1
|
Guo K, van den Beucken T. Advances in drug-induced liver injury research: in vitro models, mechanisms, omics and gene modulation techniques. Cell Biosci 2024; 14:134. [PMID: 39488681 PMCID: PMC11531151 DOI: 10.1186/s13578-024-01317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Drug-induced liver injury (DILI) refers to drug-mediated damage to the structure and function of the liver, ranging from mild elevation of liver enzymes to severe hepatic insufficiency, and in some cases, progressing to liver failure. The mechanisms and clinical symptoms of DILI are diverse due to the varying combination of drugs, making clinical treatment and prevention complex. DILI has significant public health implications and is the primary reason for post-marketing drug withdrawals. The search for reliable preclinical models and validated biomarkers to predict and investigate DILI can contribute to a more comprehensive understanding of adverse effects and drug safety. In this review, we examine the progress of research on DILI, enumerate in vitro models with potential benefits, and highlight cellular molecular perturbations that may serve as biomarkers. Additionally, we discuss omics approaches frequently used to gather comprehensive datasets on molecular events in response to drug exposure. Finally, three commonly used gene modulation techniques are described, highlighting their application in identifying causal relationships in DILI. Altogether, this review provides a thorough overview of ongoing work and approaches in the field of DILI.
Collapse
Affiliation(s)
- Kaidi Guo
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands.
| | - Twan van den Beucken
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands
| |
Collapse
|
2
|
Dashti M, Malik MZ, Al-Matrouk A, Bhatti S, Nizam R, Jacob S, Al-Mulla F, Thanaraj TA. HLA-B allele frequencies and implications for pharmacogenetics in the Kuwaiti population. Front Pharmacol 2024; 15:1423636. [PMID: 39464636 PMCID: PMC11502445 DOI: 10.3389/fphar.2024.1423636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Objective: This study explores the frequency of human leukocyte antigen (HLA) genes, particularly HLA-B alleles, within the Kuwaiti population. We aim to identify alleles with known associations to adverse drug reactions (ADRs) based on existing literature. We focus on the HLA-B gene due to its well-documented associations with severe cutaneous adverse reactions and the extensive pharmacogenetic research supporting its clinical relevance. Methods We utilized the HLA-HD tool to extract, annotate, and analyse HLA-B alleles from the exome data of 561 Kuwaiti individuals, sequenced on the Illumina HiSeq platform. HLA typing was conducted using the HLA-HD tool with a reference panel from the IPD-IMGT/HLA database. The major HLA-B pharmacogenetic markers were obtained from the HLA Adverse Drug Reaction Database, focusing on alleles with significant ADR associations in published literature. Results The distribution of HLA-B alleles in the Kuwaiti population revealed that the most frequent alleles were HLA-B*50:01 (10.52%), HLA-B*51:01 (9.89%), HLA-B*08:01 (6.06%), HLA-B*52:01 (4.55%), HLA-B*18:01 (3.92%), and HLA-B*41:01 (3.65%). Notably, alleles HLA-B*13:01, HLA-B*13:02, HLA-B*15:02, HLA-B*15:13, HLA-B*35:02, HLA-B*35:05, HLA-B*38:01, HLA-B*40:02, HLA-B*44:03, HLA-B*51:01, HLA-B*57:01 and HLA-B*58:01 were identified with known associations to various ADRs. For example, HLA-B*51:01 was associated with clindamycin, phenobarbital, and phenytoin, and was found in 18% of individuals. Conclusion Our study enriches the regional genetic landscape by delineating HLA-B allele variations within Kuwait and across the Arabian Peninsula. This genetic insight, along with the identification of markers previously linked to drug hypersensitivity, provides a foundation for future pharmacogenetic research and potential personalized medicine strategies in the region.
Collapse
Affiliation(s)
- Mohammed Dashti
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Md Zubbair Malik
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdullah Al-Matrouk
- Narcotic and Psychotropic Department, Ministry of Interior, Farwaniya, Kuwait
| | - Saeeda Bhatti
- College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sindhu Jacob
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | |
Collapse
|
3
|
Chen VL, Rockey DC, Bjornsson ES, Barnhart H, Hoofnagle JH. Incidence of Idiosyncratic Drug-Induced Liver Injury Caused by Prescription Drugs. Drug Saf 2024:10.1007/s40264-024-01486-6. [PMID: 39317916 DOI: 10.1007/s40264-024-01486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The incidence of drug-induced liver injury (DILI) is not known for most prescription medications. We aimed to estimate the incidence of DILI for commonly prescribed outpatient drugs. METHODS To establish a baseline estimate of DILI incidence, we used the estimated incidence (EI) of amoxicillin/clavulanate DILI from a previous population-based study in Iceland. This was combined with the multicenter prospective DILI Network (DILIN) cohort and the US population-based Medical Expenditure Panel Survey (MEPS). From 2005 to 2019, prescription drugs with at least five bona fide DILIN cases and data from at least 10 of the 15 years from MEPS during that timeframe were included. The EI for 'drug A' was calculated as follows: EI ( drug A ) = EI AC × # DILIN cases of drug A # annual new prescriptions of drug A × # annual new prescriptions of AC # DILIN cases of AC RESULTS: In total, 30 drugs met the inclusion criteria, of which 11 were antibiotics, 4 were antiepileptic drugs (AEDs), 4 were statins, and 11 were other drug types. The highest EI was seen with azathioprine and older AEDs, with one DILI case per 349-2329 new prescriptions. The EI of antibiotics ranged greatly, with the highest risk seen for minocycline, amoxicillin/clavulanate, and nitrofurantoin (approximately 1:1000-2400 new prescriptions), and lowest risk for clindamycin, doxycycline, azithromycin, and amoxicillin (approximately 1:40,000-170,000 new prescriptions). The EI for commonly prescribed statins was approximately 1:10,000-50,000. Important medication classes with > 5 million new prescriptions from 2005 to 2019 but fewer than five DILIN cases included β-blockers, thiazide diuretics, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, selective serotonin reuptake inhibitors, and metformin, which presumably have very low DILI incidence. CONCLUSIONS The highest EI was found for azathioprine, older antiepileptics, and minocycline. In contrast, many widely used drugs are rare causes of DILI. These findings may help clinicians better weigh potential benefits of medications against hepatotoxicity risk.
Collapse
Affiliation(s)
- Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan School of Medicine, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Don C Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, SC, USA
| | - Einar S Bjornsson
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Huiman Barnhart
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Jay H Hoofnagle
- Liver Disease Research Branch, Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Conlon C, Li YJ, Ahmad J, Barnhart H, Fontana RJ, Ghabril M, Hayashi PH, Kleiner DE, Lee WM, Navarro V, Odin JA, Phillips EJ, Stolz A, Vuppalanchi R, Halegoua-DeMarzio D. Clinical characteristics and HLA associations of azithromycin-induced liver injury. Aliment Pharmacol Ther 2024; 60:787-795. [PMID: 38988034 DOI: 10.1111/apt.18160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Azithromycin (AZ) is a widely used antibiotic. The aim of this study was to characterise the clinical features, outcomes, and HLA association in patients with drug-induced liver injury (DILI) due to AZ. METHODS The clinical characteristics of individuals with definite, highly likely, or probable AZ-DILI enrolled in the US Drug-Induced Liver Injury Network (DILIN) were reviewed. HLA typing was performed using an Illumina MiSeq platform. The allele frequency (AF) of AZ-DILI cases was compared to population controls, other DILI cases, and other antibiotic-associated DILI cases. RESULTS Thirty cases (4 definite, 14 highly likely, 12 probable) of AZ-DILI were enrolled between 2004 and 2022 with a median age of 46 years, 83% white, and 60% female. Median duration of AZ treatment was 5 days. Latency was 18.5 days. 73% were jaundiced at presentation. The injury pattern was hepatocellular in 60%, cholestatic in 27%, and mixed in 3%. Ten cases (33%) were severe or fatal; 90% of these were hepatocellular. Two patients required liver transplantation. One patient with chronic liver disease died of hepatic failure. Chronic liver injury developed in 17%, of which 80% had hepatocellular injury at onset. HLA-DQA1*03:01 was significantly more common in AZ-DILI versus population controls and amoxicillin-clavulanate DILI cases (AF: 0.29 vs. 0.11, p = 0.001 and 0.002, respectively). CONCLUSION Azithromycin therapy can lead to rapid onset of severe hepatic morbidity and mortality in adult and paediatric populations. Hepatocellular injury and younger age were associated with worse outcomes. HLA-DQA1*03:01 was significantly more common in AZ cases compared to controls.
