude airways to obstruct airflow in asthma. Studies in patients and in mouse models show that mucus plugs occur in the context of type 2 inflammation, and studies in human airway epithelial cells (HAECs) show that IL-13-activated cells generate pathologic mucus independently of immune cells. To determine how HAECs autonomously generate pathologic mucus, we used a magnetic microwire rheometer to characterize the viscoelastic properties of mucus secreted under varying conditions. We found that normal HAEC mucus exhibited viscoelastic liquid behavior and that mucus secreted by IL-13-activated HAECs exhibited solid-like behavior caused by mucin cross-linking. In addition, IL-13-activated HAECs shows increased peroxidase activity in apical secretions, and an overlaid thiolated polymer (thiomer) solution shows an increase in solid behavior that was prevented by peroxidase inhibition. Furthermore, gene expression for thyroid peroxidase (TPO), but not lactoperoxidase (LPO), was increased in IL-13-activated HAECs and both TPO and LPO catalyze the formation of oxidant acids that cross-link thiomer solutions. Finally, gene expression for TPO in airway epithelial brushings was increased in patients with asthma with high airway mucus plug scores. Together, our results show that IL-13-activated HAECs autonomously generated pathologic mucus via peroxidase-mediated cross-linking of mucin polymers.
Collapse
Affiliation(s)
- Maude A Liegeois
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | | | - Annabelle R Charbit
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Wilfred W Raymond
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Monica Tang
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF, San Francisco, California, USA
| | - Prescott G Woodruff
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF, San Francisco, California, USA
| | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF, San Francisco, California, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Serpil C Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Elliot Israel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Wendy C Moore
- Department of Internal Medicine, Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - John V Fahy
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
9
|
Li K, Bartlett JA, Wohlford-Lenane CL, Xue B, Thurman AL, Gallagher TM, Pezzulo AA, McCray PB. Interleukin 13-Induced Inflammation Increases DPP4 Abundance but Does Not Enhance Middle East Respiratory Syndrome Coronavirus Replication in Airway Epithelia. J Infect Dis 2024; 229:1419-1429. [PMID: 37698016 PMCID: PMC11095549 DOI: 10.1093/infdis/jiad383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Chronic pulmonary conditions such as asthma and chronic obstructive pulmonary disease increase the risk of morbidity and mortality during infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). We hypothesized that individuals with such comorbidities are more susceptible to MERS-CoV infection due to increased expression of its receptor, dipeptidyl peptidase 4 (DPP4). METHODS We modeled chronic airway disease by treating primary human airway epithelia with the Th2 cytokine interleukin 13 (IL-13), examining how this affected DPP4 protein levels with MERS-CoV entry and replication. RESULTS IL-13 exposure for 3 days led to greater DPP4 protein abundance, while a 21-day treatment raised DPP4 levels and caused goblet cell metaplasia. Surprisingly, despite this increase in receptor availability, MERS-CoV entry and replication were not significantly affected by IL-13 treatment. CONCLUSIONS Our results suggest that greater DPP4 abundance is likely not the primary mechanism leading to increased MERS severity in the setting of Th2 inflammation. Transcriptional profiling analysis highlighted the complexity of IL-13-induced changes in airway epithelia, including altered expression of genes involved in innate immunity, antiviral responses, and maintenance of the extracellular mucus barrier. These data suggest that additional factors likely interact with DPP4 abundance to determine MERS-CoV infection outcomes.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Jennifer A Bartlett
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Christine L Wohlford-Lenane
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Biyun Xue
- Department of Internal Medicine, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Andrew L Thurman
- Department of Internal Medicine, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Thomas M Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL
| | - Alejandro A Pezzulo
- Department of Internal Medicine, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Paul B McCray
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
- Department of Microbiology, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
10
|
Everman JL, Sajuthi SP, Liegeois MA, Jackson ND, Collet EH, Peters MC, Chioccioli M, Moore CM, Patel BB, Dyjack N, Powell R, Rios C, Montgomery MT, Eng C, Elhawary JR, Mak ACY, Hu D, Huntsman S, Salazar S, Feriani L, Fairbanks-Mahnke A, Zinnen GL, Michel CR, Gomez J, Zhang X, Medina V, Chu HW, Cicuta P, Gordon ED, Zeitlin P, Ortega VE, Reisdorph N, Dunican EM, Tang M, Elicker BM, Henry TS, Bleecker ER, Castro M, Erzurum SC, Israel E, Levy BD, Mauger DT, Meyers DA, Sumino K, Gierada DS, Hastie AT, Moore WC, Denlinger LC, Jarjour NN, Schiebler ML, Wenzel SE, Woodruff PG, Rodriguez-Santana J, Pearson CG, Burchard EG, Fahy JV, Seibold MA. A common polymorphism in the Intelectin-1 gene influences mucus plugging in severe asthma. Nat Commun 2024; 15:3900. [PMID: 38724552 PMCID: PMC11082194 DOI: 10.1038/s41467-024-48034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.
Collapse
Affiliation(s)
- Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Satria P Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Maude A Liegeois
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Erik H Collet
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Peters
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Maurizio Chioccioli
- Department of Genetics and Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Bhavika B Patel
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Roger Powell
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Michael T Montgomery
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Celeste Eng
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Jennifer R Elhawary
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Angel C Y Mak
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Sandra Salazar
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Luigi Feriani
- Biological and Soft Systems Sector, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ana Fairbanks-Mahnke
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Gianna L Zinnen
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Joe Gomez
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Xing Zhang
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | | | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Pietro Cicuta
- Biological and Soft Systems Sector, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Erin D Gordon
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Pamela Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | | | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Eleanor M Dunican
- School of Medicine, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Monica Tang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Brett M Elicker
- University of California-San Francisco, San Francisco, CA, USA
| | | | | | - Mario Castro
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Bruce D Levy
- Brigham and Women's Hospital and Harvard University, Cambridge, MA, USA
| | | | | | - Kaharu Sumino
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Annette T Hastie
- Wake Forest University School of Medicine, Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Winston Salem, NC, USA
| | - Wendy C Moore
- Wake Forest University School of Medicine, Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Winston Salem, NC, USA
| | | | | | | | | | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | | | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Esteban G Burchard
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - John V Fahy
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Liu T, Liu S, Rui X, Cao Y, Hecker J, Guo F, Zhang Y, Gong L, Zhou Y, Yu Y, Krishnamoorthyni N, Bates S, Chun S, Boyer N, Xu S, Park JA, Perrella MA, Levy BD, Weiss ST, Mou H, Raby BA, Zhou X. Gasdermin B, an asthma-susceptibility gene, promotes MAVS-TBK1 signalling and airway inflammation. Eur Respir J 2024; 63:2301232. [PMID: 38514093 PMCID: PMC11063620 DOI: 10.1183/13993003.01232-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/31/2023] [Indexed: 03/23/2024]
Abstract
RATIONALE Respiratory virus-induced inflammation is the leading cause of asthma exacerbation, frequently accompanied by induction of interferon-stimulated genes (ISGs). How asthma-susceptibility genes modulate cellular response upon viral infection by fine-tuning ISG induction and subsequent airway inflammation in genetically susceptible asthma patients remains largely unknown. OBJECTIVES To decipher the functions of gasdermin B (encoded by GSDMB) in respiratory virus-induced lung inflammation. METHODS In two independent cohorts, we analysed expression correlation between GSDMB and ISG s. In human bronchial epithelial cell line or primary bronchial epithelial cells, we generated GSDMB-overexpressing and GSDMB-deficient cells. A series of quantitative PCR, ELISA and co-immunoprecipitation assays were performed to determine the function and mechanism of GSDMB for ISG induction. We also generated a novel transgenic mouse line with inducible expression of human unique GSDMB gene in airway epithelial cells and infected the mice with respiratory syncytial virus to determine the role of GSDMB in respiratory syncytial virus-induced lung inflammation in vivo. RESULTS GSDMB is one of the most significant asthma-susceptibility genes at 17q21 and acts as a novel RNA sensor, promoting mitochondrial antiviral-signalling protein (MAVS)-TANK binding kinase 1 (TBK1) signalling and subsequent inflammation. In airway epithelium, GSDMB is induced by respiratory viral infections. Expression of GSDMB and ISGs significantly correlated in respiratory epithelium from two independent asthma cohorts. Notably, inducible expression of human GSDMB in mouse airway epithelium led to enhanced ISGs induction and increased airway inflammation with mucus hypersecretion upon respiratory syncytial virus infection. CONCLUSIONS GSDMB promotes ISGs expression and airway inflammation upon respiratory virus infection, thereby conferring asthma risk in risk allele carriers.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Xianliang Rui
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Ye Cao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yihan Zhang
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lu Gong
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yihan Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuzhen Yu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nandini Krishnamoorthyni
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel Bates
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sung Chun
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nathan Boyer
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuang Xu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- These authors jointly conceptualised and supervised this work
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors jointly conceptualised and supervised this work
| |
Collapse
|
12
|
Georas SN, Khurana S. Update on asthma biology. J Allergy Clin Immunol 2024; 153:1215-1228. [PMID: 38341182 DOI: 10.1016/j.jaci.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
This is an exciting time to be conducting asthma research. The recent development of targeted asthma biologics has validated the power of basic research to discover new molecules amenable to therapeutic intervention. Advances in high-throughput sequencing are providing a wealth of "omics" data about genetic and epigenetic underpinnings of asthma, as well as about new cellular interacting networks and potential endotypes in asthma. Airway epithelial cells have emerged not only as key sensors of the outside environment but also as central drivers of dysregulated mucosal immune responses in asthma. Emerging data suggest that the airway epithelium in asthma remembers prior encounters with environmental exposures, resulting in potentially long-lasting changes in structure and metabolism that render asthmatic individuals susceptible to subsequent exposures. Here we summarize recent insights into asthma biology, focusing on studies using human cells or tissue that were published in the past 2 years. The studies are organized thematically into 6 content areas to draw connections and spur future research (on genetics and epigenetics, prenatal and early-life origins, microbiome, immune and inflammatory pathways, asthma endotypes and biomarkers, and lung structural alterations). We highlight recent studies of airway epithelial dysfunction and response to viral infections and conclude with a framework for considering how bidirectional interactions between alterations in airway structure and mucosal immunity can lead to sustained lung dysfunction in asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY.
