1
|
Trovagunta R, Marquez R, Tolosa L, Barrios N, Zambrano F, Suarez A, Pal L, Gonzalez R, Hubbe MA. Lignin self-assembly phenomena and valorization strategies for pulping, biorefining, and materials development: Part 1. The physical chemistry of lignin self-assembly. Adv Colloid Interface Sci 2024; 332:103247. [PMID: 39126917 DOI: 10.1016/j.cis.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Physical chemistry aspects are emphasized in this comprehensive review of self-assembly phenomena involving lignin in various forms. Attention to this topic is justified by the very high availability, low cost, and renewable nature of lignin, together with opportunities to manufacture diverse products, for instance, polymers/resins, bioplastics, carbon fibers, bio-asphalt, sunscreen components, hydrophobic layers, and microcapsules. The colloidal lignin material, nanoparticles, and microstructures that can be formed as a result of changes in solvent properties, pH, or other adjustments to a suspending medium have been shown to depend on many factors. Such factors are examined in this work based on the concepts of self-assembly, which can be defined as an organizing principle dependent on specific attributes of the starting entities themselves. As a means to promote such concepts and to facilitate further development of nano-scale lignin products, this article draws upon evidence from a wide range of studies. These include investigations of many different plant sources of lignin, processes of delignification, solvent systems, anti-solvent systems or other means of achieving phase separation, and diverse means of achieving colloidal stability (if desired) of resulting self-assembled lignin structures. Knowledge of the self-organization behavior of lignin can provide significant structural information to optimize the use of lignin in value-added applications. Examples include chemical conditions and preparation procedures in which lignin-related compounds of particles organize themselves as spheres, hollow spheres, surface-bound layers, and a variety of other structures. Published articles show that such processes can be influenced by the selection of lignin type, pulping or extraction processes, functional groups such as phenolic, carboxyl, and sulfonate, chemical derivatization reactions, solvent applications, aqueous conditions, and physical processes, such as agitation. Precipitation from non-aqueous solutions represents a key focus of lignin self-assembly research. The review also considers stabilization mechanisms of self-assembled lignin-related structures.
Collapse
Affiliation(s)
| | - Ronald Marquez
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Laura Tolosa
- School of Chemical Engineering, Universidad de Los Andes, Mérida, Venezuela
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Antonio Suarez
- WestRock Company, 2742 Charles City Rd, Richmond, VA 23231, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Ronalds Gonzalez
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Khajeh A, Nazari Z, Movahedrad M, Vakili AH. A state-of-the-art review on the application of lignosulfonate as a green alternative in soil stabilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173500. [PMID: 38815820 DOI: 10.1016/j.scitotenv.2024.173500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
The utilization of lignosulfonate (LS) as a naturally derived biopolymer sourced from lignin in soil stabilization has gained significant attention in recent years. Its intermolecular interaction, hydrophobic and hydrophilic effects, adhesive and binding properties, erosion control abilities, compatibility with various soil types, and environmental sustainability make it a promising alternative to traditional soil stabilizers as well as highlighting its importance. By integrating LS into soil stabilization practices, soil properties can be enhanced, and an eco-friendlier approach can be adopted in the construction sector. This comprehensive review paper extensively examines the applications and structure of LS, as well as their efficacy and mechanisms on a micro-level scale. Afterward, it discusses the geotechnical characteristics of LS-treated soils, including consistency characteristics, dispersivity properties and erosion behavior, electrical conductivity, compaction parameters, permeability and hydraulic conductivity, compressibility characteristics, swelling potential, strength and stiffness properties, durability, and cyclic loading response. In general, LS incorporation into the soils could enhance the geotechnical properties. For instance, the Unconfined Compressive Strength (UCS) of fine-grained soils was observed to improve up to 105 %, while in the case of granular soils, the improvement can be as high as 450 %. This review also examines the economic and environmental efficiency, as well as challenges and ways forward related to LS stabilization. This can lead to economic and environmental benefits given the abundance of LS as a plant polymer for cleaner production and owing to its carbon neutrality and renewability.
Collapse
Affiliation(s)
- Aghileh Khajeh
- Graduate Program in Civil Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035-190, Brazil.
| | - Zeynab Nazari
- Department of Civil Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| | | | - Amir Hossein Vakili
- Department of Environmental Engineering, Faculty of Engineering, Karabük University, Karabük 78050, Turkey; Department of Civil Engineering, Faculty of Engineering, Zand Institute of Higher Education, Shiraz, Iran.
| |
Collapse
|
3
|
Mayr SA, Rennhofer H, Gille L, Schwaiger N, Nyanhongo GS, Weiss R, Guebitz GM. Effect of Salts on Laccase-Catalyzed Polymerization of Lignosulfonate. CHEMSUSCHEM 2024; 17:e202301134. [PMID: 38456224 DOI: 10.1002/cssc.202301134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Enzymatic polymerization of lignosulfonate (LS) has a high potential for various applications ranging from coatings to adhesives. Here, the effect of different ions in low concentrations on enzymatic polymerization of LS was investigated, including salt solutions consisting of mono- and dicarboxylic acids, sulfate, phosphate and chloride with sodium as counter ion. LS polymerization was followed by viscometry and size exclusion (SEC) chromatography. Interestingly, there was only a small effect of ions on the activity of the laccase on standard substrate ABTS, while the effect on polymerization of LS was substantially different. The presence of acetate led to a 39 % higher degree of polymerization (DP) for LS. Small angle X-ray scattering (SAXS) revealed that the structure of the enzyme was largely unaffected by the ions, while the determination of the zeta potential showed that those ions conveying higher negative surface charges onto LS particles showed lower DPs, than those not affecting the surface charge. Further, electron paramagnetic resonance (EPR) spectroscopy showed 5-times higher intensity in phenoxyl radicals for the monovalent ions compared to the divalent ones. It was concluded that the DPs of LS could be tuned in the presence of certain ions, by facilitating the interaction between the laccase substrate-binding site and the LS molecules.
Collapse
Affiliation(s)
- Sebastian A Mayr
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, Konrad Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| | - Harald Rennhofer
- University of Natural Resources and Life Sciences, Vienna, Department of Material Science and Process Engineering, Institute of Physics and Material Science, Peter-Jordan-Strasse 82, 1190, Vienna, Austria
| | - Lars Gille
- University of Veterinary Medicine, Vienna, Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, Veterinärplatz 1, 1210, Vienna, Austria
| | | | - Gibson S Nyanhongo
- University of Johannesburg, Department of Biotechnology and Food Technology, Faculty of Science, Corner Siemert and Louisa, Doornfontein 2028, John Orr Building, Johannesburg, South Africa
| | - Renate Weiss
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, Konrad Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
| | - Georg M Guebitz
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, Konrad Lorenz-Strasse 20, 3430, Tulln an der Donau, Austria
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| |
Collapse
|
4
|
Ruwoldt J, Handiso B, Øksnes Dalheim M, Solberg A, Simon S, Syverud K. Interfacial Adsorption of Oil-Soluble Kraft Lignin and Stabilization of Water-in-Oil Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5409-5419. [PMID: 38424003 PMCID: PMC10938882 DOI: 10.1021/acs.langmuir.3c03950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
In this paper, the potential of esterified Kraft lignin as a novel oil-soluble surfactant was examined. The lignin was chemically modified by esterification with lauric or stearic acid, making it soluble in solvents such as toluene or n-decane. Adsorption at the oil-water interface was then studied by the Du Noüy ring-method. The oil-soluble lignin behaved similar to water-soluble lignin surfactants, both the qualitative and quantitative progression of interfacial tension. Modeling revealed a surface excess of 7.5-9.0 × 10-7 mol/m2, area per molecule of 185-222 Å2, and a diffusion coefficient within the range 10-10 to 10-14 m2/s; all of which are in line with existing literature on water-soluble lignosulfonates. The data further suggested that the pendant alkyl chains were extended well into the paraffinic solvent. At last, bottle tests showed that the oil-soluble lignin was able to stabilize oil-in-water emulsions. The emulsion stability was affected by the concentration of lignin or NaCl as well as the oil phase composition. Aromatic oils exhibited lower emulsion stability in comparison to the aliphatic oil. In conclusion, a new type of surfactant was synthesized and studied, which may contribute to developing green surfactants and novel approaches to valorize technical lignin.
