1
|
Huo LC, Liu NY, Wang CJ, Luo Y, Liu JX. Lonicera japonica protects Pelodiscus sinensis by inhibiting the biofilm formation of Aeromonas hydrophila. Appl Microbiol Biotechnol 2024; 108:67. [PMID: 38183487 DOI: 10.1007/s00253-023-12910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
Aquaculture has suffered significant financial losses as a result of the infection of zoonotic Aeromonas hydrophila, which has a high level of resistance to classic antibiotics. In this study, we isolated an A. hydrophila strain B3 from diseased soft-shelled turtle (Pelodiscus sinensis), which is one of the most commercially significant freshwater farmed reptiles in East Asia, and found that A. hydrophila was its dominant pathogen. To better understand the inhibition effect and action mechanism of Chinese herbs on A. hydrophila, we conducted Chinese herbs screening and found that Lonicera japonica had a significant antibacterial effect on A. hydrophila B3. Experimental therapeutics of L. japonica on soft-shelled turtle showed that the supplement of 1% L. japonica to diet could significantly upregulate the immunity-related gene expression of soft-shelled turtle and protect soft-shelled turtle against A. hydrophila infection. Histopathological section results validated the protective effect of L. japonica. As the major effective component of L. japonica, chlorogenic acid demonstrated significant inhibitory effect on the growth of A. hydrophila with MIC at 6.4 mg/mL. The in vitro assay suggested that chlorogenic acid could inhibit the hemolysin/protease production and biofilm formation of A. hydrophila and significantly decrease the expression of quorum sensing, biofilm formation, and hemolysin-related genes in A. hydrophila. Our results showed that the Chinese herb L. japonica would be a promising candidate for the treatment of A. hydrophila infections in aquaculture, and it not only improves the immune response of aquatic animals but also inhibits the virulence factor (such as biofilm formation) expression of A. hydrophila. KEY POINTS: • A. hydrophila was the dominant pathogen of the diseased soft-shelled turtle. • L. japonica can protect soft-shelled turtle against A. hydrophila infection. • Chlorogenic acid inhibits the growth and biofilm formation of A. hydrophila.
Collapse
Affiliation(s)
- Li-Chao Huo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nai-Yu Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chao-Jie Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Kaur S, Kaur H, Kaur B, Naveen Kumar BT, Tyagi A, Singh P, Tanuj, Dubey S, Munang'andu HM. Isolating pathogenic multidrug-resistant Aeromonas hydrophila from diseased fish and assessing the effectiveness of a novel lytic Aeromonas veronii bacteriophage (AVP3) for biocontrol. Microb Pathog 2024; 196:106914. [PMID: 39241817 DOI: 10.1016/j.micpath.2024.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The increasing trend of antimicrobial resistance (AMR) pathogens in aquaculture makes it is imperative to find control measures for AMR pathogens causing high economic losses in aquaculture. In the present study, a multidrug resistance (MDR) Aeromonas hydrophila bacterium was isolated from kidney samples of diseased carp originating from a fish farm in Awankot, Rupnagar, Punjab, India. Moribund-infected fish exhibited large irregular hemorrhages on the external body surfaces, exophthalmia and fin-rot-like lesions. Phenotypic characterization using Rimler-Shotts (RS) media showed characteristic yellow color colonies and beta hemolysis on sheep blood agar. Genotyping using species-specific primers for the rpoB and gyrB genes characterized the isolate as A. hydrophila. The Multiple Antibiotic Resistance (MAR) index analysis showed that the isolated A. hydrophila had an MAR score of 0.29 signifying its resistance to more than three antibiotics, which underscores the need of finding treatment methods for MDR A. hydrophila isolates causing disease in aquaculture. Bacteriophages are considered a better eco-friendly alternative to antibiotics because of their inherent properties of not causing drug residues and resistance. Of the 13 phages tested, the Aeromonas veronii phage designated as AVP3, initially isolated against Aeromonas veronii, showed lytic activity against the MDR A. hydrophila isolated from diseased carp in this study. In addition, it also showed the lytic activity against Aeromonas spp. And A. caviae indicating that it had lytic properties against a wide host range within the Aeromonas species. This finding points to the potential efficacy of bacteriophages in mitigating pathogenic infections in aquaculture.
Collapse
Affiliation(s)
- Simran Kaur
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Harpreet Kaur
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Basmeet Kaur
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - B T Naveen Kumar
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
| | - Prabjeet Singh
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Tanuj
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Saurabh Dubey
- Nord University Faculty of Biosciences and Aquaculture, Post Box 1490, Bodø, Norway
| | - Hetron M Munang'andu
- Nord University Faculty of Biosciences and Aquaculture, Post Box 1490, Bodø, Norway
| |
Collapse
|
3
|
Li Y, Wang Y, Luo YL, Bai DQ, Zhang G, Wang JR, Wei H, Li S. Epinecidin-1 and lactic acid synergistically inhibit Aeromonas hydrophila through membrane disruption. Microb Pathog 2024; 196:106879. [PMID: 39218372 DOI: 10.1016/j.micpath.2024.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Epinecidin-1 (Epi-1) is an antimicrobial peptide originated from fish with various pharmacological activities but carries the risk of acquiring resistance with long-term use. In the present study, we use L-lactic acid to enhance the antibacterial activity of synthesized Epi-1 against the aquaculture and food pathogen Aeromonas hydrophila. The results showed that 5.5 mmol/L lactic acid increased the inhibitory and bactericidal activity of 25 μmol/L Epi-1 against two strains of A. hydrophila. The laser confocal images proved that lactic acid pre-treatment improved the attachment efficiency of Epi-1 in A.hydrophila cells. In addition, lactic acid enhanced the damaging effect of Epi-1 on the cell membrane of A. hydrophila, evidenced by releasing more nucleic acids, proteins, and transmembrane pH ingredients decrease and electromotive force dissipation. SEM images showed that compared with the single Epi-1 treatment, the co-treatment of Epi-1 and lactic acid caused more outer membrane vesicles (OMVs) and more severe cell deformation. These findings proved that lactic acid could enhance the efficiency of Epi-1 against A. hydrophila and shed light on new aspects to avoid resistance of pathogens against Epi-1.
Collapse
Affiliation(s)
- Yanzi Li
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| | - Yang Wang
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China; Tianjin Key Laboratory of Aqua-ecology and Aquaculture, 22 Jinjing Road, 300384, Tianjin, China.
| | - Yun-Long Luo
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| | - Dong-Qing Bai
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China; Tianjin Key Laboratory of Aqua-ecology and Aquaculture, 22 Jinjing Road, 300384, Tianjin, China.
| | - Guangchen Zhang
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| | - Jing-Ru Wang
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China; Tianjin Key Laboratory of Aqua-ecology and Aquaculture, 22 Jinjing Road, 300384, Tianjin, China
| | - Hongshuo Wei
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| | - Shufang Li
- College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384, Tianjin, China
| |
Collapse
|
4
|
Zhang C, Pu C, Li S, Xu R, Qi Q, Du J. Lactobacillus delbrueckii ameliorates Aeromonas hydrophila-induced oxidative stress, inflammation, and immunosuppression of Cyprinus carpio huanghe var NF-κB/Nrf2 signaling pathway. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:110000. [PMID: 39147300 DOI: 10.1016/j.cbpc.2024.110000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Aeromonas hydrophila (A. hydrophila) is one of the most pathogenic disease-causing bacteria, and causes massive death of animals including fish. Thus, strategies are being sought to ameliorate the impact of A. hydrophila. In this study, we have evaluated the ameliorative potential of dietary Lactobacillus delbrueckii (L. delbrueckii). The fishes were divided into the control group, an A. hydrophila group (A. hydrophila), and an L. delbrueckii group (A. hydrophila + 1*107 CFU/g L. delbrueckii). The results showed that A. hydrophila increased reactive oxygen species (ROS) content. However, dietary supplementation with L. delbrueckii prevented oxidative damage caused by elevated levels of ROS. The toxic effects of A. hydrophila on superoxide dismutase (SOD) activity, glutathione-S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR), along with the levels of glutathione (GSH), were mitigated by dietary L. delbrueckii (P < 0.05). Also, Dietary L. delbrueckii induced the expression of antioxidant-related genes (sod, cat, gpx, gst, NF-E2-related factor 2 (nrf2), Kelch-like-ECH-and associated protein 1a (keap1a)) in the intestine of fish (P < 0.05). Furthermore, L. delbrueckii increased A. hydrophila-induced lysozyme, ACP, C3, and C4 decline. The mRNA expression levels of interleukin 1β (il-1β), interleukin 8 (il-8), tumour necrosis factor α (tnf-α), and nuclear transcription factor-κB p65 (nf-κb p65) were significantly elevated by A. hydrophila. In contrast, the relative mRNA expression levels of inhibitor factor κBα (iκbα) in the intestine were decreased by A. hydrophila (P < 0.05). However, L. delbrueckii prevented A. hydrophila-induced the relative mRNA expression changes. These present results demonstrate that dietary L. delbrueckii alleviated A. hydrophila-induced oxidative stress, immunosuppression, inflammation, and apoptosis in common Cyprinus carpio.
Collapse
Affiliation(s)
- Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China.
| | - Changchang Pu
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Shengnan Li
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Ruiyi Xu
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Qian Qi
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Juan Du
- Agricultural Technology Extension Centre of Luoyang, Luoyang 471003, People's Republic of China
| |
Collapse
|
5
|
Zhang S, Yang W, Xie Y, Zhao X, Chen H, Zhang L, Lin X. Quantitative proteomics investigating the intrinsic adaptation mechanism of Aeromonas hydrophila to streptomycin. Proteomics 2024; 24:e2300383. [PMID: 38700048 DOI: 10.1002/pmic.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Aeromonas hydrophila, a prevalent pathogen in the aquaculture industry, poses significant challenges due to its drug-resistant strains. Moreover, residues of antibiotics like streptomycin, extensively employed in aquaculture settings, drive selective bacterial evolution, leading to the progressive development of resistance to this agent. However, the underlying mechanism of its intrinsic adaptation to antibiotics remains elusive. Here, we employed a quantitative proteomics approach to investigate the differences in protein expression between A. hydrophila under streptomycin (SM) stress and nonstress conditions. Notably, bioinformatics analysis unveiled the potential involvement of metal pathways, including metal cluster binding, iron-sulfur cluster binding, and transition metal ion binding, in influencing A. hydrophila's resistance to SM. Furthermore, we evaluated the sensitivity of eight gene deletion strains related to streptomycin and observed the potential roles of petA and AHA_4705 in SM resistance. Collectively, our findings enhance the understanding of A. hydrophila's response behavior to streptomycin stress and shed light on its intrinsic adaptation mechanism.
Collapse
Affiliation(s)
- Shuangziying Zhang
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenxiao Yang
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuyue Xie
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinrui Zhao
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haoyu Chen
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lishan Zhang
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiangmin Lin
- College of JunCao Science and Ecology, School of Life Sciences, (Fujian Agriculture and Forestry University), Fuzhou, Fujian, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, Fujian, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Yan P, Liu J, Huang Y, Yi T, Zhang H, Dai G, Wang X, Gao Z, He B, Guo W, Su Y, Guo L. Baicalin enhances antioxidant, inflammatory defense, and microbial diversity of yellow catfish ( Pelteobagrus fulvidraco) infected with Aeromonas hydrophila. Front Microbiol 2024; 15:1465346. [PMID: 39372274 PMCID: PMC11449889 DOI: 10.3389/fmicb.2024.1465346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction The aim of this research was to clarify the mechanism through which baicalin exerts its inhibitory effects on Aeromonas hydrophila infection. Methods The antibacterial efficacy of baicalin was assessed by determining its minimum inhibitory concentration (MIC) against A. hydrophila. Various parameters, including the growth curve, cell wall integrity, biofilm formation, AKP content, and morphological alterations of A. hydrophila, were analyzed. In vivo experiments involved the administration of A. hydrophila 4 h postintraperitoneal injection of varying doses of baicalin to induce infection, with subsequent monitoring of mortality rates. After a 3 d period, liver, spleen, and intestinal tissues were harvested to evaluate organ indices, antioxidant and immune parameters, as well as intestinal microbial composition. Results The findings indicated that baicalin treatment resulted in the disruption of the cell wall of A. hydrophila, leading to the loss of its normal structural integrity. Furthermore, baicalin significantly inhibited biofilm formation and facilitated the release of intracellular proteins (P < 0.05). In vivo, baicalin enhanced the survival rates of yellow catfish infected with A. hydrophila. Compared to the control group, the liver index of yellow catfish was elevated, while the spleen and intestinal indices were reduced in the baicalin-treated group (P < 0.05). Additionally, baicalin at an appropriate dosage was found to increase levels of SOD, GSH, CAT, ACP, and AKP in yellow catfish (P < 0.05), while simultaneously decreasing MDA accumulation and the mRNA expression of inflammatory markers such as Keap1, IL1, IFN-γ, and TNF-α, (P < 0.05). Moreover, baicalin significantly enhanced the operational taxonomic unit (OTU) count in A. hydrophila-infected yellow catfish (P < 0.05), restoring the abundance of Barnesiellaceae, Enterobacteriaceae, Plesiomonas, and UBA1819 (P < 0.05). Discussion In summary, baicalin demonstrates the potential to improve the survival rate of yellow catfish subjected to A. hydrophila infection, augment antioxidant and immune responses, mitigate inflammation, and enhance intestinal microbial diversity.