| | - Sandhya Khurana
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
13
|
Valdez RM, Rivera BN, Chang Y, Pennington JM, Fischer KA, Löhr CV, Tilton SC. Assessing susceptibility for polycyclic aromatic hydrocarbon toxicity in an in vitro 3D respiratory model for asthma. FRONTIERS IN TOXICOLOGY 2024; 6:1287863. [PMID: 38706568 PMCID: PMC11066177 DOI: 10.3389/ftox.2024.1287863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
There is increased emphasis on understanding cumulative risk from the combined effects of chemical and non-chemical stressors as it relates to public health. Recent animal studies have identified pulmonary inflammation as a possible modifier and risk factor for chemical toxicity in the lung after exposure to inhaled pollutants; however, little is known about specific interactions and potential mechanisms of action. In this study, primary human bronchial epithelial cells (HBEC) cultured in 3D at the air-liquid interface (ALI) are utilized as a physiologically relevant model to evaluate the effects of inflammation on toxicity of polycyclic aromatic hydrocarbons (PAHs), a class of contaminants generated from incomplete combustion of fossil fuels. Normal HBEC were differentiated in the presence of IL-13 for 14 days to induce a profibrotic phenotype similar to asthma. Fully differentiated normal and IL-13 phenotype HBEC were treated with benzo[a]pyrene (BAP; 1-40 μg/mL) or 1% DMSO/PBS vehicle at the ALI for 48 h. Cells were evaluated for cytotoxicity, barrier integrity, and transcriptional biomarkers of chemical metabolism and inflammation by quantitative PCR. Cells with the IL-13 phenotype treated with BAP result in significantly (p < 0.05) decreased barrier integrity, less than 50% compared to normal cells. The effect of BAP in the IL-13 phenotype was more apparent when evaluating transcriptional biomarkers of barrier integrity in addition to markers of mucus production, goblet cell hyperplasia, type 2 asthmatic inflammation and chemical metabolism, which all resulted in dose-dependent changes (p < 0.05) in the presence of BAP. Additionally, RNA sequencing data showed that the HBEC with the IL-13 phenotype may have increased potential for uncontrolled proliferation and decreased capacity for immune response after BAP exposure compared to normal phenotype HBEC. These data are the first to evaluate the role of combined environmental factors associated with inflammation from pre-existing disease and PAH exposure on pulmonary toxicity in a physiologically relevant human in vitro model.
Collapse
Affiliation(s)
- Reese M. Valdez
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| | - Brianna N. Rivera
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| | - Yvonne Chang
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| | - Jamie M. Pennington
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
| | - Kay A. Fischer
- Oregon Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Christiane V. Löhr
- Oregon Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, United States
| | - Susan C. Tilton
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR, United States
- Superfund Research Program, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
14
|
Bunyavanich S, Becker PM, Altman MC, Lasky-Su J, Ober C, Zengler K, Berdyshev E, Bonneau R, Chatila T, Chatterjee N, Chung KF, Cutcliffe C, Davidson W, Dong G, Fang G, Fulkerson P, Himes BE, Liang L, Mathias RA, Ogino S, Petrosino J, Price ND, Schadt E, Schofield J, Seibold MA, Steen H, Wheatley L, Zhang H, Togias A, Hasegawa K. Analytical challenges in omics research on asthma and allergy: A National Institute of Allergy and Infectious Diseases workshop. J Allergy Clin Immunol 2024; 153:954-968. [PMID: 38295882 PMCID: PMC10999353 DOI: 10.1016/j.jaci.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.
Collapse
Affiliation(s)
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Jessica Lasky-Su
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | | | - Talal Chatila
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | - Wendy Davidson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Dong
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Fang
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Patricia Fulkerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Liming Liang
- Harvard T. H. Chan School of Public Health, Boston, Mass
| | | | - Shuji Ogino
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass; Harvard T. H. Chan School of Public Health, Boston, Mass; Broad Institute of MIT and Harvard, Boston, Mass
| | | | | | - Eric Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Max A Seibold
- National Jewish Health, Denver, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Hanno Steen
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Lisa Wheatley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Hongmei Zhang
- School of Public Health, University of Memphis, Memphis, Tenn
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Kohei Hasegawa
- Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|
15
|
López-Posadas R, Bagley DC, Pardo-Pastor C, Ortiz-Zapater E. The epithelium takes the stage in asthma and inflammatory bowel diseases. Front Cell Dev Biol 2024; 12:1258859. [PMID: 38529406 PMCID: PMC10961468 DOI: 10.3389/fcell.2024.1258859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universtiy Eralngen-Nürnberg, Erlangen, Germany
| | - Dustin C. Bagley
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- Instituto Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| |
Collapse
|
16
|
Liu T, Hecker J, Liu S, Rui X, Boyer N, Wang J, Yu Y, Zhang Y, Mou H, Gomez-Escobar LG, Choi AM, Raby BA, Weiss ST, Zhou X. The Asthma Risk Gene, GSDMB, Promotes Mitochondrial DNA-induced ISGs Expression. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10005. [PMID: 38737375 PMCID: PMC11086750 DOI: 10.35534/jrbtm.2024.10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Released mitochondrial DNA (mtDNA) in cells activates cGAS-STING pathway, which induces expression of interferon-stimulated genes (ISGs) and thereby promotes inflammation, as frequently seen in asthmatic airways. However, whether the genetic determinant, Gasdermin B (GSDMB), the most replicated asthma risk gene, regulates this pathway remains unknown. We set out to determine whether and how GSDMB regulates mtDNA-activated cGAS-STING pathway and subsequent ISGs induction in human airway epithelial cells. Using qPCR, ELISA, native polyacrylamide gel electrophoresis, co-immunoprecipitation and immunofluorescence assays, we evaluated the regulation of GSDMB on cGAS-STING pathway in both BEAS-2B cells and primary normal human bronchial epithelial cells (nHBEs). mtDNA was extracted in plasma samples from human asthmatics and the correlation between mtDNA levels and eosinophil counts was analyzed. GSDMB is significantly associated with RANTES expression in asthmatic nasal epithelial brushing samples from the Genes-environments and Admixture in Latino Americans (GALA) II study. Over-expression of GSDMB promotes DNA-induced IFN and ISGs expression in bronchial epithelial BEAS-2B cells and nHBEs. Conversely, knockout of GSDMB led to weakened induction of interferon (IFNs) and ISGs in BEAS-2B cells. Mechanistically, GSDMB interacts with the C-terminus of STING, promoting the translocation of STING to Golgi, leading to the phosphorylation of IRF3 and induction of IFNs and ISGs. mtDNA copy number in serum from asthmatics was significantly correlated with blood eosinophil counts especially in male subjects. GSDMB promotes the activation of mtDNA and poly (dA:dT)-induced activation of cGAS-STING pathway in airway epithelial cells, leading to enhanced induction of ISGs.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xianliang Rui
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nathan Boyer
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Wang
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yuzhen Yu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yihan Zhang
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Augustine M.K. Choi
- Weil Cornell Medical School, Joan and Sanford I. Weill Department of Medicine, New York, NY 10065, USA
| | - Benjamin A. Raby
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Kudrna K, Staab EB, Eilers E, Thomes P, Maurya S, Brody SL, Wyatt TA, Bailey KL, Dickinson JD. mTOR signaling regulates aberrant epithelial cell proliferative and migratory behaviors characteristic of airway mucous metaplasia in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579905. [PMID: 38405874 PMCID: PMC10888751 DOI: 10.1101/2024.02.12.579905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In asthma, the airway epithelium is hyperplastic, hypertrophied, and lined with numerous large MUC5AC-containing goblet cells (GC). Furthermore, the normal epithelial architecture is disorganized with numerous, what we here describe as, ectopic goblet cells (eGC) deep within the thickened epithelial layer disconnected from the lumenal surface. mTOR is a highly conserved pathway that regulates cell size and proliferation. We hypothesized that the balance between mTOR and autophagy signaling regulates key features of the asthma epithelial layer. Airway histological sections from subjects with asthma had increased frequency of eGC and increased levels of mTOR phosphorylation target-Ribosomal S6. Using human airway epithelial cells (hAECs) with IL-13 stimulation and timed withdrawal to stimulate resolution, we found that multiple key downstream phosphorylation targets downstream from the mTOR complex were increased during early IL-13-mediated mucous metaplasia, and then significantly declined during resolution. The IL-13-mediated changes in mTOR signaling were paralleled by morphologic changes with airway epithelial hypertrophy, hyperplasia, and frequency of eGC. We then examined the relationship between mTOR and autophagy using mice deficient in autophagy protein Atg16L1. Despite having increased cytoplasmic mucins, mouse AECs from Atg16L1 deficient mice had no significant difference in mTOR downstream signaling. mTOR inhibition with rapamycin led to a loss of IL-13-mediated epithelial hypertrophy, hyperplasia, ectopic GC distribution, and reduction in cytoplasmic MUC5AC levels. mTOR inhibition was also associated with a reduction in aberrant IL-13-mediated hAEC proliferation and migration. Our findings demonstrate that mTOR signaling is associated with mucous metaplasia and is crucial to the disorganized airway epithelial structure and function characteristic of muco-obstructive airway diseases such as asthma. Graphical Abstract Key Concepts The airway epithelium in asthma is disorganized and characterized by cellular proliferation, aberrant migration, and goblet cell mucous metaplasia.mTOR signaling is a dynamic process during IL-13-mediated mucous metaplasia, increasing with IL-13 stimulation and declining during resolution.mTOR signaling is strongly increased in the asthmatic airway epithelium.mTOR signaling is associated with the development of key features of the metaplastic airway epithelium including cell proliferation and ectopic distribution of goblet cells and aberrant cellular migration.Inhibition of mTOR leads to decreased epithelial hypertrophy, reduced ectopic goblet cells, and cellular migration.
Collapse
|
18
|
Xu Z, Forno E, Sun Y, Manni ML, Han YY, Kim S, Yue M, Vonk JM, Kersten ETM, Acosta-Perez E, Canino G, Koppelman GH, Chen W, Celedón JC. Nasal epithelial gene expression and total IgE in children and adolescents with asthma. J Allergy Clin Immunol 2024; 153:122-131. [PMID: 37742934 PMCID: PMC10842443 DOI: 10.1016/j.jaci.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Little is known about nasal epithelial gene expression and total IgE in youth. OBJECTIVE We aimed to identify genes whose nasal epithelial expression differs by total IgE in youth, and group them into modules that could be mapped to airway epithelial cell types. METHODS We conducted a transcriptome-wide association study of total IgE in 469 Puerto Ricans aged 9 to 20 years who participated in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study, separately in all subjects and in those with asthma. We then attempted to replicate top findings for each analysis using data from 3 cohorts. Genes with a Benjamini-Hochberg-adjusted P value of less than .05 in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study and a P value of less than .05 in the same direction of association in 1 or more replication cohort were considered differentially expressed genes (DEGs). DEGs for total IgE in subjects with asthma were further dissected into gene modules using coexpression analysis, and such modules were mapped to specific cell types in airway epithelia using public single-cell RNA-sequencing data. RESULTS A higher number of DEGs for total IgE were identified in subjects with asthma (n = 1179 DEGs) than in all subjects (n = 631 DEGs). In subjects with asthma, DEGs were mapped to 11 gene modules. The top module for positive correlation with total IgE was mapped to myoepithelial and mucus secretory cells in lower airway epithelia and was regulated by IL-4, IL5, IL-13, and IL-33. Within this module, hub genes included CDH26, FETUB, NTRK2, CCBL1, CST1, and CST2. Furthermore, an enrichment analysis showed overrepresentation of genes in signaling pathways for synaptogenesis, IL-13, and ferroptosis, supporting interactions between interleukin- and acetylcholine-induced responses. CONCLUSIONS Our findings for nasal epithelial gene expression support neuroimmune coregulation of total IgE in youth with asthma.