Collapse
Affiliation(s)
- Jost Ruwoldt
- RISE
PFI AS, Høgskoleringen 6B, NO-7094 Trondheim, Norway
| | - Berhane Handiso
- Ugelstad
Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | - Amalie Solberg
- RISE
PFI AS, Høgskoleringen 6B, NO-7094 Trondheim, Norway
| | - Sébastien Simon
- Ugelstad
Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Kristin Syverud
- RISE
PFI AS, Høgskoleringen 6B, NO-7094 Trondheim, Norway
- Ugelstad
Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
5
|
Wang Y, Wang Q, Sabaghi S, Kaboli A, Soltani F, Kang K, Kongvarhodom C, Fatehi P. Dual lignin-derived polymeric system for peptone removal from simulated wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123142. [PMID: 38142806 DOI: 10.1016/j.envpol.2023.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/18/2023] [Accepted: 12/09/2023] [Indexed: 12/26/2023]
Abstract
The long-term existence of peptone can breed a large number of bacteria and cause the eutrophication of municipal wastewater. Thus, removing peptone in the wastewater is a major challenge facing the current industry. This study used cationic and anionic lignin polymers, i.e., kraft lignin-[2-(methacryloyloxy)ethyl] trimethylammonium methyl sulfate (cationic lignin polymer, CLP) and kraft lignin-acrylic acid (anionic lignin polymer, ALP), as flocculants to eliminate peptone from model wastewater in the single and dual component systems. The affinity of peptone for ALP or CLP was assessed by quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, contact angle, and vertical scan analyzer. Results illustrated that the adsorption effect of CLP for peptone was significantly superior to that of ALP owing to the stronger vital interaction between cationic polymer and peptone molecules. Based on destabilization and sedimentation analyses, introducing CLP triggered the preliminary flocculation of peptone via bridging action, as indicated by a considerable increment in the destabilization index (from 1.1 to 10.6). Moreover, peptone adsorbed more on the CLP coated surface than on the ALP coated one (14.8 vs 5.4 mg/m2), while ALP facilitated its further adsorption in the dual polymer system. This is because CLP adsorbed a part of peptone molecules on its surface. Then, ALP entrapped the unattached peptone onto the CLP coated surface through electrostatic interaction. Compared with the single polymer system, mixing ALP and CLP subsequently into the peptone solution in the dual system generated larger size aggregates (mean diameter of 6.1 μm) and made the system destabilization (Turbiscan stability index up to 58.1), thereby yielding more flocculation and sedimentation. Finally, peptone was removed successfully from simulated wastewater with a turbidity removal efficiency of 92.5%. These findings confirmed that the dual-component system containing two lignin-derived polymers with opposite charges could be viable for treating peptone wastewater.
Collapse
Affiliation(s)
- Yingchao Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China; Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Sanaz Sabaghi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Afrouz Kaboli
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Farshid Soltani
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Kang Kang
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Chutima Kongvarhodom
- Chemical Engineering Department, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
6
|
Zhang W, Zhang X, Zheng Z, Niu Y, Liu J. Adsorption and Dispersion Effect of Sodium Lignosulfonate on Fine SiC Particles in Aqueous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16151-16162. [PMID: 37910769 DOI: 10.1021/acs.langmuir.3c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
This study presented a novel modification method for fine SiC powder by using sodium lignosulfonate as a dispersant. The adsorption behavior of sodium lignosulfonate on the SiC/water interface and its effect on the performance of a fine SiC slurry were systematically investigated. The adsorption results showed that sodium lignosulfonate formed monolayer adsorption on the surface of fine SiC and that the saturated adsorption capacity was 1.3263 mg/g. The adsorption reached equilibrium within 3 h and was mainly controlled by active sites on the SiC surface. The dispersion, stability, and zeta potential of modified SiC powder were improved after sodium lignosulfonate adsorption. The zeta potential of modified SiC reached a minimum value of -44.8 mV at pH 12. Modified SiC suspensions had great stability in a wider pH range of 6-12. Modified SiC slurry with 54 vol % solid loading had a low viscosity of 173 mPa·s at pH 10. Subsequently, coarse SiC powder was added for slip casting. A mixed slurry with high solid loading (69 vol %) and low viscosity (583 mPa·s) was prepared using modified SiC and coarse SiC powders at a mass ratio of 2:3. Finally, recrystallized SiC green body with high density (2.6492 g/cm3) was obtained.
Collapse
Affiliation(s)
- Wenxiao Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuhui Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zheng Zheng
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yifan Niu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiaxiang Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Chique J, Uribe L, Pawlik M, Ramirez A, Gutierrez L. Foaming Properties of Lignosulfonates in the Flotation Process. Polymers (Basel) 2023; 15:3575. [PMID: 37688200 PMCID: PMC10490146 DOI: 10.3390/polym15173575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The widely used technology for the selective flotation of copper and molybdenite using sodium hydrosulfide (NaSH) to depress copper sulfides creates environmental issues related to the potential emissions of toxic hydrosulfide gas (H2S) and bad odors. Previous studies showed that molybdenite flotation can be depressed by the action of lignosulfonates, but no significant progress has been made in studying the effect that these reagents have on the foaming/frothing phenomena in flotation. The objective of this work was to investigate the foaming properties of three samples of lignosulfonates through measurements of surface tension, foamability, bubble size distributions, and water recovery. A sugared sodium lignosulfonate (NaLS), a calcium lignosulfonate (CaLS), and a sample prepared by sulphomethylation of kraft lignin (KLS) were tested. It was found that all lignosulfonates displayed surface activity that decreased with pH and was related to the degree of anionicity and molecular weight. The NaLS lignosulfonate showed the highest dynamic foamability index (DFI) value, compared to that of the CaLS and KLS samples. The lignosulfonates tested in this study strongly affected bubble size. Water recovery tests performed using flotation experiments in a two-phase system showed that the KLS and NaLS samples had the strongest effect, which correlated with the surface tension, foamability, and bubble size results.
Collapse
Affiliation(s)
- Jhon Chique
- Department of Metallurgical Engineering, University of Concepcion, Concepción 4040371, Chile; (J.C.); (A.R.)
| | - Lina Uribe
- Water Research Center for Agriculture and Mining (CRHIAM), University of Concepcion, Concepción 4040371, Chile;
- Department of Mining Engineering, University of Talca, Talca 3480094, Chile
| | - Marek Pawlik
- N.B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Andres Ramirez
- Department of Metallurgical Engineering, University of Concepcion, Concepción 4040371, Chile; (J.C.); (A.R.)
- Water Research Center for Agriculture and Mining (CRHIAM), University of Concepcion, Concepción 4040371, Chile;
| | - Leopoldo Gutierrez
- Department of Metallurgical Engineering, University of Concepcion, Concepción 4040371, Chile; (J.C.); (A.R.)
- Water Research Center for Agriculture and Mining (CRHIAM), University of Concepcion, Concepción 4040371, Chile;
| |
Collapse
|
8
|
Fuentes M, Bosch G, de Hita D, Olaetxea M, Erro J, Zamarreño AM, Garcia-Mina JM. Supramolecular Arrangement of Lignosulfonate-Based Iron Heteromolecular Complexes and Consequences of Their Interaction with Ca 2+ at Alkaline pH and Fe Plant Root Uptake Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11404-11417. [PMID: 37462422 PMCID: PMC10401718 DOI: 10.1021/acs.jafc.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Previous studies have shown that natural heteromolecular complexes might be an alternative to synthetic chelates to correct iron (Fe) deficiency. To investigate the mechanism of action of these complexes, we have studied their interaction with Ca2+ at alkaline pH, Fe-binding stability, Fe-root uptake in cucumber, and chemical structure using molecular modeling. The results show that a heteromolecular Fe complex including citric acid and lignosulfonate as binding ligands (Ls-Cit) forms a supramolecular system in solution with iron citrate interacting with the hydrophobic inner core of the lignosulfonate system. These structural features are associated with high stability against Ca2+ at basic pH. Likewise, unlike Fe-EDDHA, root Fe uptake from Ls-Cit implies the activation of the main root responses under Fe deficiency at the transcriptional level but not at the post-transcriptional level. These results are consistent with the involvement of some plant responses to Fe deficiency in the plant assimilation of complexed Fe in Ls-Cit under field conditions.
Collapse
Affiliation(s)
- Marta Fuentes
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - German Bosch
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - David de Hita
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - Maite Olaetxea
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - Javier Erro
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - Angel Ma Zamarreño
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| | - Jose Ma Garcia-Mina
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008 Pamplona, España
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Irunlarrea 1, 31008 Pamplona, España
| |
Collapse
|
9
|
Lugovitskaya T, Rogozhnikov D. Surface Phenomena with the Participation of Sulfite Lignin under Pressure Leaching of Sulfide Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5738-5751. [PMID: 37058586 DOI: 10.1021/acs.langmuir.2c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Searching for surfactants which can eliminate the occluding effect of molten elemental sulfur formed in the process of leaching sulfide ores under pressure (autoclave leaching) is relevant. However, the choice and use of surfactants are complicated by the harsh conditions of the autoclave process, as well as the insufficient knowledge of surface phenomena in their presence. This paper presents a comprehensive study of interfacial phenomena (adsorption, wetting, and dispersion) involving surfactants (using lignosulfonates as an example) and zinc sulfide/concentrate/elemental sulfur under conditions simulating sulfuric acid leaching of ores under pressure. The influence of concentration (CLS 0.1-1.28 g/dm3), features of the molecular weight (M̅w, 9.250-46.300 Da) composition of lignosulfates, temperature (10-80 °C), addition of sulfuric acid (CH2SO4 0.2-10.0 g/dm3), and properties of solid-phase objects (surface charge, specific surface area, presence and diameter of pores) on surface phenomena at the liquid-gas and liquid-solid interfaces was revealed. It was found that with an increase in molecular weight and a decrease in the degree of sulfonation, the surface activity of lignosulfonates at the liquid-gas interface, as well as their wetting and dispersing activity with respect to zinc sulfide/concentrate increases. It has been found that an increase in temperature contributes to the compaction of the macromolecule of lignosulfonates, as a result of which their adsorption at the liquid-gas and liquid-solid interface in neutral media rises. It has been shown that the introduction of sulfuric acid into aqueous solutions increases the wetting, adsorption, and dispersing activity of lignosulfonates with respect to zinc sulfide. The latter is accompanied by a decrease in the contact angle θ (by 10 and 40°) and an increase in both the specific number of zinc sulfide particles (not less than 1.3-1.8 times) and the content of fractions with a size of -3.5 μm. It has been established that the functional effect of lignosulfonates under conditions simulating sulfuric acid autoclave leaching of ores is implemented through the adsorption-wedging mechanism.
