1
|
Jimenez J, Cilek JE, Schluep SM, Lundin JG. Designing thermoreversible gels for extended release of mosquito repellent. J Mater Chem B 2024; 12:9249-9257. [PMID: 39176566 DOI: 10.1039/d4tb01384k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Mosquito-borne diseases are responsible for 700 000 deaths annually. Current outdoor protective strategies primarily focus on direct skin application of commercial repellents (i.e., aerosol sprays or topical lotions) which are typically limited to efficacy times of ≤10 hours due to rapid evaporation and dermal absorption. Consequently, frequent reapplication for continuous protection can increase associated health hazards and cause noncompliance. This study utilizes Hansen solubility parameter modeling to design physical gels composed of insect-repelling N,N-diethyl-meta-toluamide (DEET) and modacrylic copolymer poly(acrylonitrile-co-vinyl chloride) (P(AN-VC)). The P(AN-VC)/DEET composites exhibit tunable and reversible sol-gel transition temperatures that can meet the thermomechanical stability demands of the intended application and permit facile transition to commercial melt processing techniques such as injection molding, filament spinning, or film casting. P(AN-VC)/DEET gel films demonstrate mosquito repellency for more than half a year-performing longer than any other known material to date-due to the high reservoir of repellent and its desorption hindrance from the polymer matrix. Therefore, P(AN-VC)/DEET gels hold significant potential for extended protection against mosquitos and other biting arthropods.
Collapse
Affiliation(s)
- Javier Jimenez
- US Naval Research Laboratory, Chemistry Division, Washington, DC, USA.
| | - James E Cilek
- Navy Entomology Center of Excellence, Naval Air Station, Jacksonville, FL, USA
| | - Sierra M Schluep
- Navy Entomology Center of Excellence, Naval Air Station, Jacksonville, FL, USA
| | - Jeffrey G Lundin
- US Naval Research Laboratory, Chemistry Division, Washington, DC, USA.
| |
Collapse
|
2
|
Nwagwu C, Onugwu A, Echezona A, Uzondu S, Agbo C, Kenechukwu F, Ogbonna J, Ugorji L, Nwobi L, Nwobi O, Mmuotoo O, Ezeibe E, Loretz B, Tarirai C, Mbara KC, Agumah N, Nnamani P, Ofokansi K, Lehr CM, Attama A. Biopolymeric and lipid-based nanotechnological strategies for the design and development of novel mosquito repellent systems: recent advances. NANOSCALE ADVANCES 2024:d4na00474d. [PMID: 39247861 PMCID: PMC11378059 DOI: 10.1039/d4na00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Mosquitoes are the most medically important arthropod vectors of several human diseases. These diseases are known to severely incapacitate and debilitate millions of people, resulting in countless loss of lives. Over the years, several measures have been put in place to control the transmission of mosquito-borne diseases, one of which is using repellents. Repellents are one of the most effective personal protective measures against mosquito-borne diseases. However, conventional delivery systems of repellents (e.g., creams, gels, and sprays) are plagued with toxicity and short-term efficacy issues. The application of biopolymeric and lipid-based systems has been explored over the years to develop better delivery systems for active pharmaceutical ingredients including mosquito repellents. These delivery systems (e.g., solid lipid micro/nanoparticles, micro/nanoemulsions, or liposomes) possess desirable properties such as high biocompatibility, versatility, and controlled/sustained drug delivery, and thus are very important in tackling the clinical challenges of conventional repellent systems. Their capability for controlled/sustained drug release has improved patient compliance as it removes the need for consistent reapplication of repellents. They can also be engineered to reduce repellents' skin permeation, consequently improving their safety. However, despite the benefits that these systems offer very few of them have been successfully translated to the global market for commercial use, a vital challenge that previous reports have not thoroughly examined. The issue of limited clinical translation of novel repellent systems is a vital aspect to consider, as the ultimate goal is to move these systems from bench to bedside. As such, this study seeks to highlight the recent advances in the use of biopolymeric and lipid-based systems for the development of novel mosquito-repellent systems and also analyze the challenges that have limited the clinical translation of these systems while proposing possible strategies to overcome these challenges.
Collapse
Affiliation(s)
- Chinekwu Nwagwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Adaeze Onugwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Adaeze Echezona
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Samuel Uzondu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Chinazom Agbo
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Frankline Kenechukwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - John Ogbonna
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Lydia Ugorji
- Department of Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria Nsukka Nigeria
| | - Lotanna Nwobi
- Department of Veterinary Physiology and Pharmacology, University of Nigeria Nsukka Nigeria
| | - Obichukwu Nwobi
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Nigeria Nsukka Enugu State Nigeria
| | - Oluchi Mmuotoo
- Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Ezinwanne Ezeibe
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria Nsukka Nigeria
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Clemence Tarirai
- Department of Pharmaceutical Sciences, Faculty of Sciences, Tshwane University of Technology Pretoria South Africa
| | - Kingsley Chimaeze Mbara
- Department of Pharmaceutical Sciences, Faculty of Sciences, Tshwane University of Technology Pretoria South Africa
| | - Nnabuife Agumah
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University Nigeria
| | - Petra Nnamani
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Kenneth Ofokansi
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
| | - Claus-Micheal Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland Saarbrucken Germany
| | - Anthony Attama
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka Nigeria
| |
Collapse
|
3
|
Duarte JL, Di Filippo LD, Ribeiro TDC, Silva ACDJ, Hage-Melim LIDS, Duchon S, Carrasco D, Pinto MC, Corbel V, Chorilli M. Effective Mosquito Repellents: Myrcene- and Cymene-Loaded Nanohydrogels against Aedes aegypti. Pharmaceutics 2024; 16:1096. [PMID: 39204441 PMCID: PMC11360331 DOI: 10.3390/pharmaceutics16081096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Aedes mosquito-borne diseases remain a significant global health threat, necessitating effective control strategies. This study introduces monoterpenes-based nanohydrogels for potential use as repellents against Aedes aegypti, the primary dengue vector worldwide. We formulated hydrogels using cymene- and myrcene-based nanoemulsions with different polymers: chitosan, carboxymethylcellulose (CMC), and carbopol®. Our evaluations of rheological, texture, and bioadhesive properties identified CMC hydrogel as the most promising gelling agent for topical application, exhibiting sustained monoterpene release over 12 h with low skin permeation and high retention in the stratum corneum. Myrcene-loaded CMC hydrogel achieved a 57% feeding deterrence compared to 47% with cymene hydrogel in the mosquito membrane-feeding model. Molecular docking studies revealed interactions between myrcene and an essential amino acid (Ile116) in the Ae. aegypti odorant-binding protein 22 (AeOBP22), corroborating its higher repellent efficacy. These findings suggest that myrcene-loaded CMC hydrogels offer a promising, minimally invasive strategy for personal protection against Ae. aegypti and warrant further investigation to optimize monoterpene concentrations for vector control.
Collapse
Affiliation(s)
- Jonatas Lobato Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (T.d.C.R.)
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (T.d.C.R.)
| | - Tais de Cássia Ribeiro
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (T.d.C.R.)
| | - Ana Carolina de Jesus Silva
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68903-419, Amapá, Brazil; (A.C.d.J.S.); (L.I.d.S.H.-M.)
| | - Lorane Izabel da Silva Hage-Melim
- Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá 68903-419, Amapá, Brazil; (A.C.d.J.S.); (L.I.d.S.H.-M.)
| | - Stéphane Duchon
- IRD, CNRS, University of Montpellier, MIVEGEC, 34000 Montpellier, France; (S.D.); (D.C.); (V.C.)
| | - David Carrasco
- IRD, CNRS, University of Montpellier, MIVEGEC, 34000 Montpellier, France; (S.D.); (D.C.); (V.C.)
| | - Mara Cristina Pinto
- Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara 14800-060, São Paulo, Brazil;
| | - Vincent Corbel
- IRD, CNRS, University of Montpellier, MIVEGEC, 34000 Montpellier, France; (S.D.); (D.C.); (V.C.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (T.d.C.R.)
| |
Collapse
|
4
|
Dias LKS, Sanhueza-Sanzana C, Pinheiro FML, Martins AF, Correia FGS, de Aguiar IWO, Ferreira NC, Stolow J, Rutherford G, Teixeira MG, Pires RDJ, de Almeida RLF, Coelho ICB, Frota CC, Kendall C, Kerr LRFS. Use of insect repellent as personal protection among women of childbearing age in an arbovirus endemic area in Northeastern Brazil. REVISTA BRASILEIRA DE EPIDEMIOLOGIA 2024; 27:e240025. [PMID: 38747743 PMCID: PMC11093518 DOI: 10.1590/1980-549720240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVE To analyze the factors associated with the individual use of insect repellent by women of childbearing age living in area endemic for arboviruses in Fortaleza, Brazil. METHODS This is a cohort study carried out between 2018 and 2019 with women aged between 15 and 39 years in Fortaleza, state of Ceará, Brazil. A total of 1,173 women users of one of the four selected primary health care units participated in the study. The outcome was divided into: continued use, discontinued use, and nonuse of insect repellent. Crude and adjusted multinominal logistic regression analysis was carried out guided by a hierarchical model, with presentation of the respective odds ratio (OR) and 95% confidence intervals (95%CI). The independent variables include: socioeconomic and demographic data, environmental and sanitary characteristics, knowledge of the insect repellent, and behavioral and pregnancy-related aspects. RESULTS Only 28% of the participants reported using insect repellent during the two waves of the cohort. Women with higher education (OR=2.55; 95%CI 1.44-4.51); who are employed (OR=1.51; 95%CI 1.12-2.03); who received guidance from healthcare professionals (OR=1.74; 95%CI 1.28-2.36) and the media (OR=1.43; 95%CI 1.01-2.02); who intensified precautions against mosquitoes during the epidemic (OR=3.64; 95%CI 2.29-5.78); and who were pregnant between 2016 and 2019 (OR=2.80; 95%CI 1.83-4.30) had increased odds for continued use of insect repellent. CONCLUSION The use of insect repellent among women of childbearing age was associated with a higher level of education, employment, guidance on insect repellent provided by healthcare professionals and the media, behavioral changes to protect against mosquitoes during the Zika virus epidemic, and pregnancy when occurring as of the beginning of the epidemic period.
Collapse
Affiliation(s)
- Livia Karla Sales Dias
- Universidade Federal do Ceará, School of Medicine, Department of Community Health – Fortaleza (CE), Brazil
| | - Carlos Sanhueza-Sanzana
- Universidade Federal do Ceará, School of Medicine, Department of Community Health – Fortaleza (CE), Brazil
| | | | - Adriano Ferreira Martins
- Universidade Federal do Ceará, School of Medicine, Department of Community Health – Fortaleza (CE), Brazil
| | | | | | - Nayane Cavalcante Ferreira
- Universidade Federal do Ceará, School of Medicine, Department of Community Health – Fortaleza (CE), Brazil
| | - Jeni Stolow
- Tulane University, Tulane School of Public Health and Tropical Medicine, Department of Social Behavior and Population Science – New Orleans (LA), USA
| | - George Rutherford
- University of California, Department of Epidemiology and Biostatistics – San Francisco, California (CA), USA
| | - Maria Gloria Teixeira
- Universidade Federal da Bahia, Institute of Collective Health – Salvador (BA), Brazil
| | - Roberto da Justa Pires
- Universidade Federal do Ceará, School of Medicine, Department of Community Health – Fortaleza (CE), Brazil
| | | | - Ivo Castelo Branco Coelho
- Universidade Federal do Ceará, School of Medicine, Department of Pathology and Legal Medicine – Fortaleza (CE), Brazil
| | - Cristiane Cunha Frota
- Universidade Federal do Ceará, School of Medicine, Department of Pathology and Legal Medicine – Fortaleza (CE), Brazil
| | - Carl Kendall
- Universidade Federal do Ceará, School of Medicine, Department of Community Health – Fortaleza (CE), Brazil
- Tulane University, Tulane School of Public Health and Tropical Medicine, Department of Social Behavior and Population Science – New Orleans (LA), USA
| | | |
Collapse
|
5
|
Yunus R, Mubarak, Malik N, Rahayu DYS, Aulyah MS, Afrini IM. Effectiveness of repellent from patchouli (Pogestemon cablin) varieties of Southeast Sulawesi against Aedes aegypti. J Vector Borne Dis 2024; 61:167-175. [PMID: 38922650 DOI: 10.4103/jvbd.jvbd_38_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/14/2022] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND OBJECTIVES The incidence of Dengue Hemorrhagic Fever (DHF) continues to increase over time in the world, including Indonesia. One of the prevention efforts against dengue virus transmission is to avoid vector mosquito bites by the use of repellants. Using repellents can reduce exposure to mosquito bites that may cause infection with the dengue virus. This study aimed to determine the effectiveness of repellent lotion composed of patchouli batik extract (Pogostemon cablin) from Southeast Sulawesi varieties against Aedes aegypti mosquitoes. METHODS The research subjects were Aedes aegypti adult mosquitoes. The research consisted of three stages. The first stage was a phytochemical test (qualitative method), the second stage was the analysis of patchouli essential oil (GC-MS method) and the third stage was a test of the effectiveness of lotions made from patchouli extract in lotion preparations against Aedes aegypti. RESULTS The results of the effectiveness test of patchouli leaf repellent (Pogestemon cablin) lotion preparations were as follows: for a concentration of 2.5%, protective power 81.5%; concentration 5%, protection power 83.67%; concentration 7.5%, protection power 88.64 %; the concentration of 10%, protection power 90.44%, and the concentration of 12.5% had protection power 90.89%. Probit analysis and linear regression showed the value of ProbitLc 50 was 6.631. INTERPRETATION CONCLUSION The results of the effectiveness test of Pogestemon cablin repellent lotion preparations with the most effective concentrations were 10% and 12.5%. The results of ANOVA test indicated there was no difference in the average value of the protection power in patchouli leaves.
