1
|
Tan W, Zhang J, Chen L, Wang Y, Chen R, Zhang H, Liang F. Copper homeostasis and cuproptosis-related genes: Therapeutic perspectives in non-alcoholic fatty liver disease. Diabetes Obes Metab 2024; 26:4830-4845. [PMID: 39233500 DOI: 10.1111/dom.15846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/06/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a metabolic-associated fatty liver disease, has become the most common chronic liver disease worldwide. Recently, the discovery of cuproptosis, a newly identified mode of cell death, further highlighted the importance of copper in maintaining metabolic homeostasis. An increasing number of studies have confirmed that liver copper metabolism is closely related to the pathogenesis of NAFLD. However, the relationship between NAFLD and copper metabolism, especially cuproptosis, remains unclear. In this review, we aim to summarize the current understanding of copper metabolism and its dysregulation, particularly the role of copper metabolism dysregulation in the pathogenesis of NAFLD. More importantly, this review emphasizes potential gene-targeted therapeutic strategies, challenges and the future of cuproptosis-related genes in the treatment of NAFLD. This review aims to provide innovative therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Wangjing Tan
- Department of Acupuncture and Moxibustion, College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Junli Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Chen
- Department of Acupuncture and Moxibustion, College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Yayuan Wang
- Department of Acupuncture and Moxibustion, College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiming Zhang
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Acupuncture and Moxibustion Department, Affiliated Hospital of Hubei University of Chinese Medicine(Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| |
Collapse
|
2
|
Huang Q, Li J, Qi Y, He X, Shen C, Wang C, Wang X, Xia Q, Zhang Y, Pan Z, Hu Q, Cao Z, Liu Y, Huang J, Han G, Zheng Y, Zheng B, Zeng X, Bi X, Yu J. Copper overload exacerbates testicular aging mediated by lncRNA:CR43306 deficiency through ferroptosis in Drosophila. Redox Biol 2024; 76:103315. [PMID: 39154546 PMCID: PMC11378248 DOI: 10.1016/j.redox.2024.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024] Open
Abstract
Testicular aging manifests as impaired spermatogenesis and morphological alterations in Drosophila. Nonetheless, the comprehensive molecular regulatory framework remains largely undisclosed. This investigation illustrates the impact of copper overload on testicular aging and underscores the interplay between copper overload and lncRNA. Copper overload triggers Cuproptosis through the mitochondrial TCA cycle, facilitating intracellular interactions with Ferroptosis, thereby governing testicular aging. Dysfunction of lncRNA:CR43306 also contributes to testicular aging in Drosophila, emphasizing the significance of lncRNA:CR43306 as a novel aging-associated lncRNA. Moreover, copper overload exacerbates spermatid differentiation defects mediated by lncRNA:CR43306 deficiency through oxidative stress, copper, and iron transport. Therapeutically, Ferrostatin-1 and Resveratrol emerge as potential remedies for addressing testicular aging. This study offers perspectives on the regulatory mechanisms involving copper overload and lncRNA:CR43306 deficiency in the context of testicular aging.
Collapse
Affiliation(s)
- Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yujuan Qi
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221000, China
| | - Xuxin He
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Chenyu Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xinda Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Qiushi Xia
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yi Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Ziyue Pan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Qingqing Hu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Ziyu Cao
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yiheng Liu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Jingqi Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Guoqing Han
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Ying Zheng
- Department of Histology and Embryology, School of Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China.
| | - Xuhui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Xiaolin Bi
- School of Medicine, Nantong University, Nantong, 226001, China.
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
3
|
Kwong RWM. Trace metals in the teleost fish gill: biological roles, uptake regulation, and detoxification mechanisms. J Comp Physiol B 2024; 194:749-763. [PMID: 38916671 DOI: 10.1007/s00360-024-01565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
In fish, the gill plays a vital role in regulating the absorption of trace metals and is also highly susceptible to metal toxicity. Trace metals such as iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) are involved in various catalytic activities and molecular binding within the gill, thereby supporting a range of physiological processes in this organ. While beneficial at normal levels, these metals can become toxic when present in excess. Conversely, nonessential metals like cadmium (Cd) and lead (Pb) can gain entry into gill cells through similar metal transport pathways, potentially interfering with various cellular processes. The transepithelial transport of these metals across the gill epithelium is governed by a variety of metal transport and metal binding proteins. These include the Cu transporter 1 (CTR1), divalent metal transporter 1 (DMT1), and members of the Zrt-/Irt-like protein (ZIP) and zinc transport (ZnT) families. Additionally, some of these metals can compete with major ions (e.g., calcium, sodium) for absorption sites in the gill. This complex crosstalk suggests an interdependent mechanism that balances metal uptake to meet physiological needs while preventing excessive accumulation. In this article, I review the roles of trace metals in proteins/enzymes that support the different functions in the gill of teleost fish. I also discuss current understanding of the pathways involved in regulating the branchial uptake of metals and their influence on ionic regulation, and the potential detoxification mechanisms in the gill. Finally, I summarize knowledge gaps and potential areas for further investigation.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
4
|
Sailer J, Nagel J, Akdogan B, Jauch AT, Engler J, Knolle PA, Zischka H. Deadly excess copper. Redox Biol 2024; 75:103256. [PMID: 38959622 PMCID: PMC11269798 DOI: 10.1016/j.redox.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
Higher eukaryotes' life is impossible without copper redox activity and, literally, every breath we take biochemically demonstrates this. However, this dependence comes at a considerable price to ensure target-oriented copper action. Thereto its uptake, distribution but also excretion are executed by specialized proteins with high affinity for the transition metal. Consequently, malfunction of copper enzymes/transporters, as is the case in hereditary Wilson disease that affects the intracellular copper transporter ATP7B, comes with serious cellular damage. One hallmark of this disease is the progressive copper accumulation, primarily in liver but also brain that becomes deadly if left untreated. Such excess copper toxicity may also result from accidental ingestion or attempted suicide. Recent research has shed new light into the cell-toxic mechanisms and primarily affected intracellular targets and processes of such excess copper that may even be exploited with respect to cancer therapy. Moreover, new therapies are currently under development to fight against deadly toxic copper.
Collapse
Affiliation(s)
- Judith Sailer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Judith Nagel
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrian T Jauch
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Jonas Engler
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
5
|
Hao D, Luo W, Yan Y, Zhou J. Focus on cuproptosis: Exploring new mechanisms and therapeutic application prospects of cuproptosis regulation. Biomed Pharmacother 2024; 178:117182. [PMID: 39053428 DOI: 10.1016/j.biopha.2024.117182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cuproptosis is a novel form of regulated cell death, which plays an important role in the physiological and pathological processes of the human body. Despite the increasing research on cuproptosis-related genes (CRGs) and their correlation with diseases, the pathogenesis of cuproptosis-related diseases remains unclear. Furthermore, there is a lack of reviews on the emerging technologies for regulating cuproptosis in disease treatment. This study delves into the copper-induced cell death mechanism, distinguishing cuproptosis from mechanisms like oxidative stress, glutathione synthesis inhibition, and ubiquitin-proteasome system inhibition. Several long-standing mysteries of diseases such as Wilson's disease and Menkes disease may be attributed to the occurrence of cuproptosis. In addition, we also review the detection indicators related to cuproptosis, providing targets for the diagnosis of cuproptosis-related diseases, and summarize the application value of cuproptosis in tumor therapy to better elucidate the impact of copper in cell death and diseases, and thus to promote the application prospects and possible strategies of cuproptosis-related substances, such as copper ion chelators, copper ion carriers, and copper nanomaterials, in disease therapy.
Collapse
Affiliation(s)
- Donglin Hao
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wei Luo
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| |
Collapse
|
6
|
Zhang C, Huang T, Li L. Targeting cuproptosis for cancer therapy: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:68. [PMID: 39152464 PMCID: PMC11328505 DOI: 10.1186/s13045-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Cuproptosis is a newly identified form of cell death induced by excessive copper (Cu) accumulation within cells. Mechanistically, cuproptosis results from Cu-induced aggregation of dihydrolipoamide S-acetyltransferase, correlated with the mitochondrial tricarboxylic acid cycle and the loss of iron-sulfur cluster proteins, ultimately resulting in proteotoxic stress and triggering cell death. Recently, cuproptosis has garnered significant interest in tumor research due to its potential as a crucial therapeutic strategy against cancer. In this review, we summarized the cellular and molecular mechanisms of cuproptosis and its relationship with other types of cell death. Additionally, we reviewed the current drugs or strategies available to induce cuproptosis in tumor cells, including Cu ionophores, small compounds, and nanomedicine. Furthermore, we targeted cell metabolism and specific regulatory genes in cancer therapy to enhance tumor sensitivity to cuproptosis. Finally, we discussed the feasibility of targeting cuproptosis to overcome tumor chemotherapy and immunotherapy resistance and suggested future research directions. This study suggested that targeting cuproptosis could open new avenues for developing tumor therapy.