Collapse
Affiliation(s)
- Tatyana Lugovitskaya
- Laboratory of Advanced Technologies in Non-Ferrous and Ferrous Metals Raw Materials Processing, Ural Federal State University Named After First President of Russia B.N. Yeltsin, Institute of New Materials and Technologies, Mira St., 19, Yekaterinburg 620002, Russia
| | - Denis Rogozhnikov
- Laboratory of Advanced Technologies in Non-Ferrous and Ferrous Metals Raw Materials Processing, Ural Federal State University Named After First President of Russia B.N. Yeltsin, Institute of New Materials and Technologies, Mira St., 19, Yekaterinburg 620002, Russia
| |
Collapse
|
10
|
Gonçalves S, Martins J, Paiva NT, Paiva D, Carvalho LH, Magalhães FD. The Potential of Visible Spectroscopy as a Tool for the In-Line Monitoring of Lignin Methylolation. Polymers (Basel) 2022; 15:polym15010178. [PMID: 36616528 PMCID: PMC9824843 DOI: 10.3390/polym15010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Out of the 50 to 70 million tons of lignin that are produced annually, only 1 to 2% are used for value-added products. Currently, 90% of the total market of this compound corresponds to lignosulphonates (LS). The most successful industrial attempts to use lignin for wood adhesives rely on using it as a partial substitute in phenol-formaldehyde or urea-formaldehyde resins. However, lignin's aromatic ring presents a low number of reactive sites. Several methods have been proposed to improve its reactivity, such as prior methylolation with formaldehyde. Off-line methods are commonly applied to monitor this reaction's progress, but this introduces a significant delay in the analysis. This study proposes a new method for in-line monitoring of the methylolation reaction using visible spectroscopy. In order to monitor the reaction progress, principal component analysis was applied to the spectra, and the obtained scores were analyzed. When these results were plotted against those obtained by the off-line methods, a satisfactory regression was obtained at 50 °C (R2 = 0.97) and 60 °C (R2 = 0.98) for two different LS samples. Therefore, it was concluded that visible spectroscopy is a promising technique for studying lignin methylolation.
Collapse
Affiliation(s)
- Sofia Gonçalves
- LEPABE—Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), FEUP, 4200-465 Porto, Portugal
| | - Jorge Martins
- LEPABE—Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), FEUP, 4200-465 Porto, Portugal
- DEMad–Departamento de Engenharia de Madeiras, Instituto Politécnico de Viseu, Campus Politécnico de Repeses, 3504-510 Viseu, Portugal
| | - Nádia T. Paiva
- Sonae Arauco Portugal S.A., Lugar do Espido—Via Norte, 4470-177 Porto, Portugal
| | - Diana Paiva
- LEPABE—Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), FEUP, 4200-465 Porto, Portugal
| | - Luísa H. Carvalho
- LEPABE—Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), FEUP, 4200-465 Porto, Portugal
- DEMad–Departamento de Engenharia de Madeiras, Instituto Politécnico de Viseu, Campus Politécnico de Repeses, 3504-510 Viseu, Portugal
| | - Fernão D. Magalhães
- LEPABE—Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), FEUP, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
11
|
Bai Y, Wang X, Wang X, Yang X, Li X, Xin H, Sun D, Zhou J. Self-assembled/composited lignin colloids utilizing for therapy, cosmetics and emulsification. Front Chem 2022; 10:1107643. [PMID: 36618859 PMCID: PMC9811180 DOI: 10.3389/fchem.2022.1107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Lignin, the most abundant source of renewable aromatic compounds on the planet, is attracting more scholarly attention due to its possibility of replacing petroleum-based chemicals and products. However, it remains underutilized because of the heterogeneity of its multi-level structure that prevents homogenization and standardization of derived products. The key to solving these problems lies in finding a general preparation method to achieve the integrated utilization of lignin molecules at all levels. The assembly-mediated granulation methods provide a significant means for the integrated value-added utilization of lignin, and for biomass productization applications, it is significant to understand the molecular mechanisms of lignin nano-colloids (LNCs) formation thus accurately guiding their functionalization. Therefore, a thorough understanding of the assembly morphology and behavior of lignin in different solutions towards colloids is of great scientific importance. In this minireview, we focus on the assembly behavior of lignin in different solvents, specifically in mono-solvent and multi-solvent, and in particular, we review various methods for preparing lignin composite colloids and concentrate on the applications in therapy, cosmetics and emulsification, which are important for guiding the preparation and efficient utilization of LNCs.
Collapse
Affiliation(s)
- Yating Bai
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Xing Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China,*Correspondence: Xing Wang, ; Dayin Sun,
| | - Xinru Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Xujie Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Xinke Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Hanwen Xin
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Dayin Sun
- Polymer Institute of Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China,*Correspondence: Xing Wang, ; Dayin Sun,
| | - Jinghui Zhou
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
12
|
Improve Enzymatic Hydrolysis of Lignocellulosic Biomass by Modifying Lignin Structure via Sulfite Pretreatment and Using Lignin Blockers. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Even traditional pretreatments can partially remove or degrade lignin and hemicellulose from lignocellulosic biomass for enhancing its enzymatic digestibility, the remaining lignin in pretreated biomass still restricts its enzymatic hydrolysis by limiting cellulose accessibility and lignin-enzyme nonproductive interaction. Therefore, many pretreatments that can modify lignin structure in a unique way and approaches to block the lignin’s adverse impact have been proposed to directly improve the enzymatic digestibility of pretreated biomass. In this review, recent development in sulfite pretreatment that can transform the native lignin into lignosulfonate and subsequently enhance saccharification of pretreated biomass under certain conditions was summarized. In addition, we also reviewed the approaches of the addition of reactive agents to block the lignin’s reactive sites and limit the cellulase-enzyme adsorption during hydrolysis. It is our hope that this summary can provide a guideline for workers engaged in biorefining for the goal of reaching high enzymatic digestibility of lignocellulose.
Collapse
|
13
|
Understanding the Interaction of Lignosulfonates for the Separation of Molybdenite and Chalcopyrite in Seawater Flotation Processes. Polymers (Basel) 2022; 14:polym14142834. [PMID: 35890610 PMCID: PMC9325300 DOI: 10.3390/polym14142834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
The selective separation of molybdenite from copper sulfide concentrate in flotation process is realized using sodium hydrosulfide (NaHS) to depress the chalcopyrite and permit only the flotation of the molybdenite. However, this reagent is a highly toxic and flammable gas. The objective of this research was to study the feasible application of commercial lignosulfonates (LSs) in the separation by froth flotation process of molybdenite and chalcopyrite in seawater to present a novel application for LSs, as well as an alternative reagent to sodium hydrosulfide (NaHS). To achieve this, microflotation, absorbance tests and zeta potential measures were performed at pH 8 in seawater and 0.01 M NaCl. The results obtained in this study showed that it is possible to achieve selective separation of copper and molybdenum in both aqueous media due to high depressant effect of molybdenite and low depression of chalcopyrite in microflotation tests at 10 ppm of LSs, when the collector, PAX, is added prior to the addition of LSs. Absorbance study and zeta potential measurements showed that LSs adhere more to the molybdenite surface in seawater than in freshwater. This is related to the high ionic charge of the media that influences a greater interaction of LSs with the mineral surface.
