1
|
Liu Y, Tan X, Li L, Xie T, Teng F. Co-encapsulation of vitamin E and quercetin by soybean lipophilic proteins based on pH-shifting and ultrasonication: Focus on interaction mechanisms, structural and physicochemical properties. Food Chem 2024; 460:140608. [PMID: 39089031 DOI: 10.1016/j.foodchem.2024.140608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
This study explored the mechanism of interaction of pH-shifting combined ultrasonication and its effect on soybean lipophilic proteins (SLP) and the potential of modified SLP as the carrier for vitamin E (VE) and quercetin (QU). The spectroscopy results revealed that both VE and QU changed the SLP conformation and exposed hydrophobic groups. The loading rates of VE and QU by SLP with alkaline pH-shifting combined with ultrasonication (300 w,20 min) were 86.91% and 75.99%, respectively. According to the antioxidant analysis, with an increase in the ultrasonication power, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity of the samples increased, where the DPPH and ABTS radical scavenging capacity of sample SQV-6 were 70.90% and 63.43%, respectively. The physicochemical properties, microstructure, and stability of the SLP-VE-QU complex improved significantly. Overall, the present findings broadened the application of simple structural carriers for co-encapsulating functional factors.
Collapse
Affiliation(s)
- Yue Liu
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiangyun Tan
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lijia Li
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tiegang Xie
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- Department of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Chen W, Jin W, Ma X, Wen H, Li Y, Xu G, Xu P, Cheng H. A study on the structure-functionality relationship of Solenaia oleivora protein under high-intensity ultrasonication processing. Food Chem 2024; 460:140598. [PMID: 39068791 DOI: 10.1016/j.foodchem.2024.140598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Solenaia oleivora is a valuable freshwater mussel endemic to China with a high content of high-quality proteins, but the lack of structural information and limited functionality of Solenaia oleivora proteins constrained their application in the food industry. This study investigates the changes in structural characteristics and functionality of Solenaia oleivora protein under ultrasound processing at power from 200 to 600 W. The ultrasound treatment caused increased contents of β-turn and α-helix, and the exposure of interior hydrophobic groups, resulting in the increased hydrophobicity by around 3 folds. The ultrasound treatment could significantly decrease particle size and increase surface charges of Solenaia oleivora proteins, facilitating the increase of hydrosolubility from 10.2% to 81.7%. These structural changes and increased hydrosolubility contributed to the enhancement of emulsifying and foaming properties, and in vitro digestibility. The results suggested that the ultrasound-treated Solenaia oleivora proteins possessed the potential as an alternative protein in food applications.
Collapse
Affiliation(s)
- Wanwen Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Yanping Li
- Jinghuai Special Aquatic Products Limited Company, Funan, Anhui, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
3
|
Liu J, Wang Y, Shi W, Meng X, Mintah BK, Dabbour M, Zhang Z, He R, Ma H. How ultrasonication treatment drives the interplay between lysinoalanine inhibition and conformational performances: A case study on alkali-extracted rice residue protein isolate. J Food Sci 2024. [PMID: 39503304 DOI: 10.1111/1750-3841.17494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Lysinoalanine (LAL) formed during alkaline extraction of rice residue protein (RRPI), which limited its application in the food industry. In this study, the influence of ultrasonication parameters (acoustic power density, ultrasound duration, and ultrasound temperature) on the inhibition of LAL formation and conformational attributes of RRPI during alkaline extraction was elucidated. The results suggested that the acoustic power density substantially modified the chemical interaction forces between RRPI molecules. At a power density of 60 W/L, the ionic bonds (14.37%) and hydrophobic interactions (49.28%) reached the maximum, while hydrogen bonds (15.29%) and disulfide bonds (21.06%) reached the minimum. Moreover, acoustic power density at 60 W/L caused a decrease of 18.02% and 12.2% in α-helix, and β-turn, respectively, shifting toward β-sheet, random coil, with an increase of 7.31% and 36.16%. Following ultrasonication, the protein particle size distribution curve shifted in the direction of smaller particle size, forming a relatively concentrated and uniform protein distribution. Sonication power, temperature, and time decreased the absolute value of Zeta potential. Furthermore, significant destruction in microstructure was elicited by sonication, which made the structure looser and more microparticles. Pearson correlation analysis suggested that the inhibition in the levels of LAL was most influenced by the increase of sulfhydryl groups and Zeta potential, as well as the reduction of α-helix content, in which the alteration of the total sulfhydryl group content had a great impact on the Zeta potential and the free sulfhydryl group. The principal component analysis demonstrated a notable correlation between the total sulfhydryl group and both the Zeta potential and free sulfhydryl group of RRPI.
Collapse
Affiliation(s)
- Jiarui Liu
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Yang Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Wangbin Shi
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xiangren Meng
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Benjamin Kumah Mintah
- Department of Agro-Processing Technology and Food Bio-Sciences, CSIR College of Science and Technology (CCST), CSIR - Food Research Institute, Accra, Ghana
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Zhaoli Zhang
- College of Tourism and Culinary Science, Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Shylla E, Sunil CK, Rawson A, Venkatachalapathy N. High-intensity ultrasound modification of techno-functional and structural properties of white finger millet protein fractions. J Food Sci 2024. [PMID: 39495591 DOI: 10.1111/1750-3841.17491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/26/2024] [Accepted: 10/05/2024] [Indexed: 11/06/2024]
Abstract
In this study, albumin, globulin, and glutelin were extracted from white finger millet, and their amino acid content, functional and structural properties were investigated. The protein concentration of albumin, globulin, and glutelin were 76.01%, 74.32%, and 69.55%, respectively. The results showed that all the fractions had a significant amount of essential amino acids. Aqueous protein dispersions (10%, w/v) were treated for 12 min at different ultrasound power levels (100, 200, and 300 W). The solubility, emulsifying, and foaming properties of albumin and glutelin were significantly (p < 0.05) improved after ultrasound treatment (20 kHz) which indicates that ultrasound could unfold protein aggregates. A decrease in particle size, increase in surface hydrophobicity, and zeta potential correlated with improved functional properties. Ultrasound treatment reduced the size of all proteins except for fractions at 300 W and also sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a significant change in the molecular weight of albumin and glutelin at 300 W. Scanning electron microscopy of treated protein fraction showed distinctive microstructure with irregular structure compared to untreated protein fraction. Although Fourier transform infrared spectroscopy spectra of proteins were similar after ultrasonication, a partial increase in the intensity of the Amide A band was observed. In conclusion, the ultrasound-treated protein fraction can be used as a high-value plant-based emulsifier.
Collapse
Affiliation(s)
- Eleonora Shylla
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | - C K Sunil
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, Tamil Nadu, India
| | - N Venkatachalapathy
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, Tamil Nadu, India
| |
Collapse
|
5
|
Li Y, Xu H, Pan J, Mintah BK, Dabbour M, He R, Ma H. Improving the emulsification characteristics of rapeseed protein isolate by ultrasonication assisted pH shift treatment. Int J Biol Macromol 2024; 282:137221. [PMID: 39491699 DOI: 10.1016/j.ijbiomac.2024.137221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Rapeseed protein isolate (RPI) is an important nutrimental macronutrient in human diet due to its abundance in amino acids. However the poor emulsifying attributes of RPI limits its application in food industry, which needs to be overcome for its application in food industry. Ultrasonication-aided pH shift (UpHS) treatment is an efficient method for enhancing the functionality of plant/ food protein. In this work, the emulsification characteristics of RPI modified by UpHS technique under different solubility levels were studied. Results showed that the emulsifying activity and stability of modified RPI were significantly improved by 168.46 % (sample with high solubility treated by Ultrasonication-aided pH 12.5, HSpH 12.5) and 134.5 % (sample with high solubility treated by Ultrasonication-aided pH 1.5, HSpH 1.5), respectively compared with the native sample (P < 0.05), and the emulsifying activity was positively correlated (P < 0.05) with solubility. The emulsification stability under acidic condition was higher than that under alkaline condition (HSpH 12.5 increased by 83.5 %). In addition, the adsorption capacity and zeta potential of RPI were increased to 93.74 % and 13.83 % respectively, whereas the particle size and surface tension were reduced to 41.04 % and 23.63 % respectively. This indicates the changes in the molecular structure of modified rapeseed protein, which improved the emulsifying activity of RPI. Moreover, the interfacial film of emulsions formed by the modified protein had stronger compressive resistance, contributing to the enhanced emulsifying stability of the RPI. These results show that UpHS treatment can effectively improve the emulsification properties of proteins, and can be widely used in food industry.
Collapse
Affiliation(s)
- Yihe Li
- College of Grain Engineering, Food&Drug, Jiangsu Vocational College of Finance & Economics, 8 Meicheng East Road, Huaian, Jiangsu 223003, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Applied Chemistry and Biological Engineering, Weifang Engineering Vocational College, 8979 Yunmenshan South Road, Qingzhou, Shandong 262500, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiayin Pan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | | | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
6
|
Su H, Xie Y, Cheng X, Yang Z, Mao J, Yang H, Xu X, Pan S, Hu H. The effect of dual-frequency ultrasound on synergistic Sonochemical oxidation to degrade aflatoxin B 1. Food Chem 2024; 457:139708. [PMID: 38936135 DOI: 10.1016/j.foodchem.2024.139708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
This study investigated the degradation of aflatoxin B1 (AFB1) in food by using dual-frequency ultrasound (DFUS) and the effects of sonochemical oxidation on the efficacy. It was found that the degradation of AFB1 by bath ultrasound (BU), probe ultrasound (PU), and DFUS were all consistent with first-order kinetics. The use of DFUS significantly increased the AFB1 degradation to 91.3%, and compared with BU and PU, it increased by about 177.0% and 61.5% after 30 min treatment. DFUS could generate a synergistic effect to accelerate the generation of free radicals, which promoted sonochemical oxidation to degrade AFB1. It could be speculated that hydroxyl radical (·OH) probably acted a dominant part in the AFB1 degradation by DFUS, and the hydrogen atoms (·H) might also are contributed. These results indicated that DFUS was an effective method of AFB1 degradation.
