1
|
Rong J, Harmon D, Cao Z, Song Y, Zeng L, Simpson GJ. Diffusion and Exchange Kinetics of Microparticle Formulations by Spatial Fourier Transform Fluorescence Recovery after Photobleaching with Patterned Illumination. Mol Pharm 2024; 21:5539-5550. [PMID: 39387804 DOI: 10.1021/acs.molpharmaceut.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The mechanism of active pharmaceutical ingredient (API) mobility during release in microparticle formulation was investigated using periodically structured illumination combined with spatial Fourier transform fluorescence recovery after photobleaching (FT-FRAP). FT-FRAP applies structured photobleaching across a given field of view, allowing for the monitoring of molecular mobility through the analysis of recovery patterns in the FT domain. Encoding molecular mobility in the FT domain offers several advantages, including improved signal-to-noise ratio, simplified mathematical calculations, reduced sampling requirements, compatibility with multiphoton microscopy for imaging API molecules within the formulations, and the ability to distinguish between exchange and diffusion processes. To prepare microparticles for FT-FRAP analysis, a homogeneous mixture of dipyridamole and pH-independent methyl methacrylate polymer (Eudragit RS and RL) was processed using laminar jet breakup induced by vibration in a frequency-driven encapsulator. The encapsulated microparticles were characterized based on particle size distribution, encapsulation efficiency, batch size, and morphology. Utilizing FT-FRAP, the internal diffusion and exchange molecular mobility within RL and RS microparticles were discriminated and quantified. Theoretical modeling of exchange- and diffusion-controlled release revealed that both RL and RS microparticles exhibited similar exchange decay rates, but RL displayed a significantly higher diffusion coefficient. This difference in diffusion within RL and RS microparticles was correlated with their macroscopic dissolution performance.
Collapse
Affiliation(s)
- Jiayue Rong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dustin Harmon
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ziyi Cao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yang Song
- Takeda Pharmaceutics, Cambridge, Massachusetts 02139, United States
| | - Lu Zeng
- Takeda Pharmaceutics, Cambridge, Massachusetts 02139, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Antill LM, Vatai E. RadicalPy: A Tool for Spin Dynamics Simulations. J Chem Theory Comput 2024. [PMID: 39470650 DOI: 10.1021/acs.jctc.4c00887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Radical pairs (electron-hole pairs, polaron pairs) are transient reaction intermediates that are found and exploited in all areas of science, from the hard realm of physics in the form of organic semiconductors, spintronics, quantum computing, and solar cells to the soft domain of chemistry and biology under the guise of chemical reactions in solution, biomimetic systems, and quantum biology. Quantitative analysis of radical pair phenomena has historically been successful by a few select groups. With this in mind, we present an intuitive open-source framework in the Python programming language that provides classical, semiclassical, and quantum simulation methodologies. A radical pair kinetic rate equation solver, Monte Carlo-based spin dephasing rate estimations, and molecule database functionalities are implemented. We introduce the kine-quantum method, a new approach that amalgamates classical rate equations, semiclassical, and quantum techniques. This method resolves the prohibitively large memory requirement issues of quantum approaches while achieving higher accuracy, and it also offers wavelength-resolved simulations, producing time- and wavelength-resolved magnetic field effect simulations. Model examples illustrate the versatility and ease of use of the software, including the new approach applied to the magnetosensitive absorption and fluorescence of flavin adenine dinucleotide photochemistry, spin-spin interaction estimation from molecular dynamics simulations on radical pairs inside reverse micelles, radical pair anisotropy inside proteins, and triplet exciton pairs in anthracene crystals. The intuitive interface also allows this software to be used as a teaching or learning aid for those interested in the field of spin chemistry. Furthermore, the software aims to be modular and extensible, with the aim to standardize how spin dynamics simulations are performed.
Collapse
Affiliation(s)
- Lewis M Antill
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| | - Emil Vatai
- High Performance Artificial Intelligence Systems Research Team, RIKEN Center for Computational Science, 7 Chome-1-26 Minatojima Minamimachi, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
3
|
Meier S, Zahid ALN, Jørgensen LR, Wang KC, Jensen PR, Jensen PR. Hyperpolarized 13C NMR Reveals Pathway Regulation in Lactococcus lactis and Metabolic Similarities and Differences Across the Tree of Life. Molecules 2024; 29:4133. [PMID: 39274981 PMCID: PMC11397382 DOI: 10.3390/molecules29174133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The control of metabolic networks is incompletely understood, even for glycolysis in highly studied model organisms. Direct real-time observations of metabolic pathways can be achieved in cellular systems with 13C NMR using dissolution Dynamic Nuclear Polarization (dDNP NMR). The method relies on a short-lived boost of NMR sensitivity using a redistribution of nuclear spin states to increase the alignment of the magnetic moments by more than four orders of magnitude. This temporary boost in sensitivity allows detection of metabolism with sub-second time resolution. Here, we hypothesized that dDNP NMR would be able to investigate molecular phenotypes that are not easily accessible with more conventional methods. The use of dDNP NMR allows real-time insight into carbohydrate metabolism in a Gram-positive bacterium (Lactoccocus lactis), and comparison to other bacterial, yeast and mammalian cells shows differences in the kinetic barriers of glycolysis across the kingdoms of life. Nevertheless, the accumulation of non-toxic precursors for biomass at kinetic barriers is found to be shared across the kingdoms of life. We further find that the visualization of glycolysis using dDNP NMR reveals kinetic characteristics in transgenic strains that are not evident when monitoring the overall glycolytic rate only. Finally, dDNP NMR reveals that resting Lactococcus lactis cells use the influx of carbohydrate substrate to produce acetoin rather than lactate during the start of glycolysis. This metabolic regime can be emulated using suitably designed substrate mixtures to enhance the formation of the C4 product acetoin more than 400-fold. Overall, we find that dDNP NMR provides analytical capabilities that may help to clarify the intertwined mechanistic determinants of metabolism and the optimal usage of biotechnologically important bacteria.