Collapse
|
14
|
Yao M, Ma Y, Liu L, Qin C, Huang H, Zhang Z, Liang C, Yao S. Efficient Separation and Recovery of Petroleum Hydrocarbon from Oily Sludge by a Combination of Adsorption and Demulsification. Int J Mol Sci 2022; 23:7504. [PMID: 35886851 PMCID: PMC9318137 DOI: 10.3390/ijms23147504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of oily sludge (OS) can not only effectively solve environmental pollution but also contribute to the efficient use of energy. In this study, the separation effect of OS was analyzed through sodium lignosulfonate (SL)-assisted sodium persulfate (S/D) treatment. The effects of SL concentration, pH, temperature, solid-liquid ratio, revolving speed, and time on SL adsorption solubilization were analyzed. The effects of sodium persulfate dosage, demulsification temperature, and demulsification time on sodium persulfate oxidative demulsification were analyzed. The oil removal efficiency was as high as 91.28%. The results showed that the sediment was uniformly and finely distributed in the S/D-treated OS. The contact angle of the sediment surface was 40°, and the initial apparent viscosity of the OS was 56 Pa·s. First, the saturated hydrocarbons and aromatic hydrocarbons on the sediment surface were adsorbed by the monolayer adsorption on SL. Stubborn, cohesive oil agglomerates were dissociated. Sulfate radical anion (SO4-·) with a high oxidation potential, was formed from sodium persulfate. The oxidation reaction occurred between SO4-· and polycyclic aromatic hydrocarbons. A good three-phase separation effect was attained. The oil recovery reached 89.65%. This provides theoretical support for the efficient clean separation of oily sludge.
Collapse
Affiliation(s)
| | | | | | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (M.Y.); (Y.M.); (L.L.); (H.H.); (Z.Z.); (C.L.)
| | | | | | | | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (M.Y.); (Y.M.); (L.L.); (H.H.); (Z.Z.); (C.L.)
| |
Collapse
|
15
|
Kramar A, Anishchenko V, Kuzema P, Smirnova N, Laguta I, Stavinskaya O, Ivannikov R, Linnik O. Features of lignosulfonate depolymerization and photocatalytic transformation to low-molecular-weight compounds over nano-sized semiconductive films. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Leon-Tinoco AY, Annis SL, Almeida ST, Guimarães BC, Killerby M, Zhang J, Wu C, Perkins LB, Ma Z, Jeong KC, Romero JJ. Evaluating the potential of lignosulfonates and chitosans as alfalfa hay preservatives using in vitro techniques. J Anim Sci 2022; 100:6576121. [PMID: 35486739 PMCID: PMC9175294 DOI: 10.1093/jas/skac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/26/2022] [Indexed: 11/14/2022] Open
Abstract
Our objectives were to compare the antifungal activity of 5 lignosulfonates, and 2 chitosans against fungi isolated from spoiled hay, and assess the effects of an optimized lignosulfonate, chitosan, and propionic acid (PRP) on high-moisture alfalfa hay. In experiment 1, we determined the minimum inhibitory concentration and minimum fungicidal concentration of 4 sodium lignosulfonates, 1 magnesium lignosulfonate, 2 chitosans, and PRP (positive control) against Aspergillus amoenus, Mucor circinelloides, Penicillium solitum, and Debaromyces hansenii at pH 4 and 6. Among sodium lignosulfonates, the one from Sappi Ltd. (NaSP) was the most antifungal at pH 4. However, chitosans had the strongest fungicidal activity with the exception of M. circinelloides at both pH 4 and 6. PRP had more antifungal effects than NaSP and was only better than chitosans for M. circinelloides. In experiment 2, we evaluated the effects of 3 additives (ADV): optimized NaSP (NaSP-O, UMaine), naïve chitosan (ChNv, Sigma-Aldrich), and PRP on high-moisture alfalfa hay. The experimental design was a randomized complete block design replicated 5 times. Treatment design was the factorial combination of 3 ADV× 5 doses (0, 0.25, 0.5, 1, and 2% w/w fresh basis). Additives were added to 35 g of sterile alfalfa hay (71.5 ± 0.23% DM), inoculated with a mixture of previously isolated spoilage fungi (5.8 log cfu/fresh g), and aerobically incubated in vitro for 23 d (25°C). After incubation, DM losses were reduced by doses as low as 0.25% for both NaSP-O and PRP (x=1.61) vs. untreated hay (24.0%), partially due to the decrease of mold and yeast counts as their doses increased. Also, hay NH3-N was lower in NaSP-O and PRP, with doses as low as 0.25%, relative to untreated hay (x= 1.13 vs 7.80% of N, respectively). Both NaSP-O and PRP increased digestible DM recovery (x= 69.7) and total volatile fatty acids (x= 94.3), with doses as low as 0.25%, compared with untreated hay (52.7% and 83.8 mM, respectively). However, ChNv did not decrease mold nor yeast counts (x= 6.59 and x= 6.16 log cfu/fresh g; respectively) and did not prevent DM losses relative to untreated hay. Overall, when using an alfalfa hay substrate in vitro, NaSP-O was able to prevent fungal spoilage to a similar extent to PRP. Thus, further studies are warranted to develop NaSP-O as a hay preservative under field conditions.
Collapse
Affiliation(s)
| | - Seanna L Annis
- School of Biology and Ecology, University of Maine, Orono , ME, 04469, USA
| | - Saulo T Almeida
- Department of Animal Science, University of Lavras , Minas Gerais, Brazil
| | - Bianca C Guimarães
- Department of Animal Science, University of Lavras , Minas Gerais, Brazil
| | - Marjorie Killerby
- Animal and Veterinary Sciences, University of Maine, Orono , ME, 04469, USA
| | - Jinglin Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark , DE, 19716, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark , DE, 19716, USA
| | - Lewis B Perkins
- Food Science and Human Nutrition, University of Maine, Orono , ME, 04469, USA
| | - Zhengxin Ma
- Department of Animal Science, University of Florida, Gainesville , FL, 32608, USA
| | - Kwangcheol C Jeong
- Department of Animal Science, University of Florida, Gainesville , FL, 32608, USA
| | - Juan J Romero
- Animal and Veterinary Sciences, University of Maine, Orono , ME, 04469, USA
| |
Collapse
|
17
|
Shen Q, Xue Y, Zhang Y, Li T, Yang T, Li S. Effect of microstructure-scale features on lignin fluorescence for preparation of high fluorescence efficiency lignin-based nanomaterials. Int J Biol Macromol 2022; 202:520-528. [DOI: 10.1016/j.ijbiomac.2022.01.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 01/14/2023]
|
18
|
Behboudi G, Shayesteh K, Tavakkoli Yaraki M, Ebrahimi HA, Moradi S. Optimized synthesis of lignin sulfonate nanoparticles by solvent shifting method and their application for adsorptive removal of dye pollutant. CHEMOSPHERE 2021; 285:131576. [PMID: 34329134 DOI: 10.1016/j.chemosphere.2021.131576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Synthesis of value added products from wastes is of importance from different perspectives. Wood and paper industry produces tons of wastewaters that contains lignin. In this paper, we report a new approach, called solvent-shifting method, to synthesize lignin sulfonate nanoparticles (LS-NPs). The effective parameters on size of LS-NPs were carefully tuned and the size of LS-NPs was minimized by response surface methodology. The results suggested that LS-NPs with size of 53 nm can be synthesized at low lignin sulfonate concentration (0.28 g/mL), moderate surfactant concentration (0.32 g/mL) but relatively high anti-solvent content (92 mL of ethanol for 40 mL of the aqueous phase). The as-synthesized LS-NPs were characterized by different analytical techniques, where presence of various negatively charged functional groups on surface of LS-NPs was conformed. To investigate the potential of LS-NPs for adsorptive removal of pollutant molecules, basic red 2 (known as Safranin-O) was used as a model pollutant dye. The results suggested that the maximum removal occurs at alkaline pH, where there is strong electrostatic interactions between LS-NPs and cationic Safranin-O molecules. The adsorption capacity was 85.14 mg/gr, where the isotherm data was best described by Redlich-Peterson isotherm model. The kinetic data also revealed that the adsorption is very fast in the first 20 min, where there is three diffusional steps to complete the adsorption in 90 min. The results of this study could open up new window to the field of value-added products to synthesize waste-driven nanomaterials for environmental applications.
Collapse
Affiliation(s)
- Gity Behboudi
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Keivan Shayesteh
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
| | | | - Hosein Ali Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Samira Moradi
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
19
|
|
20
|
Sabaghi S, Alipoormazandarani N, Gao W, Fatehi P. Dual lignin-derived polymeric systems for hazardous ion removals. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125970. [PMID: 33975163 DOI: 10.1016/j.jhazmat.2021.125970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The functionalization of lignin derivatives for ion removals is a promising method to expedite their use in treating industrial wastewater. In this work, kraft lignin (KL) was polymerized with [2-(methacryloyloxy)ethyl]trimethylammonium methyl sulfate (METAM) or acrylic acid (AA) in an acidic aqueous suspension system to produce cationic and anionic water-soluble lignin polymers with high molecular weights. Then, the interaction of soluble ions and KL-METAM and KL-AA was investigated using a Quartz crystal microbalance (QCM) and a vertical scan analyzer (VSA). The QCM, X-ray photoelectron spectroscopy (XPS) and contact angle measurement results showed that the adsorption efficiency of KL-AA was better than KL-METAM for ions due to the stronger electrostatic interaction, cationic π-interaction, and chelation between ions and KL-AA. Based on adsorption, sedimentation, and aggregate size analyses, the dual polymer systems of KL-AA/KL-METAM were more effective than KL-METAM/KL-AA in removing ions. Among Zn2+, Cu2+, and K+; Zn2+ interacted more effectively with polymers in all scenarios because it has higher reactivity for interacting with other elements. As the efficiency of ion removals was more remarkable than past reported findings, the system of KL-AA/KL-METAM may be a promising alternative for the removal of dissolved ions from solutions.