Collapse
Affiliation(s)
- Reni Yunus
- Department of Medical Laboratory Technology, Poltekes Kemenkes Kendari, Southeast Sulawesi, Indonesia
| | - Mubarak
- Faculty of Medicine, Universitas Halu Oleo, Kendari, Southeast Sulawesi, Indonesia
| | - Nurhayu Malik
- Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari, Southeast Sulawesi, Indonesia
| | | | - Muhammad Sultanul Aulyah
- Department of Medical Laboratory Technology, Polytechnic Bina Husada Kendari, Southeast Sulawesi, Indonesia
| | - Ida Mardhiah Afrini
- Faculty of Medicine, Universitas Halu Oleo, Kendari, Southeast Sulawesi, Indonesia
| |
Collapse
|
6
|
Zhao X, Liu Y, Li M, Li H, Zhang Q, Lv Q. Differential analysis of volatiles in five types of mosquito-repellent products by chemometrics combined with headspace GC-Orbitrap HRMS nontargeted detection. Talanta 2024; 269:125443. [PMID: 38048684 DOI: 10.1016/j.talanta.2023.125443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
This paper reports a method for the differential analysis of volatile chemical components in five novel types of mosquito-repellent products based on chemometrics combined with headspace gas chromatography-Orbitrap high-resolution mass spectrometry (HS-GC-Orbitrap HRMS) nontargeted screening. A total of 358 unknown substances were detected in 30 samples under specific headspace conditions. Through principal component analysis and orthogonal partial least-squares discriminant analysis, 36 significantly different substances with variable importance in the projection values greater than 1 were further screened, and these substances were accurately identified by GC-Orbitrap HRMS. Most substances were found for the first time in mosquito-repellent products. The clustered heat map, Venn diagram and peak area histogram showed that the mosquito-repellent products had similar volatile composition, and the volatile species and content of different types of mosquito-repellent products significantly varied. Substances, such as eucalyptol, d-limonene, α-pinene, β-pinene, dl-menthol and methyl salicylate, may be the main sources of odour in mosquito-repellent products. This work explored the characteristic volatile components in mosquito-repellent products and comparatively analysed the chemical composition of different types of products. It can be generalised to consumer products as a case study and has positive implications for promoting product quality and safety and improving production processes.
Collapse
Affiliation(s)
- Xiying Zhao
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China; College of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Yahui Liu
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Meiping Li
- College of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China.
| | - Hongyan Li
- Zhejiang Institute of Product Quality and Safety Science, Hangzhou, 310018, Zhejiang Province, China
| | - Qing Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Qing Lv
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
7
|
Almeida TL, Moreira AF, de Oliveira JL, Rogerio CB, Kiihl SF, Fraceto LF, de Jesus MB. A multiparametric and orthogonal approach indicates low toxicity for zein nanoparticles in a repellent formulation. Toxicol In Vitro 2024; 95:105747. [PMID: 38043627 DOI: 10.1016/j.tiv.2023.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The incidence of viruses such as Zika, Dengue, and Chikungunya affects human health worldwide, and insect repellents are recommended for individual protection. Formulations incorporating nanotechnology should be carefully assessed for toxicity, particularly regarding the security levels established for human health and the environment. This study evaluates the cytotoxicity of a repellent formulation containing zein nanoparticles (NP) loading geraniol (Ger) and icaridin (Ica) in three cell lines: NIH/3T3, HaCaT, and SIRC. To address formulation hazards, IC50 values were determined by MTT and Calcein-AM assays. In both NIH/3T3 and HaCaT, the IC50 values for NP + Ger + Ica formulation were around 0.2%. For risk assessment, cell viability was also determined after a single exposure and repeated exposure to the formulation. No evidence of cytotoxicity was observed for NP + Ger + Ica formulation-treated cells. The risk assessment for eye damage revealed cytotoxicity in SIRC cells when exposed to a 5% concentration, which may be attributed to ocular geraniol toxicity, because zein nanoparticles alone did not exhibit any signs of toxicity. Cell internalization indicated low uptake in NIH/3T3 and HaCaT cells. Phenotypic profiling resulted in similar phenotypes for untreated cells and cells exposed to NP + Ger + Ica formulation. The toxicological profile outlined by the multiparametric and orthogonal approach suggests that the NP + Ger + Ica formulation poses no significant risk to the topical application under the tested conditions. Adopting an orthogonal approach brings robustness to our findings.
Collapse
Affiliation(s)
- Tuanny Leite Almeida
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Aline Francisca Moreira
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Jhones Luiz de Oliveira
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Carolina Barbara Rogerio
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Samara Flamini Kiihl
- Departamento de Estatística, Instituto de Matemática, Estatística e Computação Científica (IMECC), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP), Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil
| | - Marcelo Bispo de Jesus
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
8
|
Saivish MV, Nogueira ML, Rossi SL, Vasilakis N. Beyond Borders: Investigating the Mysteries of Cacipacoré, a Lesser-Studied Arbovirus in Brazil. Viruses 2024; 16:336. [PMID: 38543701 PMCID: PMC10975354 DOI: 10.3390/v16030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 04/01/2024] Open
Abstract
Cacipacoré virus (CPCV) was discovered in 1977 deep in the Amazon rainforest from the blood of a black-faced ant thrush (Formicarius analis). As a member of the family Flaviviridae and genus orthoflavivirus, CPCV's intricate ecological association with vectors and hosts raises profound questions. CPCV's transmission cycle may involve birds, rodents, equids, bovines, marsupials, non-human primates, and bats as potential vertebrate hosts, whereas Culex and Aedes spp. mosquitoes have been implicated as potential vectors of transmission. The virus' isolation across diverse biomes, including urban settings, suggests its adaptability, as well as presents challenges for its accurate diagnosis, and thus its impact on veterinary and human health. With no specific treatment or vaccine, its prevention hinges on traditional arbovirus control measures. Here, we provide an overview of its ecology, transmission cycles, epidemiology, pathogenesis, and prevention, aiming at improving our ability to better understand this neglected arbovirus.
Collapse
Affiliation(s)
- Marielena V. Saivish
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, Sao Jose do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (M.L.N.)
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Maurício L. Nogueira
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, Sao Jose do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (M.L.N.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
9
|
Jicsinszky L, Bucciol F, Chaji S, Cravotto G. Mechanochemical Degradation of Biopolymers. Molecules 2023; 28:8031. [PMID: 38138521 PMCID: PMC10745761 DOI: 10.3390/molecules28248031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Mechanochemical treatment of various organic molecules is an emerging technology of green processes in biofuel, fine chemicals, or food production. Many biopolymers are involved in isolating, derivating, or modifying molecules of natural origin. Mechanochemistry provides a powerful tool to achieve these goals, but the unintentional modification of biopolymers by mechanochemical manipulation is not always obvious or even detectable. Although modeling molecular changes caused by mechanical stresses in cavitation and grinding processes is feasible in small model compounds, simulation of extrusion processes primarily relies on phenomenological approaches that allow only tool- and material-specific conclusions. The development of analytical and computational techniques allows for the inline and real-time control of parameters in various mechanochemical processes. Using artificial intelligence to analyze process parameters and product characteristics can significantly improve production optimization. We aim to review the processes and consequences of possible chemical, physicochemical, and structural changes.
Collapse
Affiliation(s)
- László Jicsinszky
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (F.B.); (S.C.)
| | | | | | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (F.B.); (S.C.)
| |
Collapse
|
10
|
Kawaguchi M, Matsumoto K, Yoshitomi J, Otake H, Sato K, Taga A, Sasabe T, Nobuhara K, Matsubara A, Nagai N. Poly(oxyethylene)/Poly(oxypropylene) butyl ether prolongs the repellent effect of N,N-diethyl-3-toluamide on the skin. PLoS One 2023; 18:e0292447. [PMID: 37788278 PMCID: PMC10547171 DOI: 10.1371/journal.pone.0292447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
N,N-diethyl-meta-toluamide (DEET) is a widely used insect repellent, with minimal skin permeation and sustained repellent activity in the superficial layers of the skin. In this study, we prepared a 10% DEET formulation consisting of 40% ethanol with or without 2% poly(oxyethylene)/poly(oxypropylene) butyl ether (POE-POP), an amphiphilic random copolymer. Further, we demonstrated the effects of POE-POP on tensile stress (stickiness), hydrophobicity, skin retention, permeation, and repellent activity of DEET. Stickiness was measured in male ICR mice (7-week old), and skin retention and permeation were evaluated in male Wistar rats (7-week old). In addition, female Aedes albopictus were used to measure the repellent action of DEET. The addition of POE-POP did not affect stickiness, volatility, and degradability but decreased logP and increased viscosity of DEET. Next, we demonstrated the behavior of DEET formulations in the rat skin. POE-POP prolonged the retention of DEET in the superficial layers of the rat skin (skin surface and stratum corneum) and decreased the penetration of DEET into rat skin tissues (epithelium and dermis). The repellent effect of DEET was also enhanced by the addition of POE-POP. However, severe skin damage was not observed after repetitive treatment with DEET formulations containing POE-POP for one month (twice a day). In conclusion, we demonstrated that a 10% DEET formulation consisting of 40% ethanol and 2% POE-POP attenuated the skin penetration and prolonged the repellent action of DEET without causing stickiness and skin damage. We conclude that the combination of ethanol and POE-POP is useful as a safe and effective delivery system for the development of insect repellent formulations containing DEET.
Collapse
Affiliation(s)
| | - Kana Matsumoto
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Osaka, Japan
| | - Joji Yoshitomi
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Osaka, Japan
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Osaka, Japan
| | - Kanta Sato
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Osaka, Japan
| | - Atsushi Taga
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Osaka, Japan
| | | | | | | | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Kowakae, Higashi-Osaka, Osaka, Japan
| |
Collapse
|
11
|
Wu R, Zhu X, Xing Y, Guan G, Zhang Y, Hui R, Cui Q, Liu Z, Zhu L. Association of N, N-diethyl-m-toluamide (DEET) with hyperuricemia among adult participants. CHEMOSPHERE 2023; 338:139320. [PMID: 37356586 DOI: 10.1016/j.chemosphere.2023.139320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND N,N-diethyl-m-toluamide (DEET) is a widely used active ingredient in insect repellents, and its effects on human health have been a matter of debate. This study aims to investigate the relationship between DEET exposure and hyperuricemia in the adult population. METHODS Our study utilized a cross-sectional design and analyzed data from adult participants of the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2016. 3-diethyl-carbamoyl benzoic acid (DCBA) was used as a specific indicator of DEET exposure. DCBA was categorized using quartiles based on its distribution within the study population. Multiple linear regression models were employed to examine the association between DCBA exposure and serum uric acid (SUA) levels in adults. The relationship between DCBA and the prevalence of hyperuricemia in adults was assessed using multiple logistic regression models. Dose-response relationships were analyzed using restricted cubic spline regression. RESULTS A total of 8708 participants were included in the study. The mean age of the participants was 46.49 years, and the total number of male participants was 50.93%. The median levels of DCBA and SUA were 2.07 ng/mL and 5.40 mg/dL, respectively. Hyperuricemia was found in 19.99% of the participants. In multivariate-adjusted linear regression models, it was found that higher SUA levels were associated with the highest quartile of DCBA compared with the lowest quartile of DCBA (β [95% CI]: 0.19 [0.08, 0.30], Ptrend<0.001). After adjusting for confounders, a positive association was found between the prevalence of hyperuricemia and DCBA levels (OR [95% CI] quartile 4 vs. 1: 1.41 [1.14-1.74], Ptrend<0.001). Furthermore, linear associations were observed between DCBA concentrations and SUA levels (P for nonlinearity = 0.479) and the prevalence of hyperuricemia (P for nonlinearity = 0.755). CONCLUSION Higher DCBA concentrations were found to have a positive association with the prevalence of hyperuricemia in the general adult population.
Collapse
Affiliation(s)
- Runmiao Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China.
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yujie Xing
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China
| | - Gongchang Guan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China
| | - Rutai Hui
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China.
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China.