Collapse
Affiliation(s)
- Sebastian Meier
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Alexandra L N Zahid
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Lucas Rebien Jørgensen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Ke-Chuan Wang
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- Department of National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pernille Rose Jensen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Tabatabaei S, Priyadarsi P, Singh N, Sahafi P, Tay D, Jordan A, Budakian R. Large-enhancement nanoscale dynamic nuclear polarization near a silicon nanowire surface. SCIENCE ADVANCES 2024; 10:eado9059. [PMID: 39167648 PMCID: PMC11338224 DOI: 10.1126/sciadv.ado9059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Dynamic nuclear polarization (DNP) has revolutionized the field of nuclear magnetic resonance spectroscopy, expanding its reach and capabilities to investigate diverse materials, biomolecules, and complex dynamic processes. Bringing high-efficiency DNP to the nanometer scale would open exciting avenues for studying nanoscale nuclear spin ensembles, such as single biomolecules, virus particles, and condensed matter systems. Combining pulsed DNP with nanoscale force-detected magnetic resonance measurements, we demonstrated a 100-fold enhancement in the Boltzmann polarization of proton spins in nanoscale sugar droplets at 6 kelvin and 0.33 tesla. Crucially, this enhancement corresponds to a factor of 200 reduction in the averaging time compared to measurements that rely on the detection of statistical fluctuations in nanoscale nuclear spin ensembles. These results substantially advance the capabilities of force-detected magnetic resonance detection as a practical tool for nanoscale imaging.
Collapse
Affiliation(s)
- Sahand Tabatabaei
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Pritam Priyadarsi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Namanish Singh
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Pardis Sahafi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Daniel Tay
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Andrew Jordan
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| | - Raffi Budakian
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L3G1
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1
| |
Collapse
|
5
|
Wolff N, Beuck C, Schaller T, Epple M. Possibilities and limitations of solution-state NMR spectroscopy to analyze the ligand shell of ultrasmall metal nanoparticles. NANOSCALE ADVANCES 2024; 6:3285-3298. [PMID: 38933863 PMCID: PMC11197423 DOI: 10.1039/d4na00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Ultrasmall nanoparticles have a diameter between 1 and 3 nm at the border between nanoparticles and large molecules. Usually, their core consists of a metal, and the shell of a capping ligand with sulfur or phosphorus as binding atoms. While the core structure can be probed by electron microscopy, electron and powder diffraction, and single-crystal structure analysis for atom-sharp clusters, it is more difficult to analyze the ligand shell. In contrast to larger nanoparticles, ultrasmall nanoparticles cause only a moderate distortion of the NMR signal, making NMR spectroscopy a qualitative as well as a quantitative probe to assess the nature of the ligand shell. The application of isotope-labelled ligands and of two-dimensional NMR techniques can give deeper insight into ligand-nanoparticle interactions. Applications of one- and two-dimensional NMR spectroscopy to analyze ultrasmall nanoparticles are presented with suitable examples, including a critical discussion of the limitations of NMR spectroscopy on nanoparticles.
Collapse
Affiliation(s)
- Natalie Wolff
- Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen 45117 Essen Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen 45117 Essen Germany
| | - Matthias Epple
- Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen 45117 Essen Germany
| |
Collapse
|
6
|
Li S, Bhattacharya S, Chou CY, Chu M, Chou SC, Tonelli M, Goger M, Yang H, Palmer AG, Cavagnero S. LC-Photo-CIDNP hyperpolarization of biomolecules bearing a quasi-isolated spin pair: Magnetic-Field dependence via a rapid-shuttling device. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 359:107616. [PMID: 38271744 PMCID: PMC10922348 DOI: 10.1016/j.jmr.2023.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
Liquid-state low-concentration photochemically induced dynamic nuclear polarization (LC-photo-CIDNP) is an emerging technology tailored to enhance the sensitivity of NMR spectroscopy via LED- or laser-mediated optical irradiation. LC-photo-CIDNP is particularly useful to detect solvent-exposed aromatic residues (Trp, Tyr), either in isolation or within polypeptides and proteins. This study investigates the magnetic-field dependence of the LC-photo-CIDNP of Trp-α-13C-β,β,2,4,5,6,7-d7, a Trp isotopolog bearing a quasi-isolated 1Hα-13Cαspin pair (QISP). We employed a new rapid-shuttling side-illumination field-cycling device that enables ultra-fast (90-120 ms) vertical movements of NMR samples within the bore of a superconducting magnet. Thus, LC-photo-CIDNP hyperpolarization occurs at low field, while hyperpolarized signals are detected at high field (700 MHz). Resonance lineshapes were excellent, and the effect of several fields (1.18-7.08 T range) on hyperpolarization efficiency could be readily explored. Remarkably, unprecedented LC-photo-CIDNP enhancements ε ≅ 1,200 were obtained at 50 MHz (1.18 T), suggesting exciting avenues to hypersensitive LED-enhanced NMR in liquids at low field.