Collapse
Affiliation(s)
- Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Tingting Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
7
|
Li L, Zhou H, Zhang C. Cuproptosis in cancer: biological implications and therapeutic opportunities. Cell Mol Biol Lett 2024; 29:91. [PMID: 38918694 PMCID: PMC11201306 DOI: 10.1186/s11658-024-00608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cuproptosis, a newly identified copper (Cu)-dependent form of cell death, stands out due to its distinct mechanism that sets it apart from other known cell death pathways. The molecular underpinnings of cuproptosis involve the binding of Cu to lipoylated enzymes in the tricarboxylic acid cycle. This interaction triggers enzyme aggregation and proteotoxic stress, culminating in cell death. The specific mechanism of cuproptosis has yet to be fully elucidated. This newly recognized form of cell death has sparked numerous investigations into its role in tumorigenesis and cancer therapy. In this review, we summarized the current knowledge on Cu metabolism and its link to cancer. Furthermore, we delineated the molecular mechanisms of cuproptosis and summarized the roles of cuproptosis-related genes in cancer. Finally, we offered a comprehensive discussion of the most recent advancements in Cu ionophores and nanoparticle delivery systems that utilize cuproptosis as a cutting-edge strategy for cancer treatment.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
8
|
Jiayi H, Ziyuan T, Tianhua X, Mingyu Z, Yutong M, Jingyu W, Hongli Z, Li S. Copper homeostasis in chronic kidney disease and its crosstalk with ferroptosis. Pharmacol Res 2024; 202:107139. [PMID: 38484857 DOI: 10.1016/j.phrs.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Chronic kidney disease (CKD) has become a global public health problem with high morbidity and mortality. Renal fibrosis can lead to end-stage renal disease (ESRD). However, there is still no effective treatment to prevent or delay the progression of CKD into ESRD. Therefore, exploring the pathogenesis of CKD is essential for preventing and treating CKD. There are a variety of trace elements in the human body that interact with each other within a complex regulatory network. Iron and copper are both vital trace elements in the body. They are critical for maintaining bodily functions, and the dysregulation of their metabolism can cause many diseases, including kidney disease. Ferroptosis is a new form of cell death characterized by iron accumulation and lipid peroxidation. Studies have shown that ferroptosis is closely related to kidney disease. However, the role of abnormal copper metabolism in kidney disease and its relationship with ferroptosis remains unclear. Here, our current knowledge regarding copper metabolism, its regulatory mechanism, and the role of abnormal copper metabolism in kidney diseases is summarized. In addition, we discuss the relationship between abnormal copper metabolism and ferroptosis to explore the possible pathogenesis and provide a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Huang Jiayi
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Tong Ziyuan
- China Medical University, Shenyang 110122, People's Republic of China
| | - Xu Tianhua
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Zhang Mingyu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Ma Yutong
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Wang Jingyu
- Renal Division, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhou Hongli
- Department of Nephrology, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province 110004, People's Republic of China
| | - Sun Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
9
|
Gao S, Zhou M, Tang Z. The Tao of Copper Metabolism: From Physiology to Pathology. Curr Med Chem 2024; 31:5805-5817. [PMID: 37718523 DOI: 10.2174/0929867331666230915162405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 08/27/2023] [Indexed: 09/19/2023]
Abstract
As a transitional metal, copper plays a crucial role in maintaining the normal physiological activities of mammals. The intracellular copper concentration is meticulously regulated to maintain extremely low levels through homeostatic regulation. Excessive accumulation of free copper in cells can have deleterious effects, as observed in conditions such as Wilson's disease. Moreover, data accumulated over the past few decades have revealed a crucial role of copper imbalance in tumorigenesis, progression and metastasis. Recently, cuproptosis, also known as copper-induced cell death, has been proposed as a novel form of cell death. This discovery offers new prospects for treating copperrelated diseases and provides a promising avenue for developing copper-responsive therapies, particularly in cancer treatment. We present a comprehensive overview of the Yin- Yang equilibrium in copper metabolism, particularly emphasising its pathophysiological alterations and their relevance to copper-related diseases and malignancies.
Collapse
Affiliation(s)
- Shan Gao
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Mei Zhou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Zhenchu Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| |
Collapse
|
10
|
Conforti RA, Delsouc MB, Zorychta E, Telleria CM, Casais M. Copper in Gynecological Diseases. Int J Mol Sci 2023; 24:17578. [PMID: 38139406 PMCID: PMC10743751 DOI: 10.3390/ijms242417578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Copper (Cu) is an essential micronutrient for the correct development of eukaryotic organisms. This metal plays a key role in many cellular and physiological activities, including enzymatic activity, oxygen transport, and cell signaling. Although the redox activity of Cu is crucial for enzymatic reactions, this property also makes it potentially toxic when found at high levels. Due to this dual action of Cu, highly regulated mechanisms are necessary to prevent both the deficiency and the accumulation of this metal since its dyshomeostasis may favor the development of multiple diseases, such as Menkes' and Wilson's diseases, neurodegenerative diseases, diabetes mellitus, and cancer. As the relationship between Cu and cancer has been the most studied, we analyze how this metal can affect three fundamental processes for tumor progression: cell proliferation, angiogenesis, and metastasis. Gynecological diseases are characterized by high prevalence, morbidity, and mortality, depending on the case, and mainly include benign and malignant tumors. The cellular processes that promote their progression are affected by Cu, and the mechanisms that occur may be similar. We analyze the crosstalk between Cu deregulation and gynecological diseases, focusing on therapeutic strategies derived from this metal.
Collapse
Affiliation(s)
- Rocío A. Conforti
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| | - María B. Delsouc
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| | - Edith Zorychta
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Marilina Casais
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis CP D5700HHW, Argentina; (R.A.C.); (M.B.D.)
| |
Collapse
|
11
|
Zhou X, Guo X, Han J, Wang M, Liu Z, Ren D, Zhao J, Li Z. Cytochrome b561 regulates iron metabolism by activating the Akt/mTOR pathway to promote Breast Cancer Cells proliferation. Exp Cell Res 2023; 431:113760. [PMID: 37634562 DOI: 10.1016/j.yexcr.2023.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer-related mortality in women, necessitating the development of novel therapeutic targets. While cytochrome b561 (CYB561) expression is associated with poor prognosis in BC, the precise role of CYB561 in BC and its potential mechanisms remain unclear. In the present study, we found that CYB561 plays an essential role in BC growth. CYB561 expression was up-regulated in surgically resected cancerous tissues and in six BC cell lines. Lentivirus-mediated CYB561 knockdown in BC cells significantly reduced their proliferation, migration, and invasiveness. CYB561 participates in the regulation of iron metabolism in BC. CYB561 knockdown reduced total iron content, increased ferrous iron content, and down-regulated the expression of proteins associated with iron metabolism (transferrin receptor 1, divalent metal transporter 1, and ferritin heavy chain 1). Conversely, up-regulation of CYB561 through co-incubation with exogenous iron (ferric ammonium citrate) produced contrary outcomes. Additionally, CYB561 activated the protein kinase B/mammalian target of rapamycin (Akt/mTOR) signaling pathway in BC cells. Down-regulation of CYB561 expression inhibited the Akt/mTOR signaling pathway activity. The application of an mTOR agonist (MHY1485) rescued this negative effect, as well as the inhibitory effect of CYB561 knockdown on cell proliferation. Importantly, the dual mTOR inhibitor MLN0128 (50 nM, 48 h) down-regulated CYB561 expression and the iron metabolism-related proteins transferrin receptor, divalent metal transporter 1, and ferritin heavy chain 1, whereas the mTOR agonist MHY1485 rescued the down-regulation of CYB561 knockdown on iron metabolism-related proteins. We conclude that CYB561 promotes the proliferation of BC cells by regulating iron metabolism through the activation of the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, 810001, China; Pathology Department, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Xinjian Guo
- Pathology Department, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Jingqi Han
- Pathology Department, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Miaozhou Wang
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, 810001, China; Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Zhen Liu
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, 810001, China; Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Jiuda Zhao
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, 810001, China; Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Xining, 810001, China.
| | - Zhanquan Li
- Research Center for High Altitude Medicine, Qinghai University, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Laboratory for High Altitude Medicine of Qinghai Province, Xining, 810001, China; Department of Hematopathology, Affiliated Hospital of Qinghai University, Xining, 810001, China.
| |
Collapse
|
12
|
Guo J, Sun Y, Liu G. The mechanism of copper transporters in ovarian cancer cells and the prospect of cuproptosis. J Inorg Biochem 2023; 247:112324. [PMID: 37481825 DOI: 10.1016/j.jinorgbio.2023.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Copper transporters can not only carry copper (Cu) to maintain the homeostasis of Cu in cells but also transport platinum-based chemotherapy drugs. The effect of copper transporters on chemosensitivity has been demonstrated in a variety of malignancies. In addition, recent studies have reported that copper transporters can act as vectors to induce cuproptosis. Therefore, copper transporters can act on cells through different mechanisms to achieve different purposes. This review mainly describes the current research progress of the intracellular transport mechanism of copper transporters and cuproptosis, and prospects for the application of them in the treatment of ovarian cancer (OC).
Collapse
Affiliation(s)
- Jiahuan Guo
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guoyan Liu
- Key Laboratory of Cancer Prevention and Therapy of Tianjin, Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.
| |
Collapse
|
13
|
Yan X, Xie Y, Liu H, Huang M, Yang Z, An D, Jiang G. Iron accumulation and lipid peroxidation: implication of ferroptosis in diabetic cardiomyopathy. Diabetol Metab Syndr 2023; 15:161. [PMID: 37468902 DOI: 10.1186/s13098-023-01135-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023] Open
Abstract
Diabetic cardiomyopathy (DC) is a serious heart disease caused by diabetes. It is unrelated to hypertension and coronary artery disease and can lead to heart insufficiency, heart failure and even death. Currently, the pathogenesis of DC is unclear, and clinical intervention is mainly symptomatic therapy and lacks effective intervention objectives. Iron overdose mediated cell death, also known as ferroptosis, is widely present in the physiological and pathological processes of diabetes and DC. Iron is a key trace element in the human body, regulating the metabolism of glucose and lipids, oxidative stress and inflammation, and other biological processes. Excessive iron accumulation can lead to the imbalance of the antioxidant system in DC and activate and aggravate pathological processes such as excessive autophagy and mitochondrial dysfunction, resulting in a chain reaction and accelerating myocardial and microvascular damage. In-depth understanding of the regulating mechanisms of iron metabolism and ferroptosis in cardiovascular vessels can help improve DC management. Therefore, in this review, we summarize the relationship between ferroptosis and the pathogenesis of DC, as well as potential intervention targets, and discuss and analyze the limitations and future development prospects of these targets.