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China; Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710000, China.
| |
Collapse
|
12
|
Fulton AC, Thum MD, Jimenez J, Camarella G, Cilek JE, Lundin JG. Long-Term Insect Repellent Electrospun Microfibers from Recycled Poly(ethylene terephthalate). ACS APPLIED MATERIALS & INTERFACES 2023; 15:44722-44730. [PMID: 37708409 DOI: 10.1021/acsami.3c08912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
In recent years, there has been an increase in the incidence of insect-borne diseases. Topically applied insect repellents are used to prevent these infectious diseases, but concerns of skin permeability and rapid evaporation rates have made way for alternative preventative methods. Encapsulation of insect repellents in polymeric materials allows for nonskin contact methods of repellent delivery with extended-release profiles without the need for reapplication. Poly(ethylene terephthalate) (PET) is widely used in textiles as well as food packaging and other single-use applications. This short product lifespan makes PET a major environmental pollutant; thus, recycling of PET is of great interest and utility. We report on the fabrication and evaluation of recycled PET microfibers containing N,N-diethyl-meta-toluamide (DEET) and picaridin and the first evaluation of dual repellent loading (DEET/picaridin) via electrospinning. The electrospun microfibers displayed a repellent retention up to 97% within the polymer network upon processing. Release profiles were characterized by isothermal thermogravimetric analysis (TGA). Hansen solubility parameters correlated release profiles with the chemical affinity between PET and the repellent substrate. Insect repellency was assessed against live mosquitoes using a novel bioassay method. Repellency was observed to be as high as 100% for over 1 week and 80% for over 3 weeks. Our method allows for long-lasting repellency with the potential for large-scale textile manufacturing.
Collapse
Affiliation(s)
- Ashley C Fulton
- U.S. Naval Research Laboratory, Chemistry Division, Code 6124, 4555 Overlook Ave. SW, Washington, District of Columbia 20375, United States
- American Society for Engineering Education Post-Doctoral Fellow at Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, District of Columbia 20375, United States
| | - Matthew D Thum
- U.S. Naval Research Laboratory, Chemistry Division, Code 6124, 4555 Overlook Ave. SW, Washington, District of Columbia 20375, United States
| | - Javier Jimenez
- U.S. Naval Research Laboratory, Chemistry Division, Code 6124, 4555 Overlook Ave. SW, Washington, District of Columbia 20375, United States
- American Society for Engineering Education Post-Doctoral Fellow at Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, District of Columbia 20375, United States
| | - Gerald Camarella
- U.S. Naval Research Laboratory, Chemistry Division, Code 6124, 4555 Overlook Ave. SW, Washington, District of Columbia 20375, United States
| | - James E Cilek
- Navy Entomology Center of Excellence, Naval Air Station, Jacksonville, Florida 32212, United States
| | - Jeffrey G Lundin
- U.S. Naval Research Laboratory, Chemistry Division, Code 6124, 4555 Overlook Ave. SW, Washington, District of Columbia 20375, United States
| |
Collapse
|
13
|
Almeida AR, Oliveira ND, Pinheiro FASD, Morais WAD, Ferreira LDS. Challenges encountered by natural repellents: Since obtaining until the final product. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105538. [PMID: 37666610 DOI: 10.1016/j.pestbp.2023.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/06/2023]
Abstract
Vector-borne diseases, particularly the arboviruses dengue, Zika, chikungunya, and yellow fever caused by the Aedes aegypti mosquito, have been driving the use of repellents worldwide. The most representative synthetic repellent, DEET stands out as the market's oldest and most efficient repellent. It is considered a reference standard but presents considerable toxicity, not recommended for children up to 6 months old and pregnant women. For this reason, alternatives have been sought, and natural repellents derived mainly from essential oils have been studied, highlighting the essential oils of lemon (Corymbia citriodora), citronella (Cympobogon sp.), Andiroba (Carapa guianensis). However, the development and commercialization of products containing natural repellents are significantly lower when compared to DEET and other synthetic repellents. In order to understand the reasons, aspects related to safety, mechanism of action, efficacy as well development and complexity of the products were evaluated. It is concluded that, as for safety, there is lacking information in the literature regarding the effects on non-target organisms and robust toxicity data. The mechanism of action is based on theories, with less information on the exact mode of action, molecular targets, and interaction with the olfactory and taste receptors of insects. Despite being a current trend to search for actives from natural sources highly present in essential oils, however they reduced action time because due to rapid evaporation after application to the skin, thus requiring repellent vehicles. The development and complexity related to these products bring challenging aspects, beginning on the plant cultivation and extraction processes to produce essential oils with a more homogeneous chemical composition towards the formulation stabilization processes due to fast evaporation and short action time, with the use of pharmaceutical technology such as encapsulation techniques.
Collapse
Affiliation(s)
- Addison Ribeiro Almeida
- Department of Pharmacy, Laboratório de Farmacotécnica, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Department of Pharmacy, Laboratory of Quality Control of Medicines (LCQMed), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| | - Nicolas Dantas Oliveira
- Department of Pharmacy, Laboratório de Farmacotécnica, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Department of Pharmacy, Laboratory of Quality Control of Medicines (LCQMed), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Waldenice Alencar de Morais
- Department of Pharmacy, Laboratório de Farmacotécnica, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| | - Leandro De Santis Ferreira
- Department of Pharmacy, Laboratory of Quality Control of Medicines (LCQMed), Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
14
|
Luo Q, Ai L, Tang S, Zhang H, Ma J, Xiao X, Zhong K, Tian G, Cheng B, Xiong C, Chen X, Lu H. Developmental and cardiac toxicity assessment of Ethyl 3-(N-butylacetamido) propanoate (EBAAP) in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106572. [PMID: 37307698 DOI: 10.1016/j.aquatox.2023.106572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Ethyl 3-(N-butylacetamido) propanoate (EBAAP) is one of the most widely used mosquito repellents worldwide, and is also commonly used to produce cosmetics. Residues have recently been detected in surface and groundwater in many countries, and their potential to harm the environment is unknown. Therefore, more studies are needed to fully assess the toxicity of EBAAP. This is the first investigation into the developmental toxicity and cardiotoxicity of EBAAP on zebrafish embryos. EBAAP was toxic to zebrafish, with a lethal concentration 50 (LC50) of 140 mg/L at 72 hours post fertilization (hpf). EBAAP exposure also reduced body length, slowed the yolk absorption rate, induced spinal curvature and pericardial edema, decreased heart rate, promoted linear lengthening of the heart, and diminished cardiac pumping ability. The expression of heart developmental-related genes (nkx2.5, myh6, tbx5a, vmhc, gata4, tbx2b) was dysregulated, intracellular oxidative stress increased significantly, the activities of catalase (CAT) and superoxide dismutase (SOD) decreased, and malondialdehyde (MDA) content increased significantly. The expression of apoptosis-related genes (bax/bcl2, p53, caspase9, caspase3) was significantly upregulated. In conclusion, EBAAP induced abnormal morphology and heart defects during the early stages of zebrafish embryo development by potentially inducing the generation and accumulation of reactive oxygen species (ROS) in vivo and activating the oxidative stress response. These events dysregulate the expression of several genes and activate endogenous apoptosis pathways, eventually leading to developmental disorders and heart defects.
Collapse
Affiliation(s)
- Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Liping Ai
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuqiong Tang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Hua Zhang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoping Xiao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Guiyou Tian
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Cong Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
15
|
Bauer IL. The oral repellent - science fiction or common sense? Insects, vector-borne diseases, failing strategies, and a bold proposition. Trop Dis Travel Med Vaccines 2023; 9:7. [PMID: 37381000 DOI: 10.1186/s40794-023-00195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
Over the last decades, unimaginable amounts of money have gone into research and development of vector control measures, repellents, treatment, and vaccines for vector borne diseases. Technological progress and scientific breakthroughs allowed for ever more sophisticated and futuristic strategies. Yet, each year, millions of people still die or suffer from potentially serious consequences of malaria or dengue to more recent infections, such as zika or chikungunya, or of debilitating consequences of neglected tropical diseases. This does not seem value for money. In addition, all current vector control strategies and personal protection methods have shortcomings, some serious, that are either destructive to non-target species or unsatisfactory in their effectiveness. On the other hand, the rapid decline in insect populations and their predators reflects decades-long aggressive and indiscriminate vector control. This major disruption of biodiversity has an impact on human life not anticipated by the well-meaning killing of invertebrates. The objective of this paper is to re-examine current control methods, their effectiveness, their impact on biodiversity, human and animal health, and to call for scientific courage in the pursuit of fresh ideas. This paper brings together topics that are usually presented in isolation, thereby missing important links that offer potential solutions to long-standing problems in global health. First, it serves as a reminder of the importance of insects to human life and discusses the few that play a role in transmitting disease. Next, it examines critically the many currently employed vector control strategies and personal protection methods. Finally, based on new insights into insect chemo-sensation and attractants, this perspective makes a case for revisiting a previously abandoned idea, the oral repellent, and its use via currently successful methods of mass-application. The call is out for focused research to provide a powerful tool for public health, tropical medicine, and travel medicine.
Collapse
Affiliation(s)
- Irmgard L Bauer
- College of Healthcare Sciences, Academy - Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
16
|
Deng W, Li M, Liu S, Logan JG, Mo J. Repellent Screening of Selected Plant Essential Oils Against Dengue Fever Mosquitoes Using Behavior Bioassays. NEOTROPICAL ENTOMOLOGY 2023; 52:521-529. [PMID: 36928838 PMCID: PMC10181966 DOI: 10.1007/s13744-023-01039-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/07/2023] [Indexed: 05/13/2023]
Abstract
Among the efforts to reduce mosquito-transmitted diseases, such as malaria and dengue fever, essential oils (EOs) have become increasingly popular as natural replacements for the repellant DEET. In this study, seven commercially available plant EOs against Aedes species mosquitoes were evaluated for their complete protection time (CPT, min) in vivo using human-hand in cage tests (GB2009/China and WHO2009). Among the EOs with the highest efficacy in repelling mosquitoes, Aedes albopictus (Skuse) were clove bud oil and patchouli oil. Both were further assessed according to the in vivo method recommended by the WHO, to determine their minimum effective dose and CPT. A comparison of the ED50 values (dose yielding a 50% repellent response) of these two EOs against Aedes aegypti(L.) showed that the ED50 (2.496 µg/cm2) of patchouli oil was 1248 times higher than that of clove bud oil (0.002 µg/cm2), thus demonstrating them greater efficacy of the latter in repelling Ae. aegypti mosquitoes. For the 2 EOs, eugenol was the major component with higher than 80% in relative amount of the clove bud oil. The patchouli oil had more than 30% of character chemical patchouli alcohol along with α-bulnesene (10.962%), α-guaiene (9.227%), and seychellene (7.566%). Clove bud oil was found to confer longer complete protection than patchouli oil against a common species of mosquito. These results suggest use of EOs as safe, highly potent repellents for use in daily life and against mosquito-transmitted diseases, such as malaria and dengue fever.
Collapse
Affiliation(s)
- Wan Deng
- State Key Lab of Utilization of Woody Oil Resource, Research Institute of Forest and Grass Protection, Hunan Academy of Forestry, Changsha, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang Univ, Hangzhou, China
- Dept of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Mi Li
- State Key Lab of Utilization of Woody Oil Resource, Research Institute of Forest and Grass Protection, Hunan Academy of Forestry, Changsha, China
| | - Sisi Liu
- State Key Lab of Utilization of Woody Oil Resource, Research Institute of Forest and Grass Protection, Hunan Academy of Forestry, Changsha, China
| | - James G Logan
- Dept of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
- Arctech Innovation Ltd, the Cube, Dagenham, UK
| | - Jianchu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang Univ, Hangzhou, China.
| |
Collapse
|
17
|
Ben Mustapha M, Algethami FK, Elamin MR, Abdulkhair BY, Chaieb I, Ben Jannet H. Chemical Composition, Toxicity and Repellency of Inula graveolens Essential Oils from Roots and Aerial Parts against Stored-Product Beetle Tribolium castaneum (Herbst). Chem Biodivers 2023; 20:e202200978. [PMID: 36808818 DOI: 10.1002/cbdv.202200978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
In this work, essential oils extracted from roots and aerial parts of Inula graveolens by hydrodistillation and their fractions obtained by chromatographic simplification were first investigated for their chemical composition by GC/MS and then evaluated for the first time for their repellency and contact toxicity properties against Tribolium castaneumadults. Twenty-eight compounds were identified in roots essential oil (REO), which accounted for 97.9 % of the total oil composition, with modhephen-8-β-ol (24.7 %), cis-arteannuic alcohol (14.8 %), neryl isovalerate (10.6 %) and thymol isobutyrate (8.5 %) as major constituents. Twenty-two compounds were found in the essential oil from aerial parts (APEO), which accounted for 93.9 % of the total oil, with borneol (28.8 %), caryophylla-4(14),8(15)-dien-6-ol (11.5 %), caryophyllene oxide (10.9 %), τ-cadinol (10.5 %) and bornyl acetate (9.4 %) as main compounds.REO and APEO displayed stronger repellency after 2 h of exposure (80.0 and 90.0 %, respectively) against T. castaneum at the concentration of 0.12 μL/cm2 . After fractionation, fractions R4 and R5 exhibited greater effects (83.3 % and 93.3 %, respectively) than the roots essential oil. Furthermore, the fractions AP2 and AP3 showed higher repellency (93.3 and 96.6 %, respectively) than the aerial parts oil. The LD50 values of oils from roots and aerial parts topically applied were 7.44 % and 4.88 %, respectively. Results from contact toxicity assay showed that fraction R4 was more effective than the roots oil with LD50 value of 6.65 %. These results suggests that essential oils of roots and aerial parts from I. graveolens may be explored as potential natural repellent and contact insecticides against T. castaneum in stored products.