Collapse
Affiliation(s)
- Hongchen Su
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Yuxin Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Xi Cheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Zhixuan Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Jin Mao
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Hong Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei 430070, PR China.
| |
Collapse
|
7
|
Chin TGJ, Ruethers T, Chan BA, Lopata AL, Du J. Techno-functional properties and allergenicity of mung bean (Vigna radiata) protein isolates from Imara and KPS2 varieties. Food Chem 2024; 457:140069. [PMID: 38936132 DOI: 10.1016/j.foodchem.2024.140069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Mung bean is an increasingly cultivated legume. This study compared mung bean varieties 'KPS2' from Thailand (Th) and 'Imara' from Tanzania (T) with a focus on protein composition, allergenicity, and techno-functional properties. Two rounds alkaline-acid extraction were performed to produce mung bean protein isolate (MBPI - Th1/T1 and Th2/T2), supernatant (S) and protein-poor residue (PPR). Mass spectrometric analysis revealed high abundance of 8 s-vicilin and 11 s-legumin in MBPI and S. Extraction removed considerable amounts of the seed albumin allergen but increased the relative abundance of cupins in MBPI. Higher vicilin levels were found in Th1 samples, contributed to increased protein solubility above pH 6.5. Th formed stronger gels which were more stable at higher frequencies. In contrast, T proteins were structurally more flexible, leading to its improved foaming ability. This study provides the knowledge and methods for appropriate selection of mung bean varieties for various food applications.
Collapse
Affiliation(s)
- Tak Gun Jeremy Chin
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Thimo Ruethers
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore; Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Queensland 4811, Australia; Centre for Food Allergy Research, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Bing Aleo Chan
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Andreas Ludwig Lopata
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore; Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Queensland 4811, Australia; Centre for Food Allergy Research, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Juan Du
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore; Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN 47907, USA; Sengkang General Hospital, Singapore Health Services, 10 Hospital Boulevard, Singapore 15 168582, Singapore.
| |
Collapse
|
8
|
Tang L, Liu X, Bai S, Zhao D, Guo X, Zhu D, Su G, Fan B, Wang B, Zhang L, Wang F. Okara protein extracted by alternating ultrasonic/alkali treatment and its improved physicochemical and functional properties. ULTRASONICS SONOCHEMISTRY 2024; 111:107129. [PMID: 39467489 DOI: 10.1016/j.ultsonch.2024.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Okara protein (OP) is a potential plant-based protein that is beneficial to human health. In this work, an alternating ultrasonic/alkali treatment method with non-continued cavitation and thermal energy output was used to extract protein (AUA-OP) from okara to enhance the functional properties of OP and improve the stability of OP-based emulsions. The purity of AUA-OP was greater than 80%. Compared with traditional (physical-assisted) alkali treatment, FTIR and SDS-PAGE revealed that AUA-OP retained the chemical structure of the protein, but the number of ultrasound-induced exposure sites increased, with increased fluorescence intensity, surface hydrophobicity, and absolute ζ-potential. After alternating ultrasonic/alkali treatment, the protein particles were looser and smaller. In addition, the water/oil holding capacity, EAI, and ESI of AUA-OP further increased. The viscosity of the AUA-OP-stabilized emulsion was also greater. Finally, a 28-day emulsion storage assay revealed that the AUA-OP-stabilized emulsion was stable with a relatively low droplet size and creaming index, indicating great potential for the development of stable protein-based emulsions.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolin Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiru Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuzhen Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dandan Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guiying Su
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Xue F, Li C, Cheng J. Effects of probiotics fermentation on physicochemical properties of plum (Pruni domesticae semen) seed protein-based gel. Int J Biol Macromol 2024; 277:134361. [PMID: 39097070 DOI: 10.1016/j.ijbiomac.2024.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The plum seed protein isolates (PSPI) were used to prepare a gel by probiotics fermentation. The effects of fermentation time (from 0 to 12 h) on the physicochemical properties of PSPI gel were evaluated. The results showed that PSPI started to form a gel after 6 h of fermentation, as evidenced by a decrease in pH from 6.6 to 5.2, an increase in particle size from 10 μm to 40 μm, appearance of a new peak with retention time of 10 min in gel filtration high-performance liquid chromatography, and formation of aggregation and porous structure observed by fluorescence and scanning electron microscope. The PSPI gel from 9 h of fermentation exhibited the highest viscosity (318 Pa.s), storage modulus (18,000 Pa), water holding capacity (37 %), and gel strength (21.5 g) due to stronger molecular interactions such as hydrogen bond, electrostatic, hydrophobic interaction and disulfide bond. However, increasing fermentation time over 9 h led to disrupture of PSPI gel. Furthermore, the subunit around 15 kDa of PSPI disappeared after fermentation, indicating that the formation of PSPI gel was induced by both acidification and partial hydrolysis. Our results suggest that PSPI can provide an alternative for developing plant-based gel products.
Collapse
Affiliation(s)
- Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China.
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jianming Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China.
| |
Collapse
|
10
|
Kim W, Yiu CCY, Wang Y, Zhou W, Selomulya C. Toward Diverse Plant Proteins for Food Innovation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408150. [PMID: 39119828 DOI: 10.1002/advs.202408150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 08/10/2024]
Abstract
This review highlights the development of plant proteins from a wide variety of sources, as most of the research and development efforts to date have been limited to a few sources including soy, chickpea, wheat, and pea. The native structure of plant proteins during production and their impact on food colloids including emulsions, foams, and gels are considered in relation to their fundamental properties, while highlighting the recent developments in the production and processing technologies with regard to their impacts on the molecular properties and aggregation of the proteins. The ability to quantify structural, morphological, and rheological properties can provide a better understanding of the roles of plant proteins in food systems. The applications of plant proteins as dairy and meat alternatives are discussed from the perspective of food structure formation. Future directions on the processing of plant proteins and potential applications are outlined to encourage the generation of more diverse plant-based products.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | | | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore
| | | |
Collapse
|
11
|
Wang J, Bi H, Zhou X, Yang B, Wen L. Enhancing functionality and bioactivity of walnut protein through limited enzyme digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8321-8331. [PMID: 38899487 DOI: 10.1002/jsfa.13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Walnut protein (WP) is recognized as a valuable plant protein. However, the poor solubility and functional properties limit its application in the food industry. It is a great requirement to improve the physicochemical properties of WP. RESULTS Following a 90 min restricted enzymatic hydrolysis period, the solubility of WP significantly increased from 3.24% to 54.54%, with the majority of WP hydrolysates (WPHs) possessing a molecular weight exceeding 50 kDa. Circular dichroism spectra showed that post-hydrolysis, the structure of the protein became more flexible, while the hydrolysis time did not significantly alter the protein's secondary structure. After hydrolysis, WP's surface hydrophobicity significantly increased from 2279 to 6100. Furthermore, WPHs exhibited a strong capacity for icariin loading and micelle formation with critical micelle concentration values of 0.71, 0.99 and 1.09 mg mL-1, respectively. Moreover, similar immuno-enhancement activities were observed in WPHs. After exposure to WPHs, the pinocytosis of RAW264.7 macrophages was significantly improved. WPH treatment also increased the production of nitric oxide, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in macrophages. Up-regulation of mRNA expressions of IL-6, inducible nitric oxide synthase (iNOS) and TNF-α was observed in a dose-dependent manner. CONCLUSION The enhancement of functionality and bioactivity in WP can be achieved through the application of limited enzyme digestion with trypsin. This process effectively augments the nutritional value and utility of the protein, making it a valuable component in various dietary applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinping Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key State Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huimin Bi
- Guangzhou College of Technology and Business, Guangzhou, China
| | - Xuesong Zhou
- Guangzhou Honsea Industry Co. Ltd, Guangzhou, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key State Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, Key State Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Hu Y, Wan S, Zhao R, Cao L, Fu C, Ren DF. Characterization of ultrasonic-assisted antifungal film loaded with fermented walnut meal on Rosa roxburghii Tratt during near-freezing temperature storage. J Food Sci 2024; 89:6539-6552. [PMID: 39218992 DOI: 10.1111/1750-3841.17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Fermented walnut meal (FW) has antifungal activity against Penicillium victoriae, a fungus responsible for Rosa roxbughii Tratt spoilage. This study characterized and applied ultrasonic-assisted antifungal film loaded with FW to preserve R. roxbughii Tratt during near-freezing temperature (NFT). Results showed that O2 and CO2 transmission rates decreased by 80.02% and 29.05%, respectively, and antimicrobial properties were improved with ultrasound at 560 W for 5 min and 1% FW. Fourier transform infrared spectroscopy and X-ray diffraction results revealed ultrasound improved hydrogen bonds and inductive effect via ─NH, ─OH, and C═O bonds. The addition of FW led to the formation of CMCS-GL-FW polymer via C═O bond. Thermogravimetric analysis and transmission electron microscope results demonstrated thermal degradation process was decomposed by ultrasound, and the internal structure of P. victoriae was accelerated by the addition of FW. Compared to the U-CMCS/GL group, the vitamin C content, peroxidase, and catalase activities of U-CMCS/GL/FW were enhanced by 4.24%, 8.52%, and 14.3% during NFT (-0.8 to -0.4°C), respectively. Particularly, the fungal count of the U-CMCS/GL/FW group did not exceed 105 CFU g-1 at the end of storage, and the relative abundance of P. victoriae decreased to 0.007%. Our findings provide an effective route for agricultural waste as natural antifungal compounds in the active packaging industry. PRACTICAL APPLICATION: In this study, the barrier and antimicrobial properties of film were successfully improved by ultrasonic treatment and loaded fermented walnut meal. The ultrasonic-assisted antifungal film loaded with fermented walnut meal effectively delayed the degradation of nutrients and reduced microbial invasion of Rosa roxburghii Tratt. These results provide a theoretical basis for the application of agricultural waste in the food packaging industry.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Shuangju Wan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ruijie Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lisha Cao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chengxin Fu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Di Feng Ren
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Othmeni I, Karoui R, Blecker C. Impact of pH on the structure, interfacial and foaming properties of pea protein isolate: Investigation of the structure - Function relationship. Int J Biol Macromol 2024; 278:134818. [PMID: 39154679 DOI: 10.1016/j.ijbiomac.2024.134818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
This study explored the relationship between pea protein foaming properties and their structure and physicochemical properties under neutral and acidic pH. Results showed that pH modified the zeta potential, particle size and surface tension due to electrostatic changes. FT-MIR and fluorescence spectra revealed pH-induced conformational changes, exposing hydrophobic groups and increasing sulfhydryl content, promoting protein aggregation. At pH 3, the highest foaming capacity (1.273) and lowest foam expansion (6.967) were observed, associated with increased surface hydrophobicity and net charges, ideal for creating light foams with high liquid incorporation for acidic beverages or fruit-based mousses. Pea protein isolate generated stable foams with foam volume stability between 86.662 % and 94.255 %. Although neutral pH conditions showed the highest foam volume stability, their air bubbles increased in size and transitioned from spherical to polyhedral shape, suitable for visual-centric applications, like cappuccino foam and beer-head retention. Foams at pH 5 exhibited the smallest bubbles and maintained their spherical shape, enhancing drainage resistance, beneficial for whipped toppings. Strong correlations (Pearson correlation coefficient higher than 0.600) were noted between the structure, surface and foaming properties, providing crucial insights into optimizing pea protein functionality across various pH conditions, enabling the development of plant-based foamed products with tailored properties.