Collapse
Affiliation(s)
- Zhongli Xu
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Yidan Sun
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Michelle L Manni
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Yueh Ying Han
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Soyeon Kim
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Molin Yue
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Judith M Vonk
- GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elin T M Kersten
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Edna Acosta-Perez
- Behavioral Sciences Research Institute of Puerto Rico, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute of Puerto Rico, University of Puerto Rico, San Juan, Puerto Rico; Department of Pediatrics, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Wei Chen
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa.
| |
Collapse
|
19
|
Groiss S, Somvilla I, Daxböck C, Stückler M, Pritz E, Brislinger D. Bei Mu Gua Lou San facilitates mucus expectoration by increasing surface area and hydration levels of airway mucus in an air-liquid-interface cell culture model of the respiratory epithelium. BMC Complement Med Ther 2023; 23:414. [PMID: 37978392 PMCID: PMC10655387 DOI: 10.1186/s12906-023-04251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Bei Mu Gua Lou San (BMGLS) is an ancient formulation known for its moisturizing and expectorant properties, but the underlying mechanisms remain unknown. We investigated concentration-dependent effects of BMGLS on its rehydrating and mucus-modulating properties using an air-liquid-interface (ALI) cell culture model of the Calu-3 human bronchial epithelial cell line and primary normal human bronchial epithelial cells (NHBE), and specifically focused on quantity and composition of the two major mucosal proteins MUC5AC and MUC5B. METHODS ALI cultures were treated with BMGLS at different concentrations over three weeks and evaluated by means of histology, immunostaining and electron microscopy. MUC5AC and MUC5B mRNA levels were assessed and quantified on protein level using an automated image-based approach. Additionally, expression levels of the major mucus-stimulating enzyme 15-lipoxygenase (ALOX15) were evaluated. RESULTS BMGLS induced concentration-dependent morphological changes in NHBE but not Calu-3 ALI cultures that resulted in increased surface area via the formation of herein termed intra-epithelial structures (IES). While cellular rates of proliferation, apoptosis or degeneration remained unaffected, BMGLS caused swelling of mucosal granules, increased the area of secreted mucus, decreased muco-glycoprotein density, and dispensed MUC5AC. Additionally, BMGLS reduced expression levels of MUC5AC, MUC5B and the mucus-stimulating enzyme 15-lipoxygenase (ALOX15). CONCLUSIONS Our studies suggest that BMGLS rehydrates airway mucus while stimulating mucus secretion by increasing surface areas and regulating goblet cell differentiation through modulating major mucus-stimulating pathways.
Collapse
Affiliation(s)
- Silvia Groiss
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Ina Somvilla
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Christine Daxböck
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Manuela Stückler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Elisabeth Pritz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Dagmar Brislinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria.
| |
Collapse
|
20
|
Jesenak M, Durdik P, Oppova D, Franova S, Diamant Z, Golebski K, Banovcin P, Vojtkova J, Novakova E. Dysfunctional mucociliary clearance in asthma and airway remodeling - New insights into an old topic. Respir Med 2023; 218:107372. [PMID: 37516275 DOI: 10.1016/j.rmed.2023.107372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Bronchial asthma is a heterogeneous respiratory condition characterized by chronic airway inflammation, airway hyperresponsiveness and airway structural changes (known as remodeling). The clinical symptoms can be evoked by (non)specific triggers, and their intensity varies over time. In the past, treatment was mainly focusing on symptoms' alleviation; in contrast modern treatment strategies target the underlying inflammation, even during asymptomatic periods. Components of airway remodeling include epithelial cell shedding and dysfunction, goblet cell hyperplasia, subepithelial matrix protein deposition, fibrosis, neoangiogenesis, airway smooth muscle cell hypertrophy and hyperplasia. Among the other important, and frequently forgotten aspects of airway remodeling, also loss of epithelial barrier integrity, immune defects in anti-infectious defence and mucociliary clearance (MCC) dysfunction should be pointed out. Mucociliary clearance represents one of the most important defence airway mechanisms. Several studies in asthmatics demonstrated various dysfunctions in MCC - e.g., ciliated cells displaying intracellular disorientation, abnormal cilia and cytoplasmic blebs. Moreover, excessive mucus production and persistent cough are one of the well-recognized features of severe asthma and are also associated with defects in MCC. Damaged airway epithelium and impaired function of the ciliary cells leads to MCC dysfunction resulting in higher susceptibility to infection and inflammation. Therefore, new strategies aimed on restoring the remodeling changes and MCC dysfunction could present a new therapeutic approach for the management of asthma and other chronic respiratory diseases.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia; Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia; Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovakia
| | - Peter Durdik
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Dasa Oppova
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Sona Franova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Diamant
- Department of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Belgium; Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden; Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic; Department of Clinical Pharmacy & Pharmacology, University in Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kornel Golebski
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Banovcin
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Jarmila Vojtkova
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia.
| | - Elena Novakova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
21
|
Jiang RS, Chen IC, Chen YM, Hsiao TH, Chen YC. Risk Prediction of Chronic Rhinosinusitis with or without Nasal Polyps in Taiwanese Population Using Polygenic Risk Score for Nasal Polyps. Biomedicines 2023; 11:2729. [PMID: 37893103 PMCID: PMC10603974 DOI: 10.3390/biomedicines11102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The association between single nucleotide polymorphisms and chronic rhinosinusitis (CRS) has been determined. However, it was not known whether the polygenic risk score (PRS) for nasal polyps (NP) could predict CRS with NP (CRSwNP) or without NP (CRSsNP). The aim of this study was to investigate the association between PRSs for NP and the risk of CRS with or without NP. Data from 535 individuals with CRS and 5350 control subjects in the Taiwan Precision Medicine Initiative project were collected. Four PRSs for NP, including PGS000933, PGS000934, PGS001848, and PGS002060 from UK Biobank, were tested in these participants. They were divided into four groups according to quartiles of PRSs. The logistic regression model was performed to evaluate CRSwNP and CRSsNP risk according to PRSs for NP. The PGS002060 had the highest area under the curve at 0.534 for CRSsNP prediction and at 0.588 for CRSwNP prediction. Compared to subjects in the lowest PRS category, the PGS002060 significantly increased the odds for CRSsNP by 1.48 at the highest quintile (p = 0.003) and by 2.32 at the highest quintile for CRSwNP (p = 0.002). In addition, the odds for CRSwNP increased by 3.01 times in female CRSwNP patients (p = 0.009) at the highest quintile compared with those in the lowest PRS category. The PRSs for NP developed from European populations could be applied to the Taiwanese population to predict CRS risk, especially for female CRSwNP.
Collapse
Affiliation(s)
- Rong-San Jiang
- Departments of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (R.-S.J.); (I.-C.C.); (Y.-M.C.); (T.-H.H.)
- Departments of Otolaryngology, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
- RongHsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - I-Chieh Chen
- Departments of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (R.-S.J.); (I.-C.C.); (Y.-M.C.); (T.-H.H.)
| | - Yi-Ming Chen
- Departments of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (R.-S.J.); (I.-C.C.); (Y.-M.C.); (T.-H.H.)
- RongHsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Biomedical Science, National Chung Hsing University, Taichung 402202, Taiwan
- Precision Medicine Research Center, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Tzu-Hung Hsiao
- Departments of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (R.-S.J.); (I.-C.C.); (Y.-M.C.); (T.-H.H.)
- Department of Public Health, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402202, Taiwan
| | - Yi-Chen Chen
- Departments of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (R.-S.J.); (I.-C.C.); (Y.-M.C.); (T.-H.H.)
| |
Collapse
|
22
|
Spector C, De Sanctis CM, Panettieri RA, Koziol-White CJ. Rhinovirus induces airway remodeling: what are the physiological consequences? Respir Res 2023; 24:238. [PMID: 37773065 PMCID: PMC10540383 DOI: 10.1186/s12931-023-02529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Rhinovirus infections commonly evoke asthma exacerbations in children and adults. Recurrent asthma exacerbations are associated with injury-repair responses in the airways that collectively contribute to airway remodeling. The physiological consequences of airway remodeling can manifest as irreversible airway obstruction and diminished responsiveness to bronchodilators. Structural cells of the airway, including epithelial cells, smooth muscle, fibroblasts, myofibroblasts, and adjacent lung vascular endothelial cells represent an understudied and emerging source of cellular and extracellular soluble mediators and matrix components that contribute to airway remodeling in a rhinovirus-evoked inflammatory environment. MAIN BODY While mechanistic pathways associated with rhinovirus-induced airway remodeling are still not fully characterized, infected airway epithelial cells robustly produce type 2 cytokines and chemokines, as well as pro-angiogenic and fibroblast activating factors that act in a paracrine manner on neighboring airway cells to stimulate remodeling responses. Morphological transformation of structural cells in response to rhinovirus promotes remodeling phenotypes including induction of mucus hypersecretion, epithelial-to-mesenchymal transition, and fibroblast-to-myofibroblast transdifferentiation. Rhinovirus exposure elicits airway hyperresponsiveness contributing to irreversible airway obstruction. This obstruction can occur as a consequence of sub-epithelial thickening mediated by smooth muscle migration and myofibroblast activity, or through independent mechanisms mediated by modulation of the β2 agonist receptor activation and its responsiveness to bronchodilators. Differential cellular responses emerge in response to rhinovirus infection that predispose asthmatic individuals to persistent signatures of airway remodeling, including exaggerated type 2 inflammation, enhanced extracellular matrix deposition, and robust production of pro-angiogenic mediators. CONCLUSIONS Few therapies address symptoms of rhinovirus-induced airway remodeling, though understanding the contribution of structural cells to these processes may elucidate future translational targets to alleviate symptoms of rhinovirus-induced exacerbations.