Collapse
Affiliation(s)
- Caroline Conlon
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Yi-Ju Li
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Jawad Ahmad
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Huiman Barnhart
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | | | - Marwan Ghabril
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paul H Hayashi
- Division of Hepatology and Nutrition, Food and Drug Administration, Silver Spring, Maryland, USA
| | - David E Kleiner
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William M Lee
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Victor Navarro
- Jefferson Health, Einstein Medical Center, Philadelphia, Pennsylvania, USA
| | - Joseph A Odin
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Andrew Stolz
- University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Raj Vuppalanchi
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dina Halegoua-DeMarzio
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Bonkovsky HL, Ghabril M, Nicoletti P, Dellinger A, Fontana RJ, Barnhart H, Gu J, Daly AK, Aithal GP, Phillips EJ, Kleiner DE. Drug-induced liver injury (DILI) ascribed to non-steroidal anti-inflammatory drugs (NSAIDs) in the USA-Update with genetic correlations. Liver Int 2024; 44:1409-1421. [PMID: 38451034 DOI: 10.1111/liv.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE To describe patients with NSAID-DILI, including genetic factors associated with idiosyncratic DILI. METHODS In DILIN, subjects with presumed DILI are enrolled and followed for at least 6 months. Causality is adjudicated by a Delphic approach. HLA sequencing of multiethnic NSAID-DILI patients and HLA allele imputation of matching population controls were performed following overall, class and drug-based association analysis. Significant results were tested in a non-Hispanic White (NHW) case-control replication cohort. RESULTS Between September 2004 and March 2022, causality was adjudicated in 2498, and 55 (41 [75%] women) were assessed as likely due to NSAIDs. Median age at onset was 55 y (range 22-83 y). Diclofenac was the causative drug in 29, celecoxib in 7, ibuprofen in 5, etodolac and meloxicam each in 4. Except for meloxicam and oxaprozin (n = 2), the liver injury was hepatocellular with median R 15-25. HLA-DRB1*04:03 and HLA-B*35:03 were significantly more frequent in NSAID-DILI patients than in non-NSAID DILI controls. Interestingly, 85% of the HLA-DRB1*04:03 carriers developed DILI due to the use of acetic acid derivative NSAIDs, supporting the hypothesis that HLA-DRB1*04:03 could be a drug and/or class risk factor. HLA-B*35:03 but not HLA-DRB1*04:03 association was confirmed in the independent NHW replication cohort, which was largely driven by diclofenac. CONCLUSIONS Despite prevalent use, NSAID-DILI is infrequent in the United States. Diclofenac is the most commonly implicated, and adherence to warnings of risk and close observation are recommended. The increased frequency of HLA-B*35:03 and DRB1*04:03, driven by diclofenac, suggests the importance of immune-mediated responses.
Collapse
Affiliation(s)
- Herbert L Bonkovsky
- Department of Internal Medicine, Wake Forest University School of Medicine and Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina, USA
| | - Marwan Ghabril
- Department of Internal Medicine, Indiana University School of Medicine and IU Hospital, Indianapolis, Indiana, USA
| | - Paola Nicoletti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew Dellinger
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Robert J Fontana
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Huiman Barnhart
- Department of Biostatistics and Bioinformatics, Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Jiezhun Gu
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospital NHS Trust, University of Nottingham, Nottingham, UK
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David E Kleiner
- Department of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Ma J, Björnsson ES, Chalasani N. Hepatotoxicity of Antibiotics and Antifungals and Their Safe Use in Hepatic Impairment. Semin Liver Dis 2024; 44:239-257. [PMID: 38740371 DOI: 10.1055/s-0044-1787062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a rare and unpredictable form of hepatotoxicity. While its clinical course is usually benign, cases leading to liver transplantation or death can occur. Based on modern prospective registries, antimicrobials including antibiotics and antifungals are frequently implicated as common causes. Amoxicillin-clavulanate ranks as the most common cause for DILI in the Western World. Although the absolute risk of hepatotoxicity of these agents is low, as their usage is quite high, it is not uncommon for practitioners to encounter liver injury following the initiation of antibiotic or antifungal therapy. In this review article, mechanisms of hepatoxicity are presented. The adverse hepatic effects of well-established antibiotic and antifungal agents are described, including their frequency, severity, and pattern of injury and their HLA risks. We also review the drug labeling and prescription guidance from regulatory bodies, with a focus on individuals with hepatic impairment.
Collapse
Affiliation(s)
- J Ma
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| | - E S Björnsson
- Department of Gastroenterology, Landspitali University Hospital Reykjavik, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - N Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
7
|
Teschke R, Danan G. Human Leucocyte Antigen Genetics in Idiosyncratic Drug-Induced Liver Injury with Evidence Based on the Roussel Uclaf Causality Assessment Method. MEDICINES (BASEL, SWITZERLAND) 2024; 11:9. [PMID: 38667507 PMCID: PMC11052120 DOI: 10.3390/medicines11040009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
The human leucocyte antigen (HLA) allele variability was studied in cohorts of patients with idiosyncratic drug-induced liver injury (iDILI). Some reports showed an association between HLA genetics and iDILI, proposing HLA alleles as a potential risk factor for the liver injury. However, the strength of such assumptions heavily depends on the quality of the iDILI diagnosis, calling for a thorough analysis. Using the PubMed database and Google Science, a total of 25 reports of case series or single cases were retrieved using the terms HLA genes and iDILI. It turned out that in 10/25 reports (40%), HLA genetics were determined in iDILI cases, for which no causality assessment method (CAM) was used or a non-validated tool was applied, meaning the findings were based on subjective opinion, providing disputable results and hence not scoring individual key elements. By contrast, in most iDILI reports (60%), the Roussel Uclaf Causality Assessment Method (RUCAM) was applied, which is the diagnostic algorithm preferred worldwide to assess causality in iDILI cases and represents a quantitative, objective tool that has been well validated by both internal and external DILI experts. The RUCAM provided evidence-based results concerning liver injury by 1 drug class (antituberculotics + antiretrovirals) and 19 different drugs, comprising 900 iDILI cases. Among the top-ranking drugs were amoxicillin-clavulanate (290 cases, HLA A*02:01 or HLA A*30:02), followed by flucloxacillin (255 cases, HLA B*57:01), trimethoprim-sulfamethoxazole (86 cases, HLA B*14:01 or HLA B*14:02), methimazole (40 cases, HLA C*03:02), carbamazepine (29 cases, HLA A*31:01), and nitrofurantoin (26 cases, HLA A*33:01). In conclusion, the HLA genetics in 900 idiosyncratic drug-induced liver injury cases with evidence based on the RUCAM are available for studying the mechanistic steps leading to the injury, including metabolic factors through cytochrome P450 isoforms and processes that activate the innate immune system to the adaptive immune system.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, Rue Des Ormeaux, 75020 Paris, France;
| |
Collapse
|
8
|
Principi N, Petropulacos K, Esposito S. Genetic Variations and Antibiotic-Related Adverse Events. Pharmaceuticals (Basel) 2024; 17:331. [PMID: 38543117 PMCID: PMC10974439 DOI: 10.3390/ph17030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 11/12/2024] Open
Abstract
Antibiotic-related adverse events are common in both adults and children, and knowledge of the factors that favor the development of antibiotic-related adverse events is essential to limit their occurrence and severity. Genetics can condition the development of antibiotic-related adverse events, and the screening of patients with supposed or demonstrated specific genetic mutations may reduce drug-related adverse events. This narrative review discusses which genetic variations may influence the risk of antibiotic-related adverse events and which conclusions can be applied to clinical practice. An analysis of the literature showed that defined associations between genetic variations and specific adverse events are very few and that, at the moment, none of them have led to the implementation of a systematic screening process for patients that must be treated with a given antibiotic in order to select those at risk of specific adverse events. On the other hand, in most of the cases, more than one variation is implicated in the determination of adverse events, and this can be a limitation in planning a systematic screening. Moreover, presently, the methods used to establish whether a patient carries a "dangerous" genetic mutation require too much time and waiting for the result of the test can be deleterious for those patients urgently requiring therapy. Further studies are needed to definitively confirm which genetic variations are responsible for an increased risk of a well-defined adverse event.
Collapse
Affiliation(s)
| | | | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
9
|
Ahmed T, Ahmad J. Recent advances in the diagnosis of drug-induced liver injury. World J Hepatol 2024; 16:186-192. [PMID: 38495272 PMCID: PMC10941738 DOI: 10.4254/wjh.v16.i2.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/03/2024] [Accepted: 02/03/2024] [Indexed: 02/27/2024] Open
Abstract
Drug-induced liver injury (DILI) is a major problem in the United States, commonly leading to hospital admission. Diagnosing DILI is difficult as it is a diagnosis of exclusion requiring a temporal relationship between drug exposure and liver injury and a thorough work up for other causes. In addition, DILI has a very variable clinical and histologic presentation that can mimic many different etiologies of liver disease. Objective scoring systems can assess the probability that a drug caused the liver injury but liver biopsy findings are not part of the criteria used in these systems. This review will address some of the recent updates to the scoring systems and the role of liver biopsy in the diagnosis of DILI.