Collapse
Affiliation(s)
- Sanaz Sabaghi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B5E1
| | - Niloofar Alipoormazandarani
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B5E1
| | - Weijue Gao
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B5E1
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada P7B5E1.
| |
Collapse
|
21
|
Properties of Eco-Friendly Particleboards Bonded with Lignosulfonate-Urea-Formaldehyde Adhesives and pMDI as a Crosslinker. MATERIALS 2021; 14:ma14174875. [PMID: 34500965 PMCID: PMC8432716 DOI: 10.3390/ma14174875] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 01/25/2023]
Abstract
The purpose of this study was to evaluate the feasibility of using magnesium and sodium lignosulfonates (LS) in the production of particleboards, used pure and in mixtures with urea-formaldehyde (UF) resin. Polymeric 4,4′-diphenylmethane diisocyanate (pMDI) was used as a crosslinker. In order to evaluate the effect of gradual replacement of UF by magnesium lignosulfonate (MgLS) or sodium lignosulfonate (NaLS) on the physical and mechanical properties, boards were manufactured in the laboratory with LS content varying from 0% to 100%. The effect of LS on the pH of lignosulfonate-urea-formaldehyde (LS-UF) adhesive compositions was also investigated. It was found that LS can be effectively used to adjust the pH of uncured and cured LS-UF formulations. Particleboards bonded with LS-UF adhesive formulations, comprising up to 30% LS, exhibited similar properties when compared to boards bonded with UF adhesive. The replacement of UF by both LS types substantially deteriorated the water absorption and thickness swelling of boards. In general, NaLS-UF-bonded boards had a lower formaldehyde content (FC) than MgLS-UF and UF-bonded boards as control. It was observed that in the process of manufacturing boards using LS adhesives, increasing the proportion of pMDI in the adhesive composition can significantly improve the mechanical properties of the boards. Overall, the boards fabricated using pure UF adhesives exhibited much better mechanical properties than boards bonded with LS adhesives. Markedly, the boards based on LS adhesives were characterised by a much lower FC than the UF-bonded boards. In the LS-bonded boards, the FC is lower by 91.1% and 56.9%, respectively, compared to the UF-bonded boards. The boards bonded with LS and pMDI had a close-to-zero FC and reached the super E0 emission class (≤1.5 mg/100 g) that allows for defining the laboratory-manufactured particleboards as eco-friendly composites.
Collapse
|
22
|
Bioethanol Production and Alkali Pulp Processes as Sources of Anionic Lignin Surfactants. Polymers (Basel) 2021; 13:polym13162703. [PMID: 34451242 PMCID: PMC8398361 DOI: 10.3390/polym13162703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Lignin is an abundant biopolymer with potential value-added applications that depend on biomass source and fractioning method. This work explores the use as emulsifiers of three native lignin-rich product coming from industrial bioethanol production and alkali or Kraft pulping. In addition to their distinctive characteristics, the different molecular organization induced by emulsification pH is expected to interact in various ways at the water-oil interface of the emulsion droplets. Initially, model oil-in-water (O/W) emulsions of a silicone oil will be studied as a function of lignin source, disperse phase concentration and emulsification pH. Once stablished the effect of such variables, emulsion formulations of three potential bitumen rejuvenators (waste vegetable cooking oil, recycled lubricating oil and a 160/220 penetration range soft bitumen). Droplet size distribution, Z-potential and viscous tests conducted on model emulsions have shown that emulsification pH strongly affects stabilization ability of the lignins tested. Regarding bitumen rejuvenators, lignin emulsification capability will be affected by surfactant source, pH and, additionally, by the dispersed phase characteristics. Lower Z-potential values shown by KL at pH 9 and 11 seem to facilitate emulsification of the less polar disperse phases formed by RLUB and bitumen. In any case, lower particle size and higher yield stress values were found for both bioethanol-derived lignins emulsifying RVO and RLUB at pH 13, which are expected to exhibit a longer stability.
Collapse
|
23
|
Shi N, Ding Y, Wang D, Hu X, Li L, Dai C, Liu D. Lignosulfonate/diblock copolymer polyion complexes with aggregation-enhanced and pH-switchable fluorescence for information storage and encryption. Int J Biol Macromol 2021; 187:722-731. [PMID: 34343580 DOI: 10.1016/j.ijbiomac.2021.07.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022]
Abstract
Employing natural polymers as building blocks is favorable to construct sustainable functional materials and realize biomass utilization. Here we developed a series of supramolecular polyion complexes (PICs) composed of lignosulfonate and double-hydrophilic diblock copolymer poly(ethylene oxide-b-N, N-dimethylaminoethyl methacrylate) (PEO114-b-PDMAEMA24), which performed a blue emission with quenching-enhancing tendency and copolymer distribution inversion-involved assembling transformation at pH 5.6 and monotonic greenish-blue fluorescence promotion at pH 9.5 by increasing PEO114-b-PDMAEMA24 contents. Electrostatic interactions and multiple hydrogen bonds were revealed controlled the assembling behavior and affected the emission via altering the restriction of molecular motion, through-space conjunction, and non-luminous complexation. The multiple interacting sites and special topology of diblock copolymer contributed to the efficient fluorescence regulation. Information writing-erasing and encryption-decryption systems were established by utilizing emission intensity regulation and pH-responsive emission chromism. This work paved a new way to enhance lignin fluorescence and broadened potential applications of lignin composites in realms of sensing, imaging, monitoring, and anticounterfeiting.
Collapse
Affiliation(s)
- Nan Shi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China.
| | - Yuanyuan Ding
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China.
| | - Xinyi Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Lin Li
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum, Qingdao, Shandong 266580, China.
| | - Caili Dai
- Shandong Key Laboratory of Oilfield Chemistry, School of Petroleum Engineering, China University of Petroleum, Qingdao, Shandong 266580, China.
| | - Dong Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China.
| |
Collapse
|
24
|
Abstract
AbstractSix different sodium lignosulfonates with varying degrees of sulfonation (0.14–1.29 sulfonate groups per phenylpropane unit) and molecular weights (Mw = 6000–330,000 g/mol) were evaluated for their ability to disperse carbon black in aqueous media. Rheological and particle size measurements of carbon black dispersions indicated that lignosulfonates with low degree of sulfonation function as good carbon black dispersants. The dispersion efficiency did not correspond directly to the amount of lignosulfonate adsorbed on the surface of carbon black. The lignosulfonates have an ability to enhance the colloidal stability by electrostatic repulsion, and the likely mechanism of stabilization is a combination of electrostatic repulsion and steric hindrance.
Graphical abstract
Collapse
|
25
|
Corrosion Protection of Q235 Steel Using Epoxy Coatings Loaded with Calcium Carbonate Microparticles Modified by Sodium Lignosulfonate in Simulated Concrete Pore Solutions. MATERIALS 2021; 14:ma14081982. [PMID: 33920970 PMCID: PMC8071326 DOI: 10.3390/ma14081982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 11/16/2022]
Abstract
In this study, calcium carbonate (CaCO3) microparticles having pH-sensitive properties were loaded with sodium lignosulfonate (SLS), a corrosion inhibitor. Scanning electron microscope (SEM), UV–VIS spectrophotometer (UV-vis), X-ray diffraction (XRD), and attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR) were applied to evaluate the properties of the synthetic microparticles. This material could lead to the release of corrosion inhibitor under different pH conditions of the aqueous media. However, the extent of release of the corrosion inhibitor in the acidic media was higher, leading to enhanced shielding effect of the Q235 steel. These microparticles can serve as anti-corrosion additive for epoxy resin-coated Q235 steel. Electrochemical experiments were used to assess the anti-corrosive ability of the epoxy coatings in simulated concrete pore (SCP) solution, confirming the superior corrosion inhibition of the epoxy coating via incorporation of 5 wt % calcium carbonate microparticles loaded with SLS (SLS/CaCO3). The physical properties of coating specimens were characterized by water absorption, contact angle, adhesion, and pencil hardness mechanical tests.