Collapse
Affiliation(s)
- Xuehua Yan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China
| | - Yang Xie
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China
| | - Hongbing Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Meng Huang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China
| | - Dongqing An
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, Xinjiang, China.
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Xinjiang, China.
| | - Guangjian Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang, China.
| |
Collapse
|
14
|
Garza NM, Swaminathan AB, Maremanda KP, Zulkifli M, Gohil VM. Mitochondrial copper in human genetic disorders. Trends Endocrinol Metab 2023; 34:21-33. [PMID: 36435678 PMCID: PMC9780195 DOI: 10.1016/j.tem.2022.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
Copper is an essential micronutrient that serves as a cofactor for enzymes involved in diverse physiological processes, including mitochondrial energy generation. Copper enters cells through a dedicated copper transporter and is distributed to intracellular cuproenzymes by copper chaperones. Mitochondria are critical copper-utilizing organelles that harbor an essential cuproenzyme cytochrome c oxidase, which powers energy production. Mutations in copper transporters and chaperones that perturb mitochondrial copper homeostasis result in fatal genetic disorders. Recent studies have uncovered the therapeutic potential of elesclomol, a copper ionophore, for the treatment of copper deficiency disorders such as Menkes disease. Here we review the role of copper in mitochondrial energy metabolism in the context of human diseases and highlight the recent developments in copper therapeutics.
Collapse
Affiliation(s)
- Natalie M Garza
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Abhinav B Swaminathan
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Krishna P Maremanda
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
15
|
Ma C, Han L, Zhu Z, Heng Pang C, Pan G. Mineral metabolism and ferroptosis in non-alcoholic fatty liver diseases. Biochem Pharmacol 2022; 205:115242. [PMID: 36084708 DOI: 10.1016/j.bcp.2022.115242] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide. Minerals including iron, copper, zinc, and selenium, fulfil an essential role in various biochemical processes. Moreover, the identification of ferroptosis and cuproptosis further underscores the importance of intracellular mineral homeostasis. However, perturbation of minerals has been frequently reported in patients with NAFLD and related diseases. Interestingly, studies have attempted to establish an association between mineral disorders and NAFLD pathological features, including oxidative stress, mitochondrial dysfunction, inflammatory response, and fibrogenesis. In this review, we aim to provide an overview of the current understanding of mineral metabolism (i.e., absorption, utilization, and transport) and mineral interactions in the pathogenesis of NAFLD. More importantly, this review highlights potential therapeutic strategies, challenges, future directions for targeting mineral metabolism in the treatment of NAFLD.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK.
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Zhou X, Shen G, Ren D, Guo X, Han J, Guo Q, Zhao F, Wang M, Dong Q, Li Z, Zhao J. Expression and clinical prognostic value of CYB561 in breast cancer. J Cancer Res Clin Oncol 2022; 148:1879-1892. [PMID: 35486183 DOI: 10.1007/s00432-022-03928-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/15/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE The expression of cytochrome B561 (CYB561) and its role in breast cancer (BC) prognosis remain unclear. We analyzed the differential expression and prognostic value of CYB561 using online databases and a clinical cohort through bioinformatics and immunohistochemistry. METHODS The differential expression of CYB561 and its association with BC were analyzed using the tumor immune estimation resource (TIMER), gene expression profiling interaction analysis2 (GEPIA2), Human Protein Atlas, Cancer Cell Line Encyclopedia, and Kaplan-Meier Plotter website. Important pathways of CYB561 enrichment were explored using gene set enrichment analysis. Immunohistochemistry detected CYB561 expression in normal breast, breast hyperplasia, ductal carcinoma in situ (DCIS), para-cancer, and invasive BC groups. Association between CYB561 expression and BC prognosis was analyzed using Kaplan-Meier and Cox regression analyses. RESULTS CYB561 mRNA expression was higher in GEPIA and TIMER BC patients than in para-cancer tissues. CYB561 was expressed in the glandular epithelium and myoepithelium, with positive localization in the cytoplasm and cell membrane. CYB561 protein expression significantly differed among the groups. CYB561 expression was correlated with ERBB2/HER2 and infiltrating CD4+ T cells in GEPIA and TIMER BC patients and associated with HER2 status, histological grade, and molecular subtypes in the clinical cohort but not related to tumor-infiltrating lymphocytes. CYB561 mRNA overexpression predicted reduced recurrence-free survival and overall survival in BC. Patients with CYB561 expression had significantly reduced overall survival and increased risk of death. CONCLUSION CYB561 can serve as an effective clinical prognostic biomarker for BC.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810000, China.,Department of Pathology, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - GuoShuang Shen
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Dengfeng Ren
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810000, China.,Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Xinjian Guo
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Jingqi Han
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Qijing Guo
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810000, China.,Medical Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810000, China.,Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Miaozhou Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810000, China.,Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Xining, 810000, China
| | - Qiuxia Dong
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810000, China.,Department of Medical Oncology, The Fifth People's Hospital of Qinghai Province, Xining, 810001, China
| | - Zhanquan Li
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810000, China. .,Hematology Department, Affiliated Hospital of Qinghai University, Xining, 810000, China.
| | - Jiuda Zhao
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810000, China. .,Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University, Xining, 810000, China.
| |
Collapse
|
17
|
Balusikova K, Dostalikova-Cimburova M, Tacheci I, Kovar J. Expression profiles of iron transport molecules along the duodenum. J Cell Mol Med 2022; 26:2995-3004. [PMID: 35445529 PMCID: PMC9097835 DOI: 10.1111/jcmm.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Duodenal biopsies are considered a suitable source of enterocytes for studies of dietary iron absorption. However, the expression level of molecules involved in iron absorption may vary along the length of duodenum. We aimed to determine whether the expression of molecules involved in the absorption of heme and non-heme iron differs depending on the location in the duodenum. Analysis was performed with samples of duodenal biopsies from 10 individuals with normal iron metabolism. Samples were collected at the following locations: (a) immediately post-bulbar, (b) 1-2 cm below the papilla of Vater and (c) in the distal duodenum. The gene expression was analyzed at the mRNA and protein level using real-time PCR and Western blot analysis. At the mRNA level, significantly different expression of HCP1, DMT1, ferroportin and Zip8 was found at individual positions of duodenum. Position-dependent expression of other molecules, especially of FLVCR1, HMOX1 and HMOX2 was also detected but with no statistical significances. At the protein level, we observed statistically significantly decreasing expression of transporters HCP1, FLVCR1, DMT1, ferroportin, Zip14 and Zip8 with advancing positions of duodenum. Our results are consistent with a gradient of diminishing iron absorption along the duodenum for both heme and non-heme iron.
Collapse
Affiliation(s)
- Kamila Balusikova
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Dostalikova-Cimburova
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ilja Tacheci
- 2nd Department of Internal Medicine - Gastroenterology, University Hospital and Charles University in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Kovar
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Peracino B, Monica V, Primo L, Bracco E, Bozzaro S. Iron metabolism in the social amoeba Dictyostelium discoideum: a role for Ferric Chelate Reductases. Eur J Cell Biol 2022; 101:151230. [DOI: 10.1016/j.ejcb.2022.151230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
|
19
|
Chandrapalan T, Kwong RWM. Functional significance and physiological regulation of essential trace metals in fish. J Exp Biol 2021; 224:273675. [PMID: 34882772 DOI: 10.1242/jeb.238790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trace metals such as iron, copper, zinc and manganese play essential roles in various biological processes in fish, including development, energy metabolism and immune response. At embryonic stages, fish obtain essential metals primarily from the yolk, whereas in later life stages (i.e. juvenile and adult), the gastrointestine and the gill are the major sites for the acquisition of trace metals. On a molecular level, the absorption of metals is thought to occur at least in part via specific metal ion transporters, including the divalent metal transporter-1 (DMT1), copper transporter-1 (CTR1), and Zrt- and Irt-like proteins (ZIP). A variety of other proteins are also involved in maintaining cellular and systemic metal homeostasis. Interestingly, the expression and function of these metal transport- and metabolism-related proteins can be influenced by a range of trace metals and major ions. Increasing evidence also demonstrates an interplay between the gastrointestine and the gill for the regulation of trace metal absorption. Therefore, there is a complex network of regulatory and compensatory mechanisms involved in maintaining trace metal balance. Yet, an array of factors is known to influence metal metabolism in fish, such as hormonal status and environmental changes. In this Review, we summarize the physiological significance of iron, copper, zinc and manganese, and discuss the current state of knowledge on the mechanisms underlying transepithelial metal ion transport, metal-metal interactions, and cellular and systemic handling of these metals in fish. Finally, we identify knowledge gaps in the regulation of metal homeostasis and discuss potential future research directions.
Collapse
Affiliation(s)
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
20
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
21
|
Collins JF. Copper nutrition and biochemistry and human (patho)physiology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:311-364. [PMID: 34112357 DOI: 10.1016/bs.afnr.2021.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The essential trace mineral copper plays important roles in human physiology and pathophysiology. Disruption of copper homeostasis may underlie the development of ischemic heart disease, and connective tissue and neurodegenerative disorders. Copper also likely participates in the host response to bacterial infection and is further implicated more broadly in regulating immunity. Recent studies further associate copper with disruption of lipid homeostasis, as is frequently seen in, for example, non-alcoholic fatty liver disease (NAFLD). Moreover, continuing investigation of copper chaperones has revealed new roles for these intracellular copper-binding proteins. Despite these (and many other) significant advances, many questions related to copper biology remain unanswered. For example, what are the most sensitive and specific biomarkers of copper status, and which ones are useful in marginal (or "sub-clinical" copper deficiency)? Further research on this topic is required to inform future investigations of copper metabolism in humans (so the copper status of study participants can be fully appreciated). Also, are current recommendations for copper intake adequate? Recent studies suggest that overt copper deficiency is more common than once thought, and further, some have suggested that the copper RDAs for adults may be too low. Additional human balance and interventional studies are necessary and could provide the impetus for reconsidering the copper RDAs in the future. These and myriad other unresolved aspects of copper nutrition will undoubtedly be the focus of future investigation.