Collapse
Affiliation(s)
- Pupu Yan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, China
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Jiali Liu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, China
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Yongxi Huang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Tilin Yi
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, China
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Heng Zhang
- Jingzhou Taihugang Aquatic Technology Co., LTD, Hubei, China
| | - Gang Dai
- Jingzhou Mingde Technology Co., LTD, Hubei, China
| | - Xiong Wang
- Jingzhou Mingde Technology Co., LTD, Hubei, China
| | - Zhenzhen Gao
- College of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Bin He
- Wuhan city Academy of Agricultural Sciences Institute of Animal Husbandry and Veterinary, Wuhan, China
| | - Weili Guo
- NO. 6 Mildle School of Shahe, Xingtai, Hebei, China
| | - Yingbing Su
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, China
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Liwei Guo
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei, China
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
7
|
Pathak NK, Rana K, Rana N, Panda AK, Chahota R, Thakur SD. Molecular detection of enterotoxins in multidrug resistant Aeromonas from ready to eat foods in North Western Himalayas: Public health significance. Acta Trop 2024; 256:107258. [PMID: 38759830 DOI: 10.1016/j.actatropica.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Aeromonas spp. are normal inhabitants of aquatic environments and are emerging foodborne bacterial pathogens. Aeromonas spp. contamination is frequent in ready-to-eat (RTE) seafood and can also occur in products prepared from milk or meat. The study determined the enterotoxin and antimicrobial susceptibility profiles of Aeromonas spp. isolates recovered from RTE milk products (n = 105), RTE meat/fish products (n = 40) and drinking water (n = 60) samples collected from tourist places in Himachal Pradesh, India, in northwestern Himalayas. 7.3 % (16/220) samples were found contaminated with Aeromonas spp. These isolates were identified as A. hydrophila (31.3 %), A. schubertii (25.0 %), A. sobria (25.0 %) and A. veronii (18.8 %). Aeromonas spp. contamination was significantly higher (14.3 %, 15/105, p = 0.0001) in RTE milk products. The contamination levels for water samples were 1.7 % whereas none of the tested RTE meat or fish products yielded Aeromonas spp. Among RTE milk products, contamination was significantly higher in paneer (South Asian soft cheese) (26.1 %, p = 0.0027) and cream (25.0 %, p = 0.046) based RTE foods. All isolates carried alt (361 bp), encoding a cytotonic heat-labile enterotoxin. Ampicillin resistance was 100 % and high levels (>30 %) of resistance were recorded for amoxicillin/clavulanic acid, amikacin, cefotaxime and ceftazidime. Six (37.5 %) isolates were multi drug resistant (MDR), showing resistance to aminoglycosides, cephams and penicillins. Isolation of alt carrying MDR isolates from RTE foods indicates that Aeromonas spp. can be potential foodborne public health threat in northwestern Himalayas.
Collapse
Affiliation(s)
- Neena Kumari Pathak
- CSK HPKV, DGCN College of Veterinary and Animal Sciences, Department of Veterinary Public Health and Epidemiology, Palampur, Himachal Pradesh, India
| | - Kavita Rana
- CSK HPKV, DGCN College of Veterinary and Animal Sciences, Department of Veterinary Public Health and Epidemiology, Palampur, Himachal Pradesh, India
| | - Neha Rana
- CSK HPKV, DGCN College of Veterinary and Animal Sciences, Department of Veterinary Public Health and Epidemiology, Palampur, Himachal Pradesh, India
| | - Ashok Kumar Panda
- CSK HPKV, DGCN College of Veterinary and Animal Sciences, Department of Veterinary Public Health and Epidemiology, Palampur, Himachal Pradesh, India
| | - Rajesh Chahota
- CSK HPKV, DGCN College of Veterinary and Animal Sciences, Department of Veterinary Microbiology, Palampur, Kangra, Himachal Pradesh, India
| | - Sidharath Dev Thakur
- CSK HPKV, DGCN College of Veterinary and Animal Sciences, Department of Veterinary Public Health and Epidemiology, Palampur, Himachal Pradesh, India.
| |
Collapse
|
8
|
Wang L, Yi Z, Zhang P, Xiong Z, Zhang G, Zhang W. Comprehensive strategies for microcystin degradation: A review of the physical, chemical, and biological methods and genetic engineering. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121707. [PMID: 38968883 DOI: 10.1016/j.jenvman.2024.121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Addressing the threat of harmful cyanobacterial blooms (CyanoHABs) and their associated microcystins (MCs) is crucial for global drinking water safety. In this review, we comprehensively analyze and compares the physical, chemical, and biological methods and genetic engineering for MCs degradation in aquatic environments. Physical methods, such as UV treatments and photocatalytic reactions, have a high efficiency in breaking down MCs, with the potential for further enhancement in performance and reduction of hazardous byproducts. Chemical treatments using chlorine dioxide and potassium permanganate can reduce MC levels but require careful dosage management to avoid toxic by-products and protect aquatic ecosystems. Biological methods, including microbial degradation and phytoremediation techniques, show promise for the biodegradation of MCs, offering reduced environmental impact and increased sustainability. Genetic engineering, such as immobilization of microcystinase A (MlrA) in Escherichia coli and its expression in Synechocystis sp., has proven effective in decomposing MCs such as MC-LR. However, challenges related to specific environmental conditions such as temperature variations, pH levels, presence of other contaminants, nutrient availability, oxygen levels, and light exposure, as well as scalability of biological systems, necessitate further exploration. We provide a comprehensive evaluation of MCs degradation techniques, delving into their practicality, assessing the environmental impacts, and scrutinizing their efficiency to offer crucial insights into the multifaceted nature of these methods in various environmental contexts. The integration of various methodologies to enhance degradation efficiency is vital in the field of water safety, underscoring the need for ongoing innovation.
Collapse
Affiliation(s)
- Long Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Zhuoran Yi
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Peng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Zhu Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Gaosheng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
9
|
Guo J, Yan S, Jiang X, Su Z, Zhang F, Xie J, Hao E, Yao C. Advances in pharmacological effects and mechanism of action of cinnamaldehyde. Front Pharmacol 2024; 15:1365949. [PMID: 38903995 PMCID: PMC11187351 DOI: 10.3389/fphar.2024.1365949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Cinnamaldehyde is extracted from Cinnamomum cassia and other species, providing diverse sources for varying chemical properties and therapeutic effects. Besides natural extraction, synthetic production and biotechnological methods like microbial fermentation offer scalable and sustainable alternatives. Cinnamaldehyd demonstrates a broad pharmacological range, impacting various diseases through detailed mechanisms. This review aims to encapsulate the diverse therapeutic effects of cinnamaldehyde, its molecular interactions, and its potential in clinical applications. Drawing on recent scientific studies and databases like Web of Science, PubMed, and ScienceDirect, this review outlines cinnamaldehyde's efficacy in treating inflammatory conditions, bacterial infections, cancer, diabetes, and cardiovascular and kidney diseases. It primarily operates by inhibiting the NF-κB pathway and modulating pro-inflammatory mediators, alongside disrupting bacterial cells and inducing apoptosis in cancer cells. The compound enhances metabolic health by improving glucose uptake and insulin sensitivity and offers cardiovascular protection through its anti-inflammatory and lipid-lowering effects. Additionally, it promotes autophagy in kidney disease management. Preclinical and clinical research supports its therapeutic potential, underscoring the need for further investigation into its mechanisms and safety to develop new drugs based on cinnamaldehyde.
Collapse
Affiliation(s)
- Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinya Jiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zixia Su
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, China
| | - Chun Yao
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang and Yao Medicine, Ministry of Education, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
10
|
Urgesa G, Lu L, Gao J, Guo L, Qin T, Liu B, Xie J, Xi B. Natural Sunlight-Mediated Emodin Photoinactivation of Aeromonas hydrophila. Int J Mol Sci 2024; 25:5444. [PMID: 38791482 PMCID: PMC11121522 DOI: 10.3390/ijms25105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Aeromonas hydrophila can be a substantial concern, as it causes various diseases in aquaculture. An effective and green method for inhibiting A. hydrophila is urgently required. Emodin, a naturally occurring anthraquinone compound, was exploited as a photo-antimicrobial agent against A. hydrophila. At the minimum inhibitory concentration of emodin (256 mg/L) to inactivate A. hydrophilia in 30 min, an 11.32% survival rate was observed under 45 W white compact fluorescent light irradiation. In addition, the antibacterial activity under natural sunlight (0.78%) indicated its potential for practical application. Morphological observations demonstrated that the cell walls and membranes of A. hydrophila were susceptible to damage by emodin when exposed to light irradiation. More importantly, the photoinactivation of A. hydrophila was predominantly attributed to the hydroxyl radicals and superoxide radicals produced by emodin, according to the trapping experiment and electron spin resonance spectroscopy. Finally, a light-dependent reactive oxygen species punching mechanism of emodin to photoinactivate A. hydrophila was proposed. This study highlights the potential use of emodin in sunlight-mediated applications for bacterial control, thereby providing new possibilities for the use of Chinese herbal medicine in aquatic diseases prevention.
Collapse
Affiliation(s)
- Gelana Urgesa
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (G.U.); (J.G.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| | - Liushen Lu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| | - Jinwei Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (G.U.); (J.G.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| | - Lichun Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Ting Qin
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| | - Bo Liu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| | - Jun Xie
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (G.U.); (J.G.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (T.Q.); (B.L.); (J.X.)
| |
Collapse
|
11
|
Roh H, Kannimuthu D. Genomic and Transcriptomic Diversification of Flagellin Genes Provides Insight into Environmental Adaptation and Phylogeographic Characteristics in Aeromonas hydrophila. MICROBIAL ECOLOGY 2024; 87:65. [PMID: 38695873 PMCID: PMC11065939 DOI: 10.1007/s00248-024-02373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Aeromonas hydrophila is an opportunistic motile pathogen with a broad host range, infecting both terrestrial and aquatic animals. Environmental and geographical conditions exert selective pressure on both geno- and phenotypes of pathogens. Flagellin, directly exposed to external environments and containing important immunogenic epitopes, may display significant variability in response to external conditions. In this study, we conducted a comparative analysis of ~ 150 A. hydrophila genomes, leading to the identification of six subunits of the flagellin gene (fla-1 to fla-4, flaA, and flaB). Individual strains harbored different composition of flagellin subunits and copies. The composition of subunits showed distinct patterns depending on environmental sources. Strains from aquatic environments were mainly comprised of fla-1 to fla-4 subunits, while terrestrial strains predominated in groups harboring flaA and flaB subunits. Each flagellin showed varying levels of expression, with flaA and flaB demonstrating significantly higher expression compared to others. One of the chemotaxis pathways that control flagellin movement through a two-component system was significantly upregulated in flaA(+ 1)/flaB(+ 1) group, whereas flaA and flaB showed different transcriptomic expressions. The genes positively correlated with flaA expression were relevant to biofilm formation and bacterial chemotaxis, but flaB showed a negative correlation with the genes in ABC transporters and quorum sensing pathway. However, the expression patterns of fla-2 to fla-4 were identical. This suggests various types of flagellin subunits may have different biological functions. The composition and expression levels of flagellin subunits could provide valuable insights into the adaptation of A. hydrophila and the differences among strains in response to various external environments.
Collapse
Affiliation(s)
- HyeongJin Roh
- Pathogen Transmission and Disease Research Group, Institute of Marine Research, PO Box 1870 Nordnes 5870, Bergen, Norway.
| | - Dhamotharan Kannimuthu
- Pathogen Transmission and Disease Research Group, Institute of Marine Research, PO Box 1870 Nordnes 5870, Bergen, Norway
| |
Collapse
|
12
|
Ma YH, Sheng YD, Zhang D, Liu JT, Tian Y, Li H, Li XF, Li N, Sun P, Siddiqui SA, Sun WW, Zhang L, Shan XF, Wang CF, Qian AD, Zhang DX. Acanthopanax senticosus cultures fermented by Lactobacillus rhamnosus enhanced immune response through improvement of antioxidant activity and inflammation in crucian carp (Carassius auratus). Microb Pathog 2024; 190:106614. [PMID: 38492825 DOI: 10.1016/j.micpath.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1β, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.