Collapse
|
26
|
Sabaghi S, Alipoormazandarani N, Fatehi P. Production and Application of Triblock Hydrolysis Lignin-Based Anionic Copolymers in Aqueous Systems. ACS OMEGA 2021; 6:6393-6403. [PMID: 33718730 PMCID: PMC7948438 DOI: 10.1021/acsomega.0c06344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 06/01/2023]
Abstract
Although lignin is currently an under-utilized biopolymer, it has the potential to be valorized through different modification pathways to yield alternative products to petroleum-based ones. In this work, hydrolysis lignin (HL) was copolymerized with acrylamide (AM) and acrylic acid (AA) under acidic conditions to generate the lignin/AM polymer (HM), lignin/AA polymer (HA), and lignin/AM/AA copolymer (HAM) with different negative charge densities and molecular weights. Lignin-based polymers characterized by advanced tools, such as proton nuclear magnetic resonance (1H NMR), gel permission chromatography (GPC), and elemental analysis confirmed the successful polymerization of HL with AM, AA, or AM/AA monomers. The adsorption analysis using a quartz crystal microbalance (QCM) revealed that compared to diblock HM and HA, the triblock copolymers of HAM adsorbed more on the Al2O3 surface and generated a bulkier adsorbed layer, which is important for lignin-based coating formulation. HAM1 with a lower charge density yielded a higher surface excess density, while HAM2 with a larger R h occupied more space (153.7 Å2) at the interface of water and Al2O3. In suspension systems, because of the higher M w, R h, and adsorption affinity, the bridging performance of HAM2 was more remarkable than that of the other lignin derivatives for Al2O3 particles via forming stronger flocs (with a deflocculation parameter, T df, of 80.6 s). However, the diblock lignin-AA (HA1) polymer showed the fastest floc regrowth capability after reducing the shear forces (with a reflocculation parameter, T rf, of 62.5 s). The high thermal stability, T g, and rheological characteristics of the HAM copolymer proved that it can be an excellent material for coating formulations and flocculants for wastewater treatment systems.
Collapse
Affiliation(s)
- Sanaz Sabaghi
- Biorefining Research Institute and
Chemical Engineering Department, Lakehead
University, Thunder
Bay, Ontario P7B 5E1, Canada
| | - Niloofar Alipoormazandarani
- Biorefining Research Institute and
Chemical Engineering Department, Lakehead
University, Thunder
Bay, Ontario P7B 5E1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute and
Chemical Engineering Department, Lakehead
University, Thunder
Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
27
|
Li L, Ma C, Lin M, Liu M, Yu H, Wang Q, Cao X, You X. Study of sodium lignosulfonate prepare low-rank coal-water slurry: Experiments and simulations. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.07.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Ruwoldt J, Simon S, Øye G. Viscoelastic properties of interfacial lignosulfonate films and the effect of added electrolytes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Ruwoldt J, Øye G. Effect of Low-Molecular-Weight Alcohols on Emulsion Stabilization with Lignosulfonates. ACS OMEGA 2020; 5:30168-30175. [PMID: 33251451 PMCID: PMC7689891 DOI: 10.1021/acsomega.0c04650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/30/2020] [Indexed: 05/02/2023]
Abstract
Lignosulfonates are biobased surfactants and specialty chemicals, which are described as water-soluble polyelectrolyte macromolecules that are generated during the sulfite pulping of lignocellulose biomass. Due to their amphiphilic nature, lignosulfonates have made their way into various applications, such as plasticizers, dispersants, and suspension or emulsion stabilizer. The stabilization efficiency for oil-in-water emulsions is affected, among other aspects, by the presence of alcohols. Low-molecular-weight alcohols can improve the performance of lignosulfonates; however, the effects of such additive have not yet been fully explored. In this article, we hence studied emulsion stability in dependence of alcohol concentration and other parameters, such as salinity. One or two regions of improved stability were found, which occurred at approximately 0.001-0.01 M alcohol in water, and in some cases additionally at 1-3 M. The four lignosulfonate samples responded distinctly to the alcohol additives. Little difference was found for varying lignosulfonate concentration or the alcohol type, that is, methanol, ethanol, or 2-propanol. Adding ethanol at high salinity (720 mM NaCl) showed a destabilizing effect. A decrease in interfacial tension was noted when adding 1 M ethanol or more, but the surface pressure of lignosulfonates decreased progressively at 0.3 M ethanol and above. These effects are counteracting, which could explain why increasing alcohol concentration would either enhance or impair stability. Overall, emulsion stability was affected by concentration effects and not cosurfactant action of the alcohols. Composition changes can influence the dielectric properties of the bulk solvent, further affecting the anionic functional groups, which was evidenced by alcohol addition affecting the lignosulfonates with lower hydrophobicity more strongly and by ethanol exhibiting the destabilizing effect at high salinity. In conclusion, adding low-molecular-weight alcohols may hence influence the behavior of lignosulfonates and render them more accessible for interactions with hydrophobic interfaces.
Collapse
Affiliation(s)
- Jost Ruwoldt
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- RISE PFI AS, Høgskoleringen 6B, 7491 Trondheim, Norway
| | - Gisle Øye
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
30
|
A Critical Review of the Physicochemical Properties of Lignosulfonates: Chemical Structure and Behavior in Aqueous Solution, at Surfaces and Interfaces. SURFACES 2020. [DOI: 10.3390/surfaces3040042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lignosulfonates are bio-based surfactants and specialty chemicals, which are generated by breaking the near-infinite lignin network during sulfite pulping of wood. Due to their amphiphilic nature, lignosulfonates are used in manifold applications such as plasticizer, dispersant, and stabilizer formulations. Function and performance are determined by their behavior in aqueous solution and at surfaces and interfaces, which is in turn imposed by the chemical make-up. This review hence summarizes the efforts made into delineating the physicochemical properties of lignosulfonates, while also relating to their composition and structure. Lignosulfonates are randomly branched polyelectrolytes with abundant sulfonate and carboxylic acid groups to ensure water-solubility. In aqueous solution, their conformation, colloidal state, and adsorption at surfaces or interfaces can be affected by a range of parameters, such as pH, concentration of other electrolytes, temperature, and the presence of organic solvents. These parameters may also affect the adsorption behavior, which reportedly follows Langmuir isotherm and pseudo second-order kinetics. The relative hydrophobicity, as determined by hydrophobic interaction chromatography, is an indicator that can help to relate composition and behavior of lignosulfonates. More hydrophobic materials have been found to exhibit a lower charge density. This may improve dispersion stabilization, but it can also be disadvantageous if an electrokinetic charge needs to be introduced at solid surfaces or if precipitation due to salting out is an issue. In addition, the monolignol composition, molecular weight distribution, and chemical modification may affect the physicochemical behavior of lignosulfonates. In conclusion, the properties of lignosulfonates can be tailored by controlling aspects such as the production parameters, fractionation, and by subsequent modification. Recent developments have spawned a magnitude of products and technologies, which is also reflected in the wide variety of possible application areas.
Collapse
|
31
|
Tang Q, Qian Y, Yang D, Qiu X, Qin Y, Zhou M. Lignin-Based Nanoparticles: A Review on Their Preparations and Applications. Polymers (Basel) 2020; 12:E2471. [PMID: 33113775 PMCID: PMC7693155 DOI: 10.3390/polym12112471] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Lignin is the most abundant by-product from the pulp and paper industry as well as the second most abundant natural renewable biopolymer after cellulose on earth. In recent years, transforming unordered and complicated lignin into ordered and uniform nanoparticles has attracted wide attention due to their excellent properties such as controlled structures and sizes, better miscibility with polymers, and improved antioxidant activity. In this review, we first introduce five important technical lignin from different sources and then provide a comprehensive overview of the recent progress of preparation techniques which are involved in the fabrication of various lignin-based nanoparticles and their industrial applications in different fields such as drug delivery carriers, UV absorbents, hybrid nanocomposites, antioxidant agents, antibacterial agents, adsorbents for heavy metal ions and dyes, and anticorrosion nanofillers.
Collapse
Affiliation(s)
- Qianqian Tang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China;
| | - Yong Qian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Q.); (D.Y.)
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Q.); (D.Y.)
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
| | - Yanlin Qin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
| | - Mingsong Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Q.); (D.Y.)
| |
Collapse
|
32
|
Lugovitskaya TN, Naboychenko SS. Lignosulfonates as charge carriers and precursors forthe synthesis of nanoparticles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Sabaghi S, Fatehi P. Polarity of Cationic Lignin Polymers: Physicochemical Behavior in Aqueous Solutions and Suspensions. CHEMSUSCHEM 2020; 13:4722-4734. [PMID: 33448658 DOI: 10.1002/cssc.202000897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Indexed: 06/12/2023]
Abstract
The structure of cationic monomers can significantly impact the polarity of lignin after polymerization. Cationic hydrolysis lignin (CHL) polymers were produced by polymerizing hydrolysis lignin (HL) with [3-(methacryloylamino)propyl] trimethylammonium chloride (MAPTAC) or [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (METAC). The METAC monomer has an oxygen atom, with larger electronegativity, in its molecular structure, whereas the MAPTAC monomer contains a nitrogen atom, as well as an extra nonpolar CH2 group, facilitating investigation into the effects of the polarity of CHLs on their physicochemical performance in an aqueous system. CHL polymers are analyzed and their interactions with clay particles are determined in colloidal systems. CHLs are designed to have similar charge densities (2.1-2.2 mmol g-1) and molecular weights (55000-60000 g mol-1 ). The hydrodynamic radius (Hy) and radius of gyration, (Rg) of HL-METAC are larger than those of HL-MAPTAC, implying a more 3-dimensional structure of HL-METAC in aqueous solution. The stability ratio of kaolin particles affirms the better performance of HL-METAC in comparison to HL-MAPTAC, which reflects the better flocculation efficiency of HL-METAC. The results also reveal that salt and urea aqueous solutions affect the Hy, Rg, and configuration of CHL polymers, which alters the flocculation efficiency of HL-METAC and HL-MAPTAC polymers in kaolin suspensions.