Collapse
Affiliation(s)
- Cassandra Spector
- Rutgers Institute for Translation Medicine and Science, New Brunswick, NJ, USA
| | - Camden M De Sanctis
- Rutgers Institute for Translation Medicine and Science, New Brunswick, NJ, USA
| | | | | |
Collapse
|
23
|
Strickson S, Houslay KF, Negri VA, Ohne Y, Ottosson T, Dodd RB, Huntington CC, Baker T, Li J, Stephenson KE, O'Connor AJ, Sagawe JS, Killick H, Moore T, Rees DG, Koch S, Sanden C, Wang Y, Gubbins E, Ghaedi M, Kolbeck R, Saumyaa S, Erjefält JS, Sims GP, Humbles AA, Scott IC, Romero Ros X, Cohen ES. Oxidised IL-33 drives COPD epithelial pathogenesis via ST2-independent RAGE/EGFR signalling complex. Eur Respir J 2023; 62:2202210. [PMID: 37442582 PMCID: PMC10533947 DOI: 10.1183/13993003.02210-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Epithelial damage, repair and remodelling are critical features of chronic airway diseases including chronic obstructive pulmonary disease (COPD). Interleukin (IL)-33 released from damaged airway epithelia causes inflammation via its receptor, serum stimulation-2 (ST2). Oxidation of IL-33 to a non-ST2-binding form (IL-33ox) is thought to limit its activity. We investigated whether IL-33ox has functional activities that are independent of ST2 in the airway epithelium. METHODS In vitro epithelial damage assays and three-dimensional, air-liquid interface (ALI) cell culture models of healthy and COPD epithelia were used to elucidate the functional role of IL-33ox. Transcriptomic changes occurring in healthy ALI cultures treated with IL-33ox and COPD ALI cultures treated with an IL-33-neutralising antibody were assessed with bulk and single-cell RNA sequencing analysis. RESULTS We demonstrate that IL-33ox forms a complex with receptor for advanced glycation end products (RAGE) and epidermal growth factor receptor (EGFR) expressed on airway epithelium. Activation of this alternative, ST2-independent pathway impaired epithelial wound closure and induced airway epithelial remodelling in vitro. IL-33ox increased the proportion of mucus-producing cells and reduced epithelial defence functions, mimicking pathogenic traits of COPD. Neutralisation of the IL-33ox pathway reversed these deleterious traits in COPD epithelia. Gene signatures defining the pathogenic effects of IL-33ox were enriched in airway epithelia from patients with severe COPD. CONCLUSIONS Our study reveals for the first time that IL-33, RAGE and EGFR act together in an ST2-independent pathway in the airway epithelium and govern abnormal epithelial remodelling and muco-obstructive features in COPD.
Collapse
Affiliation(s)
- Sam Strickson
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- These authors contributed equally to this work
| | - Kirsty F Houslay
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- These authors contributed equally to this work
| | - Victor A Negri
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Yoichiro Ohne
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Tomas Ottosson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Roger B Dodd
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - Tina Baker
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jingjing Li
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Katherine E Stephenson
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andy J O'Connor
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - J Sophie Sagawe
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Helen Killick
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tom Moore
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - D Gareth Rees
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Sofia Koch
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Caroline Sanden
- Experimental Medical Sciences, Lund University, Lund, Sweden
- Medetect AB, Lund, Sweden
| | - Yixin Wang
- Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Elise Gubbins
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mahboobe Ghaedi
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Roland Kolbeck
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
- Current: Spirovant Sciences, Philadelphia, PA, USA
| | - Saumyaa Saumyaa
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonas S Erjefält
- Experimental Medical Sciences, Lund University, Lund, Sweden
- Allergology and Respiratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden
| | - Gary P Sims
- Bioscience Immunology, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Alison A Humbles
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Current: Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Ian C Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Xavier Romero Ros
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- These authors contributed equally to this work
| | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- These authors contributed equally to this work
| |
Collapse
|
24
|
Hou Y, Zheng S, Zou F, Wang D, Da H, Zhou Y, Fan X, Liu J, Zhao H, He J, Li H, Sun X, Liu Y. Lactobacillus rhamnosus 76 alleviates airway inflammation in ovalbumin-allergic mice and improves mucus secretion by down-regulating STAT6/SPDEF pathway. Immunobiology 2023; 228:152712. [PMID: 37515878 DOI: 10.1016/j.imbio.2023.152712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Previous studies have reported a correlation between the dysregulation of intestinal microbiota and the occurrence of asthma. This study aimed to investigate the effect of probiotic Lactobacillus rhamnosus 76 (LR76) on ovalbumin (OVA)-allergic mice and the mechanism of LR76 affecting mucus secretion in asthma. OVA-allergic mice were supplemented with LR76, and 16HBE cells induced by interleukin-13 (IL-13) were treated with LR76 supernatant (LR76-s) to observe the effect of LR76. In OVA-sensitized mice, LR76 alleviated the inflammatory cell infiltration in lung tissue and reduced the inflammatory cell counts of BALF. The expression level of mRNA, including Il4, Il5, Il13, Il25, Tgfb1, Il10, and Ifng, was decreased in the lung tissue of mice in the LR76 group compared with the OVA group. MUC5AC expression was down-regulated, while SCGB1A1 was up-regulated in the lung tissue of OVA-allergic mice after being supplemented with LR76 and in 16HBE cells induced by IL-13 after incubating with LR76-s. LR76 and LR76-s down-regulated the expression of proteins, including STAT6, p-STAT6, and SPDEF, and mRNA of STAT6 and SPDEF. In conclusion, LR76 alleviated airway inflammation and Th2 response in OVA-allergic mice and improved the mucus secretion of mouse lung tissue and 16HBE cells in the asthma model by down-regulating STAT6/SPDEF pathway.
Collapse
Affiliation(s)
- Yangfan Hou
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, PR China
| | - Shuping Zheng
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, PR China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, Affliated Hospital of Zunyi Medical University, Zunyi 563001, Guizhou Province, PR China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, PR China
| | - Hongju Da
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, PR China
| | - Yong Zhou
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, PR China
| | - Xinping Fan
- Department of Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, PR China
| | - Jianghao Liu
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, PR China
| | - Hongyan Zhao
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, PR China
| | - Jin He
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, PR China
| | - Hongxin Li
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, PR China
| | - Xiuzhen Sun
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, PR China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, PR China.
| |
Collapse
|
25
|
Dudchenko O, Ordovas-Montanes J, Bingle CD. Respiratory epithelial cell types, states and fates in the era of single-cell RNA-sequencing. Biochem J 2023; 480:921-939. [PMID: 37410389 PMCID: PMC10422933 DOI: 10.1042/bcj20220572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Standalone and consortia-led single-cell atlases of healthy and diseased human airways generated with single-cell RNA-sequencing (scRNA-seq) have ushered in a new era in respiratory research. Numerous discoveries, including the pulmonary ionocyte, potentially novel cell fates, and a diversity of cell states among common and rare epithelial cell types have highlighted the extent of cellular heterogeneity and plasticity in the respiratory tract. scRNA-seq has also played a pivotal role in our understanding of host-virus interactions in coronavirus disease 2019 (COVID-19). However, as our ability to generate large quantities of scRNA-seq data increases, along with a growing number of scRNA-seq protocols and data analysis methods, new challenges related to the contextualisation and downstream applications of insights are arising. Here, we review the fundamental concept of cellular identity from the perspective of single-cell transcriptomics in the respiratory context, drawing attention to the need to generate reference annotations and to standardise the terminology used in literature. Findings about airway epithelial cell types, states and fates obtained from scRNA-seq experiments are compared and contrasted with information accumulated through the use of conventional methods. This review attempts to discuss major opportunities and to outline some of the key limitations of the modern-day scRNA-seq that need to be addressed to enable efficient and meaningful integration of scRNA-seq data from different platforms and studies, with each other as well as with data from other high-throughput sequencing-based genomic, transcriptomic and epigenetic analyses.
Collapse
Affiliation(s)
- Oleksandr Dudchenko
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, South Yorkshire, U.K
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, U.S.A
- Programme in Immunology, Harvard Medical School, Boston, MA, U.S.A
| | - Colin D. Bingle
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, South Yorkshire, U.K
| |
Collapse
|
26
|
Dessie EY, Gautam Y, Ding L, Altaye M, Beyene J, Mersha TB. Development and validation of asthma risk prediction models using co-expression gene modules and machine learning methods. Sci Rep 2023; 13:11279. [PMID: 37438356 DOI: 10.1038/s41598-023-35866-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/25/2023] [Indexed: 07/14/2023] Open
Abstract
Asthma is a heterogeneous respiratory disease characterized by airway inflammation and obstruction. Despite recent advances, the genetic regulation of asthma pathogenesis is still largely unknown. Gene expression profiling techniques are well suited to study complex diseases including asthma. In this study, differentially expressed genes (DEGs) followed by weighted gene co-expression network analysis (WGCNA) and machine learning techniques using dataset generated from airway epithelial cells (AECs) and nasal epithelial cells (NECs) were used to identify candidate genes and pathways and to develop asthma classification and predictive models. The models were validated using bronchial epithelial cells (BECs), airway smooth muscle (ASM) and whole blood (WB) datasets. DEG and WGCNA followed by least absolute shrinkage and selection operator (LASSO) method identified 30 and 34 gene signatures and these gene signatures with support vector machine (SVM) discriminated asthmatic subjects from controls in AECs (Area under the curve: AUC = 1) and NECs (AUC = 1), respectively. We further validated AECs derived gene-signature in BECs (AUC = 0.72), ASM (AUC = 0.74) and WB (AUC = 0.66). Similarly, NECs derived gene-signature were validated in BECs (AUC = 0.75), ASM (AUC = 0.82) and WB (AUC = 0.69). Both AECs and NECs based gene-signatures showed a strong diagnostic performance with high sensitivity and specificity. Functional annotation of gene-signatures from AECs and NECs were enriched in pathways associated with IL-13, PI3K/AKT and apoptosis signaling. Several asthma related genes were prioritized including SERPINB2 and CTSC genes, which showed functional relevance in multiple tissue/cell types and related to asthma pathogenesis. Taken together, epithelium gene signature-based model could serve as robust surrogate model for hard-to-get tissues including BECs to improve the molecular etiology of asthma.