Collapse
Affiliation(s)
- Yi-Han Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Di Sheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Di Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun-Tong Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Fei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Na Li
- Ministry of Agriculture and Rural Affairs of Mudanjiang, Mudanjiang, 157020, China
| | - Peng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | | | - Wu-Wen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dong-Xing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
13
|
He H, Huang X, Wen C, Liu C, Jiang B, Huang Y, Su Y, Li W. A novel defensin-like peptide C-13326 possesses protective effect against multidrug-resistant Aeromonas schubertii in hybrid snakehead (Channa maculate ♀ × Channa argus ♂). JOURNAL OF FISH DISEASES 2024; 47:e13922. [PMID: 38204197 DOI: 10.1111/jfd.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The purpose of this study was to investigate whether a defensin-like antimicrobial peptide (C-13326 peptide) identified in Hermetia illucens could possess protective effect against multidrug-resistant Aeromonas schubertii in hybrid snakehead (Channa maculate ♀ × Channa argus ♂). The cDNA of C-13326 peptide comprised 243 nucleotides encoding 80 amino acids, with six conserved cysteine residues and the classical CSαβ structure. The recombinant expression plasmid pPIC9K-C-13326 was constructed and transformed into GS115 Pichia pastoris, and the C-13326 peptide was expressed by induction with 1% methanol. The crude extract of C-13326 peptide was precipitated by ammonium sulfate, assayed by Braford method, detected by tricine-SDS-PAGE, evaluated by BandScan software and identified by liquid chromatography-mass spectrometry. The C-13326 peptide was shown to have inhibitory activity against the growth of multidrug-resistant A. schubertii DM210910 by using the minimum growth inhibitory concentration and Oxford cup method. In addition, scanning electron microscopy analysis suggested that C-13326 peptide inhibited the growth of A. schubertii DM210910 by damaging the bacterial cell membrane. To explore the role of peptide C-13326 in vivo, hybrid snakehead was fed with peptide C-13326 as feed additives for 7 days. The results revealed that C-13326 peptide could significantly down-regulate the expression levels of IL-1β, IL-8, IL-12 and TNF-α (p < .05), and significantly improved the survival rate of hybrid snakehead after challenging with A. schubertii DM210910. Therefore, the C-13326 peptide is a promising antimicrobial agent for A. schubertii treatment in aquaculture.
Collapse
Affiliation(s)
- Huanrong He
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinzhi Huang
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Caiyi Wen
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Chun Liu
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Biao Jiang
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Youlu Su
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wei Li
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
14
|
Alawam AS, Alwethaynani MS. Construction of an aerolysin-based multi-epitope vaccine against Aeromonas hydrophila: an in silico machine learning and artificial intelligence-supported approach. Front Immunol 2024; 15:1369890. [PMID: 38495891 PMCID: PMC10940347 DOI: 10.3389/fimmu.2024.1369890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Aeromonas hydrophila, a gram-negative coccobacillus bacterium, can cause various infections in humans, including septic arthritis, diarrhea (traveler's diarrhea), gastroenteritis, skin and wound infections, meningitis, fulminating septicemia, enterocolitis, peritonitis, and endocarditis. It frequently occurs in aquatic environments and readily contacts humans, leading to high infection rates. This bacterium has exhibited resistance to numerous commercial antibiotics, and no vaccine has yet been developed. Aiming to combat the alarmingly high infection rate, this study utilizes in silico techniques to design a multi-epitope vaccine (MEV) candidate against this bacterium based on its aerolysin toxin, which is the most toxic and highly conserved virulence factor among the Aeromonas species. After retrieval, aerolysin was processed for B-cell and T-cell epitope mapping. Once filtered for toxicity, antigenicity, allergenicity, and solubility, the chosen epitopes were combined with an adjuvant and specific linkers to create a vaccine construct. These linkers and the adjuvant enhance the MEV's ability to elicit robust immune responses. Analyses of the predicted and improved vaccine structure revealed that 75.5%, 19.8%, and 1.3% of its amino acids occupy the most favored, additional allowed, and generously allowed regions, respectively, while its ERRAT score reached nearly 70%. Docking simulations showed the MEV exhibiting the highest interaction and binding energies (-1,023.4 kcal/mol, -923.2 kcal/mol, and -988.3 kcal/mol) with TLR-4, MHC-I, and MHC-II receptors. Further molecular dynamics simulations demonstrated the docked complexes' remarkable stability and maximum interactions, i.e., uniform RMSD, fluctuated RMSF, and lowest binding net energy. In silico models also predict the vaccine will stimulate a variety of immunological pathways following administration. These analyses suggest the vaccine's efficacy in inducing robust immune responses against A. hydrophila. With high solubility and no predicted allergic responses or toxicity, it appears safe for administration in both healthy and A. hydrophila-infected individuals.
Collapse
Affiliation(s)
- Abdullah S. Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Maher S. Alwethaynani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Saudi Arabia
| |
Collapse
|
15
|
Peng K, Chen M, Wang Y, Tian Z, Deng L, Li T, Feng Y, Ouyang P, Huang X, Chen D, Geng Y. Genotype diversity and antibiotic resistance risk in Aeromonas hydrophila in Sichuan, China. Braz J Microbiol 2024; 55:901-910. [PMID: 37999911 PMCID: PMC10920602 DOI: 10.1007/s42770-023-01187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Sichuan is a significant aquaculture province in China, with a total aquaculture output of 1.72 × 106 tons in 2022. One of the most significant microorganisms hurting the Sichuan aquaculture is Aeromonas hydrophila, whose genotype and antibiotic resistance are yet unknown. This study isolated a total of 64 strains of A. hydrophila from various regions during September 2019 to June 2021 within Sichuan province, China. The technique of Multi-Locus Sequence Typing (MLST) was used for the purpose of molecular typing. Meanwhile, identification of antibiotic resistance phenotype and antibiotic resistance gene was performed. The findings of the study revealed that 64 isolates exhibited 29 sequence types (ST) throughout different regions in Sichuan, with 25 of these ST types being newly identified. Notably, the ST251 emerged as the predominant sequence type responsible for the pandemic. The resistance rate of isolated strains to roxithromycin was as high as 98.3%, followed by co-trimoxazole (87.5%), sulfafurazole (87.5%), imipenem (80%), amoxicillin (60%), and clindamycin (57.8%). Fifteen strains of A. hydrophila exhibited resistance to medicines across a minimum of three categories, suggesting the development of multidrug resistance in these isolates. A total of 63 ARGs were detected from the isolates, which mediated a range of antibiotic resistance mechanisms, with deactivation and efflux potentially serving as the primary mechanisms of antibiotic resistance. This study revealed the diversity of A. hydrophila genotypes and the risk of antibiotic resistance in Sichuan, providing reference for scientific and effective control of A. hydrophila infection.
Collapse
Affiliation(s)
- Kun Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Mengzhu Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
- Chengdu Animal Disease Prevention and Control Center, Chengdu, 60041, Sichuan, China
| | - Yilin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Longjun Deng
- Yalong River Hydropower Development Company Ltd, Chengdu, Sichuan, China
| | - Tiancai Li
- Yalong River Hydropower Development Company Ltd, Chengdu, Sichuan, China
| | - Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road No. 211, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
16
|
Abdou AM, Awad DAB. Lysozyme Peptides as a Novel Nutra-Preservative to Control Some Food Poisoning and Food Spoilage Microorganisms. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10226-2. [PMID: 38376818 DOI: 10.1007/s12602-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
Foodborne illnesses and microbial food contamination are crucial concerns and still issues of great worldwide concern. Additionally, the serious health hazards associated with the use of chemical preservatives in food technology. Lysozyme (Lz) is an active protein against Gram-positive bacterial cell wall through its muramidase lytic activity; however, several authors could identify some antimicrobial peptides derived from Lz that have an exaggerated and broad-spectrum antibacterial activity. Therefore, a lysozyme peptides preparation (LzP) is developed to broaden the Lz spectrum. In this work, we investigated the potential efficacy of LzP as a novel Nutra-preservative (food origin) agent against some pathogenic and spoilage bacteria. Our results showed that LzP demonstrated only 11% of the lysozyme lytic activity. However, LzP exhibited strong antibacterial activity against Escherichia coli, Salmonella enteritidis, and Pseudomonas species, while Salmonella typhi and Aeromonas hydrophila exhibited slight resistance. Despite the lowest LzP concentration (0.1%) employed, it performs stronger antibacterial activity than weak organic acids (0.3%). Interestingly, the synergistic multi-component formulation (LzP, glycine, and citric acid) could inhibit 6 log10 cfu/ml of E. coli survival growth. The effect of heat treatment on LzP showed a decrease in its antibacterial activity at 5 and 67% by boiling at 100 °C/30 min, and autoclaving at 121 °C/15 min; respectively. On the other hand, LzP acquired stable antibacterial activity at different pH values (4-7). In conclusion, LzP would be an innovative, natural, and food origin preservative to control the growth of food poisoning and spoilage bacteria in food instead chemical one.
Collapse
Affiliation(s)
- Adham M Abdou
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736, Kaliobeya, Egypt.
| | - Dina A B Awad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736, Kaliobeya, Egypt
| |
Collapse
|
17
|
Attia ASA, Abou Elez RMM, El-Gazzar N, Elnahriry SS, Alfifi A, Al-Harthi HF, Alkhalifah DHM, Hozzein WN, Diab HM, Ibrahim D. Cross-sectional analysis of risk factors associated with Mugil cephalus in retail fish markets concerning methicillin-resistant Staphylococcus aureus and Aeromonas hydrophila. Front Cell Infect Microbiol 2024; 14:1348973. [PMID: 38371296 PMCID: PMC10869461 DOI: 10.3389/fcimb.2024.1348973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Aeromonas hydrophila and methicillin-resistant Staphylococcus aureus (MRSA) are potent bacterial pathogens posing major hazards to human health via consuming fish harboring these pathogens or by cross-contamination beyond the contaminated environment. The aim of this study was to determine risk variables associated with the presence of certain pathogenic bacteria from Mugil cephalus fish in retail markets in Egypt. The virulence genes of A. hydrophila and S. aureus were also studied. Furthermore, the antibiotic sensitivity and multidrug resistance of the microorganisms were evaluated. Methods In a cross-sectional investigation, 370 samples were collected from mullet skin and muscle samples, washing water, fish handlers, knives, and chopping boards. Furthermore, fish handlers' public health implications were assessed via their response to a descriptive questionnaire. Results S. aureus and Aeromonas species dominated the investigated samples with percentages of 26.76% and 30.81%, respectively. Furthermore, A. hydrophila and MRSA were the predominant recovered bacterial pathogens among washing water and knives (53.85% and 46.66%, respectively). The virulence markers aerA and hlyA were found in 90.7% and 46.5% of A. hydrophila isolates, respectively. Moreover, the virulence genes nuc and mec were prevalent in 80% and 60% of S. aureus isolates, respectively. Antimicrobial susceptibility results revealed that all A. hydrophila isolates were resistant to amoxicillin and all MRSA isolates were resistant to amoxicillin and ampicillin. Remarkably, multiple drug resistance (MDR) patterns were detected in high proportions in A. hydrophila (88.37%) and MRSA (100%) isolates. The prevalence of Aeromonas spp. and S. aureus had a positive significant correlation with the frequency of handwashing and use of sanitizer in cleaning of instruments. MRSA showed the highest significant prevalence rate in the oldest age category. Conclusion The pathogenic bacteria recovered in this study were virulent and had a significant correlation with risk factors associated with improper fish handling. Furthermore, a high frequency of MDR was detected in these pathogenic bacteria, posing a significant risk to food safety and public health.
Collapse
Affiliation(s)
- Amira S. A. Attia
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Shimaa S. Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Alfifi
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Helal F. Al-Harthi
- Department of Biology, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hassan Mohmoud Diab
- Department of Animal and Poultry Health and Environment, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Carusi J, Kabuki DY, de Seixas Pereira PM, Cabral L. Aeromonas spp. in drinking water and food: Occurrence, virulence potential and antimicrobial resistance. Food Res Int 2024; 175:113710. [PMID: 38128981 DOI: 10.1016/j.foodres.2023.113710] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Aeromonas sp. is a Gram-negative, non-spore-forming, rod-shaped, oxidase-positive, facultative anaerobic bacterium and a natural contaminant found in aquatic environments. Some species can invade, colonize, and damage host cells due to the presence of virulence factors, such as flagella, elastase, hemolysins, aerolysins, adhesins, enterotoxins, phospholipases and lipases, that lead to pathogenic activities. Consequently, can cause many health disorders that range from gastrointestinal problems, enteric infections, and ulcers to hemorrhagic septicemia. Aeromonas has been isolated and identified from a variety of sources, including drinking water and ready-to-eat foods (fish, meat, fresh vegetables, dairy products, and others). Some species of this opportunistic pathogen are resistant to several commercial antibiotics, including some used as a last resort for treatment, which represents a major challenge in the clinical segment. Antimicrobial resistance can be attributed to the indiscriminate use of antibiotics by society in aquaculture and horticulture. In addition, antibiotic resistance is attributed to plasmid transfer between microorganisms and horizontal gene transfer. This review aimed to (i) verify the occurrence of Aeromonas species in water and food intended for human consumption; (ii) identify the methods used to detect Aeromonas species; (iii) report on the virulence genes carried by different species; and (iv) report on the antimicrobial resistance of this genus in the last 5 years of research. Additionally, we present the existence of Aeromonas spp. resistant to antimicrobials in food and drinking water represents a potential threat to public health.
Collapse
Affiliation(s)
- Juliana Carusi
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil.