Collapse
Affiliation(s)
- Ines Othmeni
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France; Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, B-5030 Gembloux, Belgium; Cosucra Groupe Warcoing S.A., B-7040 Warcoing, Belgium.
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France.
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, B-5030 Gembloux, Belgium
| |
Collapse
|
14
|
Dai Y, Lu X, Li R, Li Y, Dong H, Zhu D, Cao Y, Zhou W, Li J. Effects of ultrasound treatment on the structure, function properties and in vitro digestion of Sipunculus nudus protein. Int J Biol Macromol 2024; 277:134422. [PMID: 39127287 DOI: 10.1016/j.ijbiomac.2024.134422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Sipunculus nudus (S. nudus), an edible marine invertebrate, is rich in myofibrillar proteins. However, its extremely low water solubility and relatively firm texture limit its practical applications. This study aimed to investigate the consequences of different ultrasound amplitude treatments on the structure, functional properties, and digestive characteristics of S. nudus salt soluble protein (SSP). The results showed that ultrasound treatment significantly reduced the particle size, surface tension, and the unordered structure of SSP, while having not impact the zeta potential. Additionally, the results of infrared spectroscopy and intrinsic fluorescence spectrum revealed that ultrasound treatment enhanced the hydrogen bonding and hydrophobic interaction within the components of SSP, leading to a more compact and uniformly distributed protein structure. These changes increased the solubility (increased from 12.07 % to 37.59 %) and optimized the functional properties of SSP (foamability and emulsifiability). Further, the results of in vitro digestion simulation revealed that the antioxidant proteopeptides of SSP were mainly produced in the small intestine, with the ABTS+ radical scavenging capacity ranging from 140 to 170 μg Trolox/mL. Additionally, the antioxidant activity of the digestive fluid was enhanced with increasing ultrasound amplitude. This work linked structural changes in denatured proteins to their functional properties and digestive characteristics. This study provided a new direction for developing easily digestible food ingredients.
Collapse
Affiliation(s)
- Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, GuangDong 524001, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
| | - Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, GuangDong 524001, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, GuangDong 524001, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China.
| | - Yingying Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, GuangDong 524001, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
| | - Haolan Dong
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, GuangDong 524001, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
| | - Donghong Zhu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, GuangDong 524001, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
| | - Yupo Cao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, GuangDong 524001, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China.
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, GuangDong 524001, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, GuangDong 524001, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Zhanjiang 524001, China
| |
Collapse
|
15
|
Ma L, Yang X, Huo J, Li S. Study on the mechanism of polyphenols regulating the stability of pea isolate protein formed Pickering emulsion based on interfacial effects. Food Chem 2024; 463:141423. [PMID: 39348766 DOI: 10.1016/j.foodchem.2024.141423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
To improve the stability of pea isolate protein (PPI) Pickering emulsions, this study compared the stability effects of tannic acid (TA), epigallocatechin gallate, and gallic acid on PPI, and found PPI-TA the strongest binding and the best stability. When TA concentration increased from 0 to 0.5 mmol/L, the average particle size, zeta potential, and surface hydrophobicity of PPI-TA particles decreased by 23.1 %, 17.1 %, and 63.3 % respectively. The highest viscosity and elastic storage modulus G' which was also higher than and parallel to the loss modulus G", and the lowest Turbiscan stability index were observed in the emulsion with 0.5 mmol/L TA, indicating an elastic-based gel-like texture. The concentrations of conjugated diene and thiobarbituric acid reactive substances (TBARS) were also reduced by more than 58 %, showing improved oxidative stability. The study provides new insights into the interfacial behavior of PPI-polyphenols and technical support for their applications in food industry.
Collapse
Affiliation(s)
- Lulu Ma
- Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Key Laboratory for Agricultural Products Processing of Anhui Province/Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei 230601, China
| | - Xiaofan Yang
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jiaying Huo
- Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Key Laboratory for Agricultural Products Processing of Anhui Province/Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei 230601, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/ School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Key Laboratory for Agricultural Products Processing of Anhui Province/Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei 230601, China; School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
16
|
Li H, Liu Y, Tan H, Wu X, Wu W. Effect of ultrasonic pretreatment on the emulsion rheological properties and interface protein structure of epigallocatechin-3-gallate and rice bran protein complex. Food Chem 2024; 463:141406. [PMID: 39332355 DOI: 10.1016/j.foodchem.2024.141406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
The effect of ultrasonic pretreatment on the emulsion rheological properties and the structural characteristics of interface-adsorbed protein (IAP) and interface-unabsorbed protein (IUP) of rice bran protein and epigallocatechin-3-gallate complex (RBP-EGCG) were studied. Compared to RBP-EGCG without ultrasonic pretreatment, appropriate ultrasonic pretreatment (ultrasonic power was 425 W) enhanced the IAP trypsin sensitivity (from 3.20 to 3.73), increased the IUP surface hydrophobicity (from 12.59 to 20.87), and decreased the ζ-potential (from -24.93 mV to -36.88 mV) and particle size (from 567.30 nm to 273.13 nm) of IUP, thereby increasing the viscosity and viscoelasticity of emulsion. Compared to appropriate ultrasonic pretreatment, high-power ultrasonic pretreatment (ultrasonic power was 500 W) attenuated the IAP trypsin sensitivity, and increased the ζ-potential and particle size of IUP, thereby decreasing the viscosity and viscoelasticity of emulsion. Overall, ultrasonic pretreatment changed the EGCG-RBP emulsion viscoelasticity by regulating spatial structural characteristics and flexibility of interface protein.
Collapse
Affiliation(s)
- Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yu Liu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Haitong Tan
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
17
|
Fan X, Chang L, Pu H, Zhao J, Wang H, Wang Y, He W, Huang J. Enhancement of zein-based films for mango preservation using high-intensity ultrasound and castor oil plasticization. ULTRASONICS SONOCHEMISTRY 2024; 111:107067. [PMID: 39288593 PMCID: PMC11421248 DOI: 10.1016/j.ultsonch.2024.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Zein-based films exhibit high efficiency in ethylene adsorption. However, its brittleness limits the practical applications. To address this issue, this study synergizes the plasticizing effects of high-intensity ultrasound (HIU) and castor oil (CO) to reduce the brittleness of zein-based films. The plasticizing mechanism was demonstrated through the formation of new intermolecular hydrogen bonds and electrostatic interactions, as evidenced by fourier transform infrared spectroscopy (FTIR) and zeta potential measurements. The tensile strength of 6 % CO-zein film increased eightfold. Additionally, the freshness of mangoes stored with 6 % CO-zein film significantly improved, extending their shelf life from 5 days to 15 days. Therefore, this study investigated the synergistic plasticization of zein-based films through the addition of CO, based on HIU. It also provides a theoretical basis for fruit packaging.
Collapse
Affiliation(s)
- Xin Fan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, Shaanxi, China.
| | - Lu Chang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, Shaanxi, China
| | - Huayin Pu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, Shaanxi, China
| | - Jinghua Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, Shaanxi, China
| | - Huan Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, Shaanxi, China
| | - Yiyu Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, Shaanxi, China
| | - Wenqiang He
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, Shaanxi, China
| | - JunRong Huang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, Shaanxi, China
| |
Collapse
|
18
|
Noh E, Lee KG. Effects of ultrasound on the structural, physicochemical, and emulsifying properties of aquafaba extracted from various legumes. Food Chem 2024; 451:139438. [PMID: 38678652 DOI: 10.1016/j.foodchem.2024.139438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
This study investigated the effect of ultrasound (20-60 min, 40 kHz, 280 W) on the structural, physicochemical, and emulsifying properties of aquafaba extracted from various legumes (chickpea [CH], yellow soybean [YSB], black soybean [BSB], small black bean [SBB]). The hydrophobic amino acids and protein secondary structures (α-helix, random coil) significantly increased with sonication time (p < 0.05). The particle size of aquafaba was reduced by ultrasound (p < 0.05). A total of 27 volatile compounds were identified. Most volatiles increased with sonication time, and beany flavor was lowest in CH and SBB. The EAI, ESI, adsorbed proteins, and zeta-potential increased, while emulsion droplet size decreased in all legumes by ultrasound. The overall emulsifying properties were the highest in SBB sonicated for 40 min. This study discusses the applicability of ultrasound to aquafaba and provides insights into the functional properties and potential of aquafaba as a plant-based natural emulsifier.
Collapse
Affiliation(s)
- Eunjeong Noh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
19
|
Wen L, Dai H, Li S, Liang H, Li B, Li J. Improvement of processable properties of plant-based high internal phase emulsions by mung bean protein isolate based on pH shift treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6966-6976. [PMID: 38619073 DOI: 10.1002/jsfa.13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND High internal phase emulsions (HIPEs) are unique emulsion systems that transform liquid oil into solid-like fats, thus avoiding the use of saturated fat and leading to a healthier and more sustainable food system for consumers. HIPEs with oil volume fraction (ϕ) of 75-85% were fabricated with mung bean protein isolate (MPI) under different pH shift treatments at 1.0% concentration through the one-step method. In the present study, we investigated the physical properties, microstructures, processing properties, storage stability and rheological properties of HIPEs. RESULTS The results suggested that the properties of MPI under different pH shift treatments were improved to different degrees, stabilizing HIPEs (ϕ = 75-85%) with various processability to meet food processing needs. Under alkali shift treatment conditions, the particle size of MPI was significantly reduced with better solubility. Moreover, the exposure of hydrophobic groups increased the surface hydrophobicity of MPI, awarding MPI better emulsifying properties, which could stabilize the HIPEs with higher oil phase fraction. In addition, the MPI under pH 12 shift treatment (MPI-12) had the best oil-carrying ability to form the stable HIPEs with oil volume fraction (ϕ) up to 85%, which was the highest oil phase in preparing the HIPEs using plant protein solely at a low concentration under neutral conditions. CONCLUSION A series of stable HIPEs with different processing properties was simply and feasibly fabricated and these are of great potential in applying edible HIPEs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Luming Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongmin Dai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
| | - Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
20
|
Tian Y, Wang S, Lv J, Ma M, Jin Y, Fu X. Transglutaminase cross-linking ovalbumin-flaxseed oil emulsion gels: Properties, microstructure, and performance in oxidative stability. Food Chem 2024; 448:138988. [PMID: 38522295 DOI: 10.1016/j.foodchem.2024.138988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
This study prepared emulsion gels by modifying ovalbumin (OVA)-flaxseed oil (FSO) emulsions with transglutaminase (TGase) and investigated their properties, structure and oxidative stability under different enzyme reaction times. Here, we found prolonged reaction times led to the transformation of α-helix and β-turn into β-sheet and random coil. The elasticity, hardness and water retention of the emulsion gels increased significantly, but the water-holding capacity decreased when the reaction time exceeded 4 h. Confocal laser scanning microscope (CLSM) indicated extended enzyme reaction time fostered oil droplet aggregation with proteins. Emulsion gel reduced FSO oxidation, especially after 4 h of the enzyme reaction, the peroxide value (PV) of the emulsion gel was reduced by 29.16% compared to the control. In summary, the enzyme reaction time of 4 h resulted in the formation of a dense gel structure and enhanced oxidative stability. This study provides the potential applications in functional foods and biomedical fields.