Collapse
Affiliation(s)
- Eskezeia Y Dessie
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yadu Gautam
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lili Ding
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph Beyene
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Tesfaye B Mersha
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Lee RE, Reidel B, Nelson MR, Macdonald JK, Kesimer M, Randell SH. Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier. Adv Drug Deliv Rev 2023; 198:114866. [PMID: 37196698 PMCID: PMC10336980 DOI: 10.1016/j.addr.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Epithelial cells from mucociliary portions of the airways can be readily grown and expanded in vitro. When grown on a porous membrane at an air-liquid interface (ALI) the cells form a confluent, electrically resistive barrier separating the apical and basolateral compartments. ALI cultures replicate key morphological, molecular and functional features of the in vivo epithelium, including mucus secretion and mucociliary transport. Apical secretions contain secreted gel-forming mucins, shed cell-associated tethered mucins, and hundreds of additional molecules involved in host defense and homeostasis. The respiratory epithelial cell ALI model is a time-proven workhorse that has been employed in various studies elucidating the structure and function of the mucociliary apparatus and disease pathogenesis. It serves as a critical milestone test for small molecule and genetic therapies targeting airway diseases. To fully exploit the potential of this important tool, numerous technical variables must be thoughtfully considered and carefully executed.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States
| | - Boris Reidel
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark R Nelson
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Jade K Macdonald
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States.
| |
Collapse
|
28
|
Phelan KJ, Dill-McFarland KA, Kothari A, Segnitz RM, Burkle J, Grashel B, Jenkins S, Spagna D, Martin LJ, Haslam DB, Biagini JM, Kalra M, McCoy KS, Ross KR, Jackson DJ, Mersha TB, Altman MC, Khurana Hershey GK. Airway transcriptome networks identify susceptibility to frequent asthma exacerbations in children. J Allergy Clin Immunol 2023; 152:73-83. [PMID: 36918038 PMCID: PMC10395049 DOI: 10.1016/j.jaci.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Frequent asthma exacerbators, defined as those experiencing more than 1 hospitalization in a year for an asthma exacerbation, represent an important subgroup of individuals with asthma. However, this group remains poorly defined and understudied in children. OBJECTIVE Our aim was to determine the molecular mechanisms underlying asthma pathogenesis and exacerbation frequency. METHODS We performed RNA sequencing of upper airway cells from both frequent and nonfrequent exacerbators enrolled in the Ohio Pediatric Asthma Repository. RESULTS Through molecular network analysis, we found that nonfrequent exacerbators display an increase in modules enriched for immune system processes, including type 2 inflammation and response to infection. In contrast, frequent exacerbators showed expression of modules enriched for nervous system processes, such as synaptic formation and axonal outgrowth. CONCLUSION These data suggest that the upper airway of frequent exacerbators undergoes peripheral nervous system remodeling, representing a novel mechanism underlying pediatric asthma exacerbation.
Collapse
Affiliation(s)
- Kieran J Phelan
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Arjun Kothari
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - R Max Segnitz
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Wash
| | - Jeff Burkle
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Brittany Grashel
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Seth Jenkins
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Daniel Spagna
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David B Haslam
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jocelyn M Biagini
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maninder Kalra
- Department of Pediatrics, Dayton Children's Hospital, Dayton, Ohio
| | - Karen S McCoy
- Division of Pediatric Pulmonology, Nationwide Children's Hospital, Columbus; Ohio
| | - Kristie R Ross
- Department of Pediatrics-Pulmonary, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Tesfaye B Mersha
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Matthew C Altman
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Wash; Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | - Gurjit K Khurana Hershey
- Divison of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
29
|
Harker JA, Lloyd CM. T helper 2 cells in asthma. J Exp Med 2023; 220:214104. [PMID: 37163370 PMCID: PMC10174188 DOI: 10.1084/jem.20221094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Allergic asthma is among the most common immune-mediated diseases across the world, and type 2 immune responses are thought to be central to pathogenesis. The importance of T helper 2 (Th2) cells as central regulators of type 2 responses in asthma has, however, become less clear with the discovery of other potent innate sources of type 2 cytokines and innate mediators of inflammation such as the alarmins. This review provides an update of our current understanding of Th2 cells in human asthma, highlighting their many guises and functions in asthma, both pathogenic and regulatory, and how these are influenced by the tissue location and disease stage and severity. It also explores how biologics targeting type 2 immune pathways are impacting asthma, and how these have the potential to reveal hitherto underappreciated roles for Th2 cell in lung inflammation.
Collapse
Affiliation(s)
- James A Harker
- National Heart and Lung Institute, Imperial College London , London, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London , London, UK
| |
Collapse
|
30
|
Schworer SA, Chason KD, Chen G, Chen J, Zhou H, Burbank AJ, Kesic MJ, Hernandez ML. IL-1 receptor antagonist attenuates proinflammatory responses to rhinovirus in airway epithelium. J Allergy Clin Immunol 2023; 151:1577-1584.e4. [PMID: 36708816 PMCID: PMC10257744 DOI: 10.1016/j.jaci.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Rhinoviruses (RVs) are the most common trigger for asthma exacerbations, and there are currently no targeted therapies for viral-induced asthma exacerbations. RV infection causes neutrophilic inflammation, which is often resistant to effects of glucocorticoids. IL-1 receptor antagonist (IL-1RA) treatment reduces neutrophilic inflammation in humans challenged with inhaled endotoxin and thus may have therapeutic potential for RV-induced asthma exacerbations. OBJECTIVE We sought to test the hypothesis that IL-1RA treatment of airway epithelium reduces RV-mediated proinflammatory cytokine production, which is important for neutrophil recruitment. METHODS Human bronchial epithelial cells from deceased donors without prior pulmonary disease were cultured at air-liquid interface and treated with IL-13 to approximate an asthmatic inflammatory milieu. Human bronchial epithelial cells were infected with human RV-16 with or without IL-1RA treatment. RESULTS RV infection promoted the release of IL-1α and the neutrophil-attractant cytokines IL-6, IL-8, and CXCL10. Proinflammatory cytokine secretion was significantly reduced by IL-1RA treatment without significant change in IFN-β release or RV titer. In addition, IL-1RA reduced MUC5B expression after RV infection without impacting MUC5AC. CONCLUSIONS These data suggest that IL-1RA treatment significantly reduced proinflammatory cytokines while preserving the antiviral response. These results provide evidence for further investigation of IL-1RA as a novel targeted therapy against neutrophil-attractant cytokine release in RV-induced airway inflammatory responses.
Collapse
Affiliation(s)
- Stephen A Schworer
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC; Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly D Chason
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Haibo Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Allison J Burbank
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC
| | - Matthew J Kesic
- Campbell University College of Pharmacy and Health Sciences, Buies Creek, NC
| | - Michelle L Hernandez
- Division of Allergy and Immunology, Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC.
| |
Collapse
|
31
|
Kotas ME, Patel NN, Cope EK, Gurrola JG, Goldberg AN, Pletcher SD, Seibold MA, Moore CM, Gordon ED. IL-13-associated epithelial remodeling correlates with clinical severity in nasal polyposis. J Allergy Clin Immunol 2023; 151:1277-1285. [PMID: 36736797 PMCID: PMC10243183 DOI: 10.1016/j.jaci.2022.12.826] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Epithelial remodeling is a histopathologic feature of chronic inflammatory airway diseases including chronic rhinosinusitis (CRS). Cell-type shifts and their relationship to CRS endotypes and severity are incompletely described. OBJECTIVE We sought to understand the relationship of epithelial cell remodeling to inflammatory endotypes and disease outcomes in CRS. METHODS Using cell-type transcriptional signatures derived from epithelial single-cell sequencing, we analyzed bulk RNA-sequencing data from sinus epithelial brushings obtained from patients with CRS with and without nasal polyps in comparison to healthy controls. RESULTS The airway epithelium in nasal polyposis displayed increased tuft cell transcripts and decreased ciliated cell transcripts along with an IL-13 activation signature. In contrast, CRS without polyps showed an IL-17 activation signature. IL-13 activation scores were associated with increased tuft cell, goblet cell, and mast cell scores and decreased ciliated cell scores. Furthermore, the IL-13 score was strongly associated with a previously reported activated ("polyp") tuft cell score and a prostaglandin E2 activation signature. The Lund-Mackay score, a computed tomographic metric of sinus opacification, correlated positively with activated tuft cell, mast cell, prostaglandin E2, and IL-13 signatures and negatively with ciliated cell transcriptional signatures. CONCLUSIONS These results demonstrate that cell-type alterations and prostaglandin E2 stimulation are key components of IL-13-induced epithelial remodeling in nasal polyposis, whereas IL-17 signaling is more prominent in CRS without polyps, and that clinical severity correlates with the degree of IL-13-driven epithelial remodeling.
Collapse
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, Calif
| | - Neil N Patel
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, Calif
| | - Emily K Cope
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Ariz
| | - Jose G Gurrola
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, Calif
| | - Andrew N Goldberg
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, Calif
| | - Steven D Pletcher
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, Calif; Surgical Service, ENT Section, San Francisco VA Medical Center, San Francisco, Calif
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo; Department of Pediatrics, National Jewish Health, Denver, Colo; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colo
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo; Department of Biostatistics and Informatics, University of Colorado, Aurora, Colo.
| | - Erin D Gordon
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, Calif.
| |
Collapse
|
32
|
Wang WJ, Lu X, Li Z, Peng K, Zhan P, Fu L, Wang Y, Zhao H, Wang H, Xu DX, Tan ZX. Early-life cadmium exposure elevates susceptibility to allergic asthma in ovalbumin-sensitized and challenged mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114799. [PMID: 36933479 DOI: 10.1016/j.ecoenv.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/28/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Increasing evidence have demonstrated that early-life exposure to environmental toxicants elevates risk of allergic asthma. Cadmium (Cd) is widely present in the environment. The purposes of this study were to evaluate the impact of early-life Cd exposure on susceptibility to ovalbumin (OVA)-evoked allergic asthma. Newly weaned mice were subjected to a low concentration of CdCl2 (1 mg/L) by drinking water for 5 consecutive weeks. Penh value, an index of airway obstruction, was increased in OVA-stimulated and challenged pups. Abundant inflammatory cells were observed in the lung of OVA-exposed pups. Goblet cell hyperplasia and mucus secretion were shown in the airway of OVA-stimulated and challenged pups. Early-life Cd exposure exacerbated OVA-evoked airway hyperreactivity, Goblet cell hyperplasia and mucus secretion. The in vitro experiments showed that mucoprotein gene MUC5AC mRNA was upregulated in Cd-exposed bronchial epithelial cells. Mechanistically, endoplasmic reticulum (ER) stress-related molecules GRP78, p-eIF2α, CHOP, p-IRE1α and spliced XBP-1 (sXBP-1) were elevated in Cd-subjected bronchial epithelial cells. The blockade of ER stress, using chemical inhibitor 4-PBA or sXBP-1 siRNA interference, attenuated Cd-induced MUC5AC upregulation in bronchial epithelial cells. These results indicate that early-life Cd exposure aggravates OVA-induced allergic asthma partially through inducing ER stress in bronchial epithelial cells.