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Pedro Marques de Seixas Pereira
- Department of Mechanical Engineering, School of Engineering, São Paulo State University Júlio de Mesquita Filho (UNESP), Ilha Solteira, SP, Brazil
| | - Lucélia Cabral
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
19
|
Li Z, Li W, Lu J, Liu Z, Lin X, Liu Y. Quantitative Proteomics Analysis Reveals the Effect of a MarR Family Transcriptional Regulator AHA_2124 on Aeromonas hydrophila. BIOLOGY 2023; 12:1473. [PMID: 38132299 PMCID: PMC10740729 DOI: 10.3390/biology12121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The transcriptional regulators of the MarR family play an important role in diverse bacterial physiologic functions, whereas their effect and intrinsic regulatory mechanism on the aquatic pathogenic bacterium Aeromonas hydrophila are, clearly, still unknown. In this study, we firstly constructed a deletion strain of AHA_2124 (ΔAHA_2124) of a MarR family transcriptional regulator in Aeromonas hydrophila ATCC 7966 (wild type), and found that the deletion of AHA_2124 caused significantly enhanced hemolytic activity, extracellular protease activity, and motility when compared with the wild type. The differentially abundant proteins (DAPs) were compared by using data-independent acquisition (DIA), based on a quantitative proteomics technology, between the ΔAHA_2124 strain and wild type, and there were 178 DAPs including 80 proteins up-regulated and 98 proteins down-regulated. The bioinformatics analysis showed that the deletion of gene AHA_2124 led to some changes in the abundance of proteins related to multiple biological processes, such as translation, peptide transport, and oxidation and reduction. These results provided a theoretical basis for better exploring the regulatory mechanism of the MarR family transcriptional regulators of Aeromonas hydrophila on bacterial physiological functions.
Collapse
Affiliation(s)
- Zhen Li
- Zhangzhou Health Vocational College, Zhangzhou 363000, China;
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
| | - Wanxin Li
- School of Public Health, Fujian Medical University, Fuzhou 350122, China;
| | - Jinlian Lu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziqiu Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.L.)
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
20
|
Zhang G, Zhang L, Sha Y, Chen Q, Lin N, Zhao J, Zhang Y, Ji Y, Jiang W, Zhang X, Li Q, Lu J, Lin X, Li K, Zhang H, Bao Q, Lu J, Hu Y, Zhu T. Identification and characterization of a novel 6'-N-aminoglycoside acetyltransferase AAC(6')-Va from a clinical isolate of Aeromonas hydrophila. Front Microbiol 2023; 14:1229593. [PMID: 37920263 PMCID: PMC10619662 DOI: 10.3389/fmicb.2023.1229593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Background Aeromonas species have been identified as agents responsible for various diseases in both humans and animals. Multidrug-resistant Aeromonas strains pose a significant public health threat due to their emergence and spread in clinical settings and the environment. The aim of this study was to determine a novel resistance mechanism against aminoglycoside antimicrobials in a clinical isolate. Methods The function of aac(6')-Va was verified by gene cloning and antibiotic susceptibility tests. To explore the in vivo activity of the enzyme, recombinant proteins were expressed, and enzyme kinetics were tested. To determine the molecular background and mechanism of aac(6')-Va, whole-genome sequencing and bioinformatic analysis were performed. Results The novel aminoglycoside N-acetyltransferase gene aac(6')-Va confers resistance to several aminoglycosides. Among the antimicrobials tested, ribostamycin showed the highest increase (128-fold) in the minimum inhibitory concentration (MIC) compared with the control strains. According to the MIC results of the cloned aac(6')-Va, AAC(6')-Va also showed the highest catalytic efficiency for ribostamycin [kcat/Km ratio = (3.35 ± 0.17) × 104 M-1 s-1]. Sharing the highest amino acid identity of 54.68% with AAC(6')-VaIc, the novel aminoglycoside N-acetyltransferase constituted a new branch of the AAC(6') family due to its different resistance profiles. The gene context of aac(6')-Va and its close relatives was conserved in the genomes of species of the genus Aeromonas. Conclusion The novel resistance gene aac(6')-Va confers resistance to several aminoglycosides, especially ribostamycin. Our finding of a novel resistance gene in clinical A. hydrophila will help us develop more effective treatments for this pathogen's infections.
Collapse
Affiliation(s)
- Guozhi Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Yuning Sha
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoying Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Naru Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingxuan Zhao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuan Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongan Ji
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weiyan Jiang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Jun Lu
- Department of Clinical Laboratory, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Yunliang Hu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Canan-Rochenbach G, Barreiros MAB, Lima AOS, Conti-Lampert AD, Ariente-Neto R, Pimentel-Almeida W, Laçoli R, Corrêa R, Radetski CM, Cotelle S. Are hospital wastewater treatment plants a source of new resistant bacterial strains? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108635-108648. [PMID: 37752395 DOI: 10.1007/s11356-023-30007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
To understand which type of hospital waste may contain the highest amount of antibiotic resistant microorganisms that could be released into the environment, the bacterial strains entering and leaving a hospital wastewater treatment plant (HWTP) were identified and tested for their antibiotic susceptibility. To achieve this goal, samples were collected from three separate sites, inlet and outlet wastewater positions, and sludge generated in a septic tank. After microbiological characterization according to APHA, AWWA, and WEF protocols, the relative susceptibility of the bacterial strains to various antibiotic agents was assessed according to the Clinical and Laboratory Standards Institute guidelines, to determine whether there were higher numbers of resistant bacterial strains in the inlet wastewater sample than in the outlet wastewater and sludge samples. The results showed more antibiotic resistant bacteria in the sludge than in the inlet wastewater, and that the Enterobacteriaceae family was the predominant species in the collected samples. The most antibiotic-resistant families were found to be Streptococcacea and non-Enterobacteriaceae. Some bacterial strains were resistant to all the tested antibiotics. We conclude that the studied HWTP can be considered a source of resistant bacterial strains. It is suggested that outlet water and sludge generated in HWTPs should be monitored, and that efficient treatment to eliminate all bacteria from the different types of hospital waste released into the environment is adopted.
Collapse
Affiliation(s)
- Gisele Canan-Rochenbach
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Marco A B Barreiros
- Universidade Federal do Paraná (UFPR), Campus Palotina, Palotina, PR, 85950-000, Brazil
| | - André O S Lima
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Aline Dal Conti-Lampert
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Rafael Ariente-Neto
- Universidade Federal do Paraná (UFPR), Campus Jandaia do Sul, Curso de Engenharia de Produção, Jandaia do Sul, PR, 86900-000, Brazil
| | - Wendell Pimentel-Almeida
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Rosane Laçoli
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil
| | - Rogério Corrêa
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciências Farmacêuticas, Itajaí, SC, 88302-202, Brazil
| | - Claudemir M Radetski
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, SC, 88302-202, Brazil.
| | - Sylvie Cotelle
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), F-57050, Metz, France
| |
Collapse
|
22
|
Wang S, Li M, Jiang Y, Sun C, Wu G, Yang C, Liu W, Pan Y. Transcriptome analysis reveals immune regulation in the spleen of koi carp (Cyprinus carpio Koi) during Aeromonas hydrophila infection. Mol Immunol 2023; 162:11-20. [PMID: 37633251 DOI: 10.1016/j.molimm.2023.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
A. hydrophila (Aeromonas hydrophila) is one of the most hazardous pathogenic microorganisms threatening the aquaculture industry and exhibits zoonotic-like characteristics. This study was designed to investigate the differential gene expression and pathway enrichment in the spleen of koi carp (Cyprinus carpio koi) upon A. hydrophila infection. The Illumina NovaSeq 6000 sequencing platform was used to identify 252 DEGs (differentially expressed genes), including 112 upregulated genes and 140 downregulated genes, in the spleens of koi carp challenged with A. hydrophila compared to those in the spleens of koi carp treated with PBS (phosphate-buffered saline). DEGs were shown to be involved in 133 pathways by KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Numerous immunological disease-related pathways, such as the immune defense network for IgA production, Staphylococcus aureus infection, and antigen processing and presentation, were enriched in the DEGs. In addition, the expression levels of 10 randomly screened DEGs, including the inflammatory factor nlrp3 (NOD-like receptor family pyrin domain containing 3), cytokine il-8 (interleukin-8), c2 (complement c2), c3 (complement c3), and the lipid mediator cox1 (cyclooxygenase-1), were compared by qPCR. The results showed that six genes, including il-8, cox1, and nlrp3, were upregulated according to both RNA-seq and qPCR validation, while four, including c2 and c3, showed downregulated expression. This result verified a strong correlation between the RNA-seq and qPCR datasets at the expression level. Moreover, this study provided splenic transcriptome data for koi carp during A. hydrophila infection and provided theoretical support for future drug development.
Collapse
Affiliation(s)
- Shuang Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China; Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China
| | - Mei Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China; Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China.
| | - Yu Jiang
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Chang Sun
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Gongqing Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Chengyong Yang
- Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China
| | - Wenli Liu
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Yufang Pan
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
23
|
Raza MA, Kanwal Z, Riaz S, Amjad M, Rasool S, Naseem S, Abbas N, Ahmad N, Alomar SY. In-Vivo Bactericidal Potential of Mangifera indica Mediated Silver Nanoparticles against Aeromonas hydrophila in Cirrhinus mrigala. Biomedicines 2023; 11:2272. [PMID: 37626768 PMCID: PMC10452189 DOI: 10.3390/biomedicines11082272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The present study reports the green synthesis of silver nanoparticles from leaves' extract of Mangifera indica (M. indica) and their antibacterial efficacy against Aeromonas hydrophila (A. hydrophila) in Cirrhinus mrigala (C. mrigala). The prepared M. indica mediated silver nanoparticles (Mi-AgNPs) were found to be polycrystalline in nature, spherical in shapes with average size of 62 ± 13 nm. C. mrigala (n = ±15/group) were divided into six groups i.e., G1: control, G2: A. hydrophila challenged, G3: A. hydrophila challenged + Mi-AgNPs (0.01 mg/L), G4: A. hydrophila challenged + Mi-AgNPs (0.05 mg/L), G5: A. hydrophila challenged + Mi-AgNPs (0.1 mg/L) and G6: A. hydrophila challenged + M. indica extract (0.1 mg/L). Serum biochemical, hematological, histological and oxidative biomarkers were evaluated after 15 days of treatment. The liver enzyme activities, serum proteins, hematological parameters and oxidative stress markers were found to be altered in the challenged fish but showed retrieval effects with Mi-AgNPs treatment. The histological analysis of liver, gills and kidney of the challenged fish also showed regaining effects following Mi-AgNPs treatment. A CFU assay from muscle tissue provided quantitative data that Mi-AgNPs can hinder the bacterial proliferation in challenged fish. The findings of this work suggest that M. indica based silver nanoparticles can be promising candidates for the control and treatment of microbial infections in aquaculture.
Collapse
Affiliation(s)
- Muhammad Akram Raza
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (S.R.); (S.R.); (S.N.)
| | - Zakia Kanwal
- Department of Zoology, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan;
| | - Saira Riaz
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (S.R.); (S.R.); (S.N.)
| | - Maira Amjad
- Department of Physics, Clarkson University, Potsdam, NY 13699, USA;
| | - Shafqat Rasool
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (S.R.); (S.R.); (S.N.)
| | - Shahzad Naseem
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590, Pakistan; (S.R.); (S.R.); (S.N.)
| | - Nadeem Abbas
- Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK;
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Kerigano NK, Chibsa TR, Molla YG, Mohammed AA, Tamiru M, Bulto AO, Wodaj TK, Gebreweld DS, Abdi AK. Phenotypic, molecular detection and antibiogram analysis of Aeromonas Hydrophila from Oreochromis Niloticus (Nile Tilapia) and Ready-To- eat fish products in selected Rift Valley lakes of Ethiopia. BMC Vet Res 2023; 19:120. [PMID: 37573362 PMCID: PMC10422702 DOI: 10.1186/s12917-023-03684-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Aeromonas hydrophila is a zoonotic bacterial pathogen that frequently causes disease and mass mortalities among cultured and feral fishes worldwide. In Ethiopia, A. hydrophila outbreak was reported in Sebeta fish ponds and in Lake Tana fishery. However, there is no to little information on the molecular, and phenotypical characteristics of A. hydrophila in Ethiopian fisheries. Therefore, a cross-sectional study was conducted from November 2020 to May 2021 in selected Ethiopian Rift valley lakes. RESULTS A total of 140 samples were collected aseptically from fish (Muscle, Gill, Intestine, Spleen and Kidney) from fish landing sites, market and restaurants with purposive sampling methods. Aeromonas selective media (AMB), morphological and biochemical tests were used to isolate and identify A. hydrophila. Accordingly, the pathogen was isolated from 81 (60.45%) of samples. Among the isolates 92.59% expressed virulence trait through β hemolysis on blood agar media with 5% sheep blood. Moreover, 54 strains (66.67%) were further confirmed with Real-Time PCR (qPCR) using ahaI gene specific primers and optimized protocol. The highest (68.51%) were detected from live fish, (24.07%) were from market fish and the lowest (7.4%%) were from ready-to-eat products. Antibiogram analysis was conducted on ten representative isolates. Accordingly, A. hydrophila isolates were susceptible to ciprofloxacin (100%), chloramphenicol (100%) and ceftriaxone (100%). However, all ten isolates were resistant to Amoxicillin and Penicillin. CONCLUSIONS The study indicates A. hydrophila strains carrying virulence ahaI gene that were ß-hemolytic and resistant to antibiotics commonly used in human and veterinary medicine are circulating in the fishery. The detection of the pathogen in 140 of the sampled fish population is alarming for potential outbreaks and zoonosis. Therefore, further molecular epidemiology of the disease should be studied to establish potential inter host transmission and antibiotic resistance traits. Therefore, raising the public awareness on risk associated with consuming undercooked or raw fish meat is pertinent.