Collapse
Affiliation(s)
- Siyu Li
- Dept. of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | | - Ching-Yu Chou
- Field Cycling Technology LTD., New Taipei City 23444, Taiwan, ROC
| | - Minglee Chu
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan, ROC
| | - Shu-Cheng Chou
- Field Cycling Technology LTD., New Taipei City 23444, Taiwan, ROC
| | - Marco Tonelli
- Dept. of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Michael Goger
- New York Structural Biology Center, New York, NY 10027, United States
| | - Hanming Yang
- Dept. of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Arthur G Palmer
- New York Structural Biology Center, New York, NY 10027, United States; Dept. of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States
| | - Silvia Cavagnero
- Dept. of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
7
|
Bernarding J, Bruns C, Prediger I, Mützel M, Plaumann M. Detection of sub-nmol amounts of the antiviral drug favipiravir in 19F MRI using photo-chemically induced dynamic nuclear polarization. Sci Rep 2024; 14:1527. [PMID: 38233411 PMCID: PMC10794400 DOI: 10.1038/s41598-024-51454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
In biological tissues, 19F magnetic resonance (MR) enables the non-invasive, background-free detection of 19F-containing biomarkers. However, the signal-to-noise ratio (SNR) is usually low because biomarkers are typically present at low concentrations. Measurements at low magnetic fields further reduce the SNR. In a proof-of-principal study we applied LED-based photo-chemically induced dynamic nuclear polarization (photo-CIDNP) to amplify the 19F signal at 0.6 T. For the first time, 19F MR imaging (MRI) and spectroscopy (MRS) of a fully biocompatible model system containing the antiviral drug favipiravir has been successfully performed. This fluorinated drug has been used to treat Ebola and COVID-19. Since the partially cyclic reaction scheme for photo-CIDNP allows for multiple data acquisitions, averaging further improved the SNR. The mean signal gain factor for 19F has been estimated to be in the order of 103. An in-plane resolution of 0.39 × 0.39 mm2 enabled the analysis of spatially varying degrees of hyperpolarization. The minimal detectable amount of favipiravir per voxel was estimated to about 500 pmol. The results show that 19F photo-CIDNP is a promising method for the non-invasive detection of suitable 19F-containing drugs and other compounds with very low levels of the substance.
Collapse
Affiliation(s)
- J Bernarding
- Institute of Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - C Bruns
- Institute of Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - I Prediger
- Institute of Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - M Mützel
- Pure Devices GmbH, 97222, Rimpar, Germany
| | - M Plaumann
- Institute of Biometry and Medical Informatics, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| |
Collapse
|
8
|
Kuhn LT, Weber S, Bargon J, Parella T, Pérez-Trujillo M. Hyperpolarization-Enhanced NMR Spectroscopy of Unaltered Biofluids Using Photo-CIDNP. Anal Chem 2024; 96:102-109. [PMID: 38109875 PMCID: PMC10782414 DOI: 10.1021/acs.analchem.3c03215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
The direct and unambiguous detection and identification of individual metabolite molecules present in complex biological mixtures constitute a major challenge in (bio)analytical research. In this context, nuclear magnetic resonance (NMR) spectroscopy has proven to be particularly powerful owing to its ability to provide both qualitative and quantitative atomic-level information on multiple analytes simultaneously in a noninvasive manner. Nevertheless, NMR suffers from a low inherent sensitivity and, moreover, lacks selectivity regarding the number of individual analytes to be studied in a mixture of a myriad of structurally and chemically very different molecules, e.g., metabolites in a biofluid. Here, we describe a method that circumvents these shortcomings via performing selective, photochemically induced dynamic nuclear polarization (photo-CIDNP) enhanced NMR spectroscopy on unmodified complex biological mixtures, i.e., human urine and serum, which yields a single, background-free one-dimensional NMR spectrum. In doing this, we demonstrate that photo-CIDNP experiments on unmodified complex mixtures of biological origin are feasible, can be performed straightforwardly in the native aqueous medium at physiological metabolite concentrations, and act as a spectral filter, facilitating the analysis of NMR spectra of complex biofluids. Due to its noninvasive nature, the method is fully compatible with state-of-the-art metabolomic protocols providing direct spectroscopic information on a small, carefully selected subset of clinically relevant metabolites. We anticipate that this approach, which, in addition, can be combined with existing high-throughput/high-sensitivity NMR methodology, holds great promise for further in-depth studies and development for use in metabolomics and many other areas of analytical research.