Collapse
Affiliation(s)
- Yue Tian
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shurui Wang
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jiran Lv
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- National Research and Development Centre for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
21
|
Yu H, Cheng X, Li H, Du Q, Zeng X, Wu Z, Guo Y, Pan D. Effects and improvement mechanisms of ultrasonic pretreatment on the quality of fermented skim milk. ULTRASONICS SONOCHEMISTRY 2024; 108:106958. [PMID: 38889569 PMCID: PMC11231593 DOI: 10.1016/j.ultsonch.2024.106958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Fermented skim milk is an ideal food for consumers such as diabetic and obese patients, but its low-fat content affects its texture and viscosity. In this study, we developed an effective pretreatment method for fermented skim milk using low-frequency ultrasound (US), and investigated the molecular mechanism of the corresponding quality improvement. The skim milk samples were treated by optimal ultrasonication conditions (336 W power for 7 min at 3 °C), which improved the viscosity, water-holding capacity, sensory attributes, texture, and microstructure of fermented skim milk (P < 0.05). Further mechanistic analyses revealed that the US treatment enhanced the exposure of fluorescent amino acids within proteins, facilitating the cross-linking between casein and whey. The increased surface hydrophobicity of fermented milk indicates that the US treatment led to the exposure of hydrophobic amino acid residues inside proteins, contributing to the formation of a denser gel network; the average particle size of milk protein was reduced from 24.85 to 18.06 µm, which also contributed to the development of a softer curd texture. This work is the first attempt to explain the effect of a low-frequency ultrasound treatment on the quality of fermented skim milk and discuss the molecular mechanism of its improvement.
Collapse
Affiliation(s)
- Hongsen Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xinyue Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Hang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
22
|
Betchem G, Dabbour M, Akter Tuly J, Flavorta Billong L, Ma H. Experimental investigation into the implications of low-intensity magnetic field treatment on the structural and functional properties of rapeseed meal during biofermentation. Food Chem 2024; 446:138858. [PMID: 38430766 DOI: 10.1016/j.foodchem.2024.138858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
The functionality of rapeseed meal is limited, to acquire more utilization, the functional attributes were improved by altering its structural features using magnetic field-assisted solid fermentation. The magnetic treatment was performed every 24 h (specifically at 24, and 48 h), each treatment having a duration of 4 h. The magnetic intensity was set at 120 Gs, and the fermentation temperature 37 °C. Magnetic field-assisted solid fermentation resulted in higher surface hydrophobicity, fluorescence intensity, UV absorption, and sulfhydryl groups of rapeseed meal. Magnetic field treatment considerably enhanced solubility, antioxidant activity, emulsifying activity, and stability by 8.8, 19.5, 20.7, and 12.3 %, respectively. Magnetic field-assisted solid fermentation also altered rapeseed meal structure, as shown by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy outcomes. Correlation analysis displayed positive interrelationships between functional characteristics, and surface hydrophobicity, β-sheets, and polydispersity index.
Collapse
Affiliation(s)
- Garba Betchem
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Mokhtar Dabbour
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Jamila Akter Tuly
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
23
|
Xia B, Liu Y, Dong C, Shen Y, Wang C. Enhancing the usability of pea protein in emulsion applications through modification by various approaches: A comparative study. Food Res Int 2024; 188:114477. [PMID: 38823839 DOI: 10.1016/j.foodres.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/29/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The extensive utilization in food industry of pea protein is often impeded by its low water solubility, resulting in poor functional properties. Various methods, including pH-shifting (PS), ultrasonication (US), high-pressure micro-fluidization (MF), pH-shifting combined with ultrasonication (PS-US), and pH-shifting with micro-fluidization (PS-MF), were utilized to modify pea protein isolate (PPI) in order to enhance its functionality in emulsion formulation. The physicochemical properties and structural changes of the protein were investigated by assessing solubility, particle size, surface charge, protein profile, surface hydrophobicity, free sulfhydryl groups, and secondary structure content. The extent of modification induced by each treatment method on PPI-stabilized emulsions was compared based on parameters such as adsorbed interfacial protein concentration, particle size, zeta potential, and microstructure of the prepared emulsions. All modification increased the solubility of pea protein in the sequence of PS (4-fold) < MF (7-fold) < US (11-fold) < PS-US (13-fold) < PS-MF (14-fold). For single treatments, proteins dissolved more readily under US, resulting in the most uniform emulsions with small particle. The combined processes of PS-US and PS-MF further improved solubility, decreased emulsions particle size, promoted uniformity of emulsions. PS-US-stabilized emulsions displayed more smaller droplet size, narrower size distribution, and slightly higher stability than those prepared by PS-MF. The relatively higher emulsifying capacity of PPI treated by PS-US than those by PS-MF may be attributed to its higher surface hydrophobicity.
Collapse
Affiliation(s)
- Boxue Xia
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yilin Liu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yi Shen
- Center for Food Evaluation, State Administration for Market Regulation, Beijing 100070, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
24
|
Xu J, Yan S, Xu J, Qi B. Ultrasound-assisted modification of soybean protein isolate with L-histidine: Relationship between structure and function. ULTRASONICS SONOCHEMISTRY 2024; 107:106934. [PMID: 38834001 PMCID: PMC11179065 DOI: 10.1016/j.ultsonch.2024.106934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Herein, the effects of ultrasound-assisted L-histidine (L-His) on the physicochemical properties and conformation of soybean protein isolate (SPI) were investigated. Particle size, zeta potential, turbidity, and solubility were used to evaluate protein aggregation, and the relationship between structural and functional changes of the proteins was characterized using spectral analysis, surface hydrophobicity, emulsification, and antioxidant properties. After ultrasound-assisted L-His treatment, SPI exhibited a smaller particle size, higher solubility, and more homogeneous micromorphology owing to the decrease in alpha-helix content and subsequent increases in zeta potential and active sulfhydryl content. In addition, spectral analysis showed that L-His and SPI could form a complex, which changed the microenvironment of the amino acid residues in SPI, thus improving its emulsification and antioxidant properties. At the concentration of L-His was 0.3 % w/w, the nanocomplex had a smaller particle size (140.03 nm), higher ζ-potential (-23.63 mV), and higher emulsification stability (22.48 min).
Collapse
Affiliation(s)
- Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
25
|
Kong Y, Wu Z, Li Y, Kang Z, Wang L, Xie F, Yu D. Analyzing changes in volatile flavor compounds of soy protein isolate during ultrasonic-thermal synergistic treatments using electronic nose and HS-SPME-GC-MS combined with chemometrics. Food Chem 2024; 445:138795. [PMID: 38382257 DOI: 10.1016/j.foodchem.2024.138795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
The beany flavor of soy protein isolate (SPI) creates barriers to their application in food processing. This study investigated the effect of ultrasonic-thermal synergistic treatments, combined with vacuum degassing, on the removal of volatile compounds from SPI. The results revealed that ultrasonic-thermal synergistic treatments altered protein secondary structure and increased fluorescence intensity and surface hydrophobicity, which affected the flavor-binding ability of protein, resulting in reduced electronic nose sensor response values. At synergistic treatment (350 W, 120 ℃ and 150 s), the content of hexanal, (E)-2-hexenal, and 1-octen-3-ol reduced by 70.60 %, 95.60 % and 61.23 %. (E)-2-nonenal and 2-pentylfuran were not detected. Chemometric analysis indicated significant flavor differences between control and treated SPI. Furthermore, α-helix, β-sheet, β-turn, and surface hydrophobicity highly correlated with volatile compounds through correlation analysis, indicating that altered protein structure affected interactions with volatile compounds. The study reduced beany flavor and further expanded the range of applications of plant protein in food industry.
Collapse
Affiliation(s)
- Yue Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zenan Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanhui Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zimeng Kang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lu Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Dianyu Yu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
26
|
Li X, Wu Y, Duan W, Chen L, Cheng L, Liu J, Zhou Y, Ai C, Li X, Huang Q. Emulsification properties of ovalbumin-fucoidan (OVA-FUC) binary complexes. Food Chem X 2024; 22:101457. [PMID: 38798795 PMCID: PMC11126805 DOI: 10.1016/j.fochx.2024.101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
The poor thermal stability and emulsifying properties of ovalbumin (OVA) limit its functional performance, but these limitations may be overcome by forming binary complexes. We prepared binary complexes of OVA and fucoidan (FUC) through electrostatic self-assembly and investigated the emulsifying properties of the complex by measuring the particle size, interfacial membrane thickness, zeta potential, and stability of the emulsion prepared with camellia oil and the complex. The OVA-FUC emulsions have a thicker interfacial membrane, lower mobility, higher viscosity, and better stability compared with the OVA emulsions. The emulsion prepared with 1.5 % OVA-FUC remained stable and homogeneous during storage. They tended to become unstable with freeze-thaw, but the oil encapsulated did not leak after coalescence occurred. With the addition of Ca2+, the OVA-FUC emulsion will be converted into a gel state. These findings indicate that OVA-FUC binary complexes can be used to prepare high-performance emulsions with great potential for development.