Collapse
Affiliation(s)
- Mayssa Ben Mustapha
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Mohamed R Elamin
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| | - Babiker Y Abdulkhair
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Ikbal Chaieb
- Laboratory of Production and Protection for a Sustainable Horticulture (LR21AGR03) Regional Center of Research on Horticulture and Organic Agriculture, 57, University of Sousse, ChottMariem, TN-4042, Tunisia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia
| |
Collapse
|
18
|
Farouil L, Duchaudé Y, Zozo L, Sylvestre M, Lafay F, Marote P, Cebrián-Torrejón G. Cyclic voltammetry of immobilized particles as an alternative pesticide screening method for Aedes aegypti mosquitoes. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
19
|
Luker HA, Salas KR, Esmaeili D, Holguin FO, Bendzus-Mendoza H, Hansen IA. Repellent efficacy of 20 essential oils on Aedes aegypti mosquitoes and Ixodes scapularis ticks in contact-repellency assays. Sci Rep 2023; 13:1705. [PMID: 36717735 PMCID: PMC9886999 DOI: 10.1038/s41598-023-28820-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cases of mosquito- and tick-borne diseases are rising worldwide. Repellent products can protect individual users from being infected by such diseases. In a previous study, we identified five essential oils that display long-distance mosquito repellency using a Y-tube olfactometer assay. In the current study, the contact repellent efficacy of 20 active ingredients from the Environmental Protection Agency's (EPA) Minimum Risk Pesticides list were tested using Aedes aegypti and Ixodes scapularis. We utilized an arm-in-cage assay to measure complete protection time from mosquito bites for these active ingredients. To measure tick repellency, we used an EPA-recommended procedure to measure the complete protection time from tick crossings. We found that of the 20 ingredients tested, 10% v/v lotion emulsions with clove oil or cinnamon oil provided the longest protection from both mosquito bites and tick crossings. We conclude that in a 10% v/v emulsion, specific active ingredients from the EPA Minimum Risk Pesticides list can provide complete protection from mosquito bites and tick crossings for longer than one hour.
Collapse
Affiliation(s)
- Hailey A Luker
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA.
| | - Keyla R Salas
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
| | - Delaram Esmaeili
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
| | - F Omar Holguin
- Department of Plant and Environmental Sciences, New Mexico State University, Skeen Hall, Las Cruces, NM, 88003, USA
| | - Harley Bendzus-Mendoza
- Department of Computer Science, New Mexico State University, 1290 Frenger Mall, Las Cruces, NM, 88003, USA
| | - Immo A Hansen
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
- Institute for Applied Biosciences, New Mexico State University, 1200 S. Horseshoe Dr., Las Cruces, NM, 88003, USA
| |
Collapse
|
20
|
Higuchi CT, Sales CC, Andréo-Filho N, Martins TS, Ferraz HO, Santos YR, Lopes PS, Grice JE, Benson HAE, Leite-Silva VR. Development of a Nanotechnology Matrix-Based Citronella Oil Insect Repellent to Obtain a Prolonged Effect and Evaluation of the Safety and Efficacy. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010141. [PMID: 36676095 PMCID: PMC9866038 DOI: 10.3390/life13010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Mosquito-borne diseases affect millions of people worldwide each year, and the use of a topically applied insect repellent is an economically viable preventative health practice. The general objective of this work was to encapsulate citronella oil (CO) in a nanostructured lipid carrier (NLC) to formulate a topical repellent with a long duration of efficacy on the skin and a good safety profile based on minimizing skin penetration. In the studied CO, the main chemical constituents of geraniol, citronellal, and citronellol were identified and subsequently used as markers for the in vitro skin permeation testing (IVPT). An optimal NLC encapsulating CO formulation was developed and had an average particle size of 350 nm. The NLC was then formulated in combination with CO at ratios of 2:1, 1:1, and 1:2 CO:NLC-CO as oil-in-water (O/W) emulsions and compared to CO in the same O/W emulsion base (all at 10% CO in the final O/W topical formulation). The markers geraniol, citronellol, and citronellal were detected in all samples tested F1 (10% CO in O/W emulsion) and F3 (10% CO/NLC-CO 1:1 in O/W emulsion). Even the percentages of F3 markers were higher than F1. The recovery of the percentage balance (based on the total remaining on the skin surface, on the skin, and penetrated through the skin to the receptor) of geraniol, citronellol, and citronellal markers for F1 and F3 was 7.70% and 11.96%; 25.51% and 31.89%; and 5.09% and 4.40%, respectively. The nanoparticle lipid solid forms a repellent reservoir on the skin surface, releasing the active ingredients slowly through volatilization, extending the repellent action, and reducing permeation through the skin. It is possible to assume that the remaining 92.30% and 88.03%; 74.49% and 68.11%; and 94.10% and 95.60% of geraniol, citronellol, and citronellal markers of F1 and F3, respectively, were lost to evaporation. In the in vivo efficacy test carried out with the Aedes aegypti mosquito, F3 was the optimal formulation, providing the greatest repellent action compared to free oil in O/W emulsion. Thermal analysis showed that the NLC-CO raised the boiling point of the encapsulated CO compared to the free oil, suggesting that the controlled release of the CO was a possible mechanism for its prolonged effect. We concluded that the nanocarriers developed with CO were stable and provided improved mosquito-repellent efficacy with minimal skin penetration of the CO actives over 24 h. Indeed, regardless of whether the CO was applied as free oil, a 1:1 mixture of CO (pure/free oil) or NLC-CO applied in an O/W emulsion can be considered safe for topical application due to minimal skin penetration.
Collapse
Affiliation(s)
- Celio Takashi Higuchi
- Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema CEP 09913-030, SP, Brazil
| | - Caroline Cianga Sales
- Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema CEP 09913-030, SP, Brazil
| | - Newton Andréo-Filho
- Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema CEP 09913-030, SP, Brazil
| | - Tereza Silva Martins
- Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema CEP 09913-030, SP, Brazil
| | - Helena Onishi Ferraz
- Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema CEP 09913-030, SP, Brazil
| | - Yasmin Rosa Santos
- Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema CEP 09913-030, SP, Brazil
| | - Patricia Santos Lopes
- Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema CEP 09913-030, SP, Brazil
| | - Jeffrey Ernest Grice
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Heather Ann Elizabeth Benson
- UniSA Clinical and Health Sciences, University of South Australia, Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5001, Australia
- Curtin Medical School, Curtin University, Perth, WA 6845, Australia
| | - Vania Rodrigues Leite-Silva
- Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema CEP 09913-030, SP, Brazil
- Therapeutics Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
- Correspondence:
| |
Collapse
|
21
|
Daftary K, Liszewski W. Allergenicity of Popular Insect Repellents. Dermatitis 2023; 34:70-71. [PMID: 36705651 DOI: 10.1089/derm.0000000000000897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Walter Liszewski
- Department of Dermatology, Northwestern University, Chicago, IL; Division of Cancer Epidemiology and Prevention, Department of Preventative Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
22
|
Abrantes DC, Rogerio CB, Campos EVR, Germano-Costa T, Vigato AA, Machado IP, Sepulveda AF, Lima R, de Araujo DR, Fraceto LF. Repellent active ingredients encapsulated in polymeric nanoparticles: potential alternative formulations to control arboviruses. J Nanobiotechnology 2022; 20:520. [PMID: 36496396 PMCID: PMC9741802 DOI: 10.1186/s12951-022-01729-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dengue, yellow fever, Chinkungunya, Zika virus, and West Nile fever have infected millions and killed a considerable number of humans since their emergence. These arboviruses are transmitted by mosquito bites and topical chemical repellents are the most commonly used method to protect against vector arthropod species. This study aimed to develop a new generation of repellent formulations to promote improved arboviruses transmission control. A repellent system based on polycaprolactone (PCL)-polymeric nanoparticles was developed for the dual encapsulation of IR3535 and geraniol and further incorporation into a thermosensitive hydrogel. The physicochemical and morphological parameters of the prepared formulations were evaluated by dynamic light scattering (DLS), nano tracking analysis (NTA), atomic force microscopy (AFM). In vitro release mechanisms and permeation performance were evaluated before and after nanoparticles incorporation into the hydrogels. FTIR analysis was performed to evaluate the effect of formulation epidermal contact. Potential cytotoxicity was evaluated using the MTT reduction test and disc diffusion methods. The nanoparticle formulations were stable over 120 days with encapsulation efficiency (EE) of 60% and 99% for IR3535 and geraniol, respectively. AFM analysis revealed a spherical nanoparticle morphology. After 24 h, 7 ± 0.1% and 83 ± 2% of the GRL and IR3535, respectively, were released while the same formulation incorporated in poloxamer 407 hydrogel released 11 ± 0.9% and 29 ± 3% of the loaded GRL and IR3535, respectively. GRL permeation from PCL nanoparticles and PCL nanoparticles in the hydrogel showed similar profiles, while IR3535 permeation was modulated by formulation compositions. Differences in IR3535 permeated amounts were higher for PCL nanoparticles in the hydrogels (36.9 ± 1.1 mg/cm2) compared to the IR3535-PCL nanoparticles (29.2 ± 1.5 mg/cm2). However, both active permeation concentrations were low at 24 h, indicating that the formulations (PCL nanoparticles and PCL in hydrogel) controlled the bioactive percutaneous absorption. Minor changes in the stratum corneum (SC) caused by interaction with the formulations may not represent a consumer safety risk. The cytotoxicity results presented herein indicate the carrier systems based on poly-epsilon caprolactone (PCL) exhibited a reduced toxic effect when compared to emulsions, opening perspectives for these systems to be used as a tool to prolong protection times with lower active repellent concentrations.
Collapse
Affiliation(s)
- Daniele Carvalho Abrantes
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Carolina Barbara Rogerio
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Estefânia Vangelie Ramos Campos
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Tais Germano-Costa
- grid.442238.b0000 0001 1882 0259Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo Brazil
| | - Aryane Alves Vigato
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Ian Pompermeyer Machado
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Anderson Ferreira Sepulveda
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Renata Lima
- grid.442238.b0000 0001 1882 0259Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo Brazil
| | - Daniele Ribeiro de Araujo
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Leonardo Fernandes Fraceto
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| |
Collapse
|
23
|
Borges JCM, Haddi K, Valbon WR, Costa LTM, Ascêncio SD, Santos GR, Soares IM, Barbosa RS, Viana KF, Silva EAP, Moura WS, Andrade BS, Oliveira EE, Aguiar RWS. Methanolic Extracts of Chiococca alba in Aedes aegypti Biorational Management: Larvicidal and Repellent Potential, and Selectivity against Non-Target Organisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:3298. [PMID: 36501335 PMCID: PMC9735851 DOI: 10.3390/plants11233298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The use of formulations containing botanical products for controlling insects that vector human and animal diseases has increased in recent years. Plant extracts seem to offer fewer risks to the environment and to human health without reducing the application strategy's efficacy when compared to synthetic and conventional insecticides and repellents. Here, we evaluated the potential of extracts obtained from caninana, Chiococca alba (L.) Hitchc. (Rubiaceae), plants as a tool to be integrated into the management of Aedes aegypti, one of the principal vectors for the transmission of arborviruses in humans. We assessed the larvicidal and repellence performance against adult mosquitoes and evaluated the potential undesired effects of the extracts on non-target organisms. We assessed the susceptibility and predatory abilities of the nymphs of Belostoma anurum, a naturally occurring mosquito larva predator, and evaluated the C. alba extract's cytotoxic effects in mammalian cell lines. Our chromatographic analysis revealed 18 compounds, including rutin, naringin, myricetin, morin, and quercetin. The methanolic extracts of C. alba showed larvicidal (LC50 = 82 (72-94) mg/mL) activity without killing or affecting the abilities of B. anurum to prey upon mosquito larvae. Our in silico predictions revealed the molecular interactions between rutin and the AeagOBP1 receptor to be one possible mechanism for the repellent potential recorded for formulations containing C. alba extracts. Low cytotoxicity against mammalian cell lines reinforces the selectivity of C. alba extracts. Collectively, our findings highlight the potential of C. alba and one of its constituents (rutin) as alternative tools to be integrated into the management of A. aegypti mosquitoes.