Collapse
Affiliation(s)
- Wen-Jing Wang
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xue Lu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Zhao Li
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Kun Peng
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ping Zhan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Fu
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yan Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Hui Zhao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China.
| | - Zhu-Xia Tan
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China.
| |
Collapse
|
33
|
Numata M, Sajuthi S, Bochkov YA, Loeffler J, Everman J, Vladar EK, Cooney RA, Reinhardt RL, Liu AH, Seibold MA, Voelker DR. Anionic Pulmonary Surfactant Lipid Treatment Inhibits Rhinovirus A Infection of the Human Airway Epithelium. Viruses 2023; 15:747. [PMID: 36992456 PMCID: PMC10055697 DOI: 10.3390/v15030747] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Rhinoviruses (RVs) are major instigators of acute exacerbations of asthma, COPD, and other respiratory diseases. RVs are categorized into three species (RV-A, RV-B, and RV-C), which comprise more than 160 serotypes, making it difficult to develop an effective vaccine. Currently, no effective treatment for RV infection is available. Pulmonary surfactant is an extracellular complex of lipids and proteins that plays a central role in regulating innate immunity in the lung. The minor pulmonary surfactant lipids, palmitoyl-oleoyl-phosphatidylglycerol (POPG) and phosphatidylinositol (PI), are potent regulators of inflammatory processes and exert antiviral activity against respiratory syncytial virus (RSV) and influenza A viruses (IAV). In the current study, we examined the potencies of POPG and PI against rhinovirus A16 (RV-A16) in primary human airway epithelial cells (AECs) differentiated at an air-liquid interface (ALI). After AECs were infected with RV-A16, PI reduced the viral RNA copy number by 70% and downregulated (55-75%) the expression of antiviral (MDA5, IRF7, and IFN-lambda) and CXCL11 chemokine genes. In contrast, POPG only slightly decreased MDA5 (24%) and IRF7 (11%) gene expression but did not inhibit IFN-lambda gene expression or RV-A16 replication in AECs. However, both POPG and PI inhibited (50-80%) IL6 gene expression and protein secretion and CXCL11 protein secretion. PI treatment dramatically attenuated global gene expression changes induced by RV-A16 infection alone in AECs. The observed inhibitory effects were indirect and resulted mainly from the inhibition of virus replication. Cell-type enrichment analysis of viral-regulated genes opposed by PI treatment revealed the PI-inhibited viral induction of goblet cell metaplasia and the virus-induced downregulation of ciliated, club, and ionocyte cell types. Notably, the PI treatment also altered the ability of RV-A16 to regulate the expression of some phosphatidylinositol 4-kinase (PI4K); acyl-CoA-binding, domain-containing (ACBD); and low-density lipoprotein receptor (LDLR) genes that play critical roles in the formation and functioning of replication organelles (ROs) required for RV replication in host cells. These data suggest PI can be used as a potent, non-toxic, antiviral agent for RV infection prophylaxis and treatment.
Collapse
Affiliation(s)
- Mari Numata
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Satria Sajuthi
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA
| | - Yury A. Bochkov
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Jessica Loeffler
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Jamie Everman
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA
| | - Eszter K. Vladar
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Riley A. Cooney
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Richard Lee Reinhardt
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Andrew H. Liu
- Section of Pediatric Pulmonary & Sleep Medicine, Children’s Hospital Colorado and University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Max A. Seibold
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Dennis R. Voelker
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
34
|
Cho HJ, Chung YW, Moon S, Seo JH, Kang M, Nam JS, Lee SN, Kim CH, Choi AMK, Yoon JH. IL-4 drastically decreases deuterosomal and multiciliated cells via alteration in progenitor cell differentiation. Allergy 2023. [PMID: 36883528 DOI: 10.1111/all.15705] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Allergic inflammation affects the epithelial cell populations resulting in goblet cell hyperplasia and decreased ciliated cells. Recent advances in single-cell RNA sequencing (scRNAseq) have enabled the identification of new cell subtypes and genomic features of single cells. In this study, we aimed to investigate the effect of allergic inflammation in nasal epithelial cell transcriptomes at the single-cell level. METHODS We performed scRNAseq in cultured primary human nasal epithelial (HNE) cells and in vivo nasal epithelium. The transcriptomic features and epithelial cell subtypes were determined under IL-4 stimulation, and cell-specific marker genes and proteins were identified. RESULTS We confirmed that cultured HNE cells were similar to in vivo epithelial cells through scRNAseq. Cell-specific marker genes were utilized to cluster the cell subtypes, and FOXJ1+ -ciliated cells were sub-classified into multiciliated and deuterosomal cells. PLK4 and CDC20B were specific for deuterosomal cells, and SNTN, CPASL, and GSTA2 were specific for multiciliated cells. IL-4 altered the proportions of cell subtypes, resulting in a decrease in multiciliated cells and loss of deuterosomal cells. The trajectory analysis revealed deuterosomal cells as precursor cells of multiciliated cells and deuterosomal cells function as a bridge between club and multiciliated cells. A decrease in deuterosomal cell marker genes was observed in nasal tissue samples with type 2 inflammation. CONCLUSION The effects of IL-4 appear to be mediated through the loss of the deuterosomal population, resulting in the reduction in multiciliated cells. This study also newly suggests cell-specific markers that might be pivotal for investigating respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Youn Wook Chung
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Sungmin Moon
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hee Seo
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Miran Kang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Sung Nam
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nam Lee
- Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York, USA
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea.,Global Research Laboratory for Allergic Airway Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
35
|
What Have Mechanistic Studies Taught Us About Childhood Asthma? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:684-692. [PMID: 36649800 DOI: 10.1016/j.jaip.2023.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Childhood asthma is a chronic heterogeneous syndrome consisting of different disease entities or phenotypes. The immunologic and cellular processes that occur during asthma development are still not fully understood but represent distinct endotypes. Mechanistic studies have examined the role of gene expression, protein levels, and cell types in early life development and the manifestation of asthma, many under the influence of environmental stimuli, which can be both protective and risk factors for asthma. Genetic variants can regulate gene expression, controlled partly by different epigenetic mechanisms. In addition, environmental factors, such as living space, nutrition, and smoking, can contribute to these mechanisms. All of these factors produce modifications in gene expression that can alter the development and function of immune and epithelial cells and subsequently different trajectories of childhood asthma. These early changes in a partially immature immune system can have dramatic effects (e.g., causing dysregulation), which in turn contribute to different disease endotypes and may help to explain differential responsiveness to asthma treatment. In this review, we summarize published studies that have aimed to uncover distinct mechanisms in childhood asthma, considering genetics, epigenetics, and environment. Moreover, a discussion of new, powerful tools for single-cell immunologic assays for phenotypic and functional analysis is included, which promise new mechanistic insights into childhood asthma development and therapeutic and preventive strategies.
Collapse
|
36
|
Zhou Y, Duan Q, Yang D. In vitro human cell-based models to study airway remodeling in asthma. Biomed Pharmacother 2023; 159:114218. [PMID: 36638596 DOI: 10.1016/j.biopha.2023.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Airway remodeling, as a predominant characteristic of asthma, refers to the structural changes that occurred both in the large and small airways. These pathological changes not only contribute to airway hyperresponsiveness and airway obstruction, but also predict poor outcomes of patients. In vitro models are the alternatives to animal models that facilitate airway remodeling research. Current approaches to mimic airway remodeling in vitro include mono cultures of cell lines and primary cells that are derived from the respiratory tract, and co-culture systems that consist of different cell subpopulations. Moreover, recent advances in microfluid chips and organoids show promise in simulating the complex architecture and functionality of native organs. According, they enable highly physiological-relevant investigations of human diseases in vitro. Here we aim to detail the current human cell-based models regarding their key pros and cons, and to discuss how they may be used to facilitate our understanding of airway remodeling in asthma.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Qirui Duan
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing 100144, China.
| |
Collapse
|
37
|
Jackson ND, Dyjack N, Goleva E, Bin L, Montgomery MT, Rios C, Everman JL, Taylor P, Bronchick C, Richers BN, Leung DY, Seibold MA. Atopic dermatitis complicated by recurrent eczema herpeticum is characterized by multiple, concurrent epidermal inflammatory endotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530316. [PMID: 36909594 PMCID: PMC10002633 DOI: 10.1101/2023.02.27.530316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND A subgroup of atopic dermatitis (AD) patients suffer from recurrent, disseminated herpes simplex virus (HSV) skin infections, termed eczema herpeticum (EH), which can be life-threatening and contribute to AD morbidity. The pathobiology underlying ADEH is unknown. OBJECTIVE To determine transcriptional mechanisms of skin and immune system pathobiology that underlie ADEH disease. METHODS We performed whole transcriptome RNA-sequencing of non-lesional skin samples (epidermis, dermis) of AD patients with (ADEH + , n=15) and without (ADEH - , n=13) recurrent EH history, and healthy controls (HC, n=15). We also performed RNA-sequencing on plasmacytoid dendritic cells (pDCs) collected from these participants and infected in vitro with HSV-1. Differential expression, gene set enrichment, and endotyping analyses were performed. RESULTS ADEH + disease was characterized by dysregulation in skin gene expression, which was limited in dermis (differentially expressed genes [DEGs]=14) and widespread in epidermis (DEGs=129). ADEH + -upregulated epidermal DEGs were enriched in type 2 cytokine (T2) ( IL4R, CCL22, CRLF2, IL7R ), interferon ( CXCL10, ICAM1, IFI44 , and IRF7) , and IL-36γ ( IL36G ) inflammatory pathway genes. At a person-level, all ADEH + participants exhibited T2 and interferon endotypes and 87% were IL36G-high. In contrast, these endotypes were more variably expressed among ADEH - participants. ADEH + patient skin also exhibited dysregulation in epidermal differentiation complex (EDC) genes within the LCE, S100 , and SPRR families, which are involved in skin barrier function, inflammation, and antimicrobial activities. pDC transcriptional responses to HSV-1 infection were not altered by ADEH status. CONCLUSIONS ADEH + pathobiology is characterized by a unique, multi-faceted epidermal inflammation that accompanies dysregulation in the expression of EDC genes. Key Messages AD patients with a history of recurrent EH exhibit molecular skin pathobiology that is similar in form, but more severe in degree, than in AD patients without this complication. Non-lesional skin of ADEH + patients concurrently exhibits excessive type 2 cytokine, interferon, and IL-36γ-driven epidermal inflammation. Expression of these inflammatory skin endotypes among ADEH + patients is associated with dysregulation in expression of epidermal differentiation complex genes involved in barrier function, inflammation, and antimicrobial activity. Capsule Summary AD patients with a history of recurrent disseminated HSV-1 skin infections form a unique molecular skin endotype group that concurrently exhibits type 2 cytokine, interferon, and IL-36γ-driven skin inflammation, accompanied by dysregulation in expression of epidermal differentiation complex genes involved in barrier function, inflammation, and antimicrobial activity.