Collapse
Affiliation(s)
- Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yingmei Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Wenshan Duan
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lujie Cheng
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junmei Liu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yan Zhou
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
27
|
Xiong W, Kumar G, Zhang B, Dhital S. Sonication-mediated modulation of macronutrient structure and digestibility in chickpea. ULTRASONICS SONOCHEMISTRY 2024; 106:106904. [PMID: 38749102 PMCID: PMC11109878 DOI: 10.1016/j.ultsonch.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Ultrasound processing is an emerging green technology that has the potential for wider application in the food processing industry. While the effects of ultrasonication on isolated macromolecules such as protein and starch have been reported, the effects of physical barriers on sonication on these macro-molecules, for example inside whole seed, tissue or cotyledon cells, have mostly been overlooked. Intact chickpea cells were subjected to sonication with different ultrasound processing times, and the effects of sonication on the starch and protein structure and digestibility were studied. The digestibility of these macronutrients significantly increased with the extension of processing time, which, however was not due to the molecular degradation of starch or protein but related to damage to cell wall macro-structure with increasing sonication time, leading to enhanced enzyme accessibility. Through this study, it is demonstrated that ultrasound processing has least effect on whole food structure, for example, whole seeds but can modulate the nutrient bioavailability without changing the properties of the macronutrients in seed fractions e.g. intact cells, offering new scientific knowledge on effect of ultrasound in whole foods at various length scales.
Collapse
Affiliation(s)
- Weiyan Xiong
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Gaurav Kumar
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Bin Zhang
- School of Food Science and Engineering, Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou 510640, China
| | - Sushil Dhital
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
28
|
Hussain Badar I, Wang Z, Chen Q, Liu Q, Ma J, Liu H, Kong B. Ultrasonic enhancement of structural and emulsifying properties of heat-treated soy protein isolate nanoparticles to fabricate flaxseed-derived diglyceride-based pickering emulsions. Food Chem 2024; 442:138469. [PMID: 38266416 DOI: 10.1016/j.foodchem.2024.138469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Flaxseed-derived diglyceride (DAG)-based Pickering emulsions were fabricated using soy protein isolate (SPI) nanoparticles as stabilizer. The SPI nanoparticles were prepared under the combined action of heating and ultrasound treatment. The SPI nanoparticles exposed to 600 W power exhibited the smallest particle size (133.36 nm) and zeta potential (-34.77 mV). Ultrasonic treatment did not significantly impact the polypeptide chain's primary structure but induced changes in the secondary structure. The Pickering emulsions stabilized with ultrasound-treated SPI nanoparticles showed smaller particle size, lower zeta potential, and improved emulsifying properties. Notably, at 450 W power, these emulsions showed a higher solid-liquid balance, reduced mean square displacement, backscattering fluctuations, and turbiscan stability index. Besides, they displayed a more compact microstructure with smaller droplets. In conclusion, SPI subjected to heating and 450 W ultrasound power resulted in the fabrication of DAG-based Pickering emulsions with enhanced microstructure and stability.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ziyi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
29
|
Patil ND, Bains A, Kaur S, Yadav R, Goksen G, Ali N, AlAsmari AF, Chawla P. Effect of dual modifications with ultrasonication and succinylation on Cicer arietinum protein-iron complexes: Characterization, digestibility, in-vitro cellular mineral uptake and preparation of fortified smoothie. Food Res Int 2024; 186:114344. [PMID: 38729696 DOI: 10.1016/j.foodres.2024.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The research aimed to evaluate the effect of ultrasonication and succinylation on the functional, iron binding, physiochemical, and cellular mineral uptake efficacy of chickpea protein concentrate. Succinylation resulted in significant improvements in the water-holding capacity (WHC) (25.47 %), oil-holding capacity (OHC) (31.38 %), and solubility (5.80 %) of the chickpea protein-iron complex. Mineral bioavailability significantly increased by 4.41 %, and there was a significant increase in cellular mineral uptake (64.64 %), retention (36.68 %), and transport (27.96 %). The ferritin content of the succinylated chickpea protein-iron complex showed a substantial increase of 66.31%. Furthermore, the dual modification approach combining ultrasonication and succinylation reduced the particle size of the protein-iron complex with a substantial reduction of 83.25 %. It also resulted in a significant enhancement of 51.5 % in the SH (sulfhydryl) content and 48.92 % in the surface hydrophobicity. Mineral bioavailability and cellular mineral uptake, retention, and transport were further enhanced through dual modification. In terms of application, the addition of single and dual-modified chickpea protein-iron complex to a fruit-based smoothie demonstrated positive acceptance in sensory attributes. Overall, the combined approach of succinylation and ultrasonication to the chickpea protein-iron complex shows a promising strategy for enhancing the physiochemical and techno-functional characteristics, cellular mineral uptake, and the development of vegan food products.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rahul Yadav
- Shoolini Life Sciences Pvt. Ltd., Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| | - Nemat Ali
- Département of Pharmacology and Toxicology, Collège of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah F AlAsmari
- Département of Pharmacology and Toxicology, Collège of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
30
|
Song G, Li F, Shi X, Liu J, Cheng Y, Wu Y, Fang Z, Zhu Y, Wang D, Yuan T, Cai R, Li L, Gong J. Characterization of ultrasound-assisted covalent binding interaction between β-lactoglobulin and dicaffeoylquinic acid: Great potential for the curcumin delivery. Food Chem 2024; 441:138400. [PMID: 38199107 DOI: 10.1016/j.foodchem.2024.138400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
The low bioavailability and poor gastrointestinal instability of curcumin hampers its application in pharmaceutical and food industries. Thus, it is essential to explore efficient carrier (e.g. a combination of polyphenols and proteins) for food systems. In this study, covalent β-lactoglobulin (LG)-dicaffeoylquinic acids (DCQAs) complexes were prepared by combining ultrasound and free radical induction methods. Covalent interactions between LG and DCQAs were confirmed by analyzing reactive groups. Variations in secondary or tertiary structure and potential binding sites of covalent complexes were explored using Fourier transform infrared spectroscopy and circular dichroism. Results showed that the β-sheet content decreased and the unordered content increased significantly (P < 0.05). The embedding rate of curcumin in prepared LG-DCQAs complexes using ultrasound could reach 49 % - 62 %, proving that complexes could embed curcumin effectively. This study highlights the benefit of ultrasound application in fabrication of protein-polyphenol complexes for delivering curcumin.
Collapse
Affiliation(s)
- Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Fang Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Xiaotong Shi
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Jiayuan Liu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313300, Zhejiang, China
| | - Yuhan Wu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Zexu Fang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yuxiao Zhu
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Ruikang Cai
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
31
|
Kapoor R, Karabulut G, Mundada V, Feng H. Unraveling the potential of non-thermal ultrasonic contact drying for enhanced functional and structural attributes of pea protein isolates: A comparative study with spray and freeze-drying methods. Food Chem 2024; 439:138137. [PMID: 38061300 DOI: 10.1016/j.foodchem.2023.138137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
The challenge of preserving the quality of thermal-sensitive polymeric materials specifically proteins during a thermal drying process has been a subject of ongoing concern. To address this issue, we investigated the use of ultrasound contact drying (USD) under non-thermal conditions to produce functionalized pea protein powders. The study extensively examined functional and physicochemical properties of pea protein isolate (PPI) in powder forms obtained through three drying methods: USD (30 °C), spray drying (SD), and freeze drying (FD). Additionally, physical attributes such as powder flowability and color, along with morphological properties, were thoroughly studied. The results indicated that the innovative USD method produced powders of comparable quality to FD and significantly outperformed SD. Notably, the USD-PPI exhibited higher solubility across all pH levels compared to both FD-PPI and SD-PPI. Moreover, the USD-PPI samples demonstrated improved emulsifying and foaming properties, a higher percentage of random coil form (56.2 %), increased gel strength, and the highest bulk and tapped densities. Furthermore, the USD-PPI displayed a unique surface morphology with visible porosity and lumpiness. Overall, this study confirms the effectiveness of non-thermal ultrasound contact drying technology in producing superior functionalized plant protein powders, showing its potential in the fields of chemistry and sustainable materials processing.
Collapse
Affiliation(s)
- Ragya Kapoor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Gulsah Karabulut
- Sakarya University, Faculty of Engineering, Department of Food Engineering, 54187 Sakarya, Turkey
| | - Vedant Mundada
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| |
Collapse
|
32
|
Maria Medeiros Theóphilo Galvão A, Lamy Rasera M, de Figueiredo Furtado G, Grossi Bovi Karatay G, M Tavares G, Dupas Hubinger M. Lentil protein isolate (Lens culinaris) subjected to ultrasound treatment combined or not with heat-treatment: structural characterization and ability to stabilize high internal phase emulsions. Food Res Int 2024; 183:114212. [PMID: 38760140 DOI: 10.1016/j.foodres.2024.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 05/19/2024]
Abstract
This study evaluated the effect of ultrasound treatment combined or not with heat treatment applied to lentil protein isolate (LPI) aiming to enhance its ability to stabilize high internal phase emulsions (HIPE). LPI dispersion (2%, w/w) was ultrasound-treated at 60% (UA) and 70% (UB) amplitude for 7 min; these samples were subjected to and then heat treatments at 70 °C (UAT70 and UBT70, respectively) or 80 °C (UAT80 and UBT80, respectively) for 20 min. HIPEs were produced with 25% untreated and treated LPI dispersions and 75% soybean oil using a rotor-stator (15,500 rpm/1 min). The LPI dispersions were evaluated for particle size, solubility, differential scanning calorimetry, electrophoresis, secondary structure estimation (circular dichroism and FT-IR), intrinsic fluorescence, surface hydrophobicity, and free sulfhydryl groups content. The HIPEs were evaluated for droplet size, morphology, rheology, centrifugal stability, and the Turbiscan test. Ultrasound treatment decreased LPI dispersions' particle size (∼80%) and increased solubility (∼90%). Intrinsic fluorescence and surface hydrophobicity confirmed LPI modification due to the exposure to hydrophobic patches. The combination of ultrasound and heat treatments resulted in a reduction in the free sulfhydryl group content of LPI. HIPEs produced with ultrasound-heat-treated LPI had a lower droplet size distribution mode, greater oil retention values in the HIPE structure (> 98%), lower Turbiscan stability index (< 2), and a firmer and more homogeneous appearance compared to HIPE produced with untreated LPI, indicating higher stability for the HIPEs stabilized by treated LPI. Therefore, combining ultrasound and heat treatments could be an effective method for the functional modification of lentil proteins, allowing their application as HIPE emulsifiers.