Collapse
Affiliation(s)
- Jaqueline C. M. Borges
- Department of Biotechnology Biodiversity, Graduate School of Biotechnology of Amazônia (Bionorte), Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Khalid Haddi
- Departmento de Entomologia, Universidade Federal de Lavras (UFLA), Lavras 37200-000, MG, Brazil
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Wilson R. Valbon
- Departmento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Lara T. M. Costa
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Sérgio D. Ascêncio
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Gil R. Santos
- Department of Biotechnology Biodiversity, Graduate School of Biotechnology of Amazônia (Bionorte), Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Ilsamar M. Soares
- Natural Products Research Laboratory, Federal University of Tocantins (UFT), Palmas 77001-090, TO, Brazil
| | - Robson S. Barbosa
- Natural Products Research Laboratory, Federal University of Tocantins (UFT), Palmas 77001-090, TO, Brazil
| | - Kelvinson F. Viana
- Interdisciplinary Center for Life Sciences and Nature, Federal University of Latin American Integration (UNILA), Foz do Iguaçu 85870-901, PR, Brazil
| | - Eder A. P. Silva
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Wellington S. Moura
- Department of Biotechnology Biodiversity, Graduate School of Biotechnology of Amazônia (Bionorte), Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| | - Bruno S. Andrade
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
- Department of Biological Sciences, State University of Southwest Bahia, Jequié 45206-190, BA, Brazil
| | - Eugenio E. Oliveira
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
- Departmento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Raimundo W. S. Aguiar
- Department of Biotechnology Biodiversity, Graduate School of Biotechnology of Amazônia (Bionorte), Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
- Biotechnology Graduate Program, Federal University of Tocantins, Gurupi 77413-070, TO, Brazil
| |
Collapse
|
24
|
Portilla Pulido JS, Urbina Duitama DL, Velasquez-Martinez MC, Mendez-Sanchez SC, Duque JE. Differentiation of action mechanisms between natural and synthetic repellents through neuronal electroantennogram and proteomic in Aedes aegypti (Diptera: Culicidae). Sci Rep 2022; 12:20397. [PMID: 36437275 PMCID: PMC9701785 DOI: 10.1038/s41598-022-24923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Natural-based compounds with repellent activity arise nowadays with the possibility to replace commercial synthetic repellents wholly or partially, such as N,N-Diethyl-m-toluamide (DEET). It is due to DEET's demonstrated toxicity and cutaneous irritation for human beings. Besides, research recommends avoiding using it with kids and pregnant women. The search for a repellent product implies early stages of detailed research that resolve the modes of action against the target insect. Therefore the objective of the current study was to analyze neuronal electrophysiological signals and olfactory system protein expression when the Aedes aegypti mosquito with exposition to natural-based repellents. Adult females of Ae. aegypti of Rockefeller strain were exposed to specific concentrations of repellent compounds like geranyl acetate, α-bisabolol, nerolidol, and DEET. The neuronal effect was measured by electroantennography technique, and the effect of exposure to either DEET or a mixture of natural molecules on protein expression was determined with 2D-PAGE followed by MALDI-TOF-mass spectrometry (MS). This approach revealed that DEET affected proteins related to synapses and ATP production, whereas natural-based repellents increased transport, signaling, and detoxification proteins. The proteomic and electrophysiology experiments demonstrated that repellent exposure disrupts ionic channel activity and modifies neuronal synapse and energy production processes.
Collapse
Affiliation(s)
- Johan Sebastián Portilla Pulido
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Facultad de ciencias, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Santander Colombia
| | - Diana Lizeth Urbina Duitama
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Facultad de ciencias, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Santander Colombia
| | - María Carolina Velasquez-Martinez
- grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Grupo de investigación en Neurociencias y Comportamiento UIS-UPB, Facultad de Salud, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Santander Colombia
| | - Stelia Carolina Mendez-Sanchez
- grid.411595.d0000 0001 2105 7207Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Facultad de ciencias, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jonny Edward Duque
- grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Santander Colombia
| |
Collapse
|
25
|
Wu W, Yang Y, Feng Y, Ren X, Li Y, Li W, Huang J, Kong L, Chen X, Lin Z, Hou X, Zhang L, Chen Y, Sheng Z, Hong W. Study of the Repellent Activity of 60 Essential Oils and Their Main Constituents against Aedes albopictus, and Nano-Formulation Development. INSECTS 2022; 13:1077. [PMID: 36554987 PMCID: PMC9782114 DOI: 10.3390/insects13121077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Mosquitoes are one of the most important disease vectors from a medical viewpoint in that they transmit several diseases such as malaria, filariasis, yellow and Dengue fever. Mosquito vector control and personal protection from mosquito bites are currently the most efficient ways to prevent these diseases. Several synthetic repellents such as DEET, ethyl butylacetylaminopropionate (IR3535) and 1-(1-methylpropoxycarbonyl)-2-(2-hydroxyethyl)piperidine) (Picaridin), have been widely used to prevent humans from receiving mosquito bites. However, the use of synthetic repellents has raised several environment and health concerns. Therefore, essential oils (EOs) as natural alternatives receive our attention. In order to discover highly effective mosquito repellents from natural sources, the repellent activity of 60 commercial EOs against Ae. albopictus was screened in this study. Eight EOs including cinnamon, marjoram, lemongrass, bay, chamomile, jasmine, peppermint2, and thyme, showed a suitable repellent rate (>40%) at the tested dose of 10 μg/cm2. Then, their main constituents were analyzed by GC-MS, and the active constituents were identified. The most active compounds including cinnamaldehyde, citral and terpinen-4-ol, exhibited an 82%, 65% and 60% repellent rate, respectively. Moreover, the nanoemulsions of the three active compounds were prepared and characterized. In the arm-in-cage assay, the protection times of the nanoemulsions of cinnamaldehyde and citral were significantly extended compared with their normal solutions. This study provides several lead compounds to develop new mosquito repellents, and it suggests that nanoemulsification is an effective method for improving the duration of the activity of natural repellents.
Collapse
Affiliation(s)
- Weifeng Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yu Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yingmiao Feng
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Faculty of Southern Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China
| | - Xiaofei Ren
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yuling Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Wenjiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Jietong Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Lingjia Kong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiaole Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Zhongze Lin
- Faculty of Southern Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China
| | - Xiaohui Hou
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563003, China
| | - Longlai Zhang
- MHOME (Guangzhou) Industrial Co., Ltd., Guangzhou 510700, China
| | - Yajie Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhaojun Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Weiqian Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
| |
Collapse
|
26
|
Cui Q, Zhu X, Guan G, Hui R, Zhu L, Wang J. Association of N,N-diethyl-m-toluamide (DEET) with obesity among adult participants: Results from NHANES 2007-2016. CHEMOSPHERE 2022; 307:135669. [PMID: 35835239 DOI: 10.1016/j.chemosphere.2022.135669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The purpose of this study was to examine the relationship between N,N-diethyl-m-toluamide (DEET) exposure and obesity-related outcomes in the general adult population using the data from the National Health and Nutrition Examination Survey (NHANES). METHODS This cross-sectional study examined the data from the NHANES from 2007 to 2016 and totally evaluated 8,770 individuals. DEET's primary oxidative metabolite, 3-(diethylcarbamoyl) benzoic acid (DCBA), is a sensitive and specific indicator of DEET exposure. DCBA was divided into three groups based on the interquartile range. Body mass index (BMI) and waist circumference (WC) were used to define obesity and abdominal obesity, respectively. The association among DCBA and obesity-related outcomes was evaluated using a multivariable linear and logistic regression model. RESULTS Overall, median age of participants was 46.0 (IQR 31.0, 59.0) years, with 4295 (49.2%) men, while median BMI and WC were 27.8 (24.0, 32.0) and 29.6 (86.6, 108.1) kg/m2, respectively. Approximately 3,251 (35.9%) cases of obesity and 4,778 cases (54.4%) of abdominal obesity were observed. In multivariable-adjusted linear regression models, as the tertiles of DCBA increased, BMI and WC monotonically increased regardless of the adjustments (all p for trend <0.01). By referring the lowest tertile of DCBA, the highest tertile was associated with a higher BMI (β = 0.83, 95% confidence intervals [CI] [0.45, 1.21]; p < 0.001) and WC (β = 1.59, 95% CI [0.59, 2.60]; p = 0.002). The multivariate odds ratios (95% CI) for obesity increased monotonically as 1.18 (0.97-1.44) and 1.36 (1.15-1.61) (p for trend 0.001). Similar associations between DCBA and the prevalence of abdominal obesity were observed across increasing DCBA tertiles compared with the reference tertile (OR = 1.22, 95% CI [1.02, 1.44]; OR = 1.28, 95% CI [1.08-1.54]; p for trend = 0.002). CONCLUSIONS These findings suggested that higher DCBA concentrations are positively associated with the prevalence of obesity and abdominal obesity in the general adult population.
Collapse
Affiliation(s)
- Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China
| | - Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu, 210000, China
| | - Gongchang Guan
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China
| | - Rutai Hui
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Ling Zhu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China; Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710000, China.
| | - Junkui Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China; Department of Cardiology, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710000, China.
| |
Collapse
|
27
|
Iqbal H, Jahan N, Khalil-Ur-Rahman, Jamil S. Formulation and characterisation of Azadirachta indica nanobiopesticides for ecofriendly control of wheat pest Tribolium castaneum and Rhyzopertha dominica. J Microencapsul 2022; 39:638-653. [PMID: 36398734 DOI: 10.1080/02652048.2022.2149870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to formulate the green, sustainable, and ecofriendly nanobiopesticides of Azadirachta indica with enhanced pest control efficacy. Nanoprecipitation method was used for the development of nanobiopesticides. Optimisation was done by response surface methodology. Nanoformulations were characterised by zetasizer, scanning electron microscopy, energy dispersive x-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. Pesticidal potential of nanosuspensions was evaluated by insecticide impregnated filter paper method. Optimised nanobiopesticide showed an average particle size of 275.8 ± 0.95 nm, polydispersity index (PDI) 0.351 ± 0.002, and zeta potential of -33 ± 0.90 mV. Nanobiopesticides exhibited significantly higher mortality rates of 86.81 ± 3.04 and 84.97 ± 2.83% against Tribolium castaneum and Ryzopertha dominica, respectively, as compared to their crude extract. Minor change in particle size from 275.8 ± 0.95 to 298.8 ± 1.00 nm and PDI from 0.351 ± 0.002 to 0.445 ± 0.02 were observed after 3 months of storage at 4 °C. Pesticidal efficacy of A. indica was significantly enhanced by the formulation of its nanobiopesticides.
Collapse
Affiliation(s)
- Humaira Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nazish Jahan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Khalil-Ur-Rahman
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Pakistan
| | - Saba Jamil
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
28
|
Sousa DL, Xavier EO, Cruz RCDD, Souza IAD, Oliveira RAD, Silva DCD, Gualberto SA, Freitas JSD. Chemical composition and repellent potential of essential oil from Croton tetradenius (Euphorbiaceae) leaves against Aedes aegypti (Diptera: Culicidae). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Kong XX, Tang R, Liao CM, Wang J, Dai K, Tang Z, Han RC, Jin YL, Cao L. A novel volatile deterrent from symbiotic bacteria of entomopathogenic nematodes fortifies field performances of nematodes against fall armyworm larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105286. [PMID: 36464339 DOI: 10.1016/j.pestbp.2022.105286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The core elements of entomopathogenic nematode toxicity towards the fall armyworm Spodoptera frugiperda are associated with symbiotic bacteria. These microbes provide independent control effects and are reported to have repellency to insect pests. However, the ecological background of this nematode-bacteria-insect communication module is elusive. This work aims to identify key chemical cues which drive the trophic interactions through olfactory reception of S. frugiperda, and to inspire implementations with these isolated behavioral regulators in the corn field. A total of 657 volatiles were found within 13 symbiotic bacterial strains, and five of them induced significant electrophysiological responses of S. frugiperda larvae. 2-Hexynoic acid was demonstrated to exhibit a dominant role in deterring S. frugiperda larvae from feeding and localization. Field implementations with this novel volatile deterrent have resulted in fortified nematode applications. 2-Hexynoic acid acts as an excellent novel deterrent and presents remarkable application potential against fall armyworm larvae. Emissions from symbiotic bacteria of entomopathogenic nematodes are key players in chemical communication among insects, nematodes, and microbes. The olfactory perceptions and molecular targets for this volatile are worthy of future research.