Collapse
Affiliation(s)
- Lars T. Kuhn
- Institut
für Physikalische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstr. 21, 79104 Freiburg i. Br., Germany
| | - Stefan Weber
- Institut
für Physikalische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstr. 21, 79104 Freiburg i. Br., Germany
| | - Joachim Bargon
- Institut
für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Teodor Parella
- Servei
de Ressonància Magnètica Nuclear, Facultat de Ciències
i Biosciències, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Míriam Pérez-Trujillo
- Servei
de Ressonància Magnètica Nuclear, Facultat de Ciències
i Biosciències, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
9
|
Erba EB, Pastore A. The Complementarity of Nuclear Magnetic Resonance and Native Mass Spectrometry in Probing Protein-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:109-123. [PMID: 38507203 DOI: 10.1007/978-3-031-52193-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Nuclear magnetic resonance (NMR) and native mass spectrometry (MS) are mature physicochemical techniques with long histories and important applications. NMR spectroscopy provides detailed information about the structure, dynamics, interactions, and chemical environment of biomolecules. MS is an effective approach for determining the mass of biomolecules with high accuracy, sensitivity, and speed. The two techniques offer unique advantages and provide solid tools for structural biology. In the present review, we discuss their individual merits in the context of their applications to structural studies in biology with specific focus on protein interactions and evaluate their limitations. We provide specific examples in which these techniques can complement each other, providing new information on the same scientific case. We discuss how the field may develop and what challenges are expected in the future. Overall, the combination of NMR and MS plays an increasingly important role in integrative structural biology, assisting scientists in deciphering the three-dimensional structure of composite macromolecular assemblies.
Collapse
|
10
|
Chen X, Bertho G, Caradeuc C, Giraud N, Lucas-Torres C. Present and future of pure shift NMR in metabolomics. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:654-673. [PMID: 37157858 DOI: 10.1002/mrc.5356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
NMR is one of the most powerful techniques for the analysis of biological samples in the field of metabolomics. However, the high complexity of fluids, tissues, or other biological materials taken from living organisms is still a challenge for state-of-the-art pulse sequences, thereby limiting the detection, the identification, and the quantification of metabolites. In this context, the resolution enhancement provided by broadband homonuclear decoupling methods, which allows for simplifying 1 H multiplet patterns into singlets, has placed this so-called pure shift technique as a promising approach to perform metabolic profiling with unparalleled level of detail. In recent years, the many advances achieved in the design of pure shift experiments has paved the way to the analysis of a wide range of biological samples with ultra-high resolution. This review leads the reader from the early days of the main pure shift methods that have been successfully developed over the last decades to address complex samples, to the most recent and promising applications of pure shift NMR to the field of NMR-based metabolomics.
Collapse
Affiliation(s)
- Xi Chen
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Gildas Bertho
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Cédric Caradeuc
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Nicolas Giraud
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Covadonga Lucas-Torres
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| |
Collapse
|
11
|
Min S, Baek J, Kim J, Jeong HJ, Chung J, Jeong K. Water-Compatible and Recyclable Heterogeneous SABRE Catalyst for NMR Signal Amplification. JACS AU 2023; 3:2912-2917. [PMID: 37885596 PMCID: PMC10598823 DOI: 10.1021/jacsau.3c00487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
A water-compatible and recyclable catalyst for nuclear magnetic resonance (NMR) hyperpolarization via signal amplification by reversible exchange (SABRE) was developed. The [Ir(COD)(IMes)Cl] catalyst was attached to a polymeric resin of bis(2-pyridyl)amine (heterogeneous SABRE catalyst, HET-SABRE catalyst), and it amplified the 1H NMR signal of pyridine up to (-) 4455-fold (43.2%) at 1.4 T in methanol and (-) 50-fold (0.5%) in water. These are the highest amplification factors ever reported among HET-SABRE catalysts and for the first time in aqueous media. Moreover, the HET-SABRE catalyst demonstrated recyclability by retaining its activity in water after more than three uses. This newly designed polymeric resin-based heterogeneous catalyst shows great promise for NMR signal amplification for biomedical NMR and MRI applications in the future.
Collapse
Affiliation(s)
- Sein Min
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Juhee Baek
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Jisu Kim
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Hye Jin Jeong
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jean Chung
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Keunhong Jeong
- Department
of Chemistry, Korea Military Academy, Seoul 01805, South Korea
| |
Collapse
|
12
|
Smith MJ, Bramham JE, Nilsson M, Morris GA, Castañar L, Golovanov AP. Lighting up spin systems: enhancing characteristic 1H signal patterns of fluorinated molecules. Chem Commun (Camb) 2023; 59:11692-11695. [PMID: 37698544 DOI: 10.1039/d3cc03557c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Fluorine is becoming increasingly prevalent in medicinal chemistry, both in drug molecules and in molecular probes. The presence of fluorine allows convenient monitoring of such molecules in complex environments by NMR spectroscopy. However, sensitivity is a persistent limitation of NMR, especially when molecules are present at low concentrations. Here, sensitivity issues with 1H NMR are mitigated by sharing 19F photochemically-induced dynamic nuclear polarisation with 1H nuclei. Unlike direct 1H enhancement, this method enhances 1H signals without significantly distorting multiplet intensities, and has the potential to enable the use of suitable molecules as low-concentration probes.