Collapse
Affiliation(s)
- James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
22
|
Dietary Iron Intake in Excess of Requirements Impairs Intestinal Copper Absorption in Sprague Dawley Rat Dams, Causing Copper Deficiency in Suckling Pups. Biomedicines 2021; 9:biomedicines9040338. [PMID: 33801587 PMCID: PMC8065423 DOI: 10.3390/biomedicines9040338] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Physiologically relevant iron-copper interactions have been frequently documented. For example, excess enteral iron inhibits copper absorption in laboratory rodents and humans. Whether this also occurs during pregnancy and lactation, when iron supplementation is frequently recommended, is, however, unknown. Here, the hypothesis that high dietary iron will perturb copper homeostasis in pregnant and lactating dams and their pups was tested. We utilized a rat model of iron-deficiency/iron supplementation during pregnancy and lactation to assess this possibility. Rat dams were fed low-iron diets early in pregnancy, and then switched to one of 5 diets with normal (1×) to high iron (20×) until pups were 14 days old. Subsequently, copper and iron homeostasis, and intestinal copper absorption (by oral, intragastric gavage with 64Cu), were assessed. Copper depletion/deficiency occurred in the dams and pups as dietary iron increased, as evidenced by decrements in plasma ceruloplasmin (Cp) and superoxide dismutase 1 (SOD1) activity, depletion of hepatic copper, and liver iron loading. Intestinal copper transport and tissue 64Cu accumulation were lower in dams consuming excess iron, and tissue 64Cu was also low in suckling pups. In some cases, physiological disturbances were noted when dietary iron was only ~3-fold in excess, while for others, effects were observed when dietary iron was 10–20-fold in excess. Excess enteral iron thus antagonizes the absorption of dietary copper, causing copper depletion in dams and their suckling pups. Low milk copper is a likely explanation for copper depletion in the pups, but experimental proof of this awaits future experimentation.
Collapse
|
23
|
Jończy A, Mazgaj R, Starzyński RR, Poznański P, Szudzik M, Smuda E, Kamyczek M, Lipiński P. Relationship between Down-Regulation of Copper-Related Genes and Decreased Ferroportin Protein Level in the Duodenum of Iron-Deficient Piglets. Nutrients 2020; 13:nu13010104. [PMID: 33396831 PMCID: PMC7823587 DOI: 10.3390/nu13010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022] Open
Abstract
In mammals, 2 × 1012 red blood cells (RBCs) are produced every day in the bone marrow to ensure a constant supply of iron to maintain effective erythropoiesis. Impaired iron absorption in the duodenum and inefficient iron reutilization from senescent RBCs by macrophages contribute to the development of anemia. Ferroportin (Fpn), the only known cellular iron exporter, as well as hephaestin (Heph) and ceruloplasmin, two copper-dependent ferroxidases involved in the above-mentioned processes, are key elements of the interaction between copper and iron metabolisms. Crosslinks between these metals have been known for many years, but metabolic effects of one on the other have not been elucidated to date. Neonatal iron deficiency anemia in piglets provides an interesting model for studying this interplay. In duodenal enterocytes of young anemic piglets, we identified iron deposits and demonstrated increased expression of ferritin with a concomitant decline in both Fpn and Heph expression. We postulated that the underlying mechanism involves changes in copper distribution within enterocytes as a result of decreased expression of the copper transporter—Atp7b. Obtained results strongly suggest that regulation of iron absorption within enterocytes is based on the interaction between proteins of copper and iron metabolisms and outcompetes systemic regulation.
Collapse
Affiliation(s)
- Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (R.R.S.); (M.S.); (E.S.)
- Correspondence: (A.J.); (P.L.); Tel.: +48-227-367-058 (A.J.); +48-227-367-046 (P.L.)
| | - Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (R.R.S.); (M.S.); (E.S.)
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (R.R.S.); (M.S.); (E.S.)
| | - Piotr Poznański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland;
| | - Mateusz Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (R.R.S.); (M.S.); (E.S.)
| | - Ewa Smuda
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (R.R.S.); (M.S.); (E.S.)
| | - Marian Kamyczek
- Pig Hybridization Centre, National Research Institute of Animal Production, 64-122 Pawłowice, Poland;
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, PAS, 05-552 Jastrzębiec, Poland; (R.M.); (R.R.S.); (M.S.); (E.S.)
- Correspondence: (A.J.); (P.L.); Tel.: +48-227-367-058 (A.J.); +48-227-367-046 (P.L.)
| |
Collapse
|
24
|
Bartnicka JJ, Al-Salemee F, Firth G, Blower PJ. L-Cysteine-mediated modulation of copper trafficking in prostate cancer cells: an in vitro and in vivo investigation with 64Cu and 64Cu-PET. Metallomics 2020; 12:1508-1520. [PMID: 32959856 DOI: 10.1039/d0mt00161a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper imbalance is implicated in many diseases, including cancer. Copper in blood is mainly transported by carrier proteins but a small fraction is bound to low molecular weight species, possibly amino acids. Their roles in cellular copper delivery are unknown. Our aim was to test whether accumulation of 64Cu into cancer-derived cells can be influenced by copper-binding serum amino acids. In vitro cellular accumulation of 64Cu was measured in Hank's Balanced Salt Solution in the presence of 100 μM l-histidine, l-methionine, l-cysteine and l-threonine. l-Cysteine markedly increased 64Cu accumulation and retention in DU145, PC3 and SK-OV-3 cells, while some other cell lines did not show an effect. This effect was not due to 64Cu delivery in the form of a 64Cu-cysteine complex, nor to reduction of 64Cu(ii) to 64Cu(i) by l-cysteine. Pre-incubation of cells with l-cysteine increased 64Cu accumulation, even if l-cysteine was removed from HBSS before 64Cu was added. The effect of l-cysteine on 64Cu accumulation was not mediated by increased glutathione synthesis. Despite the demonstrable in vitro effect, pre-injection of l-cysteine precursor N-acetyl-cysteine (NAC) in vivo did not enhance 64Cu delivery to DU145 xenografts in mice. Instead, it decreased 64Cu accumulation in the DU145 tumour and in brain, as assessed by PET imaging. We conclude that 64Cu is not delivered to DU145 cancer cells in vitro as a complex with amino acids but its cellular accumulation is enhanced by l-cysteine or NAC influx to cells. The latter effect was not demonstrable in vivo in the DU145 xenograft.
Collapse
Affiliation(s)
- Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
25
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
26
|
The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch 2020; 472:1415-1429. [PMID: 32506322 DOI: 10.1007/s00424-020-02412-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Copper is an essential element in cells; it can act as either a recipient or a donor of electrons, participating in various reactions. However, an excess of copper ions in cells is detrimental as these copper ions can generate free radicals and increase oxidative stress. In multicellular organisms, copper metabolism involves uptake, distribution, sequestration, and excretion, at both the cellular and systemic levels. Mammalian enterocytes take in bioavailable copper ions from the diet in a Ctr1-dependent manner. After incorporation, cuprous ions are delivered to ATP7A, which pumps Cu+ from enterocytes into the blood. Copper ions arrive at the liver through the portal vein and are incorporated into hepatocytes by Ctr1. Then, Cu+ can be secreted into the bile or the blood via the Atox1/ATP7B/ceruloplasmin route. In the bloodstream, this micronutrient can reach peripheral tissues and is again incorporated by Ctr1. In peripheral tissue cells, cuprous ions are either sequestrated by molecules such as metallothioneins or targeted to utilization pathways by chaperons such as Atox1, Cox17, and CCS. Copper metabolism must be tightly controlled in order to achieve homeostasis and avoid disorders. A hereditary or acquired copper unbalance, including deficiency, overload, or misdistribution, may cause or aggravate certain diseases such as Menkes disease, Wilson disease, neurodegenerative diseases, anemia, metabolic syndrome, cardiovascular diseases, and cancer. A full understanding of copper metabolism and its roles in diseases underlies the identification of novel effective therapies for such diseases.
Collapse
|
27
|
Costas-Rodríguez M, Van Campenhout S, Hastuti AAMB, Devisscher L, Van Vlierberghe H, Vanhaecke F. Body distribution of stable copper isotopes during the progression of cholestatic liver disease induced by common bile duct ligation in mice. Metallomics 2020; 11:1093-1103. [PMID: 31021334 DOI: 10.1039/c8mt00362a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Patients with chronic liver disease from different aetiologies show a light serum Cu isotopic composition compared to the reference population, with the enrichment in the 63Cu isotope correlating with the severity of the disease. However, the mechanisms underlying Cu isotope fractionation at the onset and during progression of the disease are still unclear. In this work, a common bile duct ligation (CBDL) murine model was used to investigate the effect of cholestasis-induced liver disease on the Cu isotopic composition. Wild type male and female mice underwent surgical ligation of the common bile duct and were sacrificed 2, 4 and 6 weeks, and 4, 6 and 8 weeks after the surgical intervention, respectively. The age- and gender-matched control mice underwent sham surgery. Disease progression was evaluated using serum bilirubin levels, hepatic pro-inflammatory chemokine levels and Metavir fibrosis score. CBDL-operated mice show an overall body enrichment in the light isotope 63Cu. The Cu isotopic composition of organs, bone and serum becomes gradually lighter compared to the sham-operated mice with increasing severity of the disease. The light Cu isotopic composition of the CBDL-operated mice might result from an altered Cu intake and/or excretion. As the intestinal uptake of dietary Cu is largely mediated by transporters of Cu(i), mRNA and protein expression levels of two major metal transporters (CTR1 and DMT1) and Cu reductases (STEAP proteins and duodenal cytochrome B) were examined in the duodenal tissues as potential factors inducing Cu isotope fractionation. However, no significant differences in protein expression levels were observed between the CBDL- and sham-operated mice.