Collapse
Affiliation(s)
- Xiang-Xin Kong
- Heilongjiang Bayi Agricultural University, Daqing 163319, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Can-Ming Liao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Jie Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Kang Dai
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Zi Tang
- Huadu Agricultural Technology Management Centre, Guangzhou 510813, China
| | - Ri-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Yong-Ling Jin
- Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
30
|
Thum MD, Weise NK, Casalini R, Fulton AC, Purdy AP, Lundin JG. Incorporation of
N
,
N
,‐diethyl‐meta‐toluamide within electrospun nylon‐6/6 nanofibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Matthew D. Thum
- Chemistry Division U.S. Naval Research Laboratory Washington District of Columbia USA
| | - Nickolaus K. Weise
- Chemistry Division U.S. Naval Research Laboratory Washington District of Columbia USA
| | - Riccardo Casalini
- Chemistry Division U.S. Naval Research Laboratory Washington District of Columbia USA
| | - Ashley C. Fulton
- Chemistry Division U.S. Naval Research Laboratory Washington District of Columbia USA
| | - Andrew P. Purdy
- Chemistry Division U.S. Naval Research Laboratory Washington District of Columbia USA
| | - Jeffrey G. Lundin
- Chemistry Division U.S. Naval Research Laboratory Washington District of Columbia USA
| |
Collapse
|
31
|
Santos PA, Silva MRMDA, Tavares M, Ricci-Junior E. Microencapsulation of DEET in Solid Lipid Microparticles: production, characterization and safety evaluation. AN ACAD BRAS CIENC 2022; 94:e20211166. [PMID: 36074427 DOI: 10.1590/0001-3765202220211166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
DEET is considered the gold standard for insect repellent products. However, it behaves as a strong skin permeant. DEET was encapsulated in Solid Lipid Microparticles (SLM) and characterized in terms of morphology, particle size, cytotoxicity and ex vivo permeation. The particles exhibited micrometric size with a spherical shape. In addition, we developed and validated an analytical method for DEET quantification by high performance liquid chromatography (HPLC), which was selective, linear, precise, accurate and robust. The toxicity test in cell culture of keratinocytes, fibroblasts and macrophages showed that the formulation did not present cytotoxicity. The SLM were able to decrease the skin permeation of DEET in relation to the free active in ethanol with gain in the safe. Microparticles were able to increase the skin retention of DEET, which can contribute to extend the time of repellent action. The results showed that Solid Lipid Microparticles are safe and promising topical formulation to insect bite prevention.
Collapse
Affiliation(s)
- Paula A Santos
- Universidade Federal do Rio de Janeiro (UFRJ), Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Avenida Carlos Chagas Filho, 373, 21941-901 Rio de Janeiro, RJ, Brazil
| | - Márcio R M DA Silva
- Universidade Federal do Rio de Janeiro (UFRJ), Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Avenida Carlos Chagas Filho, 373, 21941-901 Rio de Janeiro, RJ, Brazil
| | - Melanie Tavares
- Universidade Federal do Rio de Janeiro (UFRJ), Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Avenida Carlos Chagas Filho, 373, 21941-901 Rio de Janeiro, RJ, Brazil
| | - Eduardo Ricci-Junior
- Universidade Federal do Rio de Janeiro (UFRJ), Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Avenida Carlos Chagas Filho, 373, 21941-901 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
32
|
Devillers J, Sartor V, Devillers H. Predicting mosquito repellents for clothing application from molecular fingerprint-based artificial neural network SAR models. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:729-751. [PMID: 36106833 DOI: 10.1080/1062936x.2022.2124014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Spraying repellents on clothing limits toxicity and allergy problems that can occur when the repellents are directly applied to skin. This also allows the use of higher doses to ensure longer lasting effects. As the number of repellents available on the market is limited, it is necessary to propose new ones, especially by using in silico methods that reduce costs and time. In this context SAR models were built from a dataset of 2027 chemicals for which repellent activity on clothing was measured against Aedes aegypti. The interest of using either the ECFP or MACCS fingerprints as input neurons of a three-layer perceptron was evaluated. Transformation of MACCS bit strings into disjunctive tables led to interesting results. Models obtained with both types of fingerprints were compared to a model including physicochemical and topological descriptors.
Collapse
Affiliation(s)
| | - V Sartor
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - H Devillers
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
33
|
Shiau AL, Liao CS, Tu CW, Wu SN, Cho HY, Yu MC. Characterization in Effective Stimulation on the Magnitude, Gating, Frequency Dependence, and Hysteresis of INa Exerted by Picaridin (or Icaridin), a Known Insect Repellent. Int J Mol Sci 2022; 23:ijms23179696. [PMID: 36077093 PMCID: PMC9456182 DOI: 10.3390/ijms23179696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Picaridin (icaridin), a member of the piperidine chemical family, is a broad-spectrum arthropod repellent. Its actions have been largely thought to be due to its interaction with odorant receptor proteins. However, to our knowledge, to what extent the presence of picaridin can modify the magnitude, gating, and/or the strength of voltage-dependent hysteresis (Hys(V)) of plasmalemmal ionic currents, such as, voltage-gated Na+ current [INa], has not been entirely explored. In GH3 pituitary tumor cells, we demonstrated that with exposure to picaridin the transient (INa(T)) and late (INa(L)) components of voltage-gated Na+ current (INa) were differentially stimulated with effective EC50’s of 32.7 and 2.8 μM, respectively. Upon cell exposure to it, the steady-state current versus voltage relationship INa(T) was shifted to more hyperpolarized potentials. Moreover, its presence caused a rightward shift in the midpoint for the steady-state inactivate curve of the current. The cumulative inhibition of INa(T) induced during repetitive stimuli became retarded during its exposure. The recovery time course from the INa block elicited, following the conditioning pulse stimulation, was satisfactorily fitted by two exponential processes. Moreover, the fast and slow time constants of recovery from the INa block by the same conditioning protocol were noticeably increased in the presence of picaridin. However, the fraction in fast or slow component of recovery time course was, respectively, increased or decreased with an increase in picaridin concentrations. The Hys(V)’s strength of persistent INa (INa(P)), responding to triangular ramp voltage, was also enhanced during cell exposure to picaridin. The magnitude of resurgent INa (INa(R)) was raised in its presence. Picaritin-induced increases of INa(P) or INa(R) intrinsically in GH3 cells could be attenuated by further addition of ranolazine. The predictions of molecular docking also disclosed that there are possible interactions of the picaridin molecule with the hNaV1.7 channel. Taken literally, the stimulation of INa exerted by the exposure to picaridin is expected to exert impacts on the functional activities residing in electrically excitable cells.
Collapse
Affiliation(s)
- Ai-Li Shiau
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chih-Szu Liao
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chi-Wen Tu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Correspondence: ; Tel.: +886-6-2353535-5334; Fax: +886-6-2362780
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Meng-Cheng Yu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| |
Collapse
|
34
|
Shah JA, Vendl T, Aulicky R, Frankova M, Stejskal V. Gel Carriers for Plant Extracts and Synthetic Pesticides in Rodent and Arthropod Pest Control: An Overview. Gels 2022; 8:gels8080522. [PMID: 36005123 PMCID: PMC9407565 DOI: 10.3390/gels8080522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
Insecticides and rodenticides form the basis of integrated pest management systems worldwide. As pest resistance continues to increase and entire groups of chemical active ingredients are restricted or banned, manufacturers are looking for new options for more effective formulations and safer application methods for the remaining pesticide ingredients. In addition to new technological adaptations of mainstream formulations in the form of sprays, fumigants, and dusts, the use of gel formulations is becoming increasingly explored and employed. This article summarizes information on the current and potential use of gel (including hydrogel) and paste formulations against harmful arthropods or rodents in specific branches of pest management in the agricultural, food, stored product, structural wood, urban, medical, and public health areas. Due to the worldwide high interest in natural substances, part of the review was devoted to the use of gels for the formulation of pesticide substances of botanical origin, such as essential or edible oils. Gels as emerging formulation of so called “smart insecticides” based on molecular iRNA disruptors are discussed.
Collapse
Affiliation(s)
- Jawad Ali Shah
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Tomas Vendl
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic
- Correspondence: (T.V.); (V.S.); Tel.: +420-2-3302-2360 (T.V.); +420-2-3302-2217 (V.S.)
| | - Radek Aulicky
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic
| | - Marcela Frankova
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic
| | - Vaclav Stejskal
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic
- Correspondence: (T.V.); (V.S.); Tel.: +420-2-3302-2360 (T.V.); +420-2-3302-2217 (V.S.)
| |
Collapse
|
35
|
Zakari-Jiya A, Frazzoli C, Obasi CN, Babatunde BB, Patrick-Iwuanyanwu KC, Orisakwe OE. Pharmaceutical and personal care products as emerging environmental contaminants in Nigeria: A systematic review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103914. [PMID: 35738461 DOI: 10.1016/j.etap.2022.103914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The increasingly broad and massive use of pharmaceuticals (human, veterinary) and personal care products in industrially developing nations makes their uncontrolled environmental and ecological impact a true concern. Focusing on Nigeria, this systematic literature search (databases: PubMed, ScienceDirect, Google Scholar, EMBASE, Scopus, Cochrane library and African Journals Online) aims to increase visibility to the issue. Among 275 articles identified, 7 were included in this systematic review. Studies indicated the presence of 11 personal care products (15.94 %) and 58 pharmaceutical products (84.06 %) in surface and ground water, leachates, runoffs, sludge, and sediments. The 42.86% (3/7) of reviewed studies reported 17 analgesics; 71.42 % (5/7) reported 16 antibiotics; 28.57 % (2/7) reported 5 lipid lowering drugs; 28.57% reported anti-malaria and fungal drugs; 14.29 % (1/7) reported estrogen drugs. Different studies report on sunscreen products, hormone, phytosterol, insect repellent, and β1 receptor. Gemfibrozil (<4-730 ng/L), Triclosan (55.1-297.7 ng/L), Triclocarban (35.6-232.4 ng/L), Trimethoprim (<1-388 ng/L) and Tramadol (<2-883 ng/L) had the highest range of concentrations. Findings confirm the need of i) legislation for environmental monitoring, including biota, ii) toxicological profiling of new market products, and iii) sensitization on appropriate use and disposal of pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Aliyu Zakari-Jiya
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Cecilia Nwadiuto Obasi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Bolaji Bernard Babatunde
- Department of Animal and Environmental Biology, Faculty of Science, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Kingsley C Patrick-Iwuanyanwu
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; Department of Biochemistry, Faculty of Science, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria.
| |
Collapse
|
36
|
Germano-Costa T, Bilesky-José N, Guilger-Casagrande M, Pasquoto-Stigliani T, Rogério CB, Abrantes DC, Maruyama CR, Oliveira JL, Fraceto LF, Lima R. Use of 2D and co-culture cell models to assess the toxicity of zein nanoparticles loading insect repellents icaridin and geraniol. Colloids Surf B Biointerfaces 2022; 216:112564. [PMID: 35609505 DOI: 10.1016/j.colsurfb.2022.112564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
After the latest dengue and Zika outbreaks, the fight against mosquito vectors has become an emerging area of research. One tool for this combat is repellents; however, these products are composed of different toxic agents. Botanical compounds with repellent potential are an alternative; however these compounds are highly volatile. Thus, the present study aimed to synthesize zein-based polymeric nanoparticles as an efficient carrier system for the sustained release of the repellents icaridin and geraniol and evaluate the toxicity of these nanorepellents comparing two different cell models. In vitro tests were carried out due to current Brazilian legislation prohibiting animal testing for cosmetics (current classification of repellents). The cytotoxicity and genotoxicity of the nanoparticles were evaluated in 2D and co-culture cell models (A549/lung epithelium, HaCaT/keratinocytes, HT-29/intestinal epithelium, and THP-1/peripheral blood monocytes). Cell viability by mitochondrial activity, cell membrane integrity, damage to genetic material, and expression of genes involved in the allergic/inflammatory system were evaluated. The results of cytotoxicity evaluation showed cell viability above 70% in both cell models. No differences were observed in genotoxicity assessment between cells exposed to nanorepellents and controls. In contrast, gene expression analysis showed increased cytokine expression for the emulsion compounds in 2D cell cultures compared to co-cultures. These findings open perspectives that zein-based nanorepellents have potential applications due to the reduced toxicity observed when the compounds are encapsulated and emerge as an alternative for arbovirus control. In addition, the study demonstrated that depending on the analysis, different results might be observed when comparing 2D and co-culture cell models to evaluate the toxicity of new nanosystems.
Collapse
Affiliation(s)
- T Germano-Costa
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - N Bilesky-José
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - M Guilger-Casagrande
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - T Pasquoto-Stigliani
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - C B Rogério
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - D C Abrantes
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - C R Maruyama
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - J L Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.
| | - L F Fraceto
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - R Lima
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| |
Collapse
|
37
|
Du F, Rupp H, Jariyavidyanont K, Janke A, Petzold A, Binder W, Androsch R. 3D-printing of the polymer/insect-repellent system poly(l-lactic acid)/ethyl butylacetylaminopropionate (PLLA/IR3535). Int J Pharm 2022; 624:122023. [PMID: 35843363 DOI: 10.1016/j.ijpharm.2022.122023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
The polymer/solvent system poly(l-lactic acid)/ethyl butylacetylaminopropionate (PLLA/IR3535) is regarded as an insect-repellent-delivery system, serving, e.g., for fighting mosquito-borne tropical diseases. In such systems the solid polymer hosts the liquid repellent, with the latter slowly released to the environment, expelling mosquitoes. As a new approach, exceeding prior work about application of different technologies to obtain such devices, in this work, samples of the polymer/repellent system PLLA/IR3535 were prepared by 3D-printing. The experiments showed that it is possible to print 3D-parts containing up to 25 m% repellent, with an only minor loss of repellent during the printing process. For samples containing low amount of repellent, crystallization of PLLA was suppressed due to the rather fast cooling step and the low bed temperature of around 25 °C, being lower than the glass transition temperature of the homogeneous polymer/repellent strands. At higher repellent concentration, due to the lowering of the glass transition temperature to near or even below ambient temperature, the crystallinity slowly increased during storage after printing. For all samples, regardless of the initial repellent concentration, the repellent-release rate increases with temperature, and at ambient temperature the release-time constant is in the order of 10 days. The study successfully proved the applicability of the technology of extrusion-based 3D-printing for the preparation of polymer parts with a specific shape/design containing mosquito-repellent at a concentration which raises the expectation to be used as a repellent delivery-device.