Collapse
Affiliation(s)
- Nebiyu Kassa Kerigano
- Department of Fish Disease Research and Diagnostics, Animal Health Institute, Sebeta, Ethiopia.
| | | | - Yitbarek Getachew Molla
- College of Veterinary Medicine and Agriculture Department of Clinical Studies, Addis Ababa University, Debrezeit, Ethiopia
| | - Abde Aliy Mohammed
- Department of Molecular Biology, Animal Health Institute, Sebeta, Ethiopia
| | - Mekdes Tamiru
- Department of General Bacteriology, Animal Health Institute, Sebeta, Ethiopia
| | - Abebe Olani Bulto
- Department of General Bacteriology, Animal Health Institute, Sebeta, Ethiopia
| | - Tafesse Koran Wodaj
- Department of General Bacteriology, Animal Health Institute, Sebeta, Ethiopia
| | | | - Alemu Kebede Abdi
- Department of Fish Disease Research and Diagnostics, Animal Health Institute, Sebeta, Ethiopia
| |
Collapse
|
25
|
Bisi-Johnson MA, Adedeji AA, Sulaiman AA, Adefisoye MA, Okoh AI. Isolation and genotypic characterization of extended-spectrum beta-lactamase-producing Escherichia coli O157:H7 and Aeromonas hydrophila from selected freshwater sources in Southwest Nigeria. Sci Rep 2023; 13:10746. [PMID: 37400612 DOI: 10.1038/s41598-023-38014-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/30/2023] [Indexed: 07/05/2023] Open
Abstract
The proliferation of antibiotic-resistant bacteria and antimicrobial resistance is a pressing public health challenge because of their possible transfer to humans via contact with polluted water sources. In this study, three freshwater resources were assessed for important physicochemical characteristics as well as heterotrophic and coliform bacteria and as potential reservoirs for extended-spectrum beta-lactamase (ESBL) strains. The physicochemical characteristics ranged from 7.0 to 8.3; 25 to 30 °C, 0.4 to 93 mg/L, 0.53 to 8.80 mg/L and 53 to 240 mg/L for pH, temperature, dissolved oxygen (DO), biological oxygen demand (BOD5) and total dissolved solids, respectively. The physicochemical characteristics mostly align with guidelines except for the DO and BOD5 in some instances. Seventy-six (76) Aeromonas hydrophila and 65 Escherichia coli O157: H7 isolates were identified by preliminary biochemical analysis and PCR from the three sites. Among these, A. hydrophila displayed higher frequencies of antimicrobial resistance, with all 76 (100%) isolates completely resistant to cefuroxime and cefotaxime and with MARI ≥ 0.61. The test isolates showed more than 80% resistance against five of the ten test antimicrobials, with resistance against cefixime, a cephalosporin antibiotic being the highest at 95% (134/141). The frequency of the detection of the resistance genes in the A. hydrophila isolates generally ranged between 0% (blaSHV) and 26.3% (blaCTX-M), while the frequency of detection among the E. coli O157:H7 isolates ranged between 4.6% (blaCTX-M) and 58.4% (blaTEM). Our findings indicate that the distribution of antibiotic-resistant bacteria with diverse ESBL-producing capabilities and virulence genes in freshwater sources potentially threatens public health and the environment.
Collapse
Affiliation(s)
| | - Atilade A Adedeji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adebayo A Sulaiman
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Martins A Adefisoye
- Department of Microbiology, School of Science and Technology, Babcock University, Ilishan-Remo, Nigeria.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
- Department of Environmental Health Sciences College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
26
|
Lee HJ, Storesund JE, Lunestad BT, Hoel S, Lerfall J, Jakobsen AN. Whole genome sequence analysis of Aeromonas spp. isolated from ready-to-eat seafood: antimicrobial resistance and virulence factors. Front Microbiol 2023; 14:1175304. [PMID: 37455746 PMCID: PMC10348363 DOI: 10.3389/fmicb.2023.1175304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Aeromonas are widespread in aquatic environments and are considered emerging pathogens in humans and animals. Multidrug resistant (MDR) Aeromonas circulating in the aquatic environment and food production chain can potentially disseminate antimicrobial resistance (AMR) to humans via the foodborne route. In this study, we aimed to investigate AMR and virulence factors of 22 Aeromonas strains isolated from ready-to-eat (RTE) seafood. A multilocus phylogenetic analysis (MLPA) using the concatenated sequences of six housekeeping genes (gyrB, rpoD, gyrA, recA, dnaJ, and dnaX) in the 22 Aeromonas genomes and average nucleotide identity (ANI) analysis revealed eight different species; A. caviae, A. dhakensis, A. hydrophila, A. media, A. rivipollensis, A. salmonicida, A. bestiarum, and A. piscicola. The presence of virulence genes, AMR genes and mobile genetic elements (MGEs) in the Aeromonas genomes was predicted using different databases. Our data showed that the genes responsible for adherence and motility (Msh type IV pili, tap type IV pili, polar flagella), type II secretion system (T2SS) and hemolysins were present in all strains, while the genes encoding enterotoxins and type VI secretion system (T6SS) including major effectors were highly prevalent. Multiple AMR genes encoding β-lactamases such as cphA and blaOXA were detected, and the distribution of those genes was species-specific. In addition, the quinolone resistance gene, qnrS2 was found in a IncQ type plasmid of the A. rivopollensis strain A539. Furthermore, we observed the co-localization of a class I integron (intl1) with two AMR genes (sul1 and aadA1), and a Tn521 transposon carrying a mercury operon in A. caviae strain SU4-2. Various MGEs including other transposons and insertion sequence (IS) elements were identified without strongly associating with detected AMR genes or virulence genes. In conclusion, Aeromonas strains in RTE seafood were potentially pathogenic, carrying several virulence-related genes. Aeromonas carrying multiple AMR genes and MGEs could potentially be involved in the dissemination and spread of AMR genes to other bacterial species residing in the same environment and possibly to humans. Considering a One-Health approach, we highlight the significance of monitoring AMR caused by Aeromonas circulating in the food chain.
Collapse
Affiliation(s)
- Hye-Jeong Lee
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julia E. Storesund
- Section for Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway
| | - Bjørn-Tore Lunestad
- Section for Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway
| | - Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
27
|
Hou Y, Wu Z, Ren L, Chen Y, Zhang YA, Zhou Y. Characterization and application of a lytic jumbo phage ZPAH34 against multidrug-resistant Aeromonas hydrophila. Front Microbiol 2023; 14:1178876. [PMID: 37415809 PMCID: PMC10321303 DOI: 10.3389/fmicb.2023.1178876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023] Open
Abstract
Aeromonas hydrophila is an emerging foodborne pathogen causing human gastroenteritis. Aeromonas species isolated from food such as seafood presented multidrug-resistance (MDR), raising serious concerns regarding food safety and public health. The use of phages to infect bacteria is a defense against drug-resistant pathogens. In this study, phage ZPAH34 isolated from the lake sample exerted lytic activity against MDR A. hydrophila strain ZYAH75 and inhibited the biofilm on different food-contacting surfaces. ZPAH34 has a large dsDNA genome of 234 kb which belongs to a novel jumbo phage. However, its particle size is the smallest of known jumbo phages so far. Based on phylogenetic analysis, ZPAH34 was used to establish a new genus Chaoshanvirus. Biological characterization revealed that ZPAH34 exhibited wide environmental tolerance, and a high rapid adsorb and reproductive capacity. Food biocontrol experiments demonstrated that ZPAH34 reduces the viable count of A. hydrophila on fish fillets (2.31 log) and lettuce (3.28 log) with potential bactericidal effects. This study isolated and characterized jumbo phage ZPAH34 not only enriched the understanding of phage biological entity diversity and evolution because of its minimal virion size with large genome but also was the first usage of jumbo phage in food safety to eliminate A. hydrophila.
Collapse
Affiliation(s)
- Yuting Hou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Li Ren
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuan Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
28
|
Guo H, Chen J, Yuan X, Zhang J, Wang J, Yao J, Ge H. The combined effect of a novel formula of herbal extracts on bacterial infection and immune response in Micropterus salmoides. Front Microbiol 2023; 14:1185234. [PMID: 37333660 PMCID: PMC10272801 DOI: 10.3389/fmicb.2023.1185234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Herbal extracts have been considered as ideal alternative to antibiotics in aquaculture and application of combinatory effective extracts always can exhibit the enhanced bioactivity with high efficiency. In our study, a novel herbal extract combination GF-7, which is composed of Galla Chinensis, Mangosteen Shell extracts as well as the effective parts of Pomegranate peel and Scutellaria baicalensis Georgi extracts, was prepared and applied for the therapy of bacterial infection in aquaculture. The HPLC analysis of GF-7 was also investigated for quality control and chemical identification. In the bioassay, GF-7 had excellent antibacterial activity against various aquatic pathogenic bacteria in vitro, and the related MIC values were between 0.045 and 0.36 mg/mL. After feeding Micropterus salmoide with GF-7 (0.1, 0.3, and 0.6%, respectively) for 28 days, the activities of ACP, AKP, LZM, SOD, and CAT of the liver in each treatment group were significantly increased and the content of MDA was significantly decreased. Meanwhile, the hepatic expression of the immune regulators including IL-1β, TNF-α, and Myd88 at different times was up-regulated in varying degrees. The challenge results exhibited a good dose-dependent protective effect on M. salmoides infected with A. hydrophila, which was further confirmed by liver histopathology. Our results imply that the novel combination GF-7 is a potential natural medicine for the prevention and treatment of numerous aquatic pathogenic infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Huanyu Guo
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, China
| | - Jing Chen
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Xuemei Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Jian Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiayang Wang
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, China
| | - Jiayun Yao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Haixia Ge
- College of Life Sciences, Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
29
|
Dela H, Egyir B, Behene E, Sulemana H, Tagoe R, Bentil R, Bongo RNA, Bonfoh B, Zinsstag J, Bimi L, Addo KK. Microbiological quality and antimicrobial resistance of Bacteria species recovered from ready-to-eat food, water samples, and palm swabs of food vendors in Accra, Ghana. Int J Food Microbiol 2023; 396:110195. [PMID: 37030061 DOI: 10.1016/j.ijfoodmicro.2023.110195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/10/2023]
Abstract
This study sought to investigate microbial quality and antimicrobial resistance of bacteria species from Ready-to-Eat (RTE) food, water, and vendor palm swab samples. Between 2019 and 2020, RTE food, water and vendor palm swab samples were collected from food vending sites in Accra, Ghana. Samples were cultured and confirmed using the Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF). Antimicrobial susceptibility testing (AST) was conducted using disk diffusion method. Beta-lactamase and Diarrheagenic Escherichia coli (DEC) genes were determined using Polymerase Chain Reaction (PCR). Total plate count (TPC) and Total coliform count (TCC) were performed on food and water samples. In total, 179 RTE food, 72 water and 10 vendor palm swab samples were collected. Enterobacter spp. (16.8 %), Citrobacter spp. (10.1 %), Enterococcus faecalis (7.8 %), Pseudomonas spp. (6.7 %) and Klebsiella pneumoniae (4.0 %) occurred in food. Isolates from water and palm were Klebsiella pneumoniae (20.8 %), Aeromonas spp. (16.7 %) and Enterobacter cloacae (11.1 %). Resistance to Amoxicillin-clavulanate, Tetracycline, Azithromycin, Sulfamethoxazole-trimethoprim, and Nitrofurantoin were common among Enterobacterales. High mean TPC and TCC showed in some RTE food and different water types used in vending depicting their unsafe condition for consumption and usage. The blaSHV and blaTEM genes were present in some Enterobacterales from food and water. The lt gene was identified in two food samples. AMR organisms associated with nosocomial infections in the samples investigated, calls for continuous surveillance in the food industry in Ghana. Also, the unsafe outcome of RTE food and water depicts the need for the enforcement of Ghana's food safety laws.
Collapse
Affiliation(s)
- Helena Dela
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana; Department of Animal Biology and Conservation Science (DABCS), University of Ghana, Legon, Accra, Ghana.