Collapse
Affiliation(s)
- Taqwa Ahmed
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jawad Ahmad
- Department of Recanati-Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
10
|
Dara L, Ghabril M, Phillips E, Kleiner D, Chalasani N. A 68-Year-Old Woman With Unexplained Liver Enzyme Elevation and Active Chronic Hepatitis: Beware of Drug-Induced Autoimmune-Like Hepatitis. Gastroenterology 2024; 166:259-266.e1. [PMID: 37797776 DOI: 10.1053/j.gastro.2023.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Affiliation(s)
- Lily Dara
- Division of GI and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Marwan Ghabril
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elizabeth Phillips
- Center for Drug Interactions and Immunology, Division of Infectious Diseases, Department of Medicine, Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
11
|
Krantz MS, Marks ME, Phillips EJ. The clinical application of genetic testing in DILI, are we there yet? Clin Liver Dis (Hoboken) 2024; 23:e0218. [PMID: 38872778 PMCID: PMC11168851 DOI: 10.1097/cld.0000000000000218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/15/2024] Open
Affiliation(s)
- Matthew S. Krantz
- Division of Allergy, Department of Medicine, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madeline E. Marks
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth J. Phillips
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
12
|
Ogese MO, Lister A, Farrell L, Gardner J, Kafu L, Ali SE, Gibson A, Hillegas A, Meng X, Pirmohamed M, Williams GS, Sakatis MZ, Naisbitt DJ. A blinded in vitro analysis of the intrinsic immunogenicity of hepatotoxic drugs: implications for preclinical risk assessment. Toxicol Sci 2023; 197:38-52. [PMID: 37788119 PMCID: PMC10734620 DOI: 10.1093/toxsci/kfad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
In vitro preclinical drug-induced liver injury (DILI) risk assessment relies largely on the use of hepatocytes to measure drug-specific changes in cell function or viability. Unfortunately, this does not provide indications toward the immunogenicity of drugs and/or the likelihood of idiosyncratic reactions in the clinic. This is because the molecular initiating event in immune DILI is an interaction of the drug-derived antigen with MHC proteins and the T-cell receptor. This study utilized immune cells from drug-naïve donors, recently established immune cell coculture systems and blinded compounds with and without DILI liabilities to determine whether these new methods offer an improvement over established assessment methods for the prediction of immune-mediated DILI. Ten blinded test compounds (6 with known DILI liabilities; 4 with lower DILI liabilities) and 5 training compounds, with known T-cell-mediated immune reactions in patients, were investigated. Naïve T-cells were activated with 4/5 of the training compounds (nitroso sulfamethoxazole, vancomycin, Bandrowski's base, and carbamazepine) and clones derived from the priming assays were activated with drug in a dose-dependent manner. The test compounds with DILI liabilities did not stimulate T-cell proliferative responses during dendritic cell-T-cell coculture; however, CD4+ clones displaying reactivity were detected toward 2 compounds (ciprofloxacin and erythromycin) with known liabilities. Drug-responsive T-cells were not detected with the compounds with lower DILI liabilities. This study provides compelling evidence that assessment of intrinsic drug immunogenicity, although complex, can provide valuable information regarding immune liabilities of some compounds prior to clinical studies or when immune reactions are observed in patients.
Collapse
Affiliation(s)
- Monday O Ogese
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
- Development Science, UCB Biopharma, Slough, Berkshire SL1 3WE, UK
| | - Adam Lister
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Liam Farrell
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Joshua Gardner
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Laila Kafu
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Serat-E Ali
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Aimee Hillegas
- Immunological Toxicology, In Vitro/In Vivo Translation, GSK, Collegeville, Pennsylvania, USA
| | - Xiaoli Meng
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Geoffrey S Williams
- Immunological Toxicology, In Vitro/In Vivo Translation, GSK, David Jack Centre for R&D, Ware, Hertfordshire SG12 0DP, UK
| | - Melanie Z Sakatis
- Global Investigative Safety, In Vitro/In Vivo Translation, GSK, David Jack Centre for R&D, Ware, Hertfordshire SG12 0DP, UK
| | - Dean J Naisbitt
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| |
Collapse
|
13
|
Huang K, Liu X, Lv Z, Zhang D, Zhou Y, Lin Z, Guo J. MMP9-Responsive Graphene Oxide Quantum Dot-Based Nano-in-Micro Drug Delivery System for Combinatorial Therapy of Choroidal Neovascularization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207335. [PMID: 36871144 DOI: 10.1002/smll.202207335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Age-related macular degeneration (AMD), especially wet AMD with choroidal neovascularization (CNV), commonly causes blindness in older patients and disruption of the choroid followed by second-wave injuries, including chronic inflammation, oxidative stress, and excessive matrix metalloproteinase 9 (MMP9) expression. Increased macrophage infiltrate in parallel with microglial activation and MMP9 overexpression on CNV lesions is shown to contribute to the inflammatory process and then enhance pathological ocular angiogenesis. Graphene oxide quantum dots (GOQDs), as natural antioxidants, exert anti-inflammatory effects and minocycline is a specific macrophage/microglial inhibitor that can suppress both macrophage/microglial activation and MMP9 activity. Herein, an MMP9-responsive GOQD-based minocycline-loaded nano-in-micro drug delivery system (C18PGM) is developed by chemically bonding GOQDs to an octadecyl-modified peptide sequence (C18-GVFHQTVS, C18P) that can be specifically cleaved by MMP9. Using a laser-induced CNV mouse model, the prepared C18PGM shows significant MMP9 inhibitory activity and anti-inflammatory action followed by antiangiogenic effects. Moreover, C18PGM combined with antivascular endothelial growth factor antibody bevacizumab markedly increases the antiangiogenesis effect by interfering with the "inflammation-MMP9-angiogenesis" cascade. The prepared C18PGM shows a good safety profile and no obvious ophthalmic or systemic side effects. The results taken together suggest that C18PGM is an effective and novel strategy for combinatorial therapy of CNV.
Collapse
Affiliation(s)
- Keke Huang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Xin Liu
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Ziru Lv
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Di Zhang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Yuling Zhou
- Department of ophthalmology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435000, P. R. China
| | - Zhiqing Lin
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Juan Guo
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| |
Collapse
|
14
|
De Re V, Tornesello ML, Racanelli V, Prete M, Steffan A. Non-Classical HLA Class 1b and Hepatocellular Carcinoma. Biomedicines 2023; 11:1672. [PMID: 37371767 DOI: 10.3390/biomedicines11061672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131 Naples, Italy
| | - Vito Racanelli
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Marcella Prete
- Department of Interdisciplinary Medicine, School of Medicine, 'Aldo Moro' University of Bari, 70124 Bari, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| |
Collapse
|
15
|
Singh S, Kumar PVSNK, Kumar JP, Tomo S, Yadav D, Sharma P, Rao M, Banerjee M. Genetic and Epigenetic Basis of Drug-Induced Liver Injury. Semin Liver Dis 2023; 43:163-175. [PMID: 37225145 DOI: 10.1055/a-2097-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Drug-induced liver injury (DILI) is a rare but severe adverse drug reaction seen in pharmacotherapy and a major cause of postmarketing drug withdrawals. Advances in genome-wide studies indicate that genetic and epigenetic diversity can lead to inter-individual differences in drug response and toxicity. It is necessary to identify how the genetic variations, in the presence of environmental factors, can contribute to development and progression of DILI. Studies on microRNA, histone modification, DNA methylation, and single nucleotide polymorphisms related to DILI were retrieved from databases and were analyzed for the current research and updated to develop this narrative review. We have compiled some of the major genetic, epigenetic, and pharmacogenetic factors leading to DILI. Many validated genetic risk factors of DILI, such as variants of drug-metabolizing enzymes, HLA alleles, and some transporters were identified. In conclusion, these studies provide useful information in risk alleles identification and on implementation of personalized medicine.
Collapse
Affiliation(s)
- Snigdha Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - P V S N Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - J Pradeep Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
16
|
He Z, Lam K, Zhao W, Yang S, Li Y, Mo J, Gao S, Liang D, Qiu K, Huang M, Wu J. SGLT-2 inhibitors and euglycemic diabetic ketoacidosis/diabetic ketoacidosis in FAERS: a pharmacovigilance assessment. Acta Diabetol 2023; 60:401-411. [PMID: 36576563 DOI: 10.1007/s00592-022-02015-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022]
Abstract
AIMS To investigate the main feature and the association between euglycemic diabetic ketoacidosis (euDKA) /diabetic ketoacidosis (DKA) and sodium-dependent glucose transporters 2 inhibitors (SGLT-2i) from the FDA adverse event reporting system (FAERS). METHODS Cases of SGLT-2i-associated with euDKA/DKA were extracted from the FAERS database and compared with the reports for other hypoglycemia agents (ATC10 class). Disproportionality analyses used the reporting odds ratio (ROR) and information components (IC). The lower limit of the IC 95% credibility interval for IC > 0 is considered a reported signal, with at least 3 cases. RESULTS A total of 10,195 cases of euDKA (n = 1680) and DKA (n = 8515) associated with SGLT-2i were identified from the FAERS. The SGLT-2i was associated with higher reporting of euDKA and DKA compared to other hypoglycemia agents (ROR = 16.69 [95% CI 14.89-18.70], IC = 3.27 [95% CI 2.91-3.66] for euDKA; ROR = 16.44 [95% CI 15.72-17.20], IC = 3.19 [95% CI 3.05-3.34] for DKA). In available data, the median onset time of euDKA/DKA was 31 days, and canagliflozin had the longest onset time (96.5 days for euDKA and 75 days for DKA) compared with dapagliflozin and empagliflozin (p < 0.05). Male patients predominate in euDKA (51.9%), and female patients predominate in DKA (53.7%). Most patients discontinue the treatment (95.5% for euDKA, 93.9% for DKA), and approximately 49.0% (n = 3658) of patients had symptomatic remission after discontinuation of SGLT-2i, and 2.3% (n = 173) of patients had no remission. About 75.6% (n = 6126) of patients need hospitalization after euDKA/DKA. CONCLUSIONS Post-marketing data showed that SGLT-2i was significantly associated with higher reporting of euDKA/DKA. Although euDKA/DKA is rare, clinicians should be aware of SGLT-2i-associated euDKA/DKA events.
Collapse
Affiliation(s)
- Zhichao He
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, People's Republic of China
| | - Kakei Lam
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 511400, People's Republic of China
| | - Wenxia Zhao
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, People's Republic of China
| | - Shan Yang
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, People's Republic of China
| | - Yu Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 511400, People's Republic of China
| | - Jiayao Mo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 511400, People's Republic of China
| | - Siyuan Gao
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, People's Republic of China
| | - Dan Liang
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, People's Republic of China
| | - Kaifeng Qiu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, People's Republic of China.