Collapse
Affiliation(s)
- Marta Costas-Rodríguez
- Department of Chemistry, Ghent University, Atomic & Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, BE-9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
28
|
Dabravolski SA, Kavalionak YK. Effect of corn lectins on the intestinal transport of trace elements. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01261-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
The cbb 3-type cytochrome oxidase assembly factor CcoG is a widely distributed cupric reductase. Proc Natl Acad Sci U S A 2019; 116:21166-21175. [PMID: 31570589 DOI: 10.1073/pnas.1913803116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Copper (Cu)-containing proteins execute essential functions in prokaryotic and eukaryotic cells, but their biogenesis is challenged by high Cu toxicity and the preferential presence of Cu(II) under aerobic conditions, while Cu(I) is the preferred substrate for Cu chaperones and Cu-transport proteins. These proteins form a coordinated network that prevents Cu accumulation, which would lead to toxic effects such as Fenton-like reactions and mismetalation of other metalloproteins. Simultaneously, Cu-transport proteins and Cu chaperones sustain Cu(I) supply for cuproprotein biogenesis and are therefore essential for the biogenesis of Cu-containing proteins. In eukaryotes, Cu(I) is supplied for import and trafficking by cell-surface exposed metalloreductases, but specific cupric reductases have not been identified in bacteria. It was generally assumed that the reducing environment of the bacterial cytoplasm would suffice to provide sufficient Cu(I) for detoxification and cuproprotein synthesis. Here, we identify the proposed cbb 3-type cytochrome c oxidase (cbb 3-Cox) assembly factor CcoG as a cupric reductase that binds Cu via conserved cysteine motifs and contains 2 low-potential [4Fe-4S] clusters required for Cu(II) reduction. Deletion of ccoG or mutation of the cysteine residues results in defective cbb 3-Cox assembly and Cu sensitivity. Furthermore, anaerobically purified CcoG catalyzes Cu(II) but not Fe(III) reduction in vitro using an artificial electron donor. Thus, CcoG is a bacterial cupric reductase and a founding member of a widespread class of enzymes that generate Cu(I) in the bacterial cytosol by using [4Fe-4S] clusters.
Collapse
|
30
|
La A, Nguyen T, Tran K, Sauble E, Tu D, Gonzalez A, Kidane TZ, Soriano C, Morgan J, Doan M, Tran K, Wang CY, Knutson MD, Linder MC. Mobilization of iron from ferritin: new steps and details. Metallomics 2019; 10:154-168. [PMID: 29260183 DOI: 10.1039/c7mt00284j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Much evidence indicates that iron stored in ferritin is mobilized through protein degradation in lysosomes, but concerns about this process have lingered, and the mechanistic details of its aspects are lacking. In the studies presented here, 59Fe-labeled ferritin was induced by preloading hepatic (HepG2) cells with radiolabeled Fe. Placing these cells in a medium containing desferrioxamine resulted in the loss of ferritin-59Fe, but adding high concentrations of reducing agents or modulating the internal GSH concentration failed to alter the rates of ferritin-59Fe release. Confocal microscopy showed that Fe deprivation increased the movement of ferritin into lysosomes and hyperaccumulation was observed when lysosomal proteolysis was inhibited. It also resulted in the rapid movement of DMT1 to lysosomes, which was inhibited by bafilomycin. Ferrihydrite crystals isolated from purified rat liver/spleen ferritin were solubilized at pH 5 and 7 by GSH, ascorbate, citrate and lysosomal fluids obtained from livers and J774a.1 macrophages. The inhibition of DMT1/Nramp2 and siRNA knockdown of Nramp1 each reduced the transfer of 59Fe from lysosomes to the cytosol; and hepatocyte-specific knockout of DMT1 in mice prevented the release of Fe from the liver responding to EPO treatment, but did not inhibit lysosomal ferritin degradation. We conclude that ferritin-Fe mobilization does not occur through changes in cellular concentrations of reducing/chelating agents but by the coordinated movement of ferritin and DMT1 to lysosomes, where the ferrihydrite crystals exposed by ferritin degradation dissolve in the lysosomal fluid, and the reduced iron is transported back to the cytosol via DMT1 in hepatocytes, and by both DMT1 and Nramp1 in macrophages, prior to release into the blood or storage in ferritin.
Collapse
Affiliation(s)
- A La
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92834-6866, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sherman HG, Jovanovic C, Stolnik S, Baronian K, Downard AJ, Rawson FJ. New Perspectives on Iron Uptake in Eukaryotes. Front Mol Biosci 2018; 5:97. [PMID: 30510932 PMCID: PMC6254016 DOI: 10.3389/fmolb.2018.00097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
All eukaryotic organisms require iron to function. Malfunctions within iron homeostasis have a range of physiological consequences, and can lead to the development of pathological conditions that can result in an excess of non-transferrin bound iron (NTBI). Despite extensive understanding of iron homeostasis, the links between the “macroscopic” transport of iron across biological barriers (cellular membranes) and the chemistry of redox changes that drive these processes still needs elucidating. This review draws conclusions from the current literature, and describes some of the underlying biophysical and biochemical processes that occur in iron homeostasis. By first taking a broad view of iron uptake within the gut and subsequent delivery to tissues, in addition to describing the transferrin and non-transferrin mediated components of these processes, we provide a base of knowledge from which we further explore NTBI uptake. We provide concise up-to-date information of the transplasma electron transport systems (tPMETSs) involved within NTBI uptake, and highlight how these systems are not only involved within NTBI uptake for detoxification but also may play a role within the reduction of metabolic stress through regeneration of intracellular NAD(P)H/NAD(P)+ levels. Furthermore, we illuminate the thermodynamics that governs iron transport, namely the redox potential cascade and electrochemical behavior of key components of the electron transport systems that facilitate the movement of electrons across the plasma membrane to the extracellular compartment. We also take account of kinetic changes that occur to transport iron into the cell, namely membrane dipole change and their consequent effects within membrane structure that act to facilitate transport of ions.
Collapse
Affiliation(s)
- Harry G Sherman
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | | | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Kim Baronian
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alison J Downard
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
32
|
Jiang S, Yan K, Sun B, Gao S, Yang X, Ni Y, Ma W, Zhao R. Long-Term High-Fat Diet Decreases Hepatic Iron Storage Associated with Suppressing TFR2 and ZIP14 Expression in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11612-11621. [PMID: 30350980 DOI: 10.1021/acs.jafc.8b02974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High-fat diet-induced obesity is known to disturb hepatic iron metabolism in a time-dependent manner. The mechanism of decreased hepatic iron deposits induced by long-term high-fat diet needs to be further investigated. In this study, 24 6-week-old male Sprague-Dawley rats were given a 16-week high-fat diet and hepatic iron metabolism was examined. High-fat diet feeding considerably decreased hepatic iron contents, enhanced transferrin expression, and reduced the expression of ferritin heavy chain, ferritin light chain, and hepatic iron uptake-related proteins (transferrin receptor 2, TFR2, and ZRT/IRT-like protein 14, ZIP14) in rats. Impaired expression of hepatic TFR2 coincided with DNA hypermethylation on the promoter and repressed expression of transcription factor hepatocyte nuclear factor 4α (HNF4α). miR-181 family expression was markedly increased and verified to regulate Zip14 expression by the dual-luciferase reporter system. Taken together, long-term high-fat diet decreases hepatic iron storage, which is closely linked to inhibition of liver iron transport through the TFR2 and ZIP14-dependent pathway.
Collapse
Affiliation(s)
- Shuxia Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Kai Yan
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Bo Sun
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Shixing Gao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Yingdong Ni
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Wenqiang Ma
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
33
|
Puchkova LV, Babich PS, Zatulovskaia YA, Ilyechova EY, Di Sole F. Copper Metabolism of Newborns Is Adapted to Milk Ceruloplasmin as a Nutritive Source of Copper: Overview of the Current Data. Nutrients 2018; 10:E1591. [PMID: 30380720 PMCID: PMC6266612 DOI: 10.3390/nu10111591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/17/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Copper, which can potentially be a highly toxic agent, is an essential nutrient due to its role as a cofactor for cuproenzymes and its participation in signaling pathways. In mammals, the liver is a central organ that controls copper turnover throughout the body, including copper absorption, distribution, and excretion. In ontogenesis, there are two types of copper metabolism, embryonic and adult, which maintain the balance of copper in each of these periods of life, respectively. In the liver cells, these types of metabolism are characterized by the specific expression patterns and activity levels of the genes encoding ceruloplasmin, which is the main extracellular ferroxidase and copper transporter, and the proteins mediating ceruloplasmin metalation. In newborns, the molecular genetic mechanisms responsible for copper homeostasis and the ontogenetic switch from embryonic to adult copper metabolism are highly adapted to milk ceruloplasmin as a dietary source of copper. In the mammary gland cells, the level of ceruloplasmin gene expression and the alternative splicing of its pre-mRNA govern the amount of ceruloplasmin in the milk, and thus, the amount of copper absorbed by a newborn is controlled. In newborns, the absorption, distribution, and accumulation of copper are adapted to milk ceruloplasmin. If newborns are not breast-fed in the early stages of postnatal development, they do not have this natural control ensuring alimentary copper balance in the body. Although there is still much to be learned about the neonatal consequences of having an imbalance of copper in the mother/newborn system, the time to pay attention to this problem has arrived because the neonatal misbalance of copper may provoke the development of copper-related disorders.
Collapse
Affiliation(s)
- Ludmila V Puchkova
- Laboratory of Trace Elements Metabolism, ITMO University, Kronverksky av., 49, 197101 St.-Petersburg, Russia.