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Eric Behene
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Hamdiya Sulemana
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Rodalyn Tagoe
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Ronald Bentil
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Richard N A Bongo
- Institut de Recherche en Elevage pour le Développement (IRED), N'djamena, Chad
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire (CSRS), Abidjan, Côte d'Ivoire
| | - Jakob Zinsstag
- Department of Epidemiology and Public Health (EPH), Swiss TPH, Basel, Switzerland
| | - Langbong Bimi
- Department of Animal Biology and Conservation Science (DABCS), University of Ghana, Legon, Accra, Ghana
| | - Kennedy Kwasi Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
30
|
Postpartum Aeromonas hydrophila Peritonitis and Bacteremia. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2023. [DOI: 10.1097/ipc.0000000000001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
31
|
Zhao J, Li Y, Huang Y, Jin L, Xu Y, Xu M, Quan C, Chen M. Heterologous expression of quorum sensing transcriptional regulator LitR and its function in virulence-related gene regulation in foodborne pathogen Aeromonas hydrophila. Mol Biol Rep 2023; 50:2049-2060. [PMID: 36542235 DOI: 10.1007/s11033-022-07866-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Aeromonas hydrophila is an important foodborne and zoonotic pathogen causing serious diseases. Hence, revealing the pathogenic mechanism of A. hydrophila will be of importance in the development of novel therapies. Aeromonas hydrophila litR was reported to be regulated by two quorum sensing (QS) pathways, indicating that it is involved in QS network regulation correlated with bacterial virulence. However, the function of LitR is currently not understood. Therefore, we aimed to reveal the potential regulatory mechanisms of LitR on virulence-related genes. METHODS AND RESULTS In this study, amino acid sequences analysis of LitR was conducted, providing bioinformatics evidence for its function as a potential transcriptional regulator. LitR protein was heterologous expressed, purified and its in-vitro multimeric forms were observed with gel filtration chromatography. The correlation between intracellular LitR expression level and cell density was analyzed with immunoblots. Regulation mechanisms of LitR on several important virulence-related factors were investigated with qRT-PCR, EMSA, DNase I footprinting and microscale thermophoresis binding assays, etc. Results showed that recombinant LitR protein aggregated mainly as dimer and hexamer in vitro. Intracellular expression level of LitR was positively correlated with cell density of A. hydrophila. Furthermore, LitR exhibited complicated regulation modes on virulence-related genes; it could directly bind to promoter regions of the hemolysin, serine protease and T6SS effector protein VgrG encoded genes. The promoter region of the hemolysin gene showed high binding affinity and mainly two binding sites for LitR. Different dissociation constants were obtained for LitR interaction with the hemolysin gene binding motifs I and II. Assays focusing on physiological characteristics of A. hydrophila prove that LitR positively regulated hemolytic and total extracellular protease activities. CONCLUSIONS This study investigated the function of LitR as a quorum sensing transcriptional regulator in regulation of virulence-related genes, which will help reveal the mechanisms of A. hydrophila pathogenicity. LitR could serve as a potential target for development of new antimicrobial agents from the perspective of QS regulation.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Yue Li
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yan Huang
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Liming Jin
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Yongbin Xu
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Menghao Xu
- College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, 116600, China.
- College of Life Science, Dalian Minzu University, Dalian, 116600, China.
| | - Ming Chen
- College of Bioengineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
32
|
Rieder J, Kapopoulou A, Bank C, Adrian-Kalchhauser I. Metagenomics and metabarcoding experimental choices and their impact on microbial community characterization in freshwater recirculating aquaculture systems. ENVIRONMENTAL MICROBIOME 2023; 18:8. [PMID: 36788626 PMCID: PMC9930364 DOI: 10.1186/s40793-023-00459-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/02/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microbial communities in recirculating aquaculture systems (RAS) play a role in system success, nutrient cycling, and water quality. Considering the increasing socio-economic role of fish farming, e.g., regarding food security, an in-depth understanding of aquaculture microbial communities is also relevant from a management perspective, especially regarding the growth, development, and welfare of the farmed animal. However, the current data on the composition of microbial communities within RAS is patchy, which is partly attributable to diverging method choices that render comparative analyses challenging. Therefore, there is a need for accurate, standardized, and user-friendly methods to study microbial communities in aquaculture systems. RESULTS We compared sequencing approach performances (3 types of 16S short amplicon sequencing, PacBio long-read amplicon sequencing, and amplification-free shotgun metagenomics) in the characterization of microbial communities in two commercial RAS fish farms. Results showed that 16S primer choice and amplicon length affect some values (e.g., diversity measures, number of assigned taxa or distinguishing ASVs) but have no impact on spatio-temporal patterns between sample types, farms and time points. This implies that 16S rRNA approaches are adequate for community studies. The long-read amplicons underperformed regarding the quantitative resolution of spatio-temporal patterns but were suited to identify functional services, e.g., nitrification cycling and the detection of pathogens. Finally, shotgun metagenomics extended the picture to fungi, viruses, and bacteriophages, opening avenues for exploring inter-domain interactions. All sequencing datasets agreed on major prokaryotic players, such as Actinobacteriota, Bacteroidota, Nitrospirota, and Proteobacteria. CONCLUSION The different sequencing approaches yielded overlapping and highly complementary results, with each contributing unique data not obtainable with the other approaches. We conclude that a tiered approach constitutes a strategy for obtaining the maximum amount of information on aquaculture microbial communities and can inform basic research on community evolution dynamics. For specific and/or applied questions, single-method approaches are more practical and cost-effective and could lead to better farm management practices.
Collapse
Affiliation(s)
- Jessica Rieder
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute for Fish and Wildlife Health, University of Bern, Länggasstrasse 122, 3001 Bern, Switzerland
- Division of Theoretical Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Adamandia Kapopoulou
- Division of Theoretical Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Claudia Bank
- Division of Theoretical Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Irene Adrian-Kalchhauser
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute for Fish and Wildlife Health, University of Bern, Länggasstrasse 122, 3001 Bern, Switzerland
| |
Collapse
|
33
|
Sebastião FA, Majolo C, Martins VFS, Boijink CL, Brandão FR, Pereira SLA, Fujimoto RY, Chagas EC. Antimicrobial resistance profile of Aeromonas spp. isolated from asymptomatic Colossoma macropomum cultured in the Amazonas State, Brazil. BRAZ J BIOL 2023; 82:e260773. [PMID: 36629538 DOI: 10.1590/1519-6984.260773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/20/2022] [Indexed: 01/11/2023] Open
Abstract
Bacterial diseases are important factors that limit productivity in aquaculture. To reduce negative economic impacts, fish farmers use antimicrobials, often indiscriminately, and this action has led to bacterial resistance to drugs. The objectives of this study were to isolate and identify the main putative pathogenic bacterial species in tambaqui (Colossoma macropomum), establish the profile of resistance to antimicrobials by the methods of disc diffusion, and determine the minimum inhibitory concentration (MIC) values. Two hundred and ninety asymptomatic fish were collected between March and November 2015 from ten fish farms in the Amazonas state (Brazil). Of the total strains recovered from tambaqui, seven were identified as Aeromonas spp. by sequencing the 16S rRNA gene. These seven isolates showed resistance to ampicillin, 28% to erythromycin, and 28% to sulfonamide. Additionally, the seven isolates showed a MIC higher than the range evaluated for amoxicillin, penicillin, novobiocin, tylosin tartrate, and clindamycin, and 85% showed resistance to erythromycin. The results of this study indicate the need to increase the awareness of fish farmers and, most importantly, the government, about the lack of drug regulations for use in aquaculture, and good management practices, so the indiscriminate prophylactic and systemic use of antimicrobials be inhibited.
Collapse
Affiliation(s)
- F A Sebastião
- Embrapa Amazônia Ocidental, Manaus, AM, Brasil.,Universidade Federal do Amazonas, Programa de Pós-graduação em Ciência Animal e Recursos Pesqueiros, Manaus, AM, Brasil
| | - C Majolo
- Embrapa Amazônia Ocidental, Manaus, AM, Brasil
| | - V F S Martins
- Universidade Federal do Amazonas, Laboratório de Ictiologia e Ordenamento Pesqueiro, Humaitá, AM, Brasil
| | - C L Boijink
- Embrapa Amazônia Ocidental, Manaus, AM, Brasil
| | - F R Brandão
- Embrapa Amazônia Ocidental, Manaus, AM, Brasil
| | | | - R Y Fujimoto
- Embrapa Tabuleiros Costeiros, Aracaju, SE, Brasil
| | - E C Chagas
- Embrapa Amazônia Ocidental, Manaus, AM, Brasil
| |
Collapse
|
34
|
Investigation of antibiotic-resistant vibrios associated with shrimp (Penaeus vannamei) farms. Arch Microbiol 2022; 205:41. [PMID: 36571636 DOI: 10.1007/s00203-022-03376-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
For the sustainable farming of disease-free and healthy shrimps, antimicrobial use is frequent nowadays in shrimp-cultured system. Considering the serious impact of global antimicrobial resistance (AMR), the present study was focused to investigate the prevalence of antimicrobial-resistant vibrios among infected shrimps (Penaeus vannamei) from two brackish water-cultured farms. Diverse species of vibrios viz. V. alginolyticus, V. parahaemolyticus, V. cholerae, V. mimicus, and V. fluvialis along with Aeromonas hydrophila, A. salmonicida and Shewanella algae were recovered from the shrimps on TCBS medium. Shannon-Wiener diversity index and H' (loge) were 1.506 and 1.69 for the isolates from farm 1 and farm 2, respectively. V. alginolyticus was found to be the most resistant isolate by showing multiple antibiotic resistance (MAR) index of 0.60 followed by V. mimicus (0.54) and V. parahaemolyticus (0.42). Among the 35 antibiotics of 15 different classes tested, tetracyclines, beta-lactams and cephalosporins were found as the most resistant antibiotic classes. All the isolates possessed a MAR index > 0.2 and the majority exhibited minimum inhibitory concentration (MIC) > 256 mcg/ml, thereby indicating the excess exposure of antibiotics in the systems. An enhanced altered resistance phenotype and a significant shift in the MAR index were noticed after plasmid curing. Public health is further concerning because plasmid-borne AMR is evident among the isolates and the studied shrimp samples are significant in the food industry. This baseline information will help the authorities to curb antimicrobial use and pave the way for establishing new alternative strategies by undertaking a multidimensional "One-Health" approach.
Collapse
|
35
|
Dubey S, Ager-Wick E, Peng B, Evensen Ø, Sørum H, Munang’andu HM. Characterization of virulence and antimicrobial resistance genes of Aeromonas media strain SD/21-15 from marine sediments in comparison with other Aeromonas spp. Front Microbiol 2022; 13:1022639. [PMID: 36532448 PMCID: PMC9752117 DOI: 10.3389/fmicb.2022.1022639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 10/03/2023] Open
Abstract
Aeromonas media is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen associated with diarrhea in humans and skin ulceration in fish. In this study, we used whole genome sequencing to profile all antimicrobial resistance (AMR) and virulence genes found in A. media strain SD/21-15 isolated from marine sediments in Denmark. To gain a better understanding of virulence and AMR genes found in several A. media strains, we included 24 whole genomes retrieved from the public databanks whose isolates originate from different host species and environmental samples from Asia, Europe, and North America. We also compared the virulence genes of strain SD/21-15 with A. hydrophila, A. veronii, and A. salmonicida reference strains. We detected Msh pili, tap IV pili, and lateral flagella genes responsible for expression of motility and adherence proteins in all isolates. We also found hylA, hylIII, and TSH hemolysin genes in all isolates responsible for virulence in all isolates while the aerA gene was not detected in all A. media isolates but was present in A. hydrophila, A. veronii, and A. salmonicida reference strains. In addition, we detected LuxS and mshA-Q responsible for quorum sensing and biofilm formation as well as the ferric uptake regulator (Fur), heme and siderophore genes responsible for iron acquisition in all A. media isolates. As for the secretory systems, we found all genes that form the T2SS in all isolates while only the vgrG1, vrgG3, hcp, and ats genes that form parts of the T6SS were detected in some isolates. Presence of bla MOX-9 and bla OXA-427 β-lactamases as well as crp and mcr genes in all isolates is suggestive that these genes were intrinsically encoded in the genomes of all A. media isolates. Finally, the presence of various transposases, integrases, recombinases, virulence, and AMR genes in the plasmids examined in this study is suggestive that A. media has the potential to transfer virulence and AMR genes to other bacteria. Overall, we anticipate these data will pave way for further studies on virulence mechanisms and the role of A. media in the spread of AMR genes.