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 Waihuan East Road, Guangzhou, 511400, People's Republic of China.
| | - Junyan Wu
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, People's Republic of China.
| |
Collapse
|
17
|
Fontana RJ, Liou I, Reuben A, Suzuki A, Fiel MI, Lee W, Navarro V. AASLD practice guidance on drug, herbal, and dietary supplement-induced liver injury. Hepatology 2023; 77:1036-1065. [PMID: 35899384 PMCID: PMC9936988 DOI: 10.1002/hep.32689] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Robert J. Fontana
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Iris Liou
- University of Washington, Seattle, Washington, USA
| | - Adrian Reuben
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ayako Suzuki
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - M. Isabel Fiel
- Department of Pathology, Mount Sinai School of Medicine, New York City, New York, USA
| | - William Lee
- Division of Gastroenterology, University of Texas Southwestern, Dallas, Texas, USA
| | - Victor Navarro
- Department of Medicine, Einstein Healthcare Network, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Relevance of Pharmacogenomics to the Safe Use of Antimicrobials. Antibiotics (Basel) 2023; 12:antibiotics12030425. [PMID: 36978292 PMCID: PMC10044203 DOI: 10.3390/antibiotics12030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
There has been widespread implementation of pharmacogenomic testing to inform drug prescribing in medical specialties such as oncology and cardiology. Progress in using pharmacogenomic tests when prescribing antimicrobials has been more limited, though a relatively large number of pharmacogenomic studies on aspects such as idiosyncratic adverse drug reactions have now been performed for this drug class. Currently, there are recommendations in place from either National Regulatory Agencies and/or specialist Pharmacogenomics Advisory Groups concerning genotyping for specific variants in MT-RNR1 and CYP2C19 before prescribing aminoglycosides and voriconazole, respectively. Numerous additional pharmacogenomic associations have been reported concerning antimicrobial-related idiosyncratic adverse drug reactions, particularly involving specific HLA alleles, but, to date, the cost-effectiveness of genotyping prior to prescription has not been confirmed. Polygenic risk score determination has been investigated to a more limited extent but currently suffers from important limitations. Despite limited progress to date, the future widespread adoption of preemptive genotyping and genome sequencing may provide pharmacogenomic data to prescribers that can be used to inform prescribing and increase the safe use of antimicrobials.
Collapse
|
19
|
Vuppalanchi R, Ghabril M. Review article: clinical assessment of suspected drug-induced liver injury and its management. Aliment Pharmacol Ther 2022; 56:1516-1531. [PMID: 36282208 DOI: 10.1111/apt.17246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 09/25/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND Idisyncratic drug-induced liver injury (DILI) is a rare instance of liver injury after exposure to an otherwise safe drug or herbal or dietary supplement. DILI can be associated with significant morbidity and mortality. Furthermore, it is an important consideration in drug development due to safety concerns. AIMS AND METHODS To highlight pearls and pitfalls to aid clinicians in diagnosing DILI and surmising the management options. We also share the best practices from personal insights developed from decades long participation in the causality assessment committee meetings of the DILI Network. RESULTS DILI lacks a diagnostic test and is currently diagnosed through a process of exclusion of competing aetiologies of liver injury. This requires a high degree of suspicion to consider the possibility of DILI, skill in ruling out the obvious and less obvious competing liver insults, and an understanding of the expected phenotypes of DILI. The facets of DILI cover multiple aspects, including the latency, liver injury pattern, course of injury, and associated autoimmune or immuno-allergic features. Care for patients with DILI is geared towards stopping the offending drug and symptom management that include the use of corticosteroids in select cases. CONCLUSION The diagnosis of DILI is challenging and is primarily made through a carefully crafted patient interview, temporal relationship with the implicated drug or supplement, and exclusion of competing aetiology. LiverTox is a useful resource for clinicians to review the literature and recognise the likelihood of the implicated agent in causing DILI.
Collapse
Affiliation(s)
- Raj Vuppalanchi
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marwan Ghabril
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
20
|
Thomson P, Hammond S, Naisbitt DJ. Pathology of drug hypersensitivity reactions and mechanisms of immune tolerance. Clin Exp Allergy 2022; 52:1379-1390. [PMID: 36177544 DOI: 10.1111/cea.14235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 01/26/2023]
Abstract
Immune-mediated type IV adverse drug reactions are idiosyncratic in nature, generally not related to the primary or secondary pharmacology of the drug. Due to their complex nature and rarity, these iatrogenic reactions are seldom predicted or encountered during preclinical/early clinical development stages, and often precipitate upon exposure to wider populations (i.e. phase III onwards). They confer a burden on the healthcare sector in both a clinical and financial sense presenting a severe impediment to the drug discovery and development process. Research over the past 50 years has improved our understanding of these reactions markedly as both in vitro and in vivo studies have placed the role of the immune system, in particular; drug-responsive T cells, firmly in the spotlight as the mediators of these reactions. Indeed, the role of different populations of T cells in adverse events and the interaction of drug molecules with HLA proteins expressed on the surface of antigen-presenting cells is of considerable interest. Herein, this review examines the pathways of immune-mediated adverse events including the various T cell subtypes implicated and the mechanisms of T cell activation. Additionally, we address the enigma of immunological tolerance and explore the role tolerance plays in determination of susceptibility to such adverse events even in individuals carrying immunogenic liabilities.
Collapse
Affiliation(s)
- Paul Thomson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Sean Hammond
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK.,ApconiX, Alderley Park, Alderley Edge, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Li Y, Deshpande P, Chopra A, Choo L, Gibson A, Phillips EJ. A low-cost, sensitive and specific PCR-based tool for rapid clinical detection of HLA-B*35 alleles associated with delayed drug hypersensitivity reactions. HLA 2022; 100:610-616. [PMID: 35968750 PMCID: PMC9804599 DOI: 10.1111/tan.14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 08/12/2022] [Indexed: 01/07/2023]
Abstract
HLA (HLA) alleles are risk factors for CD8+ T-cell-mediated drug hypersensitivity reactions. However, as most HLA associations are incompletely predictive and/or involve risk alleles at low frequency, costly sequence-based typing can elude an economically productive cost: benefit ratio for clinical validation studies and diagnostic and/or preventative screening. Hence rapid and low-cost detection assays are now required, both for single alleles but also across risk loci associated with broader multi-disease risk; exemplified by associations with diverse alleles in HLA-B*35, including HLA-B*35:01 and green tea- or co-trimoxazole-induced liver injury. Here, we developed a cost-effective (<$10USD) qPCR assay for rapid (<2.5 h) clinical detection of HLA-B*35 alleles. The assay was validated using 430 DNA samples with previous American society for histocompatibility and immunogenetics-accredited sequence-based high-resolution HLA typing, positively detecting all HLA-B*35 allelic variants in our cohort, and as expected by primer design, the six samples that expressed low-frequency B*78:01. The assay did not result in positive detection for any negative control allele. With expected detection of B*35 and B*78, our assay sensitivity (95% CI, 95.07%-100.00%) and specificity (95% CI, 98.97%-100.00%) of 100% using as low as 10 ng of DNA provides a reliable HLA-B*35 screening tool for clinical validation and HLA-risk-based prevention and diagnostics.
Collapse
Affiliation(s)
- Yueran Li
- Institute for Immunology and Infectious Diseases (IIID)Murdoch UniversityPerthAustralia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases (IIID)Murdoch UniversityPerthAustralia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases (IIID)Murdoch UniversityPerthAustralia,Department of MedicineVanderbilt University Medical CentreNashvilleTennesseeUSA
| | - Linda Choo
- Institute for Immunology and Infectious Diseases (IIID)Murdoch UniversityPerthAustralia
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases (IIID)Murdoch UniversityPerthAustralia
| | - Elizabeth J. Phillips
- Institute for Immunology and Infectious Diseases (IIID)Murdoch UniversityPerthAustralia,Department of MedicineVanderbilt University Medical CentreNashvilleTennesseeUSA
| |
Collapse
|
22
|
Daly AK. Genetics of drug-induced liver injury: Current knowledge and future prospects. Clin Transl Sci 2022; 16:37-42. [PMID: 36194091 PMCID: PMC9841295 DOI: 10.1111/cts.13424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) remains an important clinical problem, both during drug development and the prescription of a range of licensed drugs. Although rare, the consequences are serious. Ongoing studies on genetic risk factors for DILI, especially genomewide association studies, have resulted in the identification of a number of genetic risk factors, including particular HLA alleles and a few non-HLA genes, both immune-related and metabolic. Some non-HLA associations, such as N-acetyltransferase 2 in isoniazid DILI and interferon regulatory factor 6 in interferon-beta DILI are likely to be drug-specific due to the role of the associated gene, but there is also evidence for polygenic susceptibility involving pathways such as oxidative and endoplasmic reticulum stress and mitochondrial function for DILI induced by multiple drugs. Increased knowledge of genetic risk factors should assist in better understanding underlying DILI mechanisms and help improve methods for identifying hepatotoxic drugs early in development. HLA allele-specific T cell proliferation together with in silico prediction of drug binding to specific HLA proteins have confirmed genetic findings for certain common causes of DILI. However, studies in hepatocytes exposed to high drug concentrations suggest toxicity that is not dependent on genotype also occurs. It seems likely that susceptibility to DILI involves several genetic risk factors combining with other factors that affect drug levels. Despite recent progress in detecting genetic risk factors for DILI, low positive predictive values mean that general implementation of genotyping prior to prescription of potentially hepatotoxic drugs is not useful currently.