- Department of Molecular Genetics, Research Institute of Experimental Medicine, Acad. Pavlov str., 12, 197376 St.-Petersburg, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, 195251 St.-Petersburg, Russia.
| | - Polina S Babich
- Department of Zoology, Herzen State Pedagogical University of Russia, Kazanskaya str., 6, 191186 St.-Petersburg, Russia.
| | - Yulia A Zatulovskaia
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Ekaterina Y Ilyechova
- Laboratory of Trace Elements Metabolism, ITMO University, Kronverksky av., 49, 197101 St.-Petersburg, Russia.
| | - Francesca Di Sole
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA 50312, USA.
| |
Collapse
|
34
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
35
|
Kosman DJ. The teleos of metallo-reduction and metallo-oxidation in eukaryotic iron and copper trafficking. Metallomics 2018; 10:370-377. [PMID: 29484341 DOI: 10.1039/c8mt00015h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Eukaryotic cells, whether free-living or organismal, rely on metallo-reductases to process environmental ferric iron and cupric copper prior to uptake. In addition, some free-living eukaryotes (e.g. fungi and algae) couple ferri-reduction to ferro-oxidation, a process catalyzed by a small cohort of multi-copper oxidases; in these organisms, the ferric iron product is a ligand for cell iron uptake via a ferric iron permease. In addition to their support of iron uptake in lower eukaryotes, ferroxidases support ferrous iron efflux in Chordata; in this process the release of the ferrous iron from the efflux transporter is catalyzed by its ferroxidation. Last, ferroxidases also catalyze the oxidation of cuprous copper and, as metallo-oxidases, mirror the dual activity of the metallo-reductases. This Perspective examines the teleos of the yin-yang of this redox cycling of iron and copper in their metabolism.
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, Farber Hall Room 140, 3435 Main St., Buffalo, NY 14214-3000, USA.
| |
Collapse
|
36
|
Lemler DJ, Lynch ML, Tesfay L, Deng Z, Paul BT, Wang X, Hegde P, Manz DH, Torti SV, Torti FM. DCYTB is a predictor of outcome in breast cancer that functions via iron-independent mechanisms. Breast Cancer Res 2017; 19:25. [PMID: 28270217 PMCID: PMC5341190 DOI: 10.1186/s13058-017-0814-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/09/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Duodenal cytochrome b (DCYTB) is a ferrireductase that functions together with divalent metal transporter 1 (DMT1) to mediate dietary iron reduction and uptake in the duodenum. DCYTB is also a member of a 16-gene iron regulatory gene signature (IRGS) that predicts metastasis-free survival in breast cancer patients. To better understand the relationship between DCYTB and breast cancer, we explored in detail the prognostic significance and molecular function of DCYTB in breast cancer. METHODS The prognostic significance of DCYTB expression was evaluated using publicly available microarray data. Signaling Pathway Impact Analysis (SPIA) of microarray data was used to identify potential novel functions of DCYTB. The role of DCYTB was assessed using immunohistochemistry and measurements of iron uptake, iron metabolism, and FAK signaling. RESULTS High DCYTB expression was associated with prolonged survival in two large independent cohorts, together totaling 1610 patients (cohort #1, p = 1.6e-11, n = 741; cohort #2, p = 1.2e-05, n = 869; log-rank test) as well as in the Gene expression-based Outcome for Breast cancer Online (GOBO) cohort (p < 1.0e-05, n = 1379). High DCYTB expression was also associated with increased survival in homogeneously treated groups of patients who received either tamoxifen or chemotherapy. Immunohistochemistry revealed that DCYTB is localized on the plasma membrane of breast epithelial cells, and that expression is dramatically reduced in high-grade tumors. Surprisingly, neither overexpression nor knockdown of DCYTB affected levels of ferritin H, transferrin receptor, labile iron or total cellular iron in breast cancer cells. Because SPIA pathway analysis of patient microarray data revealed an association between DCYTB and the focal adhesion pathway, we examined the influence of DCYTB on FAK activation in breast cancer cells. These experiments reveal that DCYTB reduces adhesion and activation of focal adhesion kinase (FAK) and its adapter protein paxillin. CONCLUSIONS DCYTB is an important predictor of outcome and is associated with response to therapy in breast cancer patients. DCYTB does not affect intracellular iron in breast cancer cells. Instead, DCYTB may retard cancer progression by reducing activation of FAK, a kinase that plays a central role in tumor cell adhesion and metastasis.
Collapse
Affiliation(s)
- David J. Lemler
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030 USA
- Present address: Department of Molecular Biomedical Sciences, North Carolina State University, CVM Research Building 474, Raleigh, NC 27695 USA
| | - Miranda L. Lynch
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
- Present address: Statistical Sciences Group CCS-6, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - Lia Tesfay
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Zhiyong Deng
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Bibbin T. Paul
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Xiaohong Wang
- Department of Pathology, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Poornima Hegde
- Department of Pathology, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - David H. Manz
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030 USA
- School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Suzy V. Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Frank M. Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| |
Collapse
|
37
|
Colins A, Gerdtzen ZP, Nuñez MT, Salgado JC. Mathematical Modeling of Intestinal Iron Absorption Using Genetic Programming. PLoS One 2017; 12:e0169601. [PMID: 28072870 PMCID: PMC5225013 DOI: 10.1371/journal.pone.0169601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/18/2016] [Indexed: 01/08/2023] Open
Abstract
Iron is a trace metal, key for the development of living organisms. Its absorption process is complex and highly regulated at the transcriptional, translational and systemic levels. Recently, the internalization of the DMT1 transporter has been proposed as an additional regulatory mechanism at the intestinal level, associated to the mucosal block phenomenon. The short-term effect of iron exposure in apical uptake and initial absorption rates was studied in Caco-2 cells at different apical iron concentrations, using both an experimental approach and a mathematical modeling framework. This is the first report of short-term studies for this system. A non-linear behavior in the apical uptake dynamics was observed, which does not follow the classic saturation dynamics of traditional biochemical models. We propose a method for developing mathematical models for complex systems, based on a genetic programming algorithm. The algorithm is aimed at obtaining models with a high predictive capacity, and considers an additional parameter fitting stage and an additional Jackknife stage for estimating the generalization error. We developed a model for the iron uptake system with a higher predictive capacity than classic biochemical models. This was observed both with the apical uptake dataset used for generating the model and with an independent initial rates dataset used to test the predictive capacity of the model. The model obtained is a function of time and the initial apical iron concentration, with a linear component that captures the global tendency of the system, and a non-linear component that can be associated to the movement of DMT1 transporters. The model presented in this paper allows the detailed analysis, interpretation of experimental data, and identification of key relevant components for this complex biological process. This general method holds great potential for application to the elucidation of biological mechanisms and their key components in other complex systems.
Collapse
Affiliation(s)
- Andrea Colins
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile
| | - Ziomara P. Gerdtzen
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile
| | - Marco T. Nuñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - J. Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile
- Centre for Biotechnology and Bioengineering, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
38
|
Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9:1204-1229. [DOI: 10.1039/c7mt00010c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general principle in all cells in the body is that an essential metal – here copper – is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells.
Collapse
Affiliation(s)
- Helena Öhrvik
- Medical Biochemistry and Microbiology
- Uppsala University
- Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences
- Norway
| | | |
Collapse
|
39
|
Olivares M, Figueroa C, Pizarro F. Acute Copper and Ascorbic Acid Supplementation Inhibits Non-heme Iron Absorption in Humans. Biol Trace Elem Res 2016; 172:315-319. [PMID: 26715577 DOI: 10.1007/s12011-015-0605-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
The objective of the study is to determine the effect of copper (Cu) plus the reducing agent ascorbic acid (AA) on the absorption of non-heme iron (Fe). Experimental study with block design in which each subject was his own control. After signing an informed consent, 14 adult women using an effective method of contraception and negative pregnancy test received 0.5 mg Fe, as ferrous sulfate, alone or with Cu, as copper sulfate, plus ascorbic acid (AA/Cu 2/1 molar ratio) at 4/1; 6/1 and 8/1 Cu/Fe molar ratios as an aqueous solution on days 1, 2, 14, and 15 of the study. Fe absorption was assessed by erythrocyte incorporation of iron radioisotopes (55)Fe and (59)Fe. Geometric mean (range ± SD) absorption of Fe at 4/1 and 6/1 Cu/Fe molar ratios (and AA/Cu 2/1 molar ratio) and Fe alone was 57.4 % (35.7-92.1 %), 64.2 % (45.8-89.9 %), and 38.8 % (20.4-73.8 %), respectively (ANOVA for repeated measures p < 0.001; post hoc test Scheffé, p < 0.05). This is attributable to the enhancing effect of AA on non-heme Fe absorption; however, Fe absorption at Cu/Fe 8/1 molar ratio was 47.3 % (27.7-80.8) (p = NS compared with Fe alone). It was expected that Fe absorption would have been equal or greater than at 4/1 and 6/1 molar ratios. Copper in the presence of ascorbic acid inhibits non-heme Fe absorption at Cu/Fe 8/1 molar ratio.
Collapse
Affiliation(s)
- Manuel Olivares
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile.
| | - Constanza Figueroa
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Fernando Pizarro
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| |
Collapse
|
40
|
Tedesco I, Moccia S, Volpe S, Alfieri G, Strollo D, Bilotto S, Spagnuolo C, Di Renzo M, Aquino RP, Russo GL. Red wine activates plasma membrane redox system in human erythrocytes. Free Radic Res 2016; 50:557-69. [PMID: 26866566 DOI: 10.3109/10715762.2016.1152629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.