Collapse
Affiliation(s)
- Andrêssa Maria Medeiros Theóphilo Galvão
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil.
| | - Mariana Lamy Rasera
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme de Figueiredo Furtado
- Centro de Ciências da Natureza, Universidade Federal de São Carlos, Rod. Lauri Simões de Barros, km 12 - SP 189, Buri, SP 18290-000, Brazil
| | - Graziele Grossi Bovi Karatay
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Guilherme M Tavares
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| | - Míriam Dupas Hubinger
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
33
|
Wang M, Yang S, Sun N, Zhu T, Lian Z, Dai S, Xu J, Tong X, Wang H, Jiang L. Soybean isolate protein complexes with different concentrations of inulin by ultrasound treatment: Structural and functional properties. ULTRASONICS SONOCHEMISTRY 2024; 105:106864. [PMID: 38581796 PMCID: PMC11004718 DOI: 10.1016/j.ultsonch.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
The effects of ultrasound and different inulin (INU) concentrations (0, 10, 20, 30, and 40 mg/mL) on the structural and functional properties of soybean isolate protein (SPI)-INU complexes were hereby investigated. Fourier transform infrared spectroscopy showed that SPI was bound to INU via hydrogen bonding. All samples showed a decreasing and then increasing trend of α-helix content with increasing INU concentration. SPI-INU complexes by ultrasound with an INU concentration of 20 mg/mL (U-2) had the lowest content of α-helix, the highest content of random coils and the greatest flexibility, indicating the proteins were most tightly bound to INU in U-2. Both UV spectroscopy and intrinsic fluorescence spectroscopy indicated that it was hydrophobic interactions between INU and SPI. The addition of INU prevented the exposure of tryptophan and tyrosine residues to form a more compact tertiary structure compared to SPI alone, and ultrasound caused further unfolding of the structure of SPI. This indicated that the combined effect of ultrasound and INU concentration significantly altered the tertiary structure of SPI. SDS-PAGE and Native-PAGE displayed the formation of complexes through non-covalent interactions between SPI and INU. The ζ-potential and particle size of U-2 were minimized to as low as -34.94 mV and 110 nm, respectively. Additionally, the flexibility, free sulfhydryl groups, solubility, emulsifying and foaming properties of the samples were improved, with the best results for U-2, respectively 0.25, 3.51 μmoL/g, 55.51 %, 269.91 %, 25.90 %, 137.66 % and 136.33 %. Overall, this work provides a theoretical basis for improving the functional properties of plant proteins.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Sai Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Na Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tingting Zhu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziteng Lian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shicheng Dai
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiaohong Tong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
34
|
Betchem G, Dabbour M, Tuly JA, Lu F, Liu D, Monto AR, Dusabe KD, Ma H. Effect of magnetic field-assisted fermentation on the in vitro protein digestibility and molecular structure of rapeseed meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3883-3893. [PMID: 38270454 DOI: 10.1002/jsfa.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/08/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND There has been a significant growth in demand for plant-derived protein, and this has been accompanied by an increasing need for sustainable animal-feed options. The aim of this study was to investigate the effect of magnetic field-assisted solid fermentation (MSSF) on the in vitro protein digestibility (IVPD) and functional and structural characteristics of rapeseed meal (RSM) with a mutant strain of Bacillus subtilis. RESULTS Our investigation demonstrated that the MSSF nitrogen release rate reached 86.3% after 96 h of fermentation. The soluble protein and peptide content in magnetic field feremented rapeseed meal reached 29.34 and 34.49 mg mL-1 after simulated gastric digestion, and the content of soluble protein and peptide in MF-FRSM reached 61.81 and 69.85 mg mL-1 after simulated gastrointestinal digestion, which significantly increased (p > 0.05) compared with the fermented rapeseed meal (FRSM). Studies of different microstructures - using scanning electron microscopy (SEM) and atomic force microscopy (AFM) - and protein secondary structures have shown that the decline in intermolecular or intramolecular cross-linking leads to the relative dispersion of proteins and improves the rate of nitrogen release. The smaller number of disulfide bonds and conformational alterations suggests that the IVPD of RSM was improved. CONCLUSIONS Magnetic field-assisted solid fermentation can be applied to enhance the nutritional and protein digestibility of FRSM. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Garba Betchem
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mokhtar Dabbour
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Jamila Akter Tuly
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Feng Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
35
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
36
|
Zhao S, Hei M, Liu Y, Zhao Y, Wang H, Ma H, He H, Kang Z. Effect of low-frequency alternating magnetic fields on the physicochemical, conformational and rheological properties of myofibrillar protein after iterative freeze-thaw cycles. Int J Biol Macromol 2024; 267:131418. [PMID: 38582465 DOI: 10.1016/j.ijbiomac.2024.131418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In this work, the effects of low-frequency alternating magnetic fields (LF-AMF) on the physicochemical, conformational, and functional characteristics of myofibrillar protein (MP) after iterative freeze-thaw (FT) cycles were explored. With the increasing LF-AMF treatment time, the solubility, active sulfhydryl groups, surface hydrophobicity, emulsifiability, and emulsion stability of MP after five FT cycles evidently elevated and then declined, and the peak value was obtained at 3 h. Conversely, the moderate LF-AMF treatment time can significantly reduce the average particle size, carbonyl content, and endogenous fluorescence intensity of MP. The rheology results showed that various LF-AMF treatment times would elevate the G' value of MP after iterative FT cycles. The FTIR spectroscopy results suggested that LF-AMF influenced the secondary structure of MP after multiple FT cycles, resulting in a depression in α-helix content and an increment in β-folding proportion. Moreover, LF-AMF treatment induced the gradually lighter and wider myosin heavy chain bands of MP, implying that LF-AMF accelerated the degradation of macromolecular aggregates. Therefore, the LF-AMF treatment efficaciously ameliorates the structural and functional deterioration of MP after iterative FT cycles and could be used as a potential quality-improving technology in the frozen meat industry.
Collapse
Affiliation(s)
- Shengming Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China.
| | - Mengran Hei
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yu Liu
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Yanyan Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hui Wang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hanjun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Hongju He
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Research and Experimental Base for Traditional Specialty Meat Processing Techniques of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, PR China
| | - Zhuangli Kang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
37
|
Lan M, Li T, Li L, Wang S, Chen J, Yang T, Li Z, Yang Y, Zhang X, Li B. Ultrasonic treatment treated sea bass myofibrillar proteins in low-salt solution: Emphasizing the changes on conformation structure, oxidation sites, and emulsifying properties. Food Chem 2024; 435:137564. [PMID: 37776650 DOI: 10.1016/j.foodchem.2023.137564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
The physiochemical properties, structure characteristics, oxidation, and emulsifying properties of myofibrillar proteins (MPs) in low salt solution after treated by the ultrasound were investigated. The solubility, mean diameters, sulfhydryl content, and carbonyl contents of MPs after ultrasonic treatment increased, while the turbidity decreased. The surface hydrophobicity of MPs with 200 W-600 W treatment increased, but decreased at 800 W treatment. The circular dichroism analysis revealed that α-helix content increased, while β-sheet and random coil content decreased after ultrasonic treatment. Fluorescence spectroscopy indicated the fluorescence intensities of MPs were increased after ultrasonic treatment. SDS-PAGE results showed more protein polymers due to myosin heavy chain (MHC) aggregation via disulfide bonds. Based on LC-MS/MS result, the myosin heavy chain was susceptible to oxidation, with monooxidation being the main oxidative modification. Finally, the emulsions stabilized by ultrasonically treated MPs, especially those treated at 800 W, exhibited decreased particle size, improved uniformity, and enhanced stability.
Collapse
Affiliation(s)
- Meijuan Lan
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Tongshuai Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Juncheng Chen
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
| | - Tangyu Yang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Zhiru Li
- Beijing Normal University - Hong Kong Baptist University United International College, Zhuhai, China
| | - Yipeng Yang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- College of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
38
|
Li G, Tao R, Sun Y, Wang L, Li Y, Fan B, Wang F. Enhancing the Gelation Behavior of Transglutaminase-Induced Soy Protein Isolate(SPI) through Ultrasound-Assisted Extraction. Foods 2024; 13:738. [PMID: 38472850 DOI: 10.3390/foods13050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Gelation, as an important functional property of soy protein isolate (SPI), can be improved by some green technologies in food manufacturing, including ultrasound, ultrahigh pressure and microwave treatments. This work investigated the effect of an alkaline solubilisation step in SPI extraction combined with sonication on protein properties. The TGase-induced gel of the modified SPI was prepared to explore the effect of ultrasound on gel properties, including structures, strength, water-holding capacity and rheological properties. Additionally, the differences between traditional ultrasound modification of SPI and current modification methods were analyzed. The results showed that the ultrasonication-assisted extraction method could result in a significant increase in extraction rate from 24.68% to 42.25%. Moreover, ultrasound-assisted modification of SPI gels induced with transglutaminase (TGase) exhibited significant improvement in mechanical properties, such as texture, water-holding capacity and rheological properties, In particular, SPI extracted at 400 W ultrasound intensity for 180 s showed the best overall performance in terms of gel properties. Our method efficiently uniformizes gel structure, enhancing mechanical properties compared to conventional ultrasound methods, which reduced energy consumption and costs. These findings provide insights into the production of high-gelation SPI in food manufacturing.
Collapse
Affiliation(s)
- Gaolin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Tao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yufeng Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yurui Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
39
|
Mao Y, Li X, Qi Q, Wang F, Zhang H, Wu Y, Liu J, Zhao C, Xu X. Riboflavin-loaded soy protein isolate cold gel treated with combination of high intensity ultrasound and high hydrostatic pressure: Gel structure, physicochemical properties and gastrointestinal digestion fate. ULTRASONICS SONOCHEMISTRY 2024; 104:106819. [PMID: 38387223 PMCID: PMC10901135 DOI: 10.1016/j.ultsonch.2024.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Transglutaminase (TGase) was added to soy protein isolate (SPI) dispersion after the combination treatment of high intensity ultrasound (HIU) and high hydrostatic pressure (HHP) to catalyze the formation of cold gel, which was used to encapsulate riboflavin. The structure, physicochemical properties and in vitro digestion characteristics of riboflavin-loaded SPI cold gel were investigated. HIU-HHP combined treatment enhanced the strength, water retention, elastic property, thermal stability and protein denaturation degree of riboflavin-loaded SPI cold gels, and improved the gel network structure, resulting in a higher encapsulation efficiency of riboflavin and its chemical stability under heat and light treatment. HIU-HHP combined treatment reduced the erosion and swelling of SPI cold gel in simulated gastrointestinal fluid, and improved the sustained release effect of SPI gel on riboflavin by changing the digestion mode and rate of gel. In addition, HIU-HHP combined treated gels promoted the directional release of riboflavin in the simulated intestinal fluid, thereby improving its bioaccessibility, which was related to the secondary structure orderliness, tertiary conformation tightness and aggregation degree of protein during the gastrointestinal digestion. Therefore, HIU-HHP combined treatment technology had potential application value in improving the protection, sustained/controlled release and delivery of SPI cold gels for sensitive bioactive compounds.