Collapse
Affiliation(s)
- Saurabh Dubey
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Eirill Ager-Wick
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Hetron Mweemba Munang’andu
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
36
|
Chakraborty N, Das BK, Bera AK, Borah S, Mohanty D, Yadav AK, Kumar J, Koushlesh SK, Chanu TN, Panda SP, Vallangi R. Co-Prevalence of Virulence and Pathogenic Potential in Multiple Antibiotic Resistant Aeromonas spp. from Diseased Fishes with In Silico Insight on the Virulent Protein Network. Life (Basel) 2022; 12:life12121979. [PMID: 36556344 PMCID: PMC9781969 DOI: 10.3390/life12121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Aeromonas species exhibit widespread presence in food, poultry, and aquaculture. They are major multi-drug-resistant fish pathogens. This study aims to identify Aeromonas species harbouring virulence genes aerolysin, flagellin, and lipase from diseased fishes of Assam wetlands with association with antibiotic resistance and in vivo pathogenicity. One hundred and thirty-four Aeromonas strains were isolated and thirty representative species identified using genus-specific 16S rRNA gene amplification. A. veronii was most prevalent (53.7%) followed by A. hydrophila (40.2%), A. caviae (4.47%), and A. dhakensis (1.49%). Ninety percent (90%) of strains harboured at least one of the studied virulence genes: aerA (73.3%), lip (46.6%), and flaA (26.6%). The highest multiple antibiotic resistance (MAR) index 0.8 corresponded to A. hydrophila DBTNE1 (MZ723069), containing all the studied genes. The lowest LD50 values (1.6 × 106 CFU/fish) corresponded to isolates having both aerA and lip. β-lactams showed utmost resistance and lowest for aminoglycosides. There was a significant (p < 0.05) Pearson chi-square test of association between the occurrence of virulence and antibiotic resistance. The in silico protein−protein interaction revealed important drug targets, such as σ28 transcription factor, aminoacyl-tRNA synthetase, and diacylglycerol kinase, with significant (p < 0.05) enrichment. This study suggests that fish-isolate Aeromonas strains represent potential threat to aquaculture with subsequent risk of transferring antibiotic resistance to human pathogens.
Collapse
Affiliation(s)
- Nabanita Chakraborty
- Regional Centre, Central Inland Fisheries Research Institute (ICAR), Guwahati 781006, India
| | - Basanta Kumar Das
- Central Inland Fisheries Research Institute (ICAR), Barrackpore 700120, India
- Correspondence: ; Tel.: +91-033-2592-1190; Fax: +91-033-2592-0388
| | - Asit Kumar Bera
- Central Inland Fisheries Research Institute (ICAR), Barrackpore 700120, India
| | - Simanku Borah
- Regional Centre, Central Inland Fisheries Research Institute (ICAR), Guwahati 781006, India
| | - Debasmita Mohanty
- Central Inland Fisheries Research Institute (ICAR), Barrackpore 700120, India
| | - Anil Kumar Yadav
- Regional Centre, Central Inland Fisheries Research Institute (ICAR), Guwahati 781006, India
| | - Jeetendra Kumar
- Regional Centre, Central Inland Fisheries Research Institute (ICAR), Prayagraj 211002, India
| | | | | | - Soumya Prasad Panda
- Central Inland Fisheries Research Institute (ICAR), Barrackpore 700120, India
| | - Ravali Vallangi
- Regional Centre, Central Inland Fisheries Research Institute (ICAR), Guwahati 781006, India
| |
Collapse
|
37
|
Dong J, Yan T, Yang Q, Song Y, Cheng B, Zhou S, Liu Y, Ai X. Palmatine Inhibits the Pathogenicity of Aeromonas hydrophila by Reducing Aerolysin Expression. Foods 2022. [PMCID: PMC9601346 DOI: 10.3390/foods11203250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aeromonas hydrophila, an opportunistic aquatic pathogen widely spread in aquatic environments, is responsible for a number of infectious diseases in freshwater aquaculture. In addition, A. hydrophila can transmit from diseased fish to humans and results in health problems. The occurrence of antibiotic-resistant bacterial strains restricts the application of antibiotics and is responsible for failure of the treatment. Moreover, residues of antibiotics in aquatic products often threaten the quality and safety. Therefore, alternative strategies are called to deal with infections caused by antibiotic-resistant bacteria. Aerolysin, one of the most important virulence factors of A. hydrophila, is adopted as a unique anti-virulence target on the basis of the anti-virulence strategy to battling infections caused by A. hydrophila. Palmatine, an isoquinoline alkaloid from a variety of herbal medicines that showed no anti-A. hydrophila activity, could reduce hemolysis of the bacterium by decreasing aerolysin production. The results of the qPCR assay demonstrated that the transcription of the aerA gene was suppressed. Moreover, cell viability and in vivo study showed that palmatine treatment could decrease the pathogenicity of A. hydrophila both in vitro and in vivo. In summary, palmatine is a leading compound against A. hydrophila-associated infection in aquaculture by inhibiting the expression of aerolysin.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Tianhui Yan
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yi Song
- Chinese Academy of Fishery Sciences, Beijing 100039, China
| | - Bo Cheng
- Chinese Academy of Fishery Sciences, Beijing 100039, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: ; Tel.: +86-027-81780298
| |
Collapse
|
38
|
Abdul Kari Z, Wee W, Mohamad Sukri SA, Che Harun H, Hanif Reduan MF, Irwan Khoo M, Van Doan H, Wen Goh K, Seong Wei L. Role of phytobiotics in relieving the impacts of Aeromonas hydrophila infection on aquatic animals: A mini-review. Front Vet Sci 2022; 9:1023784. [PMID: 36277060 PMCID: PMC9582345 DOI: 10.3389/fvets.2022.1023784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/15/2022] [Indexed: 11/04/2022] Open
Abstract
Aeromonas hydrophila is a ubiquitous bacterium with various hosts that causes mass mortality in farm-raised fish species and significant economic losses. The current antibiotic treatment is ineffective in controlling this bacterium infection in aquaculture species. Therefore, an evaluation of potential phytobiotics is needed to find an alternative antimicrobial agent to reduce the over-reliance on antibiotics in aquaculture and safeguard public and environmental health. Furthermore, the rise in antibiotic resistance cases among pathogenic bacteria indicates an urgent need for new fish and shellfish health management solutions. In this context, phytobiotics applications in aquaculture can be defined as any medicinal plant-based antimicrobial agent used in fish and shellfish health management. This review will focus on the impacts of Motile Aeromonas Septicemia (MAS) due to A. hydrophila in aquaculture, the potential of phytobiotics in enhancing the tolerance of aquaculture species against MAS and the combination of phytobiotics with other antimicrobial and therapeutic agents against MAS.
Collapse
Affiliation(s)
- Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Hasnita Che Harun
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Mohd Farhan Hanif Reduan
- Department of Paraclinical Study, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, Thailand
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| |
Collapse
|
39
|
Su Y, Liu S, Dong Q, Zeng Y, Yang Y, Gao Q. Tracking virulence genes and their interaction with antibiotic resistome during manure fertilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119736. [PMID: 35810986 DOI: 10.1016/j.envpol.2022.119736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes, collectively termed as antibiotic resistome, are regarded as emerging contaminants. Antibiotics resistome can be highly variable in different environments, imposing environmental safety concern and public health risk when it is in conjunction with pathogenic bacteria. However, it remains elusive how pathogenic bacteria interact with antibiotic resistome, making it challenging to assess microbial risk. Here, we examined the presence and relative abundance of bacterial virulence genes representing potential pathogens in swine manure, compost, compost-amended soil, and unamended agricultural soil in five suburban areas of Beijing, China. The absolute abundances of virulence genes were marginally significantly (p < 0.100) increased in compost-amended soils than unamended soil, revealing potential health risks in manure fertilization. The composition of potential pathogens differed by sample types and was linked to temperature, antibiotics, and heavy metals. As antibiotics can confer pathogens the resistance to clinic treatment, it was alarming to note that virulence genes tended to co-exist with antibiotic resistance genes, as shown by prevalently positive links among them. Collectively, our results demonstrate that manure fertilization in agriculture might give rise to the development of potentially antibiotic-resistant pathogens, unveiling an environmental health risk that has been frequently overlooked.
Collapse
Affiliation(s)
- Yifan Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Suo Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing, 102205, China
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
40
|
Tersoo‐Abiem EM, Ariahu CC, Ikya JK. Thermal Inactivation kinetics of
Aeromonas hydrophila
in Soymilk of varying
pH
and sugar concentrations. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Evelyn M. Tersoo‐Abiem
- Department of Food Science and Technology Federal University of Agriculture Makurdi Benue State Nigeria
| | - Charles C. Ariahu
- Department of Food Science and Technology Federal University of Agriculture Makurdi Benue State Nigeria
| | - Julius K. Ikya
- Department of Food Science and Technology Federal University of Agriculture Makurdi Benue State Nigeria
| |
Collapse
|
41
|
Goudarztalejerdi A, Yavari M, Nouri Kalourazi M, Borzouei F, Manouchehri Tabar A, Tolouei Gilani J. Antibiotic Resistance and Virulence Factor Gene Profile of Aeromonas hydrophila Isolated from Carp (Cyprinidae) Suspected with Hemorrhagic Septicemia in Gilan, Iran. Lett Appl Microbiol 2022; 75:1354-1365. [PMID: 35976044 DOI: 10.1111/lam.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022]
Abstract
The present study was conducted to determine the antibacterial resistance profile of Aeromonas hydrophila (n= 42) isolated from the 100 hemorrhagic septicemia-suspected carp in Gilan, Iran. The prevalence of class 1 and 2 integrons, antibiotic resistance genes (ARG), and virulence factor genes (VFG) among these isolates was investigated using PCR. Also, the possible association between the presence of VFGs and the antibiotic resistance profile of isolates was assessed. The majority of A. hydrophila isolates (83.33%) exhibited multi-drug resistance (MDR) profile, and all isolates were resistant to clindamycin, while all isolates were susceptible to amikacin. intI1 and intI2 gene was found in 26.2% and 4.8% isolates, respectively. This is the first report of the presence of the intI2 gene in A. hydrophila isolates in Iran. The blaTEM (40.5%) and tetA (33.3%) genes were found as the predominant ARGs. The most frequently detected VFGs were lip and ahh1(90.5%), while the examined isolates carrying at least three VFGs and the most prevalent VFGs profile was ast+, act+, alt+, ahhl+, aerA+, ahyB+, and lip+. The results of this study indicate a positive association between the presence of VFGs and antibiotic resistance, and most MDR A. hydrophila isolates showed high frequencies of VFGs.
Collapse
Affiliation(s)
- Ali Goudarztalejerdi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Morteza Yavari
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mahdi Nouri Kalourazi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Fatemeh Borzouei
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Arash Manouchehri Tabar
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Javad Tolouei Gilani
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
42
|
Abdel-Latif HMR, Shukry M, Abd-Elaziz RA. Clinico-pathological findings and expression of inflammatory cytokines, apoptosis, and oxidative stress-related genes draw mechanistic insights in Nile tilapia reared under ammonia-N exposure and Aeromonas hydrophila challenge. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1-12. [PMID: 35667539 DOI: 10.1016/j.fsi.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Fish diseases have a "stress-related" nature, whereas fish exposure to stressors will increase their susceptibility to infections. It was also noted that fish exposure to biotic and abiotic stressors would exaggerate the disease signs, elicit high mortalities, and cause severe economic losses. Motile aeromonad septicemia (MAS) is a major bacterial disease affecting a variety of finfish species throughout the globe and is caused by Aeromonas hydrophila. Herein, we have evaluated the impacts of ammonia-N stress and/or Nile tilapia challenge with pathogenic A. hydrophila on the clinical picture of MAS disease. Clinical signs, postmortem lesions, histoarchitectural changes, and gene transcription analysis were studied. Fish experimentally infected with A. hydrophila were exophthalmic and showed darkened skin. Moreover, opercular hyperemia, petechial hemorrhages, and gill congestion alongside dermal ulcerations were noticed in ammonia-exposed fish. On the other side, fish exposed to both stressors exhibited exophthalmia, corneal opacity, severe dropsy, and hemorrhagic dermal ulcerations. At the tissue levels, the histopathological lesions were exaggerated in the fish group exposed to ammonia stress and challenged with A. hydrophila than fish group exposed to each one alone. At the molecular levels, the mRNA expression analysis reveals significant upregulation of inflammatory cytokines such as interleukin-1 beta, CXC chemokine, and tumor necrosis factor-alpha in the kidney tissues of Nile tilapia exposed to ammonia and/or challenged with A. hydrophila. In a similar trend, the mRNA expression values of heat shock protein 70 (HSP70), oxidative stress related genes (SOD and CAT) and apoptosis-related genes (caspase 3, BAX, and cytochrome P450) were also increased in the hepatic tissues of fish exposed to singular or dual stressors. Interestingly, the highest expression levels of the above-mentioned genes were found in the fish group exposed to both stressors. Taken together, these findings indicate the occurrence of severe inflammatory and apoptotic changes in fish exposed to ammonia and infected with A. hydrophila more than each one alone. In contrast, there was a significant decrease in the expression values of the antioxidant enzyme glutathione-S-transferase (GST) in stressed fish, suggesting the occurrence of oxidative stress. This study will be helpful to draw mechanistic insights into the exposure of fish to ammonia stress and infection with A. hydrophila.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, 22758, Alexandria, Egypt.