Collapse
Affiliation(s)
- Fanfan Du
- Interdisciplinary Center for Transfer-oriented Research in Natural Sciences, Martin Luther University Halle-Wittenberg, 06099 Halle/Saale, Germany
| | - Harald Rupp
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06099 Halle/Saale, Germany
| | - Katalee Jariyavidyanont
- Interdisciplinary Center for Transfer-oriented Research in Natural Sciences, Martin Luther University Halle-Wittenberg, 06099 Halle/Saale, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Albrecht Petzold
- Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle/Saale, Germany
| | - Wolfgang Binder
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, 06099 Halle/Saale, Germany.
| | - René Androsch
- Interdisciplinary Center for Transfer-oriented Research in Natural Sciences, Martin Luther University Halle-Wittenberg, 06099 Halle/Saale, Germany.
| |
Collapse
|
38
|
Osanloo M, Firoozian S, Zarenezhad E, Montaseri Z, Satvati S. A Nanoliposomal Gel Containing Cinnamomum zeylanicum Essential Oil with Effective Repellent against the Main Malaria Vector Anopheles stephensi. Interdiscip Perspect Infect Dis 2022; 2022:1645485. [PMID: 35784810 PMCID: PMC9242819 DOI: 10.1155/2022/1645485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023] Open
Abstract
Malaria is the most important vector-borne disease; however, mosquito repellents are still a practical approach for controlling malaria, especially in endemic regions. Due to the side effects of synthetic repellents such as N, N-diethyl-meta-toluamide (DEET), the development of natural repellents has received much attention. In this study, nanoliposomes containing 0.5 and 2.5% w/v Cinnamomum zeylanicum essential oil were firstly prepared with particle sizes of 119 ± 6 and 195 ± 9 nm. Their morphologies and loading of the essential oil in the particles were then investigated using transmission electron microscopy (TEM) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) analyses. The nanoliposomes were finally jellified to increase their viscosity and facilitate topical usage. The complete protection time of the nanoliposomal gel containing 2.5% C. zeylanicum essential oil was significantly longer than that of 2.5% DEET against Anopheles stephensi: 303 ± 10 > 242 ± 12 min, p < 0.001. Moreover, the prepared nanoformulation was stable for at least six months at 4 and 26°C. Therefore, the prepared prototype could be considered a natural repellent against the main malaria mosquito vector in field conditions. In addition, it is suggested to be investigated against other important factors mosquitoes.
Collapse
Affiliation(s)
- Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Samira Firoozian
- Urmia Health Center, Disease Control Unit, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Montaseri
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Saha Satvati
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
39
|
In Search of Synergistic Insect Repellents: Modeling of Muscarinic GPCR Interactions with Classical and Bitopic Photoactive Ligands. Molecules 2022; 27:molecules27103280. [PMID: 35630759 PMCID: PMC9147842 DOI: 10.3390/molecules27103280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Insect vector-borne diseases pose serious health problems, so there is a high demand for efficient molecules that could reduce transmission. Using molecular docking and molecular dynamics (MD) simulation, we studied a series of compounds acting on human and insect muscarinic acetylcholine receptors (mAChRs), a novel target of synergistic agents in pest control. We characterized early conformational changes of human M1 and fruit fly type-A mAChR G protein-coupled receptors (GPCRs) in response to DEET, IR3535, and muscarine binding based on the MD analysis of the activation microswitches known to form the signal transduction pathway in class A GPCRs. We indicated groups of microswitches that are the most affected by the presence of a ligand. Moreover, to increase selectivity towards insects, we proposed a new, bitopic, photoswitchable mAChR ligand—BQCA-azo-IR353 and studied its interactions with both receptors. Modeling data showed that using a bitopic ligand may be a promising strategy in the search for better insect control.
Collapse
|
40
|
Nagai N, Kawaguchi M, Minami M, Matsumoto K, Sasabe T, Nobuhara K, Matsubara A. N, N-Diethyl-3-toluamide Formulation Based on Ethanol Containing 0.1% 2-Hydroxypropyl-β-cyclodextrin Attenuates the Drug's Skin Penetration and Prolongs the Repellent Effect without Stickiness. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103174. [PMID: 35630650 PMCID: PMC9146378 DOI: 10.3390/molecules27103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/16/2022]
Abstract
N,N-diethyl-3-toluamide (DEET) is one of the most widely used insect repellents in the world. It was reported that a solution containing 6-30% cyclodextrin (CD) as a solvent instead of ethanol (EtOH) provided an enhancement of the repellent action time duration of the DEET formulation, although the high-dose CD caused stickiness. In order to overcome this shortcoming, we attempted to prepare a 10% DEET formulation using EtOH containing low-dose CDs (β-CD, 2-hydroxypropyl-β-CD (HPβCD), methyl-β-CD, and sulfobutylether-β-CD) as solvents (DEET/EtOH/CD formulations). We determined the CD concentration to be 0.1% in the DEET/EtOH/CD formulations, since the stickiness of 0.1% CDs was not felt (approximately 8 × 10-3 N). The DEET residue on the skin superficial layers was prolonged, and the drug penetration into the skin tissue was decreased by the addition of 0.1% CD. In particular, the retention time and attenuated penetration of DEET on the rat skin treated with the DEET/EtOH/HPβCD formulation was significantly higher in comparison with that of the DEET/EtOH formulation without CD. Moreover, the repellent effect of DEET was more sustained by the addition of 0.1% HPβCD in the study using Aedes albopictus. In conclusion, we found that the DEET/EtOH/HPβCD formulations reduced the skin penetration of DEET and prolonged the repellent action without stickiness.
Collapse
Affiliation(s)
- Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan;
- Correspondence: ; Tel.: +81-6-4307-3638
| | - Mayu Kawaguchi
- Earth Corporation, 3218-12 Sakoshi, Ako 678-0192, Japan; (M.K.); (M.M.); (T.S.); (K.N.); (A.M.)
| | - Misa Minami
- Earth Corporation, 3218-12 Sakoshi, Ako 678-0192, Japan; (M.K.); (M.M.); (T.S.); (K.N.); (A.M.)
| | - Kana Matsumoto
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan;
| | - Tatsuji Sasabe
- Earth Corporation, 3218-12 Sakoshi, Ako 678-0192, Japan; (M.K.); (M.M.); (T.S.); (K.N.); (A.M.)
| | - Kenji Nobuhara
- Earth Corporation, 3218-12 Sakoshi, Ako 678-0192, Japan; (M.K.); (M.M.); (T.S.); (K.N.); (A.M.)
| | - Akira Matsubara
- Earth Corporation, 3218-12 Sakoshi, Ako 678-0192, Japan; (M.K.); (M.M.); (T.S.); (K.N.); (A.M.)
| |
Collapse
|
41
|
Pena GA, da Costa Lopes AS, de Morais SHS, do Nascimento LD, dos Santos FRR, da Costa KS, Alves CN, Lameira J. Host-Guest Inclusion Complexes of Natural Products and Nanosystems: Applications in the Development of Repellents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082519. [PMID: 35458718 PMCID: PMC9028570 DOI: 10.3390/molecules27082519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023]
Abstract
Repellents are compounds that prevent direct contact between the hosts and the arthropods that are vectors of diseases. Several studies have described the repellent activities of natural compounds obtained from essential oils. In addition, these chemical constituents have been pointed out as alternatives to conventional synthetic repellents due to their interesting residual protection and low toxicity to the environment. However, these compounds have been reported with short shelf life, in part, due to their volatile nature. Nanoencapsulation provides protection, stability, conservation, and controlled release for several compounds. Here, we review the most commonly used polymeric/lipid nanosystems applied in the encapsulation of small organic molecules obtained from essential oils that possess repellent activity, and we also explore the theoretical aspects related to the intermolecular interactions, thermal stability, and controlled release of the nanoencapsulated bioactive compounds.
Collapse
Affiliation(s)
- Gueive Astur Pena
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil; (G.A.P.); (C.N.A.)
| | - Anna Sylmara da Costa Lopes
- Laboratório de Catalálise e Oleoquímica, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil;
| | - Sylvano Heleno Salgado de Morais
- Laboratório de Química Analítica e Ambiental, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil;
| | - Lidiane Diniz do Nascimento
- Museu Paraense Emilio Goeldi, Laboratório Adolpho Ducke, Perimetral Avenue, Nuber 1901, Belém 66077-830, Brazil;
| | | | - Kauê Santana da Costa
- Laboratório de Simulação Computacional, Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, Brazil
- Correspondence: (K.S.d.C.); (J.L.)
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil; (G.A.P.); (C.N.A.)
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Federal University of Pará, Augusto Correa Street, w/n, Guamá, Belém 66075-110, Brazil; (G.A.P.); (C.N.A.)
- Correspondence: (K.S.d.C.); (J.L.)
| |
Collapse
|
42
|
Functional Coatings by Natural and Synthetic Agents for Insect Control and Their Applications. COATINGS 2022. [DOI: 10.3390/coatings12040476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Insect repellent textiles offer protection against disease-causing vectors such as mosquitoes, flies, and ticks. Protection is based on the incorporation of insect repellent compounds present in plant oil derivatives or synthetic oils. The effectiveness and application of natural insect repellents such as citronella grass, lemongrass, rosemary, peppermint, holy basil, tea tree, neem, lavender, thyme, lemon eucalyptus, clove, and cinnamon oils, as well as synthetic compounds permethrin, allethrin, malathion, DEET, DETA, IR3535, and picaridin, are compared here. The insect repellent and insecticidal effectiveness of natural compounds in their pure form are very low due to their high volatility. The effectiveness has been greatly improved through slow-release systems such as encapsulation of the essential oils and is comparable to synthetic compounds used for insect control purposes. Due to the lasting toxicity of synthetic compounds to humans and the environment, the use of natural compounds should become a more preferred method of insect control.
Collapse
|
43
|
Murugan K, Panneerselvam C, Subramaniam J, Paulpandi M, Rajaganesh R, Vasanthakumaran M, Madhavan J, Shafi SS, Roni M, Portilla-Pulido JS, Mendez SC, Duque JE, Wang L, Aziz AT, Chandramohan B, Dinesh D, Piramanayagam S, Hwang JS. Synthesis of new series of quinoline derivatives with insecticidal effects on larval vectors of malaria and dengue diseases. Sci Rep 2022; 12:4765. [PMID: 35306526 PMCID: PMC8933857 DOI: 10.1038/s41598-022-08397-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Mosquito borne diseases are on the rise because of their fast spread worldwide and the lack of effective treatments. Here we are focusing on the development of a novel anti-malarial and virucidal agent with biocidal effects also on its vectors. We have synthesized a new quinoline (4,7-dichloroquinoline) derivative which showed significant larvicidal and pupicidal properties against a malarial and a dengue vector and a lethal toxicity ranging from 4.408 µM/mL (first instar larvae) to 7.958 µM/mL (pupal populations) for Anopheles stephensi and 5.016 µM/mL (larva 1) to 10.669 µM/mL (pupae) for Aedes aegypti. In-vitro antiplasmodial efficacy of 4,7-dichloroquinoline revealed a significant growth inhibition of both sensitive strains of Plasmodium falciparum with IC50 values of 6.7 nM (CQ-s) and 8.5 nM (CQ-r). Chloroquine IC50 values, as control, were 23 nM (CQ-s), and 27.5 nM (CQ-r). In vivo antiplasmodial studies with P. falciparum infected mice showed an effect of 4,7-dichloroquinoline compared to chloroquine. The quinoline compound showed significant activity against the viral pathogen serotype 2 (DENV-2). In vitro conditions and the purified quinoline exhibited insignificant toxicity on the host system up to 100 µM/mL. Overall, 4,7-dichloroquinoline could provide a good anti-vectorial and anti-malarial agent.
Collapse
Affiliation(s)
- Kadarkarai Murugan
- University of Science & Technology, Techno City, Kiling Road, Baridua, Meghalaya, 793 101, India.