Collapse
Affiliation(s)
- Yuxuan Mao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Xinqi Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Qi Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Fang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Xiuying Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
40
|
Gao K, Rao J, Chen B. Plant protein solubility: A challenge or insurmountable obstacle. Adv Colloid Interface Sci 2024; 324:103074. [PMID: 38181662 DOI: 10.1016/j.cis.2023.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/26/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Currently, there is an increasing focus on comprehending the solubility of plant-based proteins, driven by the rising demand for animal-free food formulations. The solubility of proteins plays a crucial role in impacting other functional properties of proteins and food processing. Consequently, understanding protein solubility in a deeper sense may allow a better usage of plant proteins. Herein, we discussed the definition of protein solubility from both thermodynamic and colloidal perspectives. A range of factors affecting solubility of plant proteins are generalized, including intrinsic factors (amino acids composition, hydrophobicity), and extrinsic factors (pH, ionic strength, extraction and drying methods). Current methods to enhance solubility are outlined, including microwave, high intensity ultrasound, hydrostatic pressure, glycation, pH-shifting, enzymatic hydrolysis, enzymatic cross-linking, complexation and modulation of amino acids. We base the discussion on diverse modified methods of nitrogen solubility index available to determine and analyze protein solubility followed by addressing how other indigenous components affect the solubility of plant proteins. Some nonproteinaceous constituents in proteins such as carbohydrates and polyphenols may exert positive or negative impact on protein solubility. Appropriate protein extraction and modification methods that meet consumer and manufacturers requirements concerning nutritious and eco-friendly foods with lower cost should be investigated and further explored.
Collapse
Affiliation(s)
- Kun Gao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
41
|
Chen W, Yang F, Xu H, Pan J, Liu J, Dabbour M, Mintah BK, Huang L, Dai C, Ma H, He R. Hexagonal plate ultrasound pretreatment on the correlation between soy protein isolate structure and cholesterol-lowering activity of peptides, and protein's enzymolysis kinetics, thermodynamics. Int J Biol Macromol 2024; 258:128897. [PMID: 38141711 DOI: 10.1016/j.ijbiomac.2023.128897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In this study, a hexagonal plate ultrasound (HPU) pretreatment technology was employed to modify soy protein isolate (SPI) and enhance the hypocholesterolemic activity of enzymatic digests from SPI. Results demonstrated that under the condition of ultrasound power density of 40 W/L, the hypocholesterolemic activity of enzymatic digests from HPU-pretreated SPI (HPU-SPI) increased by 88.40 % compared to control group after gastrointestinal digestion. The sulfhydryl content of HPU-SPI increased by a maximum of 45.32 % compared to control group. Fourier transform infrared and scanning electron microscopy revealed that HPU pretreatment partially unfolded the SPI conformation, reduced the intermolecular interactions, and exposed the internal hydrophobic regions. Pearson correlation analysis showed that sulfhydryl groups (r = 0.860), disulfide bonds (r = -0.875) and random coil (r = 0.917) were strongly correlated with the cholesterol-lowering activity of soy protein hydrolysate (SPH), following a simulated gastrointestinal digestion. Finally, the effects of HPU pretreatment on enzymolysis kinetics and thermodynamics of the SPI enzymatic process showed that HPU pretreatment significantly reduced the Mie's constant, activation energy, activation enthalpy, activation entropy and Gibbs free energy. Overall, the study outcome suggested that HPU pretreatment could positively influence the hypocholesterolemic peptide activity, and thus, may be beneficial to the pharmaceutical/food industry.
Collapse
Affiliation(s)
- Wen Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Fan Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jiayin Pan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co. Ltd., Yucheng 251200, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | - Benjamin Kumah Mintah
- CSIR - Food Research Institute, P.O. Box M20, Accra, Ghana; Department of Agro-processing Technology and Food Bio-sciences, CSIR College of Science and Technology (CCST), Accra, Ghana
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
42
|
Zhao Y, Ma Q, Zhou T, Liu L, Wang Y, Li X, Zhang X, Dang X, Jean Eric-Parfait Kouame K. Ultrasound-induced structural changes of different milk fat globule membrane protein-phospholipids complexes and their effects on physicochemical and functional properties of emulsions. ULTRASONICS SONOCHEMISTRY 2024; 103:106799. [PMID: 38364484 PMCID: PMC10878991 DOI: 10.1016/j.ultsonch.2024.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/18/2024]
Abstract
Ultrasonic technology is a non-isothermal processing technology that can be used to modify the physicochemical properties of food ingredients. This study investigated the effects of ultrasonic time (5 min, 10 min, 15 min) and power (150 W,300 W,500 W) on the structural properties of three types of phospholipids composed of different fatty acids (milk fat globule membrane phospholipid (MPL), egg yolk lecithin (EYL), soybean lecithin (SL)) and milk fat globule membrane protein (MFGMP). We found that the ultrasound treatment changed the conformation of the protein, and the emulsions prepared by the pretreatment showed better emulsification and stability, the lipid droplets were also more evenly distributed. Meanwhile, the flocculation phenomenon of the lipid droplets was significantly improved compared with the non-ultrasonic emulsions. Compared with the three complexes, it was found that ultrasound had the most significant effect on the properties of MPL-MFGMP, and its emulsion state was the most stable. When the ultrasonic condition was 300 W, the particle size of the emulsion decreased significantly (from 441.50 ± 4.79 nm to 321.77 ± 9.91 nm) at 15 min, and the physical stability constants KE decreased from 14.49 ± 0.702 % to 9.4 ± 0.261 %. It can be seen that proper ultrasonic pretreatment can effectively improve the stability of the system. At the same time, the emulsification performance of the emulsion had also been significantly improved. While the accumulation phenomenon occurred when the ultrasonic power was 150 W and 500 W. These results showed that ultrasonic pretreatment had great potential to improve the properties of emulsions, and this study would provide a theoretical basis for the application of emulsifier in the emulsions.
Collapse
Affiliation(s)
- Yanjie Zhao
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Qian Ma
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Tao Zhou
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; National Center of Technology Innovation for Dairy, China
| | - Yuxin Wang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Xiaoqing Dang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
43
|
Gulzar S, Martín-Belloso O, Soliva-Fortuny R. Tailoring the Techno-Functional Properties of Fava Bean Protein Isolates: A Comparative Evaluation of Ultrasonication and Pulsed Electric Field Treatments. Foods 2024; 13:376. [PMID: 38338512 PMCID: PMC10855325 DOI: 10.3390/foods13030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The fava bean protein isolate (FBPI) holds promise as a sustainable plant-based protein ingredient. However, native FBPIs exhibit limited functionality, including unsuitable emulsifying activities and a low solubility at a neutral pH, restricting their applications. This study is focused on the effect of ultrasonication (US) and pulsed electric fields (PEF) on modulating the techno-functional properties of FBPIs. Native FBPIs were treated with US at amplitudes of 60-90% for 30 min in 0.5 s on-and-off cycles and with PEF at an electric field intensity of 1.5 kV/cm with 1000-4000 pulses of 20 μs pulse widths. US caused a reduction in the size and charge of the FBPIs more prominently than the PEF. Protein characterization by means of SDS-PAGE illustrated that US and PEF caused severe-to-moderate changes in the molecular weight of the FBPIs. In addition, a spectroscopic analysis using Fourier-transform infrared (FTIR) and circular dichroism (CD) revealed that US and the PEF induced conformational changes through partial unfolding and secondary structure remodeling from an α-helix to a β-sheet. Crystallographic and calorimetric determinations indicated decreased crystallinity and lowered thermal transition temperatures of the US- and PEF-modified FBPIs. Overall, non-thermal processing provided an effective strategy for upgrading FBPIs' functionality, with implications for developing competitive plant-based protein alternatives.
Collapse
Affiliation(s)
- Saqib Gulzar
- Department of Food Technology, Engineering and Science, University of Lleida, Avda. Rovira Roure 191, 25198 Lleida, Spain; (O.M.-B.); (R.S.-F.)
- Agrotecnio CERCA Center, Avda. Rovira Roure 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science, University of Lleida, Avda. Rovira Roure 191, 25198 Lleida, Spain; (O.M.-B.); (R.S.-F.)
- Agrotecnio CERCA Center, Avda. Rovira Roure 191, 25198 Lleida, Spain
| | - Robert Soliva-Fortuny
- Department of Food Technology, Engineering and Science, University of Lleida, Avda. Rovira Roure 191, 25198 Lleida, Spain; (O.M.-B.); (R.S.-F.)
- Agrotecnio CERCA Center, Avda. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
44
|
Mao S, Zhou Y, Song B, Wu Y, Wang Y, Wang Y, Liu Y, Xu X, Zhao C, Liu J. Effect of Microwave Intermittent Drying on the Structural and Functional Properties of Zein in Corn Kernels. Foods 2024; 13:207. [PMID: 38254508 PMCID: PMC10814094 DOI: 10.3390/foods13020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Microwave intermittent drying was carried out on newly harvested corn kernels to study the effects of different microwave intermittent powers (900 W, 1800 W, 2700 W, and 3600 W) on the structural and functional properties of zein in corn kernels. The results showed that microwave drying could increase the thermal stability of zein in corn kernels. The solubility, emulsification activity index, and surface hydrophobicity increased under 1800 W drying power, which was due to the unfolding of the molecular structure caused by the increase in the content of irregular structure and the decrease in the value of particle size. At a drying power of 2700 W, there was a significant increase in grain size values and β-sheet structure. This proves that at this time, the corn proteins in the kernels were subjected to the thermal effect generated by the higher microwave power, which simultaneously caused cross-linking and aggregation within the proteins to form molecular aggregates. The solubility, surface hydrophobicity, and other functional properties were reduced, while the emulsification stability was enhanced by the aggregates. The results of the study can provide a reference for the in-depth study of intermittent corn microwave drying on a wide range of applications of zein in corn kernels.