Collapse
Affiliation(s)
- Marshall J Smith
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jack E Bramham
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Mathias Nilsson
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Gareth A Morris
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Laura Castañar
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Department of Organic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain.
| | - Alexander P Golovanov
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
13
|
Dief EM, Low PJ, Díez-Pérez I, Darwish N. Advances in single-molecule junctions as tools for chemical and biochemical analysis. Nat Chem 2023; 15:600-614. [PMID: 37106094 DOI: 10.1038/s41557-023-01178-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/02/2023] [Indexed: 04/29/2023]
Abstract
The development of miniaturized electronics has led to the design and construction of powerful experimental platforms capable of measuring electronic properties to the level of single molecules, along with new theoretical concepts to aid in the interpretation of the data. A new area of activity is now emerging concerned with repurposing the tools of molecular electronics for applications in chemical and biological analysis. Single-molecule junction techniques, such as the scanning tunnelling microscope break junction and related single-molecule circuit approaches have a remarkable capacity to transduce chemical information from individual molecules, sampled in real time, to electrical signals. In this Review, we discuss single-molecule junction approaches as emerging analytical tools for the chemical and biological sciences. We demonstrate how these analytical techniques are being extended to systems capable of probing chemical reaction mechanisms. We also examine how molecular junctions enable the detection of RNA, DNA, and traces of proteins in solution with limits of detection at the zeptomole level.
Collapse
Affiliation(s)
- Essam M Dief
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Ismael Díez-Pérez
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, London, UK
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
| |
Collapse
|
14
|
Szpotkowski K, Wójcik K, Kurzyńska-Kokorniak A. Structural studies of protein-nucleic acid complexes: A brief overview of the selected techniques. Comput Struct Biotechnol J 2023; 21:2858-2872. [PMID: 37216015 PMCID: PMC10195699 DOI: 10.1016/j.csbj.2023.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Protein-nucleic acid complexes are involved in all vital processes, including replication, transcription, translation, regulation of gene expression and cell metabolism. Knowledge of the biological functions and molecular mechanisms beyond the activity of the macromolecular complexes can be determined from their tertiary structures. Undoubtably, performing structural studies of protein-nucleic acid complexes is challenging, mainly because these types of complexes are often unstable. In addition, their individual components may display extremely different surface charges, causing the complexes to precipitate at higher concentrations used in many structural studies. Due to the variety of protein-nucleic acid complexes and their different biophysical properties, no simple and universal guideline exists that helps scientists chose a method to successfully determine the structure of a specific protein-nucleic acid complex. In this review, we provide a summary of the following experimental methods, which can be applied to study the structures of protein-nucleic acid complexes: X-ray and neutron crystallography, nuclear magnetic resonance (NMR) spectroscopy, cryogenic electron microscopy (cryo-EM), atomic force microscopy (AFM), small angle scattering (SAS) methods, circular dichroism (CD) and infrared (IR) spectroscopy. Each method is discussed regarding its historical context, advancements over the past decades and recent years, and weaknesses and strengths. When a single method does not provide satisfactory data on the selected protein-nucleic acid complex, a combination of several methods should be considered as a hybrid approach; thus, specific structural problems can be solved when studying protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Kamil Szpotkowski
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Klaudia Wójcik
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Anna Kurzyńska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
15
|
Li Z, Bao Q, Liu C, Li Y, Yang Y, Liu M. Recent advances in microfluidics-based bioNMR analysis. LAB ON A CHIP 2023; 23:1213-1225. [PMID: 36651305 DOI: 10.1039/d2lc00876a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nuclear magnetic resonance (NMR) has been used in a variety of fields due to its powerful analytical capability. To facilitate biochemical NMR (bioNMR) analysis for samples with a limited mass, a number of integrated systems have been developed by coupling microfluidics and NMR. However, there are few review papers that summarize the recent advances in the development of microfluidics-based NMR (μNMR) systems. Herein, we review the advancements in μNMR systems built on high-field commercial instruments and low-field compact platforms. Specifically, μNMR platforms with three types of typical microcoils settled in the high-field NMR instruments will be discussed, followed by summarizing compact NMR systems and their applications in biomedical point-of-care testing. Finally, a conclusion and future prospects in the field of μNMR were given.
Collapse
Affiliation(s)
- Zheyu Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Qingjia Bao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
16
|
Sinha Roy A, Srivastava M. Unsupervised Analysis of Small Molecule Mixtures by Wavelet-Based Super-Resolved NMR. Molecules 2023; 28:792. [PMID: 36677850 PMCID: PMC9866129 DOI: 10.3390/molecules28020792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Resolving small molecule mixtures by nuclear magnetic resonance (NMR) spectroscopy has been of great interest for a long time for its precision, reproducibility, and efficiency. However, spectral analyses for such mixtures are often highly challenging due to overlapping resonance lines and limited chemical shift windows. The existing experimental and theoretical methods to produce shift NMR spectra in dealing with the problem have limited applicability owing to sensitivity issues, inconsistency, and/or the requirement of prior knowledge. Recently, we resolved the problem by decoupling multiplet structures in NMR spectra by the wavelet packet transform (WPT) technique. In this work, we developed a scheme for deploying the method in generating highly resolved WPT NMR spectra and predicting the composition of the corresponding molecular mixtures from their 1H NMR spectra in an automated fashion. The four-step spectral analysis scheme consists of calculating the WPT spectrum, peak matching with a WPT shift NMR library, followed by two optimization steps in producing the predicted molecular composition of a mixture. The robustness of the method was tested on an augmented dataset of 1000 molecular mixtures, each containing 3 to 7 molecules. The method successfully predicted the constituent molecules with a median true positive rate of 1.0 against the varying compositions, while a median false positive rate of 0.04 was obtained. The approach can be scaled easily for much larger datasets.