Collapse
Affiliation(s)
- Ann K. Daly
- Translational & Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
23
|
Li X, Tang J, Mao Y. Incidence and risk factors of drug-induced liver injury. Liver Int 2022; 42:1999-2014. [PMID: 35353431 DOI: 10.1111/liv.15262] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/08/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022]
Abstract
The epidemiology and aetiology of drug-induced liver injury (DILI) vary across different countries and populations. Overall, DILI is rare in the general population but has become more prevalent in hospitalized patients, especially among patients with unexplained liver conditions. In addition, drugs implicated in DILI differ between Western and Eastern countries. Antibiotics are the leading drugs implicated in DILI in the West, whereas traditional Chinese medicine is the primary cause implicated in DILI in the East. The incidence of herbal and dietary supplements-induced hepatotoxicity is increasing globally. Several genetic and nongenetic risk factors associated with DILI have been described in the literature; however, there are no confirmed risk factors for all-cause DILI. Some factors may contribute to the risk of DILI in a drug-specific manner.
Collapse
Affiliation(s)
- Xiaoyun Li
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
24
|
Cui J, Chasman DI, Raychaudhuri S, Xu C, Ridker PM, Solomon DH, Karlson EW. Genetics are not likely to offer clinically useful predictions for elevated liver enzyme levels in patients using low dose methotrexate. Semin Arthritis Rheum 2022; 55:152036. [PMID: 35671649 PMCID: PMC10782828 DOI: 10.1016/j.semarthrit.2022.152036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To examine genetic influence on the risk of elevations in liver function tests (AST and ALT) among patients using low-dose methotrexate (LD-MTX). METHODS We examined data from the LD-MTX arm of a randomized double-blind placebo-controlled trial conducted among subjects without rheumatic disease. Genome wide association studies (GWAS) were performed in subjects of European ancestry to test the association between single nucleotide polymorphisms (SNPs) and the log transformed maximum values of AST, ALT, and dichotomized outcome with AST or ALT > 2 times upper limit of normal (ULN). The association between variants in MTX metabolism candidate genes and the outcomes was also tested. Furthermore, associations between a drug induced liver injury (DILI) weighted genetic risk score (wGRS) and the outcomes were tested, combining 10 SNPs and 11 classical HLA alleles associated with DILI. RESULTS In genome-wide genetic analyses among 1,429 subjects of European ancestry who were randomized to receive LD-MTX, two SNPs reached genome wide significance for association with log transformed maximum ALT. We observed associations between established candidate genes in MTX pharmacogenetics and log transformed maximum AST and ALT, as well as in dichotomized outcome with AST or ALT > 2 x ULN. There was no association between DILI wGRS or candidate variants and AST, ALT, or DILI response. CONCLUSIONS Modest evidence was observed that common variants affected AST and ALT levels in subjects of European ancestry on LD-MTX, but this genetic effect is not useful as a clinical predictor of MTX toxicity.
Collapse
Affiliation(s)
- Jing Cui
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital USA.
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA USA
| | - Chang Xu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital USA
| | - Daniel H Solomon
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital USA
| | - Elizabeth W Karlson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital USA
| |
Collapse
|
25
|
Weber S, Gerbes AL. Challenges and Future of Drug-Induced Liver Injury Research-Laboratory Tests. Int J Mol Sci 2022; 23:ijms23116049. [PMID: 35682731 PMCID: PMC9181520 DOI: 10.3390/ijms23116049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Drug-induced liver injury (DILI) is a rare but potentially severe adverse drug event, which is also a major cause of study cessation and market withdrawal during drug development. Since no acknowledged diagnostic tests are available, DILI diagnosis poses a major challenge both in clinical practice as well as in pharmacovigilance. Differentiation from other liver diseases and the identification of the causative agent in the case of polymedication are the main issues that clinicians and drug developers face in this regard. Thus, efforts have been made to establish diagnostic testing methods and biomarkers in order to safely diagnose DILI and ensure a distinguishment from alternative liver pathologies. This review provides an overview of the diagnostic methods used in differential diagnosis, especially with regards to autoimmune hepatitis (AIH) and drug-induced autoimmune hepatitis (DI-AIH), in vitro causality methods using individual blood samples, biomarkers for diagnosis and severity prediction, as well as experimental predictive models utilized in pre-clinical settings during drug development regimes.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Datasets of well characterized drug or herbal and dietary supplement-associated liver injury has provided a rich resource to identify genetic variants associated with hepatic injury that further supports the role of immune activation in drug-induced liver injury (DILI). RECENT FINDINGS Using DNA microarrays, whole genome sequencing, HLA-restricted DNA sequencing with appropriate ethnically matched population controls have identified HLA-specific genetic variants for drugs or botanical compounds with the same HLA variant associated with different agents. In addition to HLAs, two genes involved with immune signaling were also identified: a functional PTPN22 variant associated with increased DILI risk to any agent or clinical presentation and a variant in ERAP2 hepatic gene expression that trims peptide in preparation for presentation in the HLA cleft increased the risk for DILI in amoxicillin-clavulanate DILI when present with known HLA risk alleles. SUMMARY Variants in HLA and other genes involved in immune regulations further supports immune system activation in DILI. In the future, identifying these variants before exposure may minimize the risk for DILI events, help with assessment of drug causality for causing DILI and with greater understanding of DILI mechanisms, has important implication for future drug development.
Collapse
Affiliation(s)
- Andrew Stolz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
27
|
Hama N, Abe R, Gibson A, Phillips EJ. Drug-Induced Hypersensitivity Syndrome (DIHS)/Drug Reaction With Eosinophilia and Systemic Symptoms (DRESS): Clinical Features and Pathogenesis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1155-1167.e5. [PMID: 35176506 PMCID: PMC9201940 DOI: 10.1016/j.jaip.2022.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 05/16/2023]
Abstract
Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DIHS/DRESS) is one example of a severe delayed T-cell-mediated adverse drug reaction. DIHS/DRESS presents with fever, widespread rash and facial edema, organ involvement, and hematological abnormalities, including eosinophilia and atypical lymphocytosis. DIHS/DRESS is associated with relapse 2 to 4 weeks after acute symptoms, often coinciding with reactivation of prevalent chronic persistent human herpesviruses such as human herpesvirus 6, EBV, and cytomegalovirus. The mortality of DIHS/DRESS is up to 10% and often related to unrecognized myocarditis and cytomegalovirus complications, with longer-term consequences that contribute to morbidity including autoimmune diseases such as thyroiditis. It is essential that all potential drug causes, including all new drugs introduced within the 8 weeks preceding onset of DIHS/DRESS symptoms, are identified. All potential drug culprits, as well as drugs that are closely related structurally to the culprit drug, should be avoided in the future. Systemic corticosteroids have remained the mainstay for the treatment of DIHS/DRESS with internal organ involvement. Steroid-sparing agents, such as cyclosporine, mycophenolate mofetil, and monthly intravenous immune globulin, have been successfully used for treatment, and careful follow-up for cytomegalovirus reactivation is recommended. Strong associations between HLA class I alleles and DIHS/DRESS predisposition include HLA-B∗13:01 and dapsone, HLA-B∗58:01 and allopurinol, and HLA-B∗32:01 and vancomycin. These have opened a pathway for prevention, risk stratification, and earlier diagnosis. Single-cell sequencing and other studies of immunopathogenesis promise to identify targeted treatment approaches.
Collapse
Affiliation(s)
- Natsumi Hama
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| |
Collapse
|
28
|
Moyer AM, Gandhi MJ. Human Leukocyte Antigen (HLA) Testing in Pharmacogenomics. Methods Mol Biol 2022; 2547:21-45. [PMID: 36068459 DOI: 10.1007/978-1-0716-2573-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The genetic region on the short arm of chromosome 6 where the human leukocyte antigen (HLA) genes are located is the major histocompatibility complex. The genes in this region are highly polymorphic, and some loci have a high degree of homology with other genes and pseudogenes. Histocompatibility testing has traditionally been performed in the setting of transplantation and involves determining which specific alleles are present. Several HLA alleles have been associated with disease risk or increased risk of adverse drug reaction (ADR) when treated with certain medications. Testing for these applications differs from traditional histocompatibility in that the desired result is simply presence or absence of the allele of interest, rather than determining which allele is present. At present, the majority of HLA typing is done by molecular methods using commercially available kits. A subset of pharmacogenomics laboratories has developed their own methods, and in some cases, query single nucleotide variants associated with certain HLA alleles rather than directly testing for the allele. In this chapter, a brief introduction to the HLA system is provided, followed by an overview of a variety of testing technologies including those specifically used in pharmacogenomics, and the chapter concludes with details regarding specific HLA alleles associated with ADR.