Collapse
Affiliation(s)
- Idolo Tedesco
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Stefania Moccia
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Silvestro Volpe
- b Division of Onco-Hematology , S.G. Moscati Hospital , Avellino , Italy
| | - Giovanna Alfieri
- b Division of Onco-Hematology , S.G. Moscati Hospital , Avellino , Italy
| | | | - Stefania Bilotto
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Carmela Spagnuolo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | | | - Rita P Aquino
- d Department of Pharmacy , University of Salerno , Fisciano (SA) , Italy
| | - Gian Luigi Russo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| |
Collapse
|
41
|
Ramos D, Mar D, Ishida M, Vargas R, Gaite M, Montgomery A, Linder MC. Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells. PLoS One 2016; 11:e0149516. [PMID: 26934375 PMCID: PMC4774968 DOI: 10.1371/journal.pone.0149516] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/01/2016] [Indexed: 12/24/2022] Open
Abstract
Ceruloplasmin, the main copper binding protein in blood plasma, has been of particular interest for its role in efflux of iron from cells, but has additional functions. Here we tested the hypothesis that it releases its copper for cell uptake by interacting with a cell surface reductase and transporters, producing apoceruloplasmin. Uptake and transepithelial transport of copper from ceruloplasmin was demonstrated with mammary epithelial cell monolayers (PMC42) with tight junctions grown in bicameral chambers, and purified human (64)Cu-labeled ceruloplasmin secreted by HepG2 cells. Monolayers took up virtually all the (64)Cu over 16h and secreted half into the apical (milk) fluid. This was partly inhibited by Ag(I). The (64)Cu in ceruloplasmin purified from plasma of (64)Cu-injected mice accumulated linearly in mouse embryonic fibroblasts (MEFs) over 3-6h. Rates were somewhat higher in Ctr1+/+ versus Ctr1-/- cells, and 3-fold lower at 2 °C. The ceruloplasmin-derived (64)Cu could not be removed by extensive washing or trypsin treatment, and most was recovered in the cytosol. Actual cell copper (determined by furnace atomic absorption) increased markedly upon 24h exposure to holoceruloplasmin. This was accompanied by a conversion of holo to apoceruloplasmin in the culture medium and did not occur during incubation in the absence of cells. Four different endocytosis inhibitors failed to prevent 64Cu uptake from ceruloplasmin. High concentrations of non-radioactive Cu(II)- or Fe(III)-NTA (substrates for cell surface reductases), or Cu(I)-NTA (to compete for transporter uptake) almost eliminated uptake of (64)Cu from ceruloplasmin. MEFs had cell surface reductase activity and expressed Steap 2 (but not Steaps 3 and 4 or dCytB). However, six-day siRNA treatment was insufficient to reduce activity or uptake. We conclude that ceruloplasmin is a circulating copper transport protein that may interact with Steap2 on the cell surface, forming apoceruloplasmin, and Cu(I) that enters cells through CTR1 and an unknown copper uptake transporter.
Collapse
Affiliation(s)
- Danny Ramos
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - David Mar
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Michael Ishida
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Rebecca Vargas
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Michaella Gaite
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Aaron Montgomery
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
| | - Maria C. Linder
- Department of Chemistry and Biochemistry, California State University, Fullerton, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Antony Jesu Prabhu P, Geurden I, Fontagné-Dicharry S, Veron V, Larroquet L, Mariojouls C, Schrama JW, Kaushik SJ. Responses in Micro-Mineral Metabolism in Rainbow Trout to Change in Dietary Ingredient Composition and Inclusion of a Micro-Mineral Premix. PLoS One 2016; 11:e0149378. [PMID: 26895186 PMCID: PMC4760760 DOI: 10.1371/journal.pone.0149378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/01/2016] [Indexed: 12/26/2022] Open
Abstract
Responses in micro-mineral metabolism to changes in dietary ingredient composition and inclusion of a micro-mineral premix (Fe, Cu, Mn, Zn and Se) were studied in rainbow trout. In a 2 x 2 factorial design, triplicate groups of rainbow trout (initial weight: 20 g) were fed over 12 weeks at 17°C a fishmeal-based diet (M) or a plant-ingredient based diet (V), with or without inclusion of a mineral premix. Trout fed the V vs. M diet had lower feed intake, growth, hepato-somatic index, apparent availability coefficient (AAC) of Fe, Cu, Mn and Zn and also lower whole body Se and Zn concentration, whereas whole body Fe and Cu and plasma Fe concentrations were higher. Feeding the V diet increased intestinal ferric reductase activity; at transcriptional level, hepatic hepcidin expression was down-regulated and ferroportin 1 was up-regulated. Transcription of intestinal Cu-transporting ATPases and hepatic copper transporter1 were higher in V0 compared to other groups. Among the hepatic metalo-enzyme activities assayed, only Se-dependent glutathione peroxidase was affected, being lower in V fed fish. Premix inclusion reduced the AAC of Fe, Cu and Zn; increased the whole body concentration of all micro- minerals; up-regulated hepatic hepcidin and down-regulated intestinal ferroportin 1 transcription; and reduced the transcription of Cu-transporting ATPases in the intestine. Overall, the regulation of micro-mineral metabolism in rainbow trout, especially Fe and Cu, was affected both by a change in ingredient composition and micro-mineral premix inclusion.
Collapse
Affiliation(s)
- P Antony Jesu Prabhu
- Institut National de la Recherche Agronomique (INRA), UR1067, Nutrition, Metabolism and Aquaculture (NuMeA), Aquapôle INRA, 64310, Saint-Pée-sur-Nivelle, France.,AgroParisTech, Paris Institute of Technology for Life, Food and Environmental Sciences, 16 rue Claude Bernard, 75231, Paris, Cedex 5, France.,Aquaculture and Fisheries Group, Wageningen Institute of Animal Sceinces (WIAS), Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Inge Geurden
- Institut National de la Recherche Agronomique (INRA), UR1067, Nutrition, Metabolism and Aquaculture (NuMeA), Aquapôle INRA, 64310, Saint-Pée-sur-Nivelle, France
| | - Stéphanie Fontagné-Dicharry
- Institut National de la Recherche Agronomique (INRA), UR1067, Nutrition, Metabolism and Aquaculture (NuMeA), Aquapôle INRA, 64310, Saint-Pée-sur-Nivelle, France
| | - Vincent Veron
- Institut National de la Recherche Agronomique (INRA), UR1067, Nutrition, Metabolism and Aquaculture (NuMeA), Aquapôle INRA, 64310, Saint-Pée-sur-Nivelle, France
| | - Laurence Larroquet
- Institut National de la Recherche Agronomique (INRA), UR1067, Nutrition, Metabolism and Aquaculture (NuMeA), Aquapôle INRA, 64310, Saint-Pée-sur-Nivelle, France
| | - Catherine Mariojouls
- AgroParisTech, Paris Institute of Technology for Life, Food and Environmental Sciences, 16 rue Claude Bernard, 75231, Paris, Cedex 5, France
| | - Johan W Schrama
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sceinces (WIAS), Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Sadasivam J Kaushik
- Institut National de la Recherche Agronomique (INRA), UR1067, Nutrition, Metabolism and Aquaculture (NuMeA), Aquapôle INRA, 64310, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
43
|
Urso E, Maffia M. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems. J Vasc Res 2015; 52:172-96. [PMID: 26484858 DOI: 10.1159/000438485] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Angiogenesis critically sustains the progression of both physiological and pathological processes. Copper behaves as an obligatory co-factor throughout the angiogenic signalling cascades, so much so that a deficiency causes neovascularization to abate. Moreover, the progress of several angiogenic pathologies (e.g. diabetes, cardiac hypertrophy and ischaemia) can be tracked by measuring serum copper levels, which are being increasingly investigated as a useful prognostic marker. Accordingly, the therapeutic modulation of body copper has been proven effective in rescuing the pathological angiogenic dysfunctions underlying several disease states. Vascular copper transport systems profoundly influence the activation and execution of angiogenesis, acting as multi-functional regulators of apparently discrete pro-angiogenic pathways. This review concerns the complex relationship among copper-dependent angiogenic factors, copper transporters and common pathological conditions, with an unusual accent on the multi-faceted involvement of the proteins handling vascular copper. Functions regulated by the major copper transport proteins (CTR1 importer, ATP7A efflux pump and metallo-chaperones) include the modulation of endothelial migration and vascular superoxide, known to activate angiogenesis within a narrow concentration range. The potential contribution of prion protein, a controversial regulator of copper homeostasis, is discussed, even though its angiogenic involvement seems to be mainly associated with the modulation of endothelial motility and permeability.
Collapse
Affiliation(s)
- Emanuela Urso
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | | |
Collapse
|
44
|
Shawki A, Anthony SR, Nose Y, Engevik MA, Niespodzany EJ, Barrientos T, Öhrvik H, Worrell RT, Thiele DJ, Mackenzie B. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese. Am J Physiol Gastrointest Liver Physiol 2015; 309:G635-47. [PMID: 26294671 PMCID: PMC4609933 DOI: 10.1152/ajpgi.00160.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/18/2015] [Indexed: 01/31/2023]
Abstract
Divalent metal-ion transporter-1 (DMT1) is a widely expressed iron-preferring membrane-transport protein that serves a critical role in erythroid iron utilization. We have investigated its role in intestinal metal absorption by studying a mouse model lacking intestinal DMT1 (i.e., DMT1(int/int)). DMT1(int/int) mice exhibited a profound hypochromic-microcytic anemia, splenomegaly, and cardiomegaly. That the anemia was due to iron deficiency was demonstrated by the following observations in DMT1(int/int) mice: 1) blood iron and tissue nonheme-iron stores were depleted; 2) mRNA expression of liver hepcidin (Hamp1) was depressed; and 3) intraperitoneal iron injection corrected the anemia, and reversed the changes in blood iron, nonheme-iron stores, and hepcidin expression levels. We observed decreased total iron content in multiple tissues from DMT1(int/int) mice compared with DMT1(+/+) mice but no meaningful change in copper, manganese, or zinc. DMT1(int/int) mice absorbed (64)Cu and (54)Mn from an intragastric dose to the same extent as did DMT1(+/+) mice but the absorption of (59)Fe was virtually abolished in DMT1(int/int) mice. This study reveals a critical function for DMT1 in intestinal nonheme-iron absorption for normal growth and development. Further, this work demonstrates that intestinal DMT1 is not required for the intestinal transport of copper, manganese, or zinc.