Collapse
Affiliation(s)
- Aritro Sinha Roy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
- National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
17
|
Altenhof AR, Mason H, Schurko RW. DESPERATE: A Python library for processing and denoising NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 346:107320. [PMID: 36470176 DOI: 10.1016/j.jmr.2022.107320] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy is an inherently insensitive technique with respect to the amount of observable signal. A common element in all NMR spectra is random thermal noise that is often characterized by a signal-to-noise ratio (SNR). SNR can be generically improved experimentally with repetitive signal averaging or during post-processing with apodization; the former of which often results in long experimental times and the latter results in the loss of spectral resolution. Denoising techniques can instead be used during post-processing to enhance SNR without compromising resolution. The most common approach relies on the singular-value decomposition (SVD) to discard noisy components of NMR data. SVD-based approaches work well, such as Cadzow and PCA, but are computationally expensive when used for large datasets that are often encountered in NMR (e.g., Carr-Purcell/Meiboom-Gill and nD datasets). Herein, we describe the implementation of a new wavelet transform (WT) routine for the fast and robust denoising of 1D and 2D NMR spectra. Several simulated and experimental datasets are denoised with both SVD-based Cadzow or PCA and WT's, and the resulting SNR enhancements and spectral uniformity are compared. WT denoising offers similar and improved denoising compared with SVD and operates faster by several orders-of-magnitude in some cases. All denoising and processing routines used in this work are included in a free and open-source Python library called DESPERATE.
Collapse
Affiliation(s)
- Adam R Altenhof
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Harris Mason
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA.
| |
Collapse
|
18
|
Li S, Yang H, Hofstetter H, Tonelli M, Cavagnero S. Magnetic-Field Dependence of LC-Photo-CIDNP in the Presence of Target Molecules Carrying a Quasi-Isolated Spin Pair. APPLIED MAGNETIC RESONANCE 2023; 54:59-75. [PMID: 37483563 PMCID: PMC10358788 DOI: 10.1007/s00723-022-01506-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 07/25/2023]
Abstract
NMR spectroscopy is well known for its superb resolution, especially at high applied magnetic field. However, the sensitivity of this technique is very low. Liquid-state low-concentration photo-chemically-induced dynamic nuclear polarization (LC-photo-CIDNP) is a promising emerging methodology capable of enhancing NMR sensitivity in solution. LC-photo-CIDNP works well on solvent-exposed Trp and Tyr residues, either in isolation or within proteins. This study explores the magnetic-field dependence of the LC-photo-CIDNP experienced by two tryptophan isotopologs in solution upon in situ LED-mediated optical irradiation. Out of the two uniformly 13C,15N-labeled Trp (Trp-U-13C,15N) and Trp-α-13C-β,β,2,4,5,6,7-d7 species employed here, only the latter bears a quasi-isolated 1Hα-13Cα spin pair. Computer simulations of the predicted polarization due to geminate recombination of both species display a roughly bell-shaped field dependence. However, while Trp-U-13C,15N is predicted to show a maximum at ca. 500 MHz (11.7 T) and a fairly weak field dependence, Trp-α-13C-β,β,2,4,5,6,7-d7 is expected to display a much sharper field dependence accompanied by a dramatic polarization increase at lower field (ca. 200 MHz, 4.7 T). Experimental LC-photo-CIDNP studies on both Trp isotopologs at 1μM concentration, performed at selected fields, are consistent with the theoretical predictions. In summary, this study highlights the prominent field-dependence of LC-photo-CIDNP enhancements (ε ) experienced by Trp isotopologs bearing a quasi-isolated spin pair.
Collapse
Affiliation(s)
- Siyu Li
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| | - Hanming Yang
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| | - Heike Hofstetter
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin, 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| |
Collapse
|
19
|
Sinha Roy A, Srivastava M. Analysis of Small-Molecule Mixtures by Super-Resolved 1H NMR Spectroscopy. J Phys Chem A 2022; 126:9108-9113. [PMID: 36413171 PMCID: PMC10228708 DOI: 10.1021/acs.jpca.2c06858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Analysis of small molecules is essential to metabolomics, natural products, drug discovery, food technology, and many other areas of interest. Current barriers preclude from identifying the constituent molecules in a mixture as overlapping clusters of NMR lines pose a major challenge in resolving signature frequencies for individual molecules. While homonuclear decoupling techniques produce much simplified pure shift spectra, they often affect sensitivity. Conversion of typical NMR spectra to pure shift spectra by signal processing without a priori knowledge about the coupling patterns is essential for accurate analysis. We developed a super-resolved wavelet packet transform based 1H NMR spectroscopy that can be used in high-throughput studies to reliably decouple individual constituents of small molecule mixtures. We demonstrate the efficacy of the method on the model mixtures of saccharides and amino acids in the presence of significant noise.