Collapse
Affiliation(s)
- Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Manish J Gandhi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
Liu W, Zeng X, Liu Y, Liu J, Li C, Chen L, Chen H, Ouyang D. The Immunological Mechanisms and Immune-Based Biomarkers of Drug-Induced Liver Injury. Front Pharmacol 2021; 12:723940. [PMID: 34721020 PMCID: PMC8554067 DOI: 10.3389/fphar.2021.723940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) has become one of the major challenges of drug safety all over the word. So far, about 1,100 commonly used drugs including the medications used regularly, herbal and/or dietary supplements, have been reported to induce liver injury. Moreover, DILI is the main cause of the interruption of new drugs development and drugs withdrawn from the pharmaceutical market. Acute DILI may evolve into chronic DILI or even worse, commonly lead to life-threatening acute liver failure in Western countries. It is generally considered to have a close relationship to genetic factors, environmental risk factors, and host immunity, through the drug itself or its metabolites, leading to a series of cellular events, such as haptenization and immune response activation. Despite many researches on DILI, the specific biomarkers about it are not applicable to clinical diagnosis, which still relies on the exclusion of other causes of liver disease in clinical practice as before. Additionally, circumstantial evidence has suggested that DILI is mediated by the immune system. Here, we review the underlying mechanisms of the immune response to DILI and provide guidance for the future development of biomarkers for the early detection, prediction, and diagnosis of DILI.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Jinfeng Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Hongying Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| |
Collapse
|
30
|
Tang W, Yang Y, Yang L, Tang M, Chen Y, Li C. Macrophage membrane-mediated targeted drug delivery for treatment of spinal cord injury regardless of the macrophage polarization states. Asian J Pharm Sci 2021; 16:459-470. [PMID: 34703495 PMCID: PMC8520053 DOI: 10.1016/j.ajps.2021.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/04/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
Targeted delivery of therapeutics for spinal cord injury (SCI) has been a long-term challenge due to the complexity of the pathological procession. Macrophage, as an immune cell, can selectively accumulate at the trauma site after SCI. This intrinsic targeting, coupled with good immune-escaping capacity makes macrophages an ideal source of biomimetic delivery carrier for SCI. Worth mentioning, macrophages have multiple polarization states, which may not be ignored when designing macrophage-based delivery systems. Herein, we fabricated macrophage membrane-camouflaged liposomes (RM-LIPs) and evaluated their abilities to extend drug circulation time and target the injured spinal cord. Specially, we detected the expression levels of the two main targeted receptors Mac-1 and integrin α4 in three macrophage subtypes, including unactivated (M0) macrophages, classically activated (M1) macrophages and alternatively activated (M2) macrophages, and compared targeting of these macrophage membrane-coated nanoparticles for SCI. The macrophage membrane camouflage decreased cellular uptake of liposomes in RAW264.7 immune cells and strengthened binding of the nanoparticle to the damaged endothelial cells in vitro. RM-LIPs can prolong drug circulation time and actively accumulate at the trauma site of the spinal cord in vivo. Besides, RM-LIPs loaded with minocycline (RM-LIP/MC) showed a comprehensive therapeutic effect on SCI mice, and the anti-pyroptosis was found to be a novel mechanism of RM-LIP/MC treatment of SCI. Moreover, the levels of Mac-1 and integrin α4 in macrophages and the targeting of RM-LIP for SCI were found to be independent of macrophage polarization states. Our study provided a biomimetic strategy via the biological properties of macrophages for SCI targeting and treatment.
Collapse
Affiliation(s)
- Wei Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yi Yang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ling Yang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mei Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ying Chen
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
31
|
Machine Learning to Identify Interaction of Single-Nucleotide Polymorphisms as a Risk Factor for Chronic Drug-Induced Liver Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010603. [PMID: 34682349 PMCID: PMC8535865 DOI: 10.3390/ijerph182010603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022]
Abstract
Drug-induced liver injury (DILI) is a major cause of drug development failure and drug withdrawal from the market after approval. The identification of human risk factors associated with susceptibility to DILI is of paramount importance. Increasing evidence suggests that genetic variants may lead to inter-individual differences in drug response; however, individual single-nucleotide polymorphisms (SNPs) usually have limited power to predict human phenotypes such as DILI. In this study, we aim to identify appropriate statistical methods to investigate gene-gene and/or gene-environment interactions that impact DILI susceptibility. Three machine learning approaches, including Multivariate Adaptive Regression Splines (MARS), Multifactor Dimensionality Reduction (MDR), and logistic regression, were used. The simulation study suggested that all three methods were robust and could identify the known SNP-SNP interaction when up to 4% of genotypes were randomly permutated. When applied to a real-life DILI chronicity dataset, both MARS and MDR, but not logistic regression, identified combined genetic variants having better associations with DILI chronicity in comparison to the use of individual SNPs. Furthermore, a simple decision tree model using the SNPs identified by MARS and MDR was developed to predict DILI chronicity, with fair performance. Our study suggests that machine learning approaches may help identify gene-gene interactions as potential risk factors for better assessing complicated diseases such as DILI chronicity.
Collapse
|
32
|
Shao Q, Mao X, Zhou Z, Huai C, Li Z. Research Progress of Pharmacogenomics in Drug-Induced Liver Injury. Front Pharmacol 2021; 12:735260. [PMID: 34552491 PMCID: PMC8450320 DOI: 10.3389/fphar.2021.735260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Drug-induced liver injury (DILI) is a common and serious adverse drug reaction with insufficient clinical diagnostic strategies and treatment methods. The only clinically well-received method is the Roussel UCLAF Causality Assessment Method scale, which can be applied to both individuals and prospective or retrospective studies. However, in severe cases, patients with DILI still would develop acute liver failure or even death. Pharmacogenomics, a powerful tool to achieve precision medicine, has been used to study the polymorphism of DILI related genes. Summary: We summarized the pathogenesis of DILI and findings on associated genes and variations with DILI, including but not limited to HLA genes, drug metabolizing enzymes, and transporters genes, and pointed out further fields for DILI related pharmacogenomics study to provide references for DILI clinical diagnosis and treatment. Key Messages: At present, most of the studies are mainly limited to CGS and GWAS, and there is still a long way to achieve clinical transformation. DNA methylation could be a new consideration, and ethnic differences and special populations also deserve attention.
Collapse
Affiliation(s)
- Qihui Shao
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Mao
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixuan Zhou
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhiling Li
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Thomson PJ, Kafu L, Meng X, Snoeys J, De Bondt A, De Maeyer D, Wils H, Leclercq L, Vinken P, Naisbitt DJ. Drug-specific T-cell responses in patients with liver injury following treatment with the BACE inhibitor atabecestat. Allergy 2021; 76:1825-1835. [PMID: 33150583 DOI: 10.1111/all.14652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atabecestat is an orally administered BACE inhibitor developed to treat Alzheimer's disease. Elevations in hepatic enzymes were detected in a number of in trial patients, which resulted in termination of the drug development programme. Immunohistochemical characterization of liver tissue from an index case of atabecestat-mediated liver injury revealed an infiltration of T-lymphocytes in areas of hepatocellular damage. This coupled with the fact that liver injury had a delayed onset suggests that the adaptive immune system may be involved in the pathogenesis. The aim of this study was to generate and characterize atabecestat(metabolite)-responsive T-cell clones from patients with liver injury. METHODS Peripheral blood mononuclear cells were cultured with atabecestat and its metabolites (diaminothiazine [DIAT], N-acetyl DIAT & epoxide) and cloning was attempted in a number of patients. Atabecestat(metabolite)-responsive clones were analysed in terms of T-cell phenotype, function, pathways of T-cell activation and cross-reactivity with structurally related compounds. RESULTS CD4+ T-cell clones activated with the DIAT metabolite were detected in 5 out of 8 patients (up to 4.5% cloning efficiency). Lower numbers of CD4+ and CD8+ clones displayed reactivity against atabecestat. Clones proliferated and secreted IFN-γ, IL-13 and cytolytic molecules following atabecestat or DIAT stimulation. Certain atabecestat and DIAT-responsive clones cross-reacted with N-acetyl DIAT; however, no cross-reactivity was observed between atabecestat and DIAT. CD4+ clones were activated through a direct, reversible compound-HLA class II interaction with no requirement for protein processing. CONCLUSION The detection of atabecestat metabolite-responsive T-cell clones activated via a pharmacological interactions pathway in patients with liver injury is indicative of an immune-based mechanism for the observed hepatic enzyme elevations.
Collapse
Affiliation(s)
- Paul J. Thomson
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Laila Kafu
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Jan Snoeys
- Drug Metabolism and Pharmacokinetics Janssen R&D Beerse Belgium
| | - An De Bondt
- Discovery Sciences Janssen R&D Beerse Belgium
| | | | - Hans Wils
- Discovery Sciences Janssen R&D Beerse Belgium
| | | | | | - Dean J. Naisbitt
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| |
Collapse
|
34
|
Liu Y, Zeng X, Ouyang D. Progress in study on the association between HLA genetic variation and adverse drug reactions. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:404-413. [PMID: 33967088 PMCID: PMC10930308 DOI: 10.11817/j.issn.1672-7347.2021.200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 11/03/2022]
Abstract
The human leukocyte antigen (HLA) molecules encoded within the human major histocompatibility complex are a group of highly conserved cell surface proteins, which are related to antigen recognition. HLA genes display a high degree of genetic polymorphism, which is the basis of individual differences in immunity. Specific HLA genotypes have been highly associated with typical adverse drug reactions. HLA-A*31:01 and HLA-B*15:02 are associated with carbamazepine-induced severe cutaneous adverse reactions, HLA-B*57:01 is related to abacavir-induced drug-induced hypersensitivity syndrome and flucloxacillin/pazopanib-induced drug-induced liver injury, while HLA-B*35:01 is a potential biomarker for predicting polygonum multiflorum-induced liver injury. It is not clear how small drug molecules to interact with HLA molecules and T cell receptors (TCR). There are four mechanistic hypotheses, including the hapten/prohapten theory, the pharmacological interaction concept, the altered peptide repertoire model, and the altered TCR repertoire model.
Collapse
Affiliation(s)
- Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078.