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Rehab A Abd-Elaziz
- Fish Diseases Department, Alexandria Provincial Lab, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Egypt
| |
Collapse
|
43
|
Dong J, Yan T, Yang Q, Zhou S, Song Y, Liu Y, Ma L, Xu N, Yang Y, Ai X. Inhibitory Effect of Polydatin Against Aeromonas hydrophila Infections by Reducing Aerolysin Production. Front Vet Sci 2022; 9:937463. [PMID: 35909695 PMCID: PMC9330046 DOI: 10.3389/fvets.2022.937463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
The fast-growing demand for aquatic products has led to the rapid development of aquaculture. However, diseases caused by bacterial pathogens result in severe economic losses all over the world. Although the introduction of antibiotics to aquaculture decreased the mortality of infectious diseases, the emergence of antibiotic resistance caused treatment failure. Therefore, drugs with novel strategies are needed for combatting infections caused by resistant bacterial strains. In the present study, aerolysin was identified as a target for developing drugs from natural compounds against Aeromonas hydrophila (A. hydrophila) infections. We found that polydatin without an inhibitory effect against A. hydrophila growth could decrease the hemolysis mediated by aerolysin. In both western blot and qPCR assays, the addition of polydatin decreased the production of aerolysin by downregulating the aerolysin encoding gene. Moreover, cell viability and animal studies found that polydatin could reduce the pathogenesis of A. hydrophila both in vitro and in vivo. Taken together, these findings provided a novel approach and candidate for treating resistant A. hydrophila infections in aquaculture.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Tianhui Yan
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yi Song
- Chinese Academy of Fishery Sciences, Beijing, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Liang Ma
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
44
|
Synergistic Effect of Quercetin on Antibacterial Activity of Florfenicol Against Aeromonas hydrophila In Vitro and In Vivo. Antibiotics (Basel) 2022; 11:antibiotics11070929. [PMID: 35884183 PMCID: PMC9312081 DOI: 10.3390/antibiotics11070929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
The overuse or abuse of antimicrobial drugs in aquaculture, aggravates the generation of drug-resistant bacteria, which has caused potential risks to human health and the aquaculture industry. Flavonoid–antibiotic combinations have been shown to suppress the emergence of resistance in bacteria, and sometimes even reverse it. Here, the antibacterial activity of florfenicol in combination with quercetin, a potential drug to reverse multidrug resistance, was tested against Aeromonas hydrophila (A. hydrophila). Of eleven selected antimicrobial agents, quercetin and florfenicol showed the strongest bactericidal effect, and fractional inhibitory concentration (FIC) indices were 0.28, showing a highly synergistic effect. Then, the antibacterial activities of quercetin and florfenicol against A. hydrophila were further tested in vitro and in vivo. Bacterial viability of A. hydrophila decreased in a florfenicol dose-dependent manner, about 16.3–191.4-fold lower in the presence of 15 μg/mL quercetin and 0.156 to 1.25 μg/mL florfenicol than in the absence of quercetin, respectively. The cell killing was maximum at 45 μg/mL quercetin in the dose range tested plus 0.156 μg/mL florfenicol. The viability decreased over time during the combined treatment with quercetin and florfenicol by 60.5- and 115-fold in 0.156 μg/mL florfenicol and 0.625 μg/mL florfenicol, respectively. Additionally, the synergistic effect was confirmed by the bacterial growth curve. Furthermore, quercetin and florfenicol had an obvious synergistic activity in vivo, reducing the bacterial load in the liver, spleen and kidney tissues of Cyprinus carpio up to 610.6-fold compared with the florfenicol group, and improving the survival rate of infected fish from 10% in the control group to 90% in drug combinations group. These findings indicated that quercetin could potentiate the antibacterial activity of florfenicol against A. hydrophila infection and may reduce the use of antimicrobial drugs and improve the prevention and control capability of bacterial resistance.
Collapse
|
45
|
Fernández-Bravo A, Figueras MJ. Immune Response of the Monocytic Cell Line THP-1 Against Six Aeromonas spp. Front Immunol 2022; 13:875689. [PMID: 35874671 PMCID: PMC9304557 DOI: 10.3389/fimmu.2022.875689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Aeromonas are autochthonous bacteria of aquatic environments that are considered to be emerging pathogens to humans, producing diarrhea, bacteremia, and wound infections. Genetic identification shows that 95.4% of the strains associated with clinical cases correspond to the species Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%). However, few studies have investigated the human immune response against some Aeromonas spp. such as A. hydrophila, Aeromonas salmonicida, and A. veronii. The present study aimed to increase the knowledge about the innate human immune response against six Aeromonas species, using, for the first time, an in vitro infection model with the monocytic human cell line THP-1, and to evaluate the intracellular survival, the cell damage, and the expression of 11 immune-related genes (TLR4, TNF-α, CCL2, CCL20, JUN, RELA, BAX, TP53, CASP3, NLRP3, and IL-1β). Transcriptional analysis showed an upregulated expression of a variety of the monocytic immune-related genes, with a variable response depending upon the Aeromonas species. The species that produced the highest cell damage, independently of the strain origin, coincidentally induced a higher expression of immune-related genes and corresponded to the more prevalent clinical species A. dhakensis, A. veronii, and A. caviae. Additionally, monocytic cells showed an overexpression of the apoptotic and pyroptotic genes involved in cell death after A. dhakensis, A. caviae, and Aeromonas media infection. However, the apoptosis route seemed to be the only way of producing cell damage and death in the case of the species Aeromonas piscicola and Aeromonas jandaei, while A. veronii apparently only used the pyroptosis route.
Collapse
Affiliation(s)
- Ana Fernández-Bravo
- Rovira i Virgili University, Department of Basic Medical Sciences, Mycology and Environmental Microbiology Unit, Reus, Spain
- Pere Virgili Health Research Institute (IISPV), Reus, Spain
- *Correspondence: Ana Fernández-Bravo,
| | - Maria José Figueras
- Rovira i Virgili University, Department of Basic Medical Sciences, Mycology and Environmental Microbiology Unit, Reus, Spain
- Pere Virgili Health Research Institute (IISPV), Reus, Spain
| |
Collapse
|
46
|
Teodoro JR, Carvalho GG, Queiroz MM, Levy CE, Kabuki DY. Incidence, evaluation of detection and identification methods, and antimicrobial resistance of Aeromonas spp. in ready-to-eat foods. Int J Food Microbiol 2022; 379:109862. [DOI: 10.1016/j.ijfoodmicro.2022.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/18/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
|
47
|
Pessoa RBG, de Oliveira WF, Correia MTDS, Fontes A, Coelho LCBB. Aeromonas and Human Health Disorders: Clinical Approaches. Front Microbiol 2022; 13:868890. [PMID: 35711774 PMCID: PMC9195132 DOI: 10.3389/fmicb.2022.868890] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Aeromonas comprises more than 30 Gram-negative bacterial species and naturally inhabitants from aquatic environments. These microorganisms, commonly regarded as pathogens of fish and several other animals, have been gaining prominence on medical trial due to its ability to colonize and infect human beings. Besides water, Aeromonas are widely spreaded on most varied sources like soil, vegetables, and food; Although its opportunistic nature, they are able to cause infections on immunocompromised or immunocompetent patients. Aeromonas species regarded as potential human pathogens are usually A. hydrophila, A. caviae, and A. veronii biovar sobria. The main clinical manifestations are gastrointestinal tract disorders, wound, and soft tissue infections, as well as septicemia. Regarding to antibiotic responses, the bacteria present a diversified susceptibility profile and show inherence resistance to ampicillin. Aeromonas, as an ascending genus in microbiology, has been carefully studied aiming comprehension and development of methods for detection and medical intervention of infectious processes, not fully elucidated in medicine. This review focuses on current clinical knowledge related to human health disorders caused by Aeromonas to contribute on development of efficient approaches able to recognize and impair the pathological processes.
Collapse
Affiliation(s)
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | |
Collapse
|
48
|
Zhang L, Chen X, Wang G, Yao J, Wei J, Liu Z, Lin X, Liu Y. Quantitative proteomics reveals the antibiotics adaptation mechanism of Aeromonas hydrophila under kanamycin stress. J Proteomics 2022; 264:104621. [PMID: 35618212 DOI: 10.1016/j.jprot.2022.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
Aeromonas hydrophila is a widespread opportunistic pathogen of aquatic fishes in freshwater habitats. The current emergence of antimicrobial-resistant A. hydrophila has been reported in the world while the bacterial antibiotics adaptive mechanism remains poorly explored. In this study, using quantitative proteomics technology, the behavior of A. hydrophila was investigated by comparing the differentially expression proteins between with and without kanamycin (KAN) treatment. A total of 374 altered proteins including 184 increasing and 190 proteins decreasing abundances were quantified when responding to KAN stress. The bioinformatics analysis showed that stress related proteins were hub proteins that significantly increased to reduce the pressure from the misreading of mRNA caused by KAN. Moreover, several metallic pathways, such as oxidative phosphorylation and TCA cycle pathways may affect KAN resistance. Finally, eight selected genes were deleted and their antibiotics susceptibilities to kanamycin were valued, respectively. Results showed that OmpA II family protein A0KI26, and two-component system protein AtoC may involve in the KAN resistance in this study. In general, our results provide an insight into the behaviors of bacterial responding to KAN stress, and demonstrate the intrinsic antibiotics adaptive mechanism of A. hydrophila. BIOLOGICAL SIGNIFICANCE: In this study, the differentially expressed proteins (DEPs) of A. hydrophila strain between with and without kanamycin (KAN) were compared by using a data-independent acquisition (DIA) - based quantitative proteomics method. Bioinformatics analysis showed that stress - related proteins are hub proteins that significantly increased under KAN stress. Moreover, several metallic pathways, such as oxidative phosphorylation and citrate cycle (TCA cycle) pathways, can affect KAN resistance. Finally, our antibiotics susceptibility assay showed that the protein A0KI26 of the OmpA II family, and the AtoC of the two-component system may involve in KAN resistance in this study. These results provide insights into the antibiotics adaptation mechanism of A. hydrophila when responding to KAN stress.
Collapse
Affiliation(s)
- Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomeng Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jindong Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin Wei
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yanling Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
49
|
Salamandane A, Malfeito-Ferreira M, Brito L. A high level of antibiotic resistance in Klebsiella and Aeromonas isolates from street water sold in Mozambique, associated with the prevalence of extended-spectrum and AmpC ß-lactamases. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:561-567. [PMID: 35603723 DOI: 10.1080/03601234.2022.2078627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aims to evaluate the resistance profile and the prevalence of antibiotic resistance genes in 30 isolates of Klebsiella spp. and Aeromonas spp. recovered from water sold in the streets of Maputo. Susceptibility profiles to 15 antibiotics were performed according to Clinical Laboratory Standard Institute guidelines with antibiotic disks on Mueller-Hinton agar plates. Multiplex PCRs were performed targeting 10 ß-lactamase genes, five ESBL (blaTEM-variants, blaOXA-variants, BlaSHV-variants, MCTX-M Group 1 and Group 9 variants) and five AmpC (ACC variants, FOX variants, MOX variants, CIT variants and DHA variants). The results showed a high prevalence of Klebsiella resistance to ß-lactam antibiotics, such as amoxicillin/clavulanic acid (62.5%), amoxicillin (56.3%), ampicillin (50%), cefoxitin (43.8%), and cefotaxime (43.8%). Aeromonas showed resistance to cefoxitin and ampicillin (71.4%), amoxicillin/clavulanic acid (57.1%) and imipenem (42.9%). ESBL blaOXA-variants, blaSVH-variants, MCTX-M Group 1 variants, and MCTX-M Group 9 variants were the most prevalent b-lactam genes, followed by the b-lactams AmpC, ACC variants and FOX variants. It is extremely important to improve waterborne disease control strategies, especially in terms of public awareness of the potential health implications of multidrug-resistant strains of Klebsiella and Aeromonas, which are often neglected.
Collapse
Affiliation(s)
- Acácio Salamandane
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Ciências de Saúde, Universidade Lúrio, Nampula, Mozambique
| | - Manuel Malfeito-Ferreira
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Brito
- Faculdade de Ciências de Saúde, Universidade Lúrio, Nampula, Mozambique
| |
Collapse
|
50
|
A study of the antibacterial mechanism of pinocembrin against multidrug-resistant Aeromonas hydrophila. Int Microbiol 2022; 25:605-613. [PMID: 35438439 DOI: 10.1007/s10123-022-00245-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
Aeromonas hydrophila is a common pathogen in fish that has caused severe economic losses in aquaculture worldwide. With the emergence of bacterial resistance, it is necessary to develop new drugs to combat bacterial infection, particularly for multidrug-resistant bacteria. In this study, the antibacterial activity of pinocembrin was investigated by observing bacterial growth and microscopic structure, and its mechanism of action was identified by investigating its effect on protein and DNA. The antibacterial susceptibility test indicated that pinocembrin inhibits A. hydrophila growth. The minimal inhibitory concentration and minimum bactericidal concentration were 256 μg/mL and 512 μg/mL, respectively. Ultrastructurally, the bacteria treated with pinocembrin showed surface roughness and plasmolysis. When bacteria were treated with 512 μg/mL pinocembrin, lactate dehydrogenase activity and soluble protein content decreased significantly, and electrical conductivity and DNA exosmosis levels increased by 4.21 ± 0.64% and 15.98 ± 1.93 mg/L, respectively. Staining with 4', 6-Diamidino-2-phenylindole showed that the nucleic acid fluorescence intensity and density decreased after the treatment with pinocembrin. Pinocembrin may inhibit the growth of A. hydrophila by increasing cell membrane permeability and affecting protein and DNA metabolism. Thus, pinocembrin is a candidate drug for the treatment of A. hydrophila infection in aquaculture.
Collapse
|