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| | | | - Jayapal Subramaniam
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Manickam Paulpandi
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Rajapandian Rajaganesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Jagannathan Madhavan
- Department of Chemistry, Thiruvalluvar University, Serkadu, Vellore, 632 115, India
| | - S Syed Shafi
- Department of Chemistry, Thiruvalluvar University, Serkadu, Vellore, 632 115, India
| | - Mathath Roni
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Johan S Portilla-Pulido
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM). Escuela de Química, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Colombia
- Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Guatiguará Technology and Research Park, Km 2 Vía El Refugio, Piedecuesta, Santander, Colombia
| | - Stelia C Mendez
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM). Escuela de Química, Universidad Industrial de Santander, A.A. 678, Bucaramanga, Colombia
| | - Jonny E Duque
- Centro de Investigaciones en Enfermedades Tropicales-CINTROP, Facultad de Salud, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Guatiguará Technology and Research Park, Km 2 Vía El Refugio, Piedecuesta, Santander, Colombia
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Al Thabiani Aziz
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Balamurugan Chandramohan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Devakumar Dinesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Shanmughavel Piramanayagam
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
44
|
Fouda A, Eid AM, Abdel-Rahman MA, EL-Belely EF, Awad MA, Hassan SED, AL-Faifi ZE, Hamza MF. Enhanced Antimicrobial, Cytotoxicity, Larvicidal, and Repellence Activities of Brown Algae, Cystoseira crinita-Mediated Green Synthesis of Magnesium Oxide Nanoparticles. Front Bioeng Biotechnol 2022; 10:849921. [PMID: 35295650 PMCID: PMC8920522 DOI: 10.3389/fbioe.2022.849921] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Herein, the metabolites secreted by brown algae, Cystoseira crinita, were used as biocatalyst for green synthesis of magnesium oxide nanoparticles (MgO-NPs). The fabricated MgO-NPs were characterized using UV-vis spectroscopy, Fourier transforms infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy linked with energy-dispersive X-ray (SEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Data showed successful formation of crystallographic and spherical MgO-NPs with sizes of 3-18 nm at a maximum surface plasmon resonance of 320 nm. Moreover, EDX analysis confirms the presence of Mg and O in the sample with weight percentages of 54.1% and 20.6%, respectively. Phyco-fabricated MgO-NPs showed promising activities against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans with MIC values ranging between 12.5 and 50 μg mL-1. The IC50 value of MgO-NPs against cancer cell lines (Caco-2) was 113.4 μg mL-1, whereas it was 141.2 μg mL-1 for normal cell lines (Vero cell). Interestingly, the green synthesized MgO-NPs exhibited significant larvicidal and pupicidal activity against Musca domestica. At 10 μg mL-1 MgO-NPs, the highest mortality percentages were 99.0%, 95.0%, 92.2%, and 81.0% for I, II, III instars' larvae, and pupa of M. domestica, respectively, with LC50 values (3.08, 3.49, and 4.46 μg mL-1), and LC90 values (7.46, 8.89, and 10.43 μg mL-1), respectively. Also, MgO-NPs showed repellence activity for adults of M. domestica at 10 μg mL-1 with 63.0%, 77.9%, 84.9%, and 96.8% after 12, 24, 48, and 72 h, respectively.
Collapse
Affiliation(s)
- Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed M. Eid
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | | - Ehab F. EL-Belely
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed A. Awad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Saad El-Din Hassan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Zarraq E. AL-Faifi
- Center for Environment Research and Studies, Jazan University, Jazan, Saudi Arabia
| | - Mohammed F. Hamza
- School of Nuclear Science and Technology, University of South China, Heng Yang, China
- Nuclear Materials Authority, Cairo, Egypt
| |
Collapse
|
45
|
|
46
|
Remonatto D, Oliveira JV, Guisan JM, Oliveira D, Ninow J, Fernandez-Lorente G. Immobilization of Eversa Lipases on Hydrophobic Supports for Ethanolysis of Sunflower Oil Solvent-Free. Appl Biochem Biotechnol 2022; 194:2151-2167. [PMID: 35050455 PMCID: PMC9068681 DOI: 10.1007/s12010-021-03774-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
Lipases are an important group of biocatalysts for many industrial applications. Two new commercial low-cost lipases Eversa® Transform and Eversa® Transform 2.0 was immobilized on four different hydrophobic supports: Lewatit-DVB, Purolite-DVB, Sepabeads-C18, and Purolite-C18. The performance of immobilized lipases was investigated in the transesterification of sunflower oil solvent-free in an anhydrous medium. Interesting results were obtained for both lipases and the four supports, but with Sepabeads support the lipases Eversa showed high catalytic activity. However, the more stable and efficient derivative was Eversa® Transform immobilized on Sepabeads C-18. A 98 wt% of ethyl ester of fatty acid (FAEE) was obtained, in 3 h at 40ºC, ethanol/sunflower oil molar ratio of 3:1 and a 10 wt% of the immobilized biocatalyst. After 6 reaction cycles, the immobilized biocatalyst preserved 70 wt% of activity. Both lipases immobilized in Sepabeads C-18 were highly active and stable in the presence of ethanol. The immobilization of Eversa Transform and Eversa Transform 2.0 in hydrophobic supports described in this study appears to be a promising alternative to the immobilization and application of these news lipases still unexplored.
Collapse
Affiliation(s)
- Daniela Remonatto
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903, Araraquara, SP, Brazil
| | - J Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, 88040-900, Florianópolis, SC, Brazil
| | - J Manuel Guisan
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, UAM, Cantoblanco, 28049, Madrid, Spain
| | - Débora Oliveira
- Department of Chemical and Food Engineering, UFSC, 88040-900, Florianópolis, SC, Brazil
| | - Jorge Ninow
- Department of Chemical and Food Engineering, UFSC, 88040-900, Florianópolis, SC, Brazil
| | - Gloria Fernandez-Lorente
- Departamento de Biotecnología y Microbiología de los Alimentos, Instituto de Alimentación, CIAL (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
47
|
Persistence Enhancement of a Promising Tick Repellent, Benzyl Isothiocyanate, by Yeast Microcarriers. Molecules 2021; 26:molecules26226817. [PMID: 34833912 PMCID: PMC8624053 DOI: 10.3390/molecules26226817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Phenethyl isothiocyanate isolated from Armoracia rusticana root oil and its derivatives were tested at different doses in a bioassay designed to evaluate repellency against individual Haemaphysalis longicornis nymphs. Among the tested compounds, benzyl isothiocyanate exhibited repellency against H. longicornis nymphs at the lowest dose of 0.00625 mg/cm2, followed by phenethyl isothiocyanate (0.0125 mg/cm2) and phenyl isothiocyanate (0.025 mg/cm2). The behavioral responses of H. longicornis nymphs exposed to benzyl isothiocyanate and phenethyl isothiocyanate indicated that the mode of action of these compounds can be mainly attributed to the vapor phase. Encapsulated benzyl isothiocyanate showed repellency up to 120 min post-application at 0.1 mg/cm2, whereas pure benzyl isothiocyanate showed repellency up to 60 min post-application at 0.1 mg/cm2. The present study suggests that benzyl isothiocyanate is a potential repellent for protection against H. longicornis nymphs, and encapsulation in yeast cells may enhance the repellency effect.
Collapse
|
48
|
Abrantes DC, Rogerio CB, de Oliveira JL, Campos EVR, de Araújo DR, Pampana LC, Duarte MJ, Valadares GF, Fraceto LF. Development of a Mosquito Repellent Formulation Based on Nanostructured Lipid Carriers. Front Pharmacol 2021; 12:760682. [PMID: 34707504 PMCID: PMC8542870 DOI: 10.3389/fphar.2021.760682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Arboviral diseases are a threat to global public health systems, with recent data suggesting that around 40% of the world's population is at risk of contracting arboviruses. The use of mosquito repellents is an appropriate strategy to avoid humans coming into contact with vectors transmitting these viruses. However, the cost associated with daily applications of repellents can make their use unfeasible for the low-income populations that most need protection. Therefore, the development of effective formulations offers a way to expand access to this means of individual protection. Consequently, research efforts have focused on formulations with smaller quantities of active agents and sustained release technology, aiming to reduce re-applications, toxicity, and cost. The present study investigates the development of nanostructured lipid carriers (NLCs) loaded with a mixture of the compounds icaridin (synthetic) and geraniol (natural), incorporated in cellulose hydrogel. The NLCs were prepared by the emulsion/solvent evaporation method and were submitted to physicochemical characterization as a function of time (at 0, 15, 30, and 60 days). The prepared system presented an average particle size of 252 ± 5 nm, with encapsulation efficiency of 99% for both of the active compounds. The stability profile revealed that the change of particle size was not significant (p > 0.05), indicating high stability of the system. Rheological characterization of the gels containing NLCs showed that all formulations presented pseudoplastic and thixotropic behavior, providing satisfactory spreadability and long shelf life. Morphological analysis using atomic force microscopy (AFM) revealed the presence of spherical nanoparticles (252 ± 5 nm) in the cellulose gel matrix. Permeation assays showed low fluxes of the active agents through a Strat-M® membrane, with low permeability coefficients, indicating that the repellents would be retained on the surface to which they are applied, rather than permeating the tissue. These findings open perspectives for the use of hybrid formulations consisting of gels containing nanoparticles that incorporate repellents effective against arthropod-borne virus. These systems could potentially provide improvements considering the issues of effectiveness, toxicity, and safety.
Collapse
Affiliation(s)
| | | | - Jhones L de Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Efficacy and safety of repellents marketed in Brazil against bites from Aedes aegypti and Aedes albopictus: A systematic review. Travel Med Infect Dis 2021; 44:102179. [PMID: 34687870 DOI: 10.1016/j.tmaid.2021.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/28/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Dengue, Zika and Chikungunya viruses represent a serious public health problem. No evidence is available on the efficacy of repellents commercially available in Brazil. This systematic review assessed the efficacy and safety of products containing repellents commercially available in Brazil for protection against bites from Aedes aegypti and Aedes albopictus. METHODS We performed a systematic review using the CENTRAL, MEDLINE, EMBASE, CINAHL, Web of Science, AMED, LILACS and Scopus databases. Randomized clinical trials and non-randomized clinical trials comparing topical repellent products registered with the Brazilian Health Surveillance Agency were included. Main outcomes of interest investigated were adverse effects, percentage repellency and protection time against bites. Pairs of reviewers selected the studies, extracted the data and evaluated the risk of bias. RESULTS Sixteen studies were included. No adverse effects were reported by the studies. Against Ae. aegypti: protection time using DEET (10% and 20%-spray) was similar to IR3535 (10% and 20%-spray) and longer than citronella (5%-spray). DEET (25%-solution) had longer protection time than eucalyptus (25%-solution), while DEET (20%-lotion) had longer protection time than citronella (10%-lotion). There was no difference in protection time between herbal repellents. DEET (7% and 15%- spray) had higher percentage repellency compared to both icaridin (7%-spray) and IR3535 (20%-spray). Against Ae. albopictus: DEET (15%-spray) had a similar protection time to icaridin (20%-spray), but longer than citronella (10%-spray). CONCLUSION DEET proved more effective than the other synthetic and natural repellents marketed in Brazil for protecting against bites from the mosquito species investigated. All repellents studied exhibited satisfactory safety profile.
Collapse
|
50
|
Lunguinho ADS, Cardoso MDG, Ferreira VRF, Konig IFM, Gonçalves RRP, Brandão RM, Caetano ARS, Nelson DL, Remedio RN. Acaricidal and repellent activity of the essential oils of Backhousia citriodora, Callistemon viminalis and Cinnamodendron dinisii against Rhipicephalus spp. Vet Parasitol 2021; 300:109594. [PMID: 34678675 DOI: 10.1016/j.vetpar.2021.109594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
The ticks Rhipicephalus microplus and Rhipicephalus sanguineus sensu lato (s.l) are of great importance to agriculture, veterinary medicine and public health. Due to a number of problems related to the use of synthetic acaricides, natural products emerge as promising substances for alternative tick control. In the present study, essential oils of Backhousia citriodora, Callistemon viminalis and Cinnamodendron dinisii were extracted by hydrodistillation, characterized by GC-MS and GC-FID and biologically evaluated for acaricidal activity against R. microplus and repellent activity against R. sanguineus s.l. Inhibition of acetylcholinesterase (AChe) by the essential oils was also evaluated. The major constituent of B. citriodora is citral (98.9 %), whereas the essential oil from C. viminalis is rich in 1.8-cineole (78.1 %), α-pinene (12.5 %) and limonene (3.36 %), and that from C. dinisii contains α-pinene (30.8 %), β-pinene (12.5 %) and sabinene (11.3 %) as the principal constituents. The median lethal concentrations (LC 50) estimated for the essential oils on engorged R. microplus females were 3.276 μL.mL-1 for B. citriodora, 8.195 μL.mL-1 for C. dinisii and 8.936 μL.mL-1 for C. viminalis. The essential oil of B. citriodora showed the best repellent effect against unfed R. sanguineus s.l. adults, demonstrating repellent action up to 3 h after application. The essential oil of C. viminalis was able to reduce AChe activity, with an average inhibitory concentration (IC 50) of 0.33 μg mL-1. Thus, these oils can be considered as sources of bioactive compounds for tick control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Lee Nelson
- Pro-Rectory of Research and Graduate Studies, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, Brazil
| | | |
Collapse
|