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, China.
| |
Collapse
|
35
|
Li Y, Deshpande P, Hertzman RJ, Palubinsky AM, Gibson A, Phillips EJ. Genomic Risk Factors Driving Immune-Mediated Delayed Drug Hypersensitivity Reactions. Front Genet 2021; 12:641905. [PMID: 33936169 PMCID: PMC8085493 DOI: 10.3389/fgene.2021.641905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Adverse drug reactions (ADRs) remain associated with significant mortality. Delayed hypersensitivity reactions (DHRs) that occur greater than 6 h following drug administration are T-cell mediated with many severe DHRs now associated with human leukocyte antigen (HLA) risk alleles, opening pathways for clinical prediction and prevention. However, incomplete negative predictive value (NPV), low positive predictive value (PPV), and a large number needed to test (NNT) to prevent one case have practically prevented large-scale and cost-effective screening implementation. Additional factors outside of HLA contributing to risk of severe T-cell-mediated DHRs include variation in drug metabolism, T-cell receptor (TCR) specificity, and, most recently, HLA-presented immunopeptidome-processing efficiencies via endoplasmic reticulum aminopeptidase (ERAP). Active research continues toward identification of other highly polymorphic factors likely to impose risk. These include those previously associated with T-cell-mediated HLA-associated infectious or auto-immune disease such as Killer cell immunoglobulin-like receptors (KIR), epistatically linked with HLA class I to regulate NK- and T-cell-mediated cytotoxic degranulation, and co-inhibitory signaling pathways for which therapeutic blockade in cancer immunotherapy is now associated with an increased incidence of DHRs. As such, the field now recognizes that susceptibility is not simply a static product of genetics but that individuals may experience dynamic risk, skewed toward immune activation through therapeutic interventions and epigenetic modifications driven by ecological exposures. This review provides an updated overview of current and proposed genetic factors thought to predispose risk for severe T-cell-mediated DHRs.
Collapse
Affiliation(s)
- Yueran Li
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Rebecca J. Hertzman
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Amy M. Palubinsky
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elizabeth J. Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| |
Collapse
|
36
|
Jee A, Sernoskie SC, Uetrecht J. Idiosyncratic Drug-Induced Liver Injury: Mechanistic and Clinical Challenges. Int J Mol Sci 2021; 22:ijms22062954. [PMID: 33799477 PMCID: PMC7998339 DOI: 10.3390/ijms22062954] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (IDILI) remains a significant problem for patients and drug development. The idiosyncratic nature of IDILI makes mechanistic studies difficult, and little is known of its pathogenesis for certain. Circumstantial evidence suggests that most, but not all, IDILI is caused by reactive metabolites of drugs that are bioactivated by cytochromes P450 and other enzymes in the liver. Additionally, there is overwhelming evidence that most IDILI is mediated by the adaptive immune system; one example being the association of IDILI caused by specific drugs with specific human leukocyte antigen (HLA) haplotypes, and this may in part explain the idiosyncratic nature of these reactions. The T cell receptor repertoire likely also contributes to the idiosyncratic nature. Although most of the liver injury is likely mediated by the adaptive immune system, specifically cytotoxic CD8+ T cells, adaptive immune activation first requires an innate immune response to activate antigen presenting cells and produce cytokines required for T cell proliferation. This innate response is likely caused by either a reactive metabolite or some form of cell stress that is clinically silent but not idiosyncratic. If this is true it would make it possible to study the early steps in the immune response that in some patients can lead to IDILI. Other hypotheses have been proposed, such as mitochondrial injury, inhibition of the bile salt export pump, unfolded protein response, and oxidative stress although, in most cases, it is likely that they are also involved in the initiation of an immune response rather than representing a completely separate mechanism. Using the clinical manifestations of liver injury from a number of examples of IDILI-associated drugs, this review aims to summarize and illustrate these mechanistic hypotheses.
Collapse
Affiliation(s)
- Alison Jee
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | | | - Jack Uetrecht
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Correspondence:
| |
Collapse
|
37
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
38
|
Tu C, Niu M, Wei AW, Tang JF, Zhang L, Jing J, Xiao XH, Wang JB. Susceptibility-Related Cytokine Panel for Prediction of Polygonum multiflorum-Induced Hepatotoxicity in Humans. J Inflamm Res 2021; 14:645-655. [PMID: 33692634 PMCID: PMC7939510 DOI: 10.2147/jir.s299892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Drug-induced liver injury is a common adverse effect in clinical practice, with severe cases resulting in liver failure and even death. Identification and prediction of individuals susceptible to idiosyncratic DILI continues to remain a challenge. METHODS In this study, we report that cytokines in human serum can be used to identify and predict individuals susceptible to Polygonum multiflorum-induced DILI (PM-DILI) in retrospective and prospective cohort studies. FINDINGS In the retrospective pilot study, we compared serum cytokine expression profiles of the PM-DILI group (n=10) and the PM-Tolerant group (n=12) and found 10 cytokines with significant differences. In the replication cohort study, differences in the 10 cytokines between PM-DILI (n =11) and PM-Tolerant (n=13) groups were verified. Among them, 6 cytokines showed no significant differences at two time points, including liver injury and recovery stage of PM-DILI, suggesting that these 6 cytokines have no correlation with PM-DILI, however, they may be related to susceptibility. Furthermore, all the retrospective cohorts were combined, and a PM-DILI susceptibility prediction model was built by screening the 6 cytokines. The combination of (TNF-α and CCL-2) or VEGF showed the highest sensitivity and specificity. Finally, the efficacy of the above 3 cytokine combination models in predicting PM-DILI-susceptible individuals was verified before PM exposure in another independent prospective cohort (n=24), with sensitivity and specificity of 66.7% and 83.3%, respectively. CONCLUSION This proof-of-concept study demonstrates that the serum cytokine combination reflecting dysimmunity could be used as a new method to predict PM-DILI, thus providing a new perspective for improving the clinical management of IDILI.
Collapse
Affiliation(s)
- Can Tu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Ming Niu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Ai-Wu Wei
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Jin-Fa Tang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Le Zhang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Jing Jing
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
39
|
Li YJ, Phillips E, Dellinger A, Nicoletti P, Schutte R, Li D, Ostrov DA, Fontana RJ, Watkins PB, Stolz A, Daly AK, Aithal GP, Barnhart H, Chalasani N. Human Leukocyte Antigen B*14:01 and B*35:01 Are Associated With Trimethoprim-Sulfamethoxazole Induced Liver Injury. Hepatology 2021; 73:268-281. [PMID: 32270503 PMCID: PMC7544638 DOI: 10.1002/hep.31258] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Trimethoprim (TMP)-sulfamethoxazole (SMX) is an important cause of idiosyncratic drug-induced liver injury (DILI), but its genetic risk factors are not well understood. This study investigated the relationship between variants in the human leukocyte antigen (HLA) class 1 and 2 genes and well-characterized cases of TMP-SMX DILI. APPROACH AND RESULTS European American and African American persons with TMP-SMX DILI were compared with respective population controls. HLA sequencing was performed by Illumina MiSeq (Illumina, San Diego, CA) for cases. The HLA genotype imputation with attribute bagging program was used to impute HLA alleles for controls. The allele frequency difference between case patients and controls was tested by Fisher's exact tests for each ethnic group. For European Americans, multivariable logistic regression with Firth penalization was used to test the HLA allelic effect after adjusting for age and the top two principal components. Molecular docking was performed to assess HLA binding with TMP and SMX. The European American subset had 51 case patients and 12,156 controls, whereas the African American subset had 10 case patients and 5,439 controls. Four HLA alleles were significantly associated in the European American subset, with HLA-B*14:01 ranking at the top (odds ratio, 9.20; 95% confidence interval, 3.16, 22.35; P = 0.0003) after covariate adjustment. All carriers of HLA-B*14:01 with TMP-SMX DILI possessed HLA-C*08:02, another significant allele (P = 0.0026). This pattern was supported by HLA-B*14:01-HLA-C*08:02 haplotype association (P = 1.33 × 10-5 ). For the African American patients, HLA-B*35:01 had 2.8-fold higher frequency in case patients than in controls, with 5 of 10 patients carrying this allele. Molecular docking showed cysteine at position 67 in HLA-B*14:01 and phenylalanine at position 67 in HLA-B*35:01 to be the predictive binding sites for SMX metabolites. CONCLUSIONS HLA-B*14:01 is associated with TMP-SMX DILI in European Americans, and HLA-B*35:01 may be a potential genetic risk factor for African Americans.
Collapse
Affiliation(s)
- Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC
| | | | - Andrew Dellinger
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC
| | - Paola Nicoletti
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ryan Schutte
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Danmeng Li
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | | | - Paul B. Watkins
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - Andrew Stolz
- University of Southern California, Los Angeles, CA
| | - Ann K Daly
- Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Guruprasad P Aithal
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre at the Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| | - Huiman Barnhart
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC,Duke Clinical Research Institute, Duke University Medical Center, Durham, NC
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN
| | | |
Collapse
|
40
|
Stephens C, Lucena MI, Andrade RJ. Genetic risk factors in the development of idiosyncratic drug-induced liver injury. Expert Opin Drug Metab Toxicol 2020; 17:153-169. [DOI: 10.1080/17425255.2021.1854726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Camilla Stephens
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - Raúl J Andrade
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| |
Collapse
|
41
|
Zhao G, Jia J, Wang L, Zhang Y, Yang H, Lu Y, Yu R, Liu H, Zhu Y. Local Delivery of Minocycline and Vorinostat Targets the Tumor Microenvironment to Inhibit the Recurrence of Glioma. Onco Targets Ther 2020; 13:11397-11409. [PMID: 33192073 PMCID: PMC7655508 DOI: 10.2147/ott.s273527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
Background Postoperative recurrence is the main reason for poor clinical outcomes in glioma patients, so preventing tumor recurrence is crucial in the management of gliomas. Methods In this study, the expression of matrix metalloproteinases (MMPs) in normal tissues was detected via RNA-seq analysis. Glioma cases from the public databases (The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA)) were included in this study. The hydrogel contains minocycline (Mino) and vorinostat (Vor) (G/Mino+Vor) was formed under 365 nm when the photoinitiator was added. High-performance liquid chromatography (HPLC) was used to assess the release of drugs in the G/Mino+Vor hydrogel. An MTT assay was used to explore the biosecurity of GelMA. Immunohistochemistry, ELISA, and TUNEL assays were used to demonstrate the antitumor effect of the G/Mino+Vor hydrogel. Results We successfully developed a G/Mino+Vor hydrogel. The experiments in vitro and in vivo confirmed the MMPs-responsive delivery of minocycline and vorinostat in hydrogel and the anti-glioma effect on an incomplete tumor operation model, which indicated that the G/Mino+Vor hydrogel effectively inhibited the recurrence of glioma after surgery. Conclusion In summary, the G/Mino+Vor hydrogel could continuously release drugs and improve the therapy effects against recurrent glioma.