Collapse
Affiliation(s)
- Aritro Sinha Roy
- Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-0001,United States
| | - Madhur Srivastava
- Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-0001,United States
- National Biomedical Resources for Advanced ESR Technologies (ACERT), Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Janitz E, Herb K, Völker LA, Huxter WS, Degen CL, Abendroth JM. Diamond surface engineering for molecular sensing with nitrogen-vacancy centers. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:13533-13569. [PMID: 36324301 PMCID: PMC9521415 DOI: 10.1039/d2tc01258h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/06/2022] [Indexed: 05/20/2023]
Abstract
Quantum sensing using optically addressable atomic-scale defects, such as the nitrogen-vacancy (NV) center in diamond, provides new opportunities for sensitive and highly localized characterization of chemical functionality. Notably, near-surface defects facilitate detection of the minute magnetic fields generated by nuclear or electron spins outside of the diamond crystal, such as those in chemisorbed and physisorbed molecules. However, the promise of NV centers is hindered by a severe degradation of critical sensor properties, namely charge stability and spin coherence, near surfaces (< ca. 10 nm deep). Moreover, applications in the chemical sciences require methods for covalent bonding of target molecules to diamond with robust control over density, orientation, and binding configuration. This forward-looking Review provides a survey of the rapidly converging fields of diamond surface science and NV-center physics, highlighting their combined potential for quantum sensing of molecules. We outline the diamond surface properties that are advantageous for NV-sensing applications, and discuss strategies to mitigate deleterious effects while simultaneously providing avenues for chemical attachment. Finally, we present an outlook on emerging applications in which the unprecedented sensitivity and spatial resolution of NV-based sensing could provide unique insight into chemically functionalized surfaces at the single-molecule level.
Collapse
Affiliation(s)
- Erika Janitz
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - Konstantin Herb
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - Laura A Völker
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - William S Huxter
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - Christian L Degen
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - John M Abendroth
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
21
|
Abendroth JM, Herb K, Janitz E, Zhu T, Völker LA, Degen CL. Single-Nitrogen-Vacancy NMR of Amine-Functionalized Diamond Surfaces. NANO LETTERS 2022; 22:7294-7303. [PMID: 36069765 DOI: 10.1021/acs.nanolett.2c00533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nuclear magnetic resonance (NMR) imaging with shallow nitrogen-vacancy (NV) centers in diamond offers an exciting route toward sensitive and localized chemical characterization at the nanoscale. Remarkable progress has been made to combat the degradation in coherence time and stability suffered by near-surface NV centers using suitable chemical surface termination. However, approaches that also enable robust control over adsorbed molecule density, orientation, and binding configuration are needed. We demonstrate a diamond surface preparation for mixed nitrogen- and oxygen-termination that simultaneously improves NV center coherence times for <10 nm-deep emitters and enables direct and recyclable chemical functionalization via amine-reactive cross-linking. Using this approach, we probe single NV centers embedded in nanopillar waveguides to perform 19F NMR sensing of covalently bound fluorinated molecules with detection on the order of 100 molecules. This work signifies an important step toward nuclear spin localization and structure interrogation at the single-molecule level.
Collapse
Affiliation(s)
- John M Abendroth
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Konstantin Herb
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Erika Janitz
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Tianqi Zhu
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Laura A Völker
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Christian L Degen
- Department of Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
22
|
Flavin-enabled reductive and oxidative epoxide ring opening reactions. Nat Commun 2022; 13:4896. [PMID: 35986005 PMCID: PMC9391479 DOI: 10.1038/s41467-022-32641-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/08/2022] [Indexed: 12/23/2022] Open
Abstract
Epoxide ring opening reactions are common and important in both biological processes and synthetic applications and can be catalyzed in a non-redox manner by epoxide hydrolases or reductively by oxidoreductases. Here we report that fluostatins (FSTs), a family of atypical angucyclines with a benzofluorene core, can undergo nonenzyme-catalyzed epoxide ring opening reactions in the presence of flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NADH). The 2,3-epoxide ring in FST C is shown to open reductively via a putative enol intermediate, or oxidatively via a peroxylated intermediate with molecular oxygen as the oxidant. These reactions lead to multiple products with different redox states that possess a single hydroxyl group at C-2, a 2,3-vicinal diol, a contracted five-membered A-ring, or an expanded seven-membered A-ring. Similar reactions also take place in both natural products and other organic compounds harboring an epoxide adjacent to a carbonyl group that is conjugated to an aromatic moiety. Our findings extend the repertoire of known flavin chemistry that may provide new and useful tools for organic synthesis. Epoxide ring opening reactions are important in both biological processes and synthetic applications. Here, the authors show that flavin cofactors can catalyze reductive and oxidative epoxide ring opening reactions and propose the underlying mechanisms.
Collapse
|
23
|
Thomas JN, Johnston TL, Litvak IM, Ramaswamy V, Merritt ME, Rocca JR, Edison AS, Brey WW. Implementing High Q-Factor HTS Resonators to Enhance Probe Sensitivity in 13C NMR Spectroscopy. JOURNAL OF PHYSICS. CONFERENCE SERIES 2022; 2323:012030. [PMID: 36187328 PMCID: PMC9524303 DOI: 10.1088/1742-6596/2323/1/012030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nuclear magnetic resonance spectroscopy (NMR) probes using thin-film high temperature superconducting (HTS) resonators provide exceptional mass sensitivity in small-sample NMR experiments for natural products chemistry and metabolomics. We report improvements in sensitivity to our 1.5 mm 13C-optimized NMR probe based on HTS resonators. The probe has a sample volume of 35 microliters and operates in a 14.1 T magnet. The probe also features HTS resonators for 1H transmission and detection and the 2H lock. The probe utilizes a 13C resonator design that provides greater efficiency than our previous design. The quality factor of the new resonator in the 14.1 T background field was measured to be 4,300, which is over 3x the value of the previous design. To effectively implement the improved quality factor, we demonstrate the effect of adding a shorted transmission line stub to increase the bandwidth and reduce the rise/fall time of 13C irradiation pulses. Initial NMR measurements verify 13C NMR sensitivity is significantly improved while preserving detection bandwidth. The probe will be used for applications in metabolomics.