Collapse
Affiliation(s)
- Ali Shawki
- 1Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; ,2Systems Biology & Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Sarah R. Anthony
- 1Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Yasuhiro Nose
- 3Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina;
| | - Melinda A. Engevik
- 1Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; ,2Systems Biology & Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Eric J. Niespodzany
- 1Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Tomasa Barrientos
- 3Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina;
| | - Helena Öhrvik
- 3Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina; ,4Department of Medical Biochemistry & Microbiology, Uppsala University, Uppsala, Sweden; and
| | - Roger T. Worrell
- 1Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; ,2Systems Biology & Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| | - Dennis J. Thiele
- 3Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina; ,5Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| | - Bryan Mackenzie
- Department of Molecular & Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Systems Biology & Physiology Program, University of Cincinnati College of Medicine, Cincinnati, Ohio;
| |
Collapse
|
45
|
Duodenal cytochrome b (DCYTB) in iron metabolism: an update on function and regulation. Nutrients 2015; 7:2274-96. [PMID: 25835049 PMCID: PMC4425144 DOI: 10.3390/nu7042274] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 01/01/2023] Open
Abstract
Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally, both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake, rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut, ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities, intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes, namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron) on the opposite side of the membrane. One member of this family, duodenal cytochrome b (DCYTB), may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis, the emergent “IRP1-HIF2α axis”, DCYTB and ascorbate in relation to iron metabolism.
Collapse
|
46
|
Ji C, Kosman DJ. Molecular mechanisms of non-transferrin-bound and transferring-bound iron uptake in primary hippocampal neurons. J Neurochem 2015; 133:668-83. [PMID: 25649872 DOI: 10.1111/jnc.13040] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/08/2015] [Accepted: 01/14/2015] [Indexed: 12/16/2022]
Abstract
The molecular mechanisms of iron trafficking in neurons have not been elucidated. In this study, we characterized the expression and localization of ferrous iron transporters Zip8, Zip14 and divalent metal transporter 1 (DMT1), and ferrireductases Steap2 and stromal cell-derived receptor 2 in primary rat hippocampal neurons. Steap2 and Zip8 partially co-localize, indicating these two proteins may function in Fe(3+) reduction prior to Fe(2+) permeation. Zip8, DMT1, and Steap2 co-localize with the transferrin receptor/transferrin complex, suggesting they may be involved in transferrin receptor/transferrin-mediated iron assimilation. In brain interstitial fluid, transferring-bound iron (TBI) and non-transferrin-bound iron (NTBI) exist as potential iron sources. Primary hippocampal neurons exhibit significant iron uptake from TBI (Transferrin-(59) Fe(3+)) and NTBI, whether presented as (59) Fe(2+) -citrate or (59) Fe(3+) -citrate; reductase-independent (59) Fe(2+) uptake was the most efficient uptake pathway of the three. Kinetic analysis of Zn(2+) inhibition of Fe(2+) uptake indicated that DMT1 plays only a minor role in the uptake of NTBI. In contrast, localization and knockdown data indicate that Zip8 makes a major contribution. Data suggest also that cell accumulation of (59) Fe from TBI relies at least in part on an endocytosis-independent pathway. These data suggest that Zip8 and Steap2 play a major role in iron accumulation from NTBI and TBI by hippocampal neurons. Analysis of the expression and localization of known iron uptake transporters demonstrated that Zip8 makes a major contribution to iron accumulation in primary cultures of rat embryonic hippocampal neurons. These cells exhibit uptake pathways for ferrous and ferric iron (non-transferrin-bound iron, NTBI in figure) and for transferrin-bound iron; the ferrireductases Steap2 and SDR2 support the uptake of ferric iron substrates. Zip8 and Steap2 are strongly expressed in the plasma membrane of both soma and processes, implying a crucial role in iron accumulation from NTBI and transferrin-bound iron (TBI) by hippocampal neurons.
Collapse
Affiliation(s)
- Changyi Ji
- Department of Biochemistry, State University of New York, School of Medicine and Biomedical Sciences Buffalo, Buffalo, New York, USA
| | | |
Collapse
|
47
|
Chen X, Huang Z, Zhou B, Wang H, Jia G, Liu G, Zhao H. STEAP4 and insulin resistance. Endocrine 2014; 47:372-9. [PMID: 24627165 DOI: 10.1007/s12020-014-0230-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/26/2014] [Indexed: 12/31/2022]
Abstract
Obesity is a multifactorial disease that caused by the interactions between genetic susceptibility genes and environmental cues. Obesity is considered as a major risk factor of insulin resistance. STEAP4 is a novel anti-obesity gene that is significantly down-regulated in adipose tissue of obese patients. Over-expression of STEAP4 can improve glucose uptake and mitochondrial function, and increase insulin sensitivity. STEAP4 expression is regulated by a variety of inflammatory cytokines, hormones, or adipokines. In this review, we discuss function of STEAP4 in regulating insulin resistance in adipose tissue in vivo, as well as in adipocytes in vitro.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci 2014; 72:709-27. [PMID: 25355056 DOI: 10.1007/s00018-014-1771-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/10/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022]
Abstract
There are two barriers for iron entry into the brain: (1) the brain-cerebrospinal fluid (CSF) barrier and (2) the blood-brain barrier (BBB). Here, we review the literature on developmental iron accumulation by the brain, focusing on the transport of iron through the brain microvascular endothelial cells (BMVEC) of the BBB. We review the iron trafficking proteins which may be involved in the iron flux across BMVEC and discuss the plausible mechanisms of BMVEC iron uptake and efflux. We suggest a model for how BMVEC iron uptake and efflux are regulated and a mechanism by which the majority of iron is trafficked across the developing BBB under the direct guidance of neighboring astrocytes. Thus, we place brain iron uptake in the context of the neurovascular unit of the adult brain. Last, we propose that BMVEC iron is involved in the aggregation of amyloid-β peptides leading to the progression of cerebral amyloid angiopathy which often occurs prior to dementia and the onset of Alzheimer's disease.
Collapse
|
49
|
Mentewab A, Matheson K, Adebiyi M, Robinson S, Elston B. RNA-seq analysis of the effect of kanamycin and the ABC transporter AtWBC19 on Arabidopsis thaliana seedlings reveals changes in metal content. PLoS One 2014; 9:e109310. [PMID: 25310285 PMCID: PMC4195610 DOI: 10.1371/journal.pone.0109310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022] Open
Abstract
Plants are exposed to antibiotics produced by soil microorganisms, but little is known about their responses at the transcriptional level. Likewise, few endogenous mechanisms of antibiotic resistance have been reported. The Arabidopsis thaliana ATP Binding Cassette (ABC) transporter AtWBC19 (ABCG19) is known to confer kanamycin resistance, but the exact mechanism of resistance is not well understood. Here we examined the transcriptomes of control seedlings and wbc19 mutant seedlings using RNA-seq analysis. Exposure to kanamycin indicated changes in the organization of the photosynthetic apparatus, metabolic fluxes and metal uptake. Elemental analysis showed a 60% and 80% reduction of iron uptake in control and wbc19 mutant seedlings respectively, upon exposure to kanamycin. The drop in iron content was accompanied by the upregulation of the gene encoding for FERRIC REDUCTION OXIDASE 6 (FRO6) in mutant seedlings but not by the differential expression of other transport genes known to be induced by iron deficiency. In addition, wbc19 mutants displayed a distinct expression profile in the absence of kanamycin. Most notably the expression of several zinc ion binding proteins, including ZINC TRANSPORTER 1 PRECURSOR (ZIP1) was increased, suggesting abnormal zinc uptake. Elemental analysis confirmed a 50% decrease of zinc content in wbc19 mutants. Thus, the antibiotic resistance gene WBC19 appears to also have a role in zinc uptake.
Collapse
Affiliation(s)
- Ayalew Mentewab
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- * E-mail:
| | - Kinnari Matheson
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- Molecular Biology Department, Princeton University, Princeton, New Jersey, United States of America
| | - Morayo Adebiyi
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Shanice Robinson
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
| | - Brianna Elston
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- College of Health Care Sciences, Nova Southeastern University, Davie, Florida, United States of America
| |
Collapse
|
50
|
Lane DJR, Richardson DR. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med 2014; 75:69-83. [PMID: 25048971 DOI: 10.1016/j.freeradbiomed.2014.07.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 01/18/2023]
Abstract
Ascorbate is a cofactor in numerous metabolic reactions. Humans cannot synthesize ascorbate owing to inactivation of the gene encoding the enzyme l-gulono-γ-lactone oxidase, which is essential for ascorbate synthesis. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance nonheme iron absorption in the gut, ascorbate within mammalian systems can regulate cellular iron uptake and metabolism. Ascorbate modulates iron metabolism by stimulating ferritin synthesis, inhibiting lysosomal ferritin degradation, and decreasing cellular iron efflux. Furthermore, ascorbate cycling across the plasma membrane is responsible for ascorbate-stimulated iron uptake from low-molecular-weight iron-citrate complexes, which are prominent in the plasma of individuals with iron-overload disorders. Importantly, this iron-uptake pathway is of particular relevance to astrocyte brain iron metabolism and tissue iron loading in disorders such as hereditary hemochromatosis and β-thalassemia. Recent evidence also indicates that ascorbate is a novel modulator of the classical transferrin-iron uptake pathway, which provides almost all iron for cellular demands and erythropoiesis under physiological conditions. Ascorbate acts to stimulate transferrin-dependent iron uptake by an intracellular reductive mechanism, strongly suggesting that it may act to stimulate iron mobilization from the endosome. The ability of ascorbate to regulate transferrin iron uptake could help explain the metabolic defect that contributes to ascorbate-deficiency-induced anemia.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|