Collapse
Affiliation(s)
- Sining Mao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Yuhan Zhou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Bin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Yiran Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Yanjia Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Xiuying Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Jingsheng Liu
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
45
|
Qin N, Nie J, Hou Y, Shuang Q, Bao X. Ultrasound-assisted macroporous resin treatment improves the color and functional properties of sunflower meal protein. ULTRASONICS SONOCHEMISTRY 2024; 102:106750. [PMID: 38171195 PMCID: PMC10793176 DOI: 10.1016/j.ultsonch.2023.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Sunflower meal protein (SMP) has been considered as a high-quality source of plant protein. However, because the chlorogenic acid (CA) contained in sunflower seed meal was prone to oxidation reactions under traditional alkali extraction conditions, the extracted protein has a dark color and some poor functional properties. To this end, this study used ultrasound-assisted macroporous resin treatment to extract SMP. The improvement effects and potential mechanisms of ultrasonic-assisted macroporous resin treatment with different powers (100, 300, and 500 W) on the color and functional properties of SMP were studied. The results showed that compared with untreated sunflower meal protein (USMP), the lightness value (L*), solubility, emulsification, and gel elasticity were significantly enhanced when treated with 100 W and 300 W ultrasonic-assisted macroporous resin. However, when the ultrasonic power was increased to 500 W, the L* value, solubility, emulsification, and gel elasticity decreased instead, indicating that lower power (100 W and 300 W) ultrasonic-assisted macroporous resin treatment significantly improved the color and functional properties of SMP. Further research found that ultrasound-assisted macroporous resin treatment changed the secondary and tertiary structures of SMP, transformed β-sheet into α-helix and β-turn through rearrangement, and significantly improved surface hydrophobicity. It shows that ultrasonic-assisted macroporous resin treatment expands the SMP structure and exposes hydrophobic groups, thereby improving the color and functional properties of SMP. This study provides a potential strategy for extracting SMP with light color and good functional properties. It also provides a theoretical basis for the wide application of SMP in food processing.
Collapse
Affiliation(s)
- Narisu Qin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Jiji Nie
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Yifeng Hou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Quan Shuang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Xiaolan Bao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China.
| |
Collapse
|
46
|
Choi Y, Lee H, Song JY, Baek M, Mun S. Development of polysaccharide-complexed nano-sized rice protein dispersion. Food Sci Biotechnol 2024; 33:431-439. [PMID: 38222904 PMCID: PMC10786790 DOI: 10.1007/s10068-023-01350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 01/16/2024] Open
Abstract
The objective of this study was to improve water solubility of the rice protein (RP) by forming complexes with anionic polysaccharides, such as sodium alginate (SA) and xanthan gum (XG). In addition, utilization of the RP complexes as an emulsifier was evaluated. The prepared RP-SA or RP-XG complexes were analyzed by measuring their particle size, ζ-potential, and water solubility as well as by confocal laser scanning microscopy. The formation of a complex between RP-SA and RP-XG improved the water solubility and dispersibility of RP over a wide range of pH values (3, 5, 7, and 9). Confocal fluorescence images showed that the aggregation of RP molecules was prevented by the formation of complexes between RP and polysaccharides. When soybean oil-in-water emulsions were prepared with complexes, RP-SA (ratio 4:1) and RP-XG(ratio 4:1) complex-stabilized emulsions were stable for 4 weeks of storage.
Collapse
Affiliation(s)
- Yongdoo Choi
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408 Republic of Korea
| | - Hyeri Lee
- Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408 Republic of Korea
| | - Ji-Young Song
- Department of R and D, Berry and Biofood Reaserch Institute, Gochang County, Jeonbuk 56417 Republic of Korea
| | - Manhee Baek
- Research Institute for Basic Sciences, Soonchunhyang University, Asan, Chungnam 31538 Republic of Korea
| | - Saehun Mun
- Department of Food Science and Nutrition, Soonchunhyang University, Asan, Chungnam 31538 Republic of Korea
| |
Collapse
|
47
|
Mao Y, Zhao C, Qi Q, Wang F, Xu X, Zheng M, Zhang H, Wu Y, Liu J. Transglutaminase-induced soybean protein isolate cold-set gels treated with combination of ultrasound and high pressure: Physicochemical properties and structural characterization. Int J Biol Macromol 2023; 253:127525. [PMID: 37863133 DOI: 10.1016/j.ijbiomac.2023.127525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Soybean protein isolate (SPI) was treated by the combined exposure to ultrasound and high pressure and then subjected to transglutaminase (TGase)-catalyzed cross-linking to prepare SPI cold-set gels. The effects of combined treatments on physicochemical and structural properties of TGase-induced SPI cold-set gels were investigated. The combination of ultrasound and high pressure promoted the covalent disulfide bonds and ε-(γ-glutaminyl) lysine isopeptide bonds as well as non-covalent hydrophobic interactions, which further improved the gelation properties of SPI compared to ultrasound or high pressure alone. In particular, the 480 W ultrasound followed by high pressure treatment of gels led to higher strength (120.53 g), water holding capacity (95.39 %), immobilized water (93.92 %), lightness (42.18), whiteness (51.03), and elasticity (G' = 407 Pa), as well as more uniform and compact microstructure, thus resulting in the improved gel network structure. The combination of two treatments produced more flexible secondary structure, tighter tertiary conformation and higher denaturation degree of protein in the gels, leading to more stable gel structure. The structural modifications of SPI contributed to the improvement of its gelation properties. Therefore, the combined application of ultrasound and high pressure can be an effective method for improving the structure and properties of TGase-induced SPI cold-set gels.
Collapse
Affiliation(s)
- Yuxuan Mao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Qi Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Fang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Xiuying Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| |
Collapse
|
48
|
Yan J, Zhao S, Xu X, Liu F. Enhancing pea protein isolate functionality: A comparative study of high-pressure homogenization, ultrasonic treatment, and combined processing techniques. Curr Res Food Sci 2023; 8:100653. [PMID: 38204878 PMCID: PMC10776415 DOI: 10.1016/j.crfs.2023.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
Pea protein has attracted widespread attention due to its high nutritional value, low allergenicity, non-GMO status, and broad availability. However, compared to animal proteins, pea protein has inferior functional properties, which limits its application in the food industry. This study used pea protein isolate (PPI) as the main raw material and investigated the effects of high-pressure homogenization (HPH), ultrasonic treatment (US), and the combination of the two in different orders on the structure and function of PPI. The results showed that HPH or US promoted the transformation of PPI insoluble suspension into a uniform protein dispersion, significantly reducing particle size, unfolding the spatial structure, exposing more amino acid residues. These structural changes resulted in a substantial increase in the solubility, foaming capacity and emulsifying activity of PPI. Moreover, the combined treatments further impacted the properties of PPI, largely depending on the order of the processing steps; the combination of HPH-US exhibited the best functional characteristics.
Collapse
Affiliation(s)
- Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Sheliang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
49
|
Wu J, Tang Y, Chen W, Chen H, Zhong Q, Pei J, Han T, Chen W, Zhang M. Mechanism for improving coconut milk emulsions viscosity by modifying coconut protein structure and coconut milk properties with monosodium glutamate. Int J Biol Macromol 2023; 252:126139. [PMID: 37543272 DOI: 10.1016/j.ijbiomac.2023.126139] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/06/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
In this study, monosodium glutamate (MSG) was used to improve the viscosity of coconut milk and the underlying mechanism was explored by investigating the changes in structures of coconut milk protein and physicochemical properties of coconut milk. Firstly, the effect of MSG on the properties of coconut milk was studied. The results showed that MSG increased the pH and zeta potential, reduced the particle size, thus enhancing the droplet interaction and increasing the viscosity of coconut milk. Subsequently, the effects of MSG on the structure and properties of coconut proteins (CP) were investigated. FTIR spectroscopy and circular dichroism spectroscopy showed that MSG was able to change the secondary structure of CP. The results of SDS-PAGE showed that MSG was able to bind to CP to form a larger molecular weight protein, thus improving the viscosity of coconut milk. Moreover, MSG was also able to increase the water-binding capacity of CP. In addition, molecular docking and driving force analysis revealed that hydrogen bonds, electrostatic forces, disulfide bonds, and hydrophobic interactions are the main interactions between MSG and CP. Studying the effect of MSG on the viscosity of coconut milk provides theoretical support to improve the viscosity of other plant protein emulsions.
Collapse
Affiliation(s)
- Jiawu Wu
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Yingjiao Tang
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Wenxue Chen
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Haiming Chen
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China; Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qiongshan Road, Haikou 571126, PR China
| | - Qiuping Zhong
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Jianfei Pei
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Tao Han
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Weijun Chen
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China.
| | - Ming Zhang
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China.
| |
Collapse
|
50
|
Wang J, Zhou X, Ju S, Cai R, Roopesh MS, Pan D, Du L. Influence of atmospheric pressure plasma jet on the structural, functional and digestive properties of chickpea protein isolate. Food Res Int 2023; 174:113565. [PMID: 37986520 DOI: 10.1016/j.foodres.2023.113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Chickpea protein (CPI) is a promising dietary protein and potential substitute for soy protein in food product development due to its high protein content and low allergenicity. However, CPI possesses denser tertiary and quaternary structures and contains certain amount of anti-nutritional factors, both of which constrain its functional properties and digestibility. The objective of this study was to assess the effectiveness of atmospheric pressure plasma jets (APPJ) as a non-thermal method for enhancing the functional characteristics and digestibility of CPI. In this study, the reactive oxygen and nitrogen species generated by the APPJ treatment led to protein oxidation and increased carbonyl and di-tyrosine contents. At the same time, the secondary, tertiary and microstructural structures of CPI were changed. The solubility, water holding capacity, fat absorption capacity, emulsifying capacity and foaming capacity of CPI were significantly improved after 30 s APPJ treatment, and a higher storage modulus in rheology was observed. Additionally, it was observed that the in vitro protein digestibility (IVPD) of APPJ-treated CPI increased significantly from 44.85 ± 0.6 % to 50.2 ± 0.59 % following in vitro simulated gastric and intestinal digestion, marking a noteworthy improvement of 11.93 %. These findings indicate that APPJ processing can enhance the functional and digestive properties of CPI through structural modification and expand its potential applications within the food industry.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xinyi Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shilong Ju
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Ruiyi Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton AB T6G 2P5, Canada
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China.
| |
Collapse
|