Collapse
Affiliation(s)
- Sanaz Sabaghi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan, Shangdong, 250353, P.R. China
| | - Pedram Fatehi
- Green Processes Research Centre and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences) Jinan, Shangdong, 250353, P.R. China
| |
Collapse
|
34
|
Farzin S, Johnson TJ, Chatterjee S, Zamani E, Dishari SK. Ionomers From Kraft Lignin for Renewable Energy Applications. Front Chem 2020; 8:690. [PMID: 33005600 PMCID: PMC7480228 DOI: 10.3389/fchem.2020.00690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 01/03/2023] Open
Abstract
Converting industrial/agricultural lignin-rich wastes to efficient, cost-effective materials for electrochemical devices (e.g., fuel cells) can aid in both bio- and energy economy. A major limitation of fuel cells is the weak ion conductivity within the ~2-30-nm thick, ion-conducting polymer (ionomer)-based catalyst-binder layer over electrodes. Here, we strategically sulfonated kraft lignin (a by-product of pulp and paper industries) to design ionomers with varied ion exchange capacities (IECs) (LS x; x = IEC) that can potentially overcome this interfacial ion conduction limitation. We measured the ion conductivity, water uptake, ionic domain characteristics, density, and predicted the water mobility/stiffness of Nafion, LS 1.6, and LS 3.1 in submicron-thick hydrated films. LS 1.6 showed ion conductivity an order of magnitude higher than Nafion and LS 3.1 in films with similar thickness. The ion conductivity of these films was not correlated to their water uptake and IECs. Within the three-dimensional, less dense, branched architecture of LS 1.6 macromolecules, the -SO3H and -OH groups are in close proximity, which likely facilitated the formation of larger ionic domains having highly mobile water molecules. As compared to LS 1.6, LS 3.1 showed a higher glass transition temperature and film stiffness at dry state, which sustained during humidification. On the contrary, Nafion stiffened significantly upon humidification. The smaller ionic cluster within stiff LS 3.1 and Nafion films thus led to ion conductivity lower than LS 1.6. Since LS x ionomers (unlike commercial lignosulfonate) are not water soluble, they are suitable for low-temperature, water-mediated ion conduction in submicron-thick films.
Collapse
Affiliation(s)
| | | | | | | | - Shudipto K. Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
35
|
Guo Y, Kong F, Fatehi P. Generation and Use of Lignin- g-AMPS in Extended DLVO Theory for Evaluating the Flocculation of Colloidal Particles. ACS OMEGA 2020; 5:21032-21041. [PMID: 32875240 PMCID: PMC7450620 DOI: 10.1021/acsomega.0c02598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 05/31/2023]
Abstract
In this work, Kraft lignin (KL) was polymerized with 2-acrylamido-2-methylpropane sulfonic acid (AMPS) to generate an anionic water-soluble KL-g-AMPS polymer. The effects of reaction conditions on the charge density of polymers were evaluated to induce lignin-based polymers with the highest anionic charge density. The optimal process conditions were 2.5 mol/mol AMPS/lignin, 0.6 g/g solid/water ratio, 2.0 initiator/lignin weight ratio, 80 °C, 120 min, and pH 1.5, which yielded KL-g-AMPS with the anionic charge density of 4.28 mequiv/g and the grafting ratio of 285%. The chemical structure and compositions of the polymers were confirmed by 1H NMR and elemental analysis. The flocculation performance of the polymer was evaluated in an aluminum oxide suspension, and its performance was compared with that of a homopolymer of AMPS produced under the same conditions. In addition, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was applied to study the flocculation mechanism of the polymers and alumina particles. The results revealed that electrostatic interaction was found to be the dominant force in this flocculation process.
Collapse
Affiliation(s)
- Yanzhu Guo
- Liaoning
Key Lab of Pulp and Paper Engineering, Dalian
Polytechnic University, Dalian, Liaoning 116034, China
- Department
of Chemical Engineering, Lakehead University, Thunder Bay, Ontario P7B5E1, Canada
| | - Fangong Kong
- Key
Laboratory of Pulp & Paper Science and Technology, Ministry of
Education, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Pedram Fatehi
- Department
of Chemical Engineering, Lakehead University, Thunder Bay, Ontario P7B5E1, Canada
- Key
Laboratory of Pulp & Paper Science and Technology, Ministry of
Education, Qilu University of Technology, Jinan, Shandong 250353, China
| |
Collapse
|
36
|
Ruwoldt J, Planque J, Øye G. Lignosulfonate Salt Tolerance and the Effect on Emulsion Stability. ACS OMEGA 2020; 5:15007-15015. [PMID: 32637774 PMCID: PMC7330892 DOI: 10.1021/acsomega.0c00616] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/03/2020] [Indexed: 05/18/2023]
Abstract
In this article, we adapted and compared methods to assess lignosulfonates for technical applications. Salt-induced agglomeration and precipitation were studied via mechanical separation and subsequent UV spectrometry. The effect of lignosulfonates on emulsion stability was investigated in two steps: measuring the amount of oil separated after centrifugation and subjecting the remaining emulsion to shear in a rheometer. To complement the results, interfacial tension (IFT) was measured by the spinning drop technique, and the droplet size distribution was determined via a laser scattering technique. The observed trends in lignosulfonate salt tolerance and emulsion stabilization efficiency were opposite; that is, samples with low salt tolerance generally exhibited better emulsion stabilization and vice versa. This tendency was further matched by the hydrophobic characteristic of the lignosulfonates. The droplet size distributions of lignosulfonate-stabilized emulsions were similar. The effect of lignosulfonates on IFT depended on the oil phase and sample concentration. As a general trend, the IFT was lower for lignosulfonates with low average molecular weights. It was concluded that the adapted techniques allowed for detailed assessment of lignosulfonates with respect to salt tolerance and emulsion stabilization. In addition, it was found that the suitability for these applications can to some extent be predicted by the analytical data.
Collapse
Affiliation(s)
- Jost Ruwoldt
- Ugelstad Laboratory,
Department of Chemical Engineering, Norwegian
University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Juliette Planque
- École Nationale Supérieure
de Chimie de Mulhouse (ENSCMu), University
of Upper Alsace (UHA), 68200 Mulhouse, France
| | - Gisle Øye
- Ugelstad Laboratory,
Department of Chemical Engineering, Norwegian
University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
37
|
Liu H, An QD, Kim J, Guo L, Zhao YM, Xiao ZY, Zhai SR. Facile fabrication of Cu xS y/Carbon composites using lignosulfonate for efficient palladium recovery under strong acidic conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122253. [PMID: 32062350 DOI: 10.1016/j.jhazmat.2020.122253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
The recovery of noble metals from aqueous systems is of great significance for constructing sustainable framework of modern industry yet remains challenging. Herein, CuxSy/Carbon composites with superior thermal stability and adsorption capacity were successfully synthesized via one-pot hydrothermal method using lignosulfonate as dual role of raw materials. The optimal synthesis conditions were investigated via tailoring the temperature and the mass ratio of reagents. The morphologies and physical properties of the composites were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The surface chemistry was analyzed by Zeta potential analysis, Brunauer-Emmet-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The Langmuir model and the pseudo-second-order model well described the adsorption of Pd(II) and Pd(IV) delivered by fabricated composites. The adsorption capacity obtained from Langmuir isotherm model towards Pd(IV) was 114 mg/g and Pd(II) was 101 mg/g, respectively. More importantly, the adsorbed palladium species could be desorbed with hydrochloric acid and thiourea, which suggested good durability and recycling performance of the typical composite. This work might provide a new guidance for the utilization of lignin or its derivatives and enriched the research in the field of noble metal recovery.