Collapse
|
38
|
Lal D, Brar T, Ramkumar SP, Li J, Kato A, Zhang L. Genetics and epigenetics of chronic rhinosinusitis. J Allergy Clin Immunol 2023; 151:848-868. [PMID: 36797169 DOI: 10.1016/j.jaci.2023.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
Discerning the genetics and epigenetics of chronic rhinosinusitis (CRS) may optimize outcomes through early diagnostics, personalized and novel therapeutics, and early prognostication. CRS associated with cystic fibrosis and primary ciliary dyskinesia has well-characterized genetic mutations. Most CRS subjects, however, do not exhibit identifiable monogenic alterations. Clustering in related individuals is seen in CRS with nasal polyps. Spouses of subjects with CRS without nasal polyps also may be at increased risk of the same disease. These observations generate questions on genetic and environmental influences in CRS. Genome-wide association studies have identified variations and polymorphisms between CRS and control subjects in genes related to innate and adaptive immunity. Candidate gene and transcriptomics studies have investigated and identified genetic variations related to immunity, inflammation, epithelial barrier function, stress-response, antigen processing, T-cell regulation, and cytokines in CRS. Epigenetic studies have identified mechanisms through which environmental factors may affect these gene functions. However, causality is not determined for most variations. Inferences drawn from these data must be measured because most investigations report unreplicated results from small study populations. Large, replicated studies in tight cohorts across diverse populations remain a pressing need in studying CRS genetics.
Collapse
Affiliation(s)
- Devyani Lal
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic in Arizona, Phoenix, Ariz.
| | - Tripti Brar
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic in Arizona, Phoenix, Ariz
| | - Shreya Pusapadi Ramkumar
- Department of Otolaryngology Head and Neck Surgery, Mayo Clinic in Arizona, Phoenix, Ariz; Saint Louis University School of Medicine, St Louis, Mo
| | - Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China; Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Atsushi Kato
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China; Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Abstract
The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.
Collapse
Affiliation(s)
- Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
40
|
Pediatric obesity and severe asthma: Targeting pathways driving inflammation. Pharmacol Res 2023; 188:106658. [PMID: 36642111 DOI: 10.1016/j.phrs.2023.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Asthma affects more than 300 million people of all ages worldwide, including about 10-15% of school-aged children, and its prevalence is increasing. Severe asthma (SA) is a particular and rare phenotype requiring treatment with high-dose inhaled corticosteroids plus a second controller and/or systemic glucocorticoid courses to achieve symptom control or remaining "uncontrolled" despite this therapy. In SA, other diagnoses have been excluded, and potential exacerbating factors have been addressed. Notably, obese asthmatics are at higher risk of developing SA. Obesity is both a major risk factor and a disease modifier of asthma in children and adults: two main "obese asthma" phenotypes have been described in childhood with high or low levels of Type 2 inflammation biomarkers, respectively, the former characterized by early onset and eosinophilic inflammation and the latter by neutrophilic inflammation and late-onset. Nevertheless, the interplay between obesity and asthma is far more complex and includes obese tissue-driven inflammatory pathways, mechanical factors, comorbidities, and poor response to corticosteroids. This review outlines the most recent findings on SA in obese children, particularly focusing on inflammatory pathways, which are becoming of pivotal importance in order to identify selective targets for specific treatments, such as biological agents.
Collapse
|
41
|
Aegerter H, Lambrecht BN. The Pathology of Asthma: What Is Obstructing Our View? ANNUAL REVIEW OF PATHOLOGY 2023; 18:387-409. [PMID: 36270294 DOI: 10.1146/annurev-pathol-042220-015902] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the advent of sophisticated and efficient new biologics to treat inflammation in asthma, the disease persists. Even following treatment, many patients still experience the well-known symptoms of wheezing, shortness of breath, and coughing. What are we missing? Here we examine the evidence that mucus plugs contribute to a substantial portion of disease, not only by physically obstructing the airways but also by perpetuating inflammation. In this way, mucus plugs may act as an immunogenic stimulus even in the absence of allergen or with the use of current therapeutics. The alterations of several parameters of mucus biology, driven by type 2 inflammation, result in sticky and tenacious sputum, which represents a potent threat, first due to the difficulties in expectoration and second by acting as a platform for viral, bacterial, or fungal colonization that allows exacerbations. Therefore, in this way, mucus plugs are an overlooked but critical feature of asthmatic airway disease.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Koh KD, Bonser LR, Eckalbar WL, Yizhar-Barnea O, Shen J, Zeng X, Hargett KL, Sun DI, Zlock LT, Finkbeiner WE, Ahituv N, Erle DJ. Genomic characterization and therapeutic utilization of IL-13-responsive sequences in asthma. CELL GENOMICS 2023; 3:100229. [PMID: 36777184 PMCID: PMC9903679 DOI: 10.1016/j.xgen.2022.100229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/02/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Epithelial responses to the cytokine interleukin-13 (IL-13) cause airway obstruction in asthma. Here we utilized multiple genomic techniques to identify IL-13-responsive regulatory elements in bronchial epithelial cells and used these data to develop a CRISPR interference (CRISPRi)-based therapeutic approach to downregulate airway obstruction-inducing genes in a cell type- and IL-13-specific manner. Using single-cell RNA sequencing (scRNA-seq) and acetylated lysine 27 on histone 3 (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) in primary human bronchial epithelial cells, we identified IL-13-responsive genes and regulatory elements. These sequences were functionally validated and optimized via massively parallel reporter assays (MPRAs) for IL-13-inducible activity. The top secretory cell-selective sequence from the MPRA, a novel, distal enhancer of the sterile alpha motif pointed domain containing E-26 transformation-specific transcription factor (SPDEF) gene, was utilized to drive CRISPRi and knock down SPDEF or mucin 5AC (MUC5AC), both involved in pathologic mucus production in asthma. Our work provides a catalog of cell type-specific genes and regulatory elements involved in IL-13 bronchial epithelial response and showcases their use for therapeutic purposes.
Collapse
Affiliation(s)
- Kyung Duk Koh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Luke R. Bonser
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter L. Eckalbar
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ofer Yizhar-Barnea
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiangshan Shen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoning Zeng
- Department of Pulmonary & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kirsten L. Hargett
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dingyuan I. Sun
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorna T. Zlock
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Walter E. Finkbeiner
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David J. Erle
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
- CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
43
|
Wang Z, He Y, Li Q, Zhao Y, Zhang G, Luo Z. Network analyses of upper and lower airway transcriptomes identify shared mechanisms among children with recurrent wheezing and school-age asthma. Front Immunol 2023; 14:1087551. [PMID: 36776870 PMCID: PMC9911682 DOI: 10.3389/fimmu.2023.1087551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023] Open
Abstract
Background Predicting which preschool children with recurrent wheezing (RW) will develop school-age asthma (SA) is difficult, highlighting the critical need to clarify the pathogenesis of RW and the mechanistic relationship between RW and SA. Despite shared environmental exposures and genetic determinants, RW and SA are usually studied in isolation. Based on network analysis of nasal and tracheal transcriptomes, we aimed to identify convergent transcriptomic mechanisms in RW and SA. Methods RNA-sequencing data from nasal and tracheal brushing samples were acquired from the Gene Expression Omnibus. Combined with single-cell transcriptome data, cell deconvolution was used to infer the composition of 18 cellular components within the airway. Consensus weighted gene co-expression network analysis was performed to identify consensus modules closely related to both RW and SA. Shared pathways underlying consensus modules between RW and SA were explored by enrichment analysis. Hub genes between RW and SA were identified using machine learning strategies and validated using external datasets and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the potential value of hub genes in defining RW subsets was determined using nasal and tracheal transcriptome data. Results Co-expression network analysis revealed similarities in the transcriptional networks of RW and SA in the upper and lower airways. Cell deconvolution analysis revealed an increase in mast cell fraction but decrease in club cell fraction in both RW and SA airways compared to controls. Consensus network analysis identified two consensus modules highly associated with both RW and SA. Enrichment analysis of the two consensus modules indicated that fatty acid metabolism-related pathways were shared key signals between RW and SA. Furthermore, machine learning strategies identified five hub genes, i.e., CST1, CST2, CST4, POSTN, and NRTK2, with the up-regulated hub genes in RW and SA validated using three independent external datasets and qRT-PCR. The gene signatures of the five hub genes could potentially be used to determine type 2 (T2)-high and T2-low subsets in preschoolers with RW. Conclusions These findings improve our understanding of the molecular pathogenesis of RW and provide a rationale for future exploration of the mechanistic relationship between RW and SA.
Collapse
Affiliation(s)
- Zhili Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yu He
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qinyuan Li
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yan Zhao
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guangli Zhang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
44
|
Wang Z, He Y, Cun Y, Li Q, Zhao Y, Luo Z. Transcriptomic analysis identified SLC40A1 as a key iron metabolism-related gene in airway macrophages in childhood allergic asthma. Front Cell Dev Biol 2023; 11:1164544. [PMID: 37123407 PMCID: PMC10133523 DOI: 10.3389/fcell.2023.1164544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: Asthma is the most common chronic condition in children, with allergic asthma being the most common phenotype, accounting for approximately 80% of cases. Growing evidence suggests that disruption of iron homeostasis and iron regulatory molecules may be associated with childhood allergic asthma. However, the underlying molecular mechanism remains unclear. Methods: Three childhood asthma gene expression datasets were analyzed to detect aberrant expression profiles of iron metabolism-related genes in the airways of children with allergic asthma. Common iron metabolism-related differentially expressed genes (DEGs) across the three datasets were identified and were subjected to functional enrichment analysis. Possible correlations between key iron metabolism-related DEGs and type 2 airway inflammatory genes were investigated. Single-cell transcriptome analysis further identified major airway cell subpopulations driving key gene expression. Key iron metabolism-related gene SLC40A1 was validated in bronchoalveolar lavage (BAL) cells from childhood asthmatics with control individuals by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunofluorescence. The intracellular iron content in BAL cells was assessed by Perls iron staining and the iron levels in BAL supernatant was measured by iron assay to assess airway iron metabolism status in childhood asthmatics. Results: Five common iron metabolism-related DEGs were identified, which were functionally related to iron homeostasis. Among these genes, downregulated SLC40A1 was strongly correlated with type 2 airway inflammatory markers and the gene signature of SLC40A1 could potentially be used to determine type 2-high and type 2-low subsets in childhood allergic asthmatics. Further single-cell transcriptomic analysis identified airway macrophages driving SLC40A1 expression. Immunofluorescence staining revealed colocalization of FPN (encoded by SLC40A1) and macrophage marker CD68. Down-regulation of SLC40A1 (FPN) was validated by qRT-PCR and immunofluorescence analysis. Results further indicated reduced iron levels in the BAL fluid, but increased iron accumulation in BAL cells in childhood allergic asthma patients. Furthermore, decreased expression of SLC40A1 was closely correlated with reduced iron levels in the airways of children with allergic asthma. Discussion: Overall, these findings reveal the potential role of the iron metabolism-related gene SLC40A1 in the pathogenesis of childhood allergic asthma.