Collapse
Affiliation(s)
- Gang Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Jun Jia
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Lansheng Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yongkang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Han Yang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Yang Lu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Neurosurgery, The Third People's Hospital Affiliated of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, People's Republic of China.,Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| |
Collapse
|
42
|
|
43
|
Affiliation(s)
- Sangeetha Nithiyanandam
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
44
|
Pharmacogenomics of Antibiotics. Int J Mol Sci 2020; 21:ijms21175975. [PMID: 32825180 PMCID: PMC7504675 DOI: 10.3390/ijms21175975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Although the introduction of antibiotics in medicine has resulted in one of the most successful events and in a major breakthrough to reduce morbidity and mortality caused by infectious disease, response to these agents is not always predictable, leading to differences in their efficacy, and sometimes to the occurrence of adverse effects. Genetic variability, resulting in differences in the pharmacokinetics and pharmacodynamics of antibiotics, is often involved in the variable response, of particular importance are polymorphisms in genes encoding for drug metabolizing enzymes and membrane transporters. In addition, variations in the human leukocyte antigen (HLA) class I and class II genes have been associated with different immune mediated reactions induced by antibiotics. In recent years, the importance of pharmacogenetics in the personalization of therapies has been recognized in various clinical fields, although not clearly in the context of antibiotic therapy. In this review, we make an overview of antibiotic pharmacogenomics and of its potential role in optimizing drug therapy and reducing adverse reactions.
Collapse
|
45
|
Mahmud N, Forde KA. Autoimmunity in Indeterminate Etiologies of Acute Liver Failure: Is This Autoimmune Liver Disease or an Autoimmune Phenotype to Drug Toxicity? Liver Transpl 2020; 26:743-745. [PMID: 32279421 DOI: 10.1002/lt.25776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Nadim Mahmud
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kimberly A Forde
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA.,Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
46
|
Roth RA, Ganey PE. What have we learned from animal models of idiosyncratic, drug-induced liver injury? Expert Opin Drug Metab Toxicol 2020; 16:475-491. [PMID: 32324077 DOI: 10.1080/17425255.2020.1760246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Idiosyncratic, drug-induced liver injury (IDILI) continues to plague patients and restrict the use of drugs that are pharmacologically effective. Mechanisms of IDILI are incompletely understood, and a better understanding would reduce speculation and could help to identify safer drug candidates preclinically. Animal models have the potential to enhance knowledge of mechanisms of IDILI. AREAS COVERED Numerous hypotheses have emerged to explain IDILI pathogenesis, many of which center on the roles of the innate and/or adaptive immune systems. Animal models based on these hypotheses are reviewed in the context of their contributions to understanding of IDILI and their limitations. EXPERT OPINION Animal models of IDILI based on an activated adaptive immune system have to date failed to reproduce major liver injury that is of most concern clinically. The only models that have so far resulted in pronounced liver injury are based on the multiple determinant hypothesis or the inflammatory stress hypothesis. The liver pathogenesis in IDILI animal models involves various leukocytes and immune mediators such as cytokines. Insights from animal models are changing the way we view IDILI pathogenesis and are leading to better approaches to preclinical prediction of IDILI potential of new drug candidates.
Collapse
Affiliation(s)
- Robert A Roth
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University , East Lansing, MI, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University , East Lansing, MI, USA
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Drug-induced liver injury (DILI) can be induced by a myriad of drugs. Assessing whether the patient has DILI and assessing which drug is the most likely culprit are challenging. There has been too little attention paid to the concept that certain drugs appear to have unique clinical features or 'phenotypes'. RECENT FINDINGS Several case series of DILI because of various drugs have been published, and analysis of these case series points to the fact that individual drugs have characteristic DILI signatures. These clinical phenotypes can be characterized by latency, biochemical features (R-value), as well as clinical symptoms and signs. Several drugs, including isoniazid, amoxicillin-clavulanic acid, anabolic steroids, β-interferon and others, have highly unique clinical features. Such unique properties may be able to be used to improve adjudication processes. SUMMARY Individual drugs have unique clinical DILI phenotypes or signatures. Furthermore, these may be able to be used to improve adjudication.
Collapse
Affiliation(s)
- Hans L. Tillmann
- Department of Medicine, Division of Gastroenterology, Hepatology & Nutrition, East Carolina University, Greenville, NC
- Greenville VA Health Care Center, Greenville, NC
| | - Don C. Rockey
- Department of Medicine, Medical University South Carolina, Charleston, SC
| |
Collapse
|
48
|
Sandhu N, Navarro V. Drug-Induced Liver Injury in GI Practice. Hepatol Commun 2020; 4:631-645. [PMID: 32363315 PMCID: PMC7193133 DOI: 10.1002/hep4.1503] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although drug-induced liver injury (DILI) is a rare clinical event, it carries significant morbidity and mortality, leaving it as the leading cause of acute liver failure in the United States. It is one of the most challenging diagnoses encountered by gastroenterologists. The development of various drug injury networks has played a vital role in expanding our knowledge regarding drug-related and herbal and dietary supplement-related liver injury. In this review, we discuss what defines liver injury, epidemiology of DILI, its biochemical and pathologic patterns, and management.
Collapse
Affiliation(s)
- Naemat Sandhu
- Division of Digestive Diseases and TransplantationAlbert Einstein Healthcare NetworkPhiladelphiaPA
| | - Victor Navarro
- Division of Digestive Diseases and TransplantationAlbert Einstein Healthcare NetworkPhiladelphiaPA
| |
Collapse
|
49
|
Ito R, Kuribayashi T. Correlation between synthesis of α 2-macroglobulin as acute phase protein and degree of hepatopathy in rats. Lab Anim Res 2020; 35:14. [PMID: 32257902 PMCID: PMC7081713 DOI: 10.1186/s42826-019-0014-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/06/2019] [Indexed: 11/10/2022] Open
Abstract
The degree of hepatopathy affecting the synthesis of α2-macroglobulin (α2M) as an acute phase protein in rats was investigated. Hepatopathy was induced in Sprague-Dawley rats by intravenous administration of galactosamine at a dose of 30 mg/kg for 7 days. Inflammation was induced by intramuscular injection of turpentine oil at a dose of 2 mL/kg. Blood was collected before turpentine oil injection and at 24, 48, 72 and 96 h after injection. Serum concentrations of α2M were measured by enzyme-linked immunosorbent assay. Mean values of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in rats administered galactosamine were significantly higher than in controls. Mean values of body weight and total protein were significantly lower than in controls. Serum concentrations of α2M in the galactosamine group were significantly lower than in controls. Kinetic parameters, area under the concentration-time curve (AUC0-96) and maximum serum concentration (Cmax), were significantly lower than in controls. The cut-off value for detecting the effects on synthesis of α2M in liver was 46.9 mgˑh/mL. Seven rats (77.8%) were assessed for decreases in the synthesis of α2M due to hepatopathy. Two rats showed no influence on the synthesis of α2M, despite administration of galactosamine. AST and ALT in these two rats were ≤ 285 and ≤ 174 U/L, respectively. In conclusion, synthesis of α2M in rats is evidently suppressed in the severe stages of hepatopathy.
Collapse
Affiliation(s)
- Reina Ito
- Laboratory of Immunology, School of Life and Environmental Science, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara, Kanagawa 252-5201 Japan
| | - Takashi Kuribayashi
- Laboratory of Immunology, School of Life and Environmental Science, Azabu University, Fuchinobe 1-17-71, Chuo-ku, Sagamihara, Kanagawa 252-5201 Japan
| |
Collapse
|
50
|
Naisbitt DJ, Olsson‐Brown A, Gibson A, Meng X, Ogese MO, Tailor A, Thomson P. Immune dysregulation increases the incidence of delayed-type drug hypersensitivity reactions. Allergy 2020; 75:781-797. [PMID: 31758810 DOI: 10.1111/all.14127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Abstract
Delayed-type, T cell-mediated, drug hypersensitivity reactions are a serious unwanted manifestation of drug exposure that develops in a small percentage of the human population. Drugs and drug metabolites are known to interact directly and indirectly (through irreversible protein binding and processing to the derived adducts) with HLA proteins that present the drug-peptide complex to T cells. Multiple forms of drug hypersensitivity are strongly linked to expression of a single HLA allele, and there is increasing evidence that drugs and peptides interact selectively with the protein encoded by the HLA allele. Despite this, many individuals expressing HLA risk alleles do not develop hypersensitivity when exposed to culprit drugs suggesting a nonlinear, multifactorial relationship in which HLA risk alleles are one factor. This has prompted a search for additional susceptibility factors. Herein, we argue that immune regulatory pathways are one key determinant of susceptibility. As expression and activity of these pathways are influenced by disease, environmental and patient factors, it is currently impossible to predict whether drug exposure will result in a health benefit, hypersensitivity or both. Thus, a concerted effort is required to investigate how immune dysregulation influences susceptibility towards drug hypersensitivity.
Collapse
Affiliation(s)
- Dean J. Naisbitt
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Anna Olsson‐Brown
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Andrew Gibson
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Monday O. Ogese
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Arun Tailor
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Paul Thomson
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| |
Collapse
|