Collapse
Affiliation(s)
- Hao Liu
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Qing-da An
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jeonghun Kim
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707 Republic of Korea
| | - Lin Guo
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yu-Meng Zhao
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Zuo-Yi Xiao
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Shang-Ru Zhai
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
38
|
|
39
|
Assessing metal-lignosulfonates as fertilizers using gel filtration chromatography and high-performance size exclusion chromatography. Int J Biol Macromol 2020; 142:163-171. [PMID: 31525412 DOI: 10.1016/j.ijbiomac.2019.09.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 11/24/2022]
Abstract
Lignosulfonates (LSs) are by-products from the paper industry used as biodegradable fertilizers. However, metal-LS ability to provide micronutrients to crops is related to the stability of the complex and the amount of metal complexed. This work evaluated these parameters using ultraviolet-visible (UV-Vis), Fourier-transform infrared (FTIR), and 13C-nuclear magnetic resonance (NMR), along with gel filtration chromatography (GFC) and high-performance size exclusion chromatography (HPSEC), for different spruce, eucalyptus, and pine LSs. GFC and HPSEC pointed out that the amount and type of complexed metal in the LS depends on the molecular weight, pH, and sulphite pulping processes. Both techniques indicated that the low molecular weight LS enriched with phenolic groups has the highest Fe(III) complexing capacity. Also, Fe(III)/LS showed the formation of high molecular weight compounds, whereas Zn(II)/LS and Mn(II)/LS complexes did not form aggregates. Metal-LS fractionation provided considerable information to identify LSs with potential fertilizer capacity and to assess the effectiveness of their complexes.
Collapse
|
40
|
Pretreatment of the corncob enzymatic residue with p-toluenesulfonic acid and valorization. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Wang S, Wu J, Liu J, Li N, Zeng X, Cen K. Effect of ammonia nitrogen and low-molecular-weight organics on the adsorption of additives on coal surface: A combination of experiments and molecular dynamics simulations. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.04.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Improved enzymatic hydrolysis of hardwood and cellulase stability by biomass kraft lignin-based polyoxyethylene ether. Int J Biol Macromol 2019; 136:540-546. [DOI: 10.1016/j.ijbiomac.2019.06.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 12/25/2022]
|
43
|
Role of sulfonation in lignin-based material for adsorption removal of cationic dyes. Int J Biol Macromol 2019; 135:1171-1181. [DOI: 10.1016/j.ijbiomac.2019.06.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
|
44
|
Humpert D, Ebrahimi M, Stroh A, Czermak P. Recovery of Lignosulfonates from Spent Sulfite Liquor Using Ceramic Hollow-Fiber Membranes. MEMBRANES 2019; 9:E45. [PMID: 30925659 PMCID: PMC6523456 DOI: 10.3390/membranes9040045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 11/22/2022]
Abstract
Spent sulfite liquor is an abundant but currently less used wastewater stream from the pulp and paper industry. The recovery of lignin from this resource would provide an inexpensive raw material for the manufacture of fuels and fine chemicals. Here we investigated the suitability of ceramic hollow-fiber membranes for the concentration of spent sulfite liquor as an alternative to common membrane technologies. We tested three ceramic hollow-fiber membranes (3, 8, and 30 nm) in different membrane processes (fed-batch and total recycle mode) and compared their performance with the widely-used tubular membrane geometry. We also evaluated backflushing as a strategy to reduce membrane fouling during filtration. The juxtaposition of the two membrane geometries revealed that wall shear stress is the most important process parameter for the assessment of membrane performance according to permeate flux. The higher the wall shear stress, the higher the permeate flux. Due to the smaller inner diameter of the hollow-fiber membranes, higher wall shear stress can be achieved more easily. Backflushing had no effect on the permeate flux during the concentration experiments.
Collapse
Affiliation(s)
- Daniel Humpert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany.
| | - Mehrdad Ebrahimi
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany.
| | - Annika Stroh
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany.
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany.
- Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA.
- Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, 35390 Giessen, Germany.
| |
Collapse
|
45
|
Fu Y, Zhu Z, Yao J, Han H, Yin W, Yang B. Improved depression of talc in chalcopyrite flotation using a novel depressant combination of calcium ions and sodium lignosulfonate. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.08.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Al-Rashed MM, Niknezhad S, Jana SC. Mechanism and Factors Influencing Formation and Stability of Chitosan/Lignosulfonate Nanoparticles. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maher M. Al-Rashed
- Dr. M. M. Al-Rashed, Dr. S. Niknezhad, Prof. S. C. Jana; Department of Polymer Engineering; University of Akron; Akron OH 44325 USA
| | - Sepideh Niknezhad
- Dr. M. M. Al-Rashed, Dr. S. Niknezhad, Prof. S. C. Jana; Department of Polymer Engineering; University of Akron; Akron OH 44325 USA
| | - Sadhan C. Jana
- Dr. M. M. Al-Rashed, Dr. S. Niknezhad, Prof. S. C. Jana; Department of Polymer Engineering; University of Akron; Akron OH 44325 USA
| |
Collapse
|
47
|
Qiu X, Li Y, Qian Y, Wang J, Zhu S. Long-Acting and Safe Sunscreens with Ultrahigh Sun Protection Factor via Natural Lignin Encapsulation and Synergy. ACS APPLIED BIO MATERIALS 2018; 1:1276-1285. [PMID: 34996231 DOI: 10.1021/acsabm.8b00138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xueqing Qiu
- School of Chemistry and Chemical Engineering, State Key Lab of Pulp and Paper Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Ying Li
- School of Chemistry and Chemical Engineering, State Key Lab of Pulp and Paper Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Yong Qian
- School of Chemistry and Chemical Engineering, State Key Lab of Pulp and Paper Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Jingyu Wang
- School of Chemistry and Chemical Engineering, State Key Lab of Pulp and Paper Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Shiping Zhu
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 47L, Canada
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
48
|
Preparation of Lignosulfonates from Biorefinery Lignins by Sulfomethylation and Their Application as a Water Reducer for Concrete. Polymers (Basel) 2018; 10:polym10080841. [PMID: 30960766 PMCID: PMC6403876 DOI: 10.3390/polym10080841] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 11/21/2022] Open
Abstract
Lignosulfonate (LG), a water-soluble polymer from sulfite pulping process of lignocellulosic biomass, has been commercially applied as admixture for concrete. In this work, lignosulfonates were produced from alkaline lignin (AL) and enzymatic hydrolysis residue (EHR) by sulfomethylation and these lignosulfonates as water reducers for concrete were then evaluated. Results showed that 94.9% and 68.9% of lignins in AL and EHR could be sulfonated under optimum sulfomethylation conditions, respectively. The sulfonic groups in lignosulfonates from AL (AL-LG) and EHR (EHR-LG) were 1.6 mmol/g and 1.0 mmol/g, respectively. Surface tension and zeta potential analysis indicated that both AL-LG and EHR-LG can be potentially used to as dispersant for improving the fluidity of the cement paste, similarly to commercial lignosulfonate (CM-LG). Adding 0.2 wt % of AL-LG, EHR-LG, and CM-LG in the concrete, the compressive strength (28 days) of concretes increased from 38.4 Mpa to 41.6, 42.6, and 40.9 Mpa, respectively. These findings suggest that the lignosulfonate from biorefinery lignin by sulfomethylation can meet the industrial standards as water reducers for cement admixtures.
Collapse
|
49
|
Gao F, Yu S, Tao Q, Tan W, Duan L, Li Z, Cui H. Lignosulfonate Improves Photostability and Bioactivity of Abscisic Acid under Ultraviolet Radiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6585-6593. [PMID: 28851212 DOI: 10.1021/acs.jafc.7b02002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Abscisic acid (ABA), as a commonly used plant growth regulator, is easy to be degraded and lose its bioactivity under sunshine. To select an eco-friendly and efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to ultraviolet (UV) light, we tested the effects of three biodegradable natural-derived high polymers, sodium lignosulfonates 3A [molecular weight (MW) > 50000, with degree of sulfonation (DS) of 0.48] and NA (20000 < MW < 50000, with DS of 0.7) and calcium lignosulfonate CASA (MW < 20000, with DS of 0.7), on the photodegradation of ABA. Lignosulfonates 3A, NA, and CASA showed significant photostabilizing capability on ABA. Lignosulfonate 3A showed preferable photostabilizing effects on ABA compared to CASA, while NA showed an intermediate effect. That indicated that lignosulfonate with a high MW and low DS had a stronger UV absorption and the hollow aggregate micelles formatted by lignosulfonate protect ABA from UV damage. Approximately 50% more ABA was kept when 280 mg/L ABA aqueous solution was irradiated by UV light for 2 h in the presence of 2000 mg/L lignosulfonate 3A. The bioactivity on wheat (JIMAI 22) seed germination was greatly kept by 3A in comparison to that of ABA alone. The 300 times diluent of 280 mg/L ABA plus 2000 mg/L 3A after 2 h of irradiation showed 20.8, 19.3, and 9.3% more inhibition on shoot growth, root growth, and root numbers of wheat seed, separately, in comparison to ABA diluent alone. We conclude that lignosulfonate 3A was an eco-friendly and efficient agent to keep ABA activity under UV radiation. This research could be used in UV-sensitive and water-soluble agrichemicals and to optimize the application times and dosages of ABA products.
Collapse
Affiliation(s)
- Fei Gao
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Sha Yu
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Qun Tao
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Weiming Tan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulators, Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| |
Collapse
|
50
|
Improved performance of the rechargeable hybrid aqueous battery at near full state-of-charge. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|