Collapse
Affiliation(s)
- Zhili Wang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yu He
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yupeng Cun
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Qinyuan Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhengxiu Luo,
| |
Collapse
|
45
|
Gautam LK, Harriott NC, Caceres AM, Ryan AL. Basic Science Perspective on Engineering and Modeling the Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:73-106. [PMID: 37195527 DOI: 10.1007/978-3-031-26625-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The airway epithelium provides a physical and biochemical barrier playing a key role in protecting the lung from infiltration of pathogens and irritants and is, therefore, crucial in maintaining tissue homeostasis and regulating innate immunity. Due to continual inspiration and expiration of air during breathing, the epithelium is exposed to a plethora of environmental insults. When severe or persistent, these insults lead to inflammation and infection. The effectiveness of the epithelium as a barrier is reliant upon its capacity for mucociliary clearance, immune surveillance, and regeneration upon injury. These functions are accomplished by the cells that comprise the airway epithelium and the niche in which they reside. Engineering of new physiological and pathological models of the proximal airways requires the generation of complex structures comprising the surface airway epithelium, submucosal gland epithelium, extracellular matrix, and niche cells, including smooth muscle cells, fibroblasts, and immune cells. This chapter focuses on the structure-function relationships in the airways and the challenges of developing complex engineered models of the human airway.
Collapse
Affiliation(s)
- Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Noa C Harriott
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adrian M Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
46
|
Ye F, Zhang G, E. W, Chen H, Yu C, Yang L, Fu Y, Li J, Fu S, Sun Z, Fei L, Guo Q, Wang J, Xiao Y, Wang X, Zhang P, Ma L, Ge D, Xu S, Caballero-Pérez J, Cruz-Ramírez A, Zhou Y, Chen M, Fei JF, Han X, Guo G. Construction of the axolotl cell landscape using combinatorial hybridization sequencing at single-cell resolution. Nat Commun 2022; 13:4228. [PMID: 35869072 PMCID: PMC9307617 DOI: 10.1038/s41467-022-31879-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/08/2022] [Indexed: 01/01/2023] Open
Abstract
The Mexican axolotl (Ambystoma mexicanum) is a well-established tetrapod model for regeneration and developmental studies. Remarkably, neotenic axolotls may undergo metamorphosis, a process that triggers many dramatic changes in diverse organs, accompanied by gradually decline of their regeneration capacity and lifespan. However, the molecular regulation and cellular changes in neotenic and metamorphosed axolotls are still poorly investigated. Here, we develop a single-cell sequencing method based on combinatorial hybridization to generate a tissue-based transcriptomic landscape of the neotenic and metamorphosed axolotls. We perform gene expression profiling of over 1 million single cells across 19 tissues to construct the first adult axolotl cell landscape. Comparison of single-cell transcriptomes between the tissues of neotenic and metamorphosed axolotls reveal the heterogeneity of non-immune parenchymal cells in different tissues and established their regulatory network. Furthermore, we describe dynamic gene expression patterns during limb development in neotenic axolotls. This system-level single-cell analysis of molecular characteristics in neotenic and metamorphosed axolotls, serves as a resource to explore the molecular identity of the axolotl and facilitates better understanding of metamorphosis. The Mexican axolotl is a well-established tetrapod model for regeneration and development. Here the authors report a scRNA-seq method to profile neotenic, metamorphic and limb development stages, highlighting unique perturbation patterns of cell type-related gene expression throughout metamorphosis.
Collapse
|
47
|
Sreenivasan VKA, Henck J, Spielmann M. Single-cell sequencing: promises and challenges for human genetics. MED GENET-BERLIN 2022; 34:261-273. [PMID: 38836091 PMCID: PMC11006387 DOI: 10.1515/medgen-2022-2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Over the last decade, single-cell sequencing has transformed many fields. It has enabled the unbiased molecular phenotyping of even whole organisms with unprecedented cellular resolution. In the field of human genetics, where the phenotypic consequences of genetic and epigenetic alterations are of central concern, this transformative technology promises to functionally annotate every region in the human genome and all possible variants within them at a massive scale. In this review aimed at the clinicians in human genetics, we describe the current status of the field of single-cell sequencing and its role for human genetics, including how the technology works as well as how it is being applied to characterize and monitor diseases, to develop human cell atlases, and to annotate the genome.
Collapse
Affiliation(s)
- Varun K A Sreenivasan
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, 24105 Kiel, Germany
| | - Jana Henck
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, 24105 Kiel, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck and Kiel University, 23562 Lübeck, 24105 Kiel, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
- DZHK e. V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
48
|
Tang W, Li M, Teng F, Cui J, Dong J, Wang W. Single-cell RNA-sequencing in asthma research. Front Immunol 2022; 13:988573. [PMID: 36524132 PMCID: PMC9744750 DOI: 10.3389/fimmu.2022.988573] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Asthma is a complex and heterogeneous disease with multicellular involvement, and knowledge gaps remain in our understanding of the pathogenesis of asthma. Efforts are still being made to investigate the immune pathogenesis of asthma in order to identify possible targets for prevention. Single cell RNA sequencing (scRNA-seq) technology is a useful tool for exploring heterogeneous diseases, identifying rare cell types and distinct cell subsets, enabling elucidation of key processes of cell differentiation, and understanding regulatory gene networks that predict immune function. In this article, we provide an overview of the importance of scRNA-seq for asthma research, followed by an in-depth discussion of the results in recent years, in order to provide new ideas for the pathogenesis, drug development and treatment of asthma.
Collapse
Affiliation(s)
- Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China,*Correspondence: Wenqian Wang, ; Jingcheng Dong,
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China,*Correspondence: Wenqian Wang, ; Jingcheng Dong,
| |
Collapse
|
49
|
Wang Y, Dong X, Pan C, Zhu C, Qi H, Wang Y, Wei H, Xie Q, Wu L, Shen H, Li S, Xie Y. Single-cell transcriptomic characterization reveals the landscape of airway remodeling and inflammation in a cynomolgus monkey model of asthma. Front Immunol 2022; 13:1040442. [PMID: 36439114 PMCID: PMC9685410 DOI: 10.3389/fimmu.2022.1040442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/20/2022] [Indexed: 06/22/2024] Open
Abstract
Monkey disease models, which are comparable to humans in terms of genetic, anatomical, and physiological characteristics, are important for understanding disease mechanisms and evaluating the efficiency of biological treatments. Here, we established an A.suum-induced model of asthma in cynomolgus monkeys to profile airway inflammation and remodeling in the lungs by single-cell RNA sequencing (scRNA-seq). The asthma model results in airway hyperresponsiveness and remodeling, demonstrated by pulmonary function test and histological characterization. scRNA-seq reveals that the model elevates the numbers of stromal, epithelial and mesenchymal cells (MCs). Particularly, the model increases the numbers of endothelial cells (ECs), fibroblasts (Fibs) and smooth muscle cells (SMCs) in the lungs, with upregulated gene expression associated with cell functions enriched in cell migration and angiogenesis in ECs and Fibs, and VEGF-driven cell proliferation, apoptotic process and complement activation in SMCs. Interestingly, we discover a novel Fib subtype that mediates type I inflammation in the asthmatic lungs. Moreover, MCs in the asthmatic lungs are found to regulate airway remodeling and immunological responses, with elevated gene expression enriched in cell migration, proliferation, angiogenesis and innate immunological responses. Not only the numbers of epithelial cells in the asthmatic lungs change at the time of lung tissue collection, but also their gene expressions are significantly altered, with an enrichment in the biological processes of IL-17 signaling pathway and apoptosis in the majority of subtypes of epithelial cells. Moreover, the ubiquitin process and DNA repair are more prevalent in ciliated epithelial cells. Last, cell-to-cell interaction analysis reveals a complex network among stromal cells, MCs and macrophages that contribute to the development of asthma and airway remodeling. Our findings provide a critical resource for understanding the principle underlying airway remodeling and inflammation in a monkey model of asthma, as well as valuable hints for the future treatment of asthma, especially the airway remodeling-characterized refractory asthma.
Collapse
Affiliation(s)
- Yingshuo Wang
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyan Dong
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Caizhe Pan
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Cihang Zhu
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hantao Qi
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Wang
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wei
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiangmin Xie
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Respiratory Drugs Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Wu
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Huijuan Shen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuxian Li
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yicheng Xie
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Ehrhardt B, El-Merhie N, Kovacevic D, Schramm J, Bossen J, Roeder T, Krauss-Etschmann S. Airway remodeling: The Drosophila model permits a purely epithelial perspective. FRONTIERS IN ALLERGY 2022; 3:876673. [PMID: 36187164 PMCID: PMC9520053 DOI: 10.3389/falgy.2022.876673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Airway remodeling is an umbrella term for structural changes in the conducting airways that occur in chronic inflammatory lung diseases such as asthma or chronic obstructive pulmonary disease (COPD). The pathobiology of remodeling involves multiple mesenchymal and lymphoid cell types and finally leads to a variety of hardly reversible changes such as hyperplasia of goblet cells, thickening of the reticular basement membrane, deposition of collagen, peribronchial fibrosis, angiogenesis and hyperplasia of bronchial smooth muscle cells. In order to develop solutions for prevention or innovative therapies, these complex processes must be understood in detail which requires their deconstruction into individual building blocks. In the present manuscript we therefore focus on the role of the airway epithelium and introduce Drosophila melanogaster as a model. The simple architecture of the flies’ airways as well as the lack of adaptive immunity allows to focus exclusively on the importance of the epithelium for the remodeling processes. We will review and discuss genetic and environmentally induced changes in epithelial structures and molecular responses and propose an integrated framework of research for the future.
Collapse
Affiliation(s)
- Birte Ehrhardt
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Natalia El-Merhie
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Draginja Kovacevic
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Juliana Schramm
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Judith Bossen
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Thomas Roeder
- Division of Molecular Physiology, Institute of Zoology, Christian-Albrechts University Kiel, Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Correspondence: Susanne Krauss-Etschmann
| |
Collapse
|