Collapse
Affiliation(s)
- J N Thomas
- National High Magnetic Field Laboratory, Tallahassee FL, USA
| | - T L Johnston
- National High Magnetic Field Laboratory, Tallahassee FL, USA
| | - I M Litvak
- National High Magnetic Field Laboratory, Tallahassee FL, USA
| | | | | | - J R Rocca
- University of Florida, Gainesville FL, USA
| | | | - W W Brey
- National High Magnetic Field Laboratory, Tallahassee FL, USA
| |
Collapse
|
24
|
Yang H, Li S, Mickles CA, Guzman-Luna V, Sugisaki K, Thompson CM, Dang HH, Cavagnero S. Selective Isotope Labeling and LC-Photo-CIDNP Enable NMR Spectroscopy at Low-Nanomolar Concentration. J Am Chem Soc 2022; 144:11608-11619. [PMID: 35700317 DOI: 10.1021/jacs.2c01809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
NMR spectroscopy is a powerful tool to investigate molecular structure and dynamics. The poor sensitivity of this technique, however, limits its ability to tackle questions requiring dilute samples. Low-concentration photochemically induced dynamic nuclear polarization (LC-photo-CIDNP) is an optically enhanced NMR technology capable of addressing the above challenge by increasing the detection limit of aromatic amino acids in solution up to 1000-fold, either in isolation or within proteins. Here, we show that the absence of NMR-active nuclei close to a magnetically active site of interest (e.g., the structurally diagnostic 1Hα-13Cα pair of amino acids) is expected to significantly increase LC-photo-CIDNP hyperpolarization. Then, we exploit the spin-diluted tryptophan isotopolog Trp-α-13C-β,β,2,4,5,6,7-d7 and take advantage of the above prediction to experimentally achieve a ca 4-fold enhancement in NMR sensitivity over regular LC-photo-CIDNP. This advance enables the rapid (within seconds) detection of 20 nM concentrations or the molecule of interest, corresponding to a remarkable 3 ng detection limit. Finally, the above Trp isotopolog is amenable to incorporation within proteins and is readily detectable at a 1 μM concentration in complex cell-like media, including Escherichia coli cell-free extracts.
Collapse
Affiliation(s)
- Hanming Yang
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Siyu Li
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Clayton A Mickles
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Valeria Guzman-Luna
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kenji Sugisaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.,JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Clayton M Thompson
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hung H Dang
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Pompe N, Illarionov B, Fischer M, Bacher A, Weber S. Completing the Picture: Determination of 13C Hyperfine Coupling Constants of Flavin Semiquinone Radicals by Photochemically Induced Dynamic Nuclear Polarization Spectroscopy. J Phys Chem Lett 2022; 13:5160-5167. [PMID: 35658481 DOI: 10.1021/acs.jpclett.2c00919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We investigate the electronic structure of flavin semiquinone radicals in terms of their 13C hyperfine coupling constants. Photochemically induced dynamic nuclear polarization (photo-CIDNP) spectroscopy was used to study both the neutral and anionic radical species of flavin mononucleotide (FMN) in bulk aqueous solution. Apart from universally 13C-labeled FMN, partially labeled isotopologues are used to increase sensitivity for nuclei exhibiting very small hyperfine couplings and to cope with spectral overlap. In addition, experimental findings are supported by quantum chemical calculations, and implications for the spin density distribution in free flavin radicals are discussed.
Collapse
Affiliation(s)
- Nils Pompe
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Boris Illarionov
- Hamburg School of Food Science, University of Hamburg, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, University of Hamburg, 20146 Hamburg, Germany
| | - Adelbert Bacher
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
26
|
Mames A, Jopa S, Pietrzak M, Ratajczyk T. Deactivation of catalysts in simultaneous reversible and irreversible parahydrogen NMR signal enhancement, and the role of co-ligands in the stabilization of the reversible method. RSC Adv 2022; 12:15986-15991. [PMID: 35733673 PMCID: PMC9136854 DOI: 10.1039/d2ra02872g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Signal Amplification by Reversible Exchange (SABRE) and hydrogeneable Parahydrogen Induced Polarization (hPHIP) can enhance weak NMR signals, and thus increase the range of NMR applications. Here, using an N-heterocyclic carbene Ir-based catalyst, simultaneous SABRE and hPHIP was achieved for the compound with an N-donor site and an acetylene triple bond. It was demonstrated that the interplay between SABRE and hPHIP can be manipulated. Specifically, it was found that the hPHIP effect could be almost completely suppressed, while stable SABRE was observed in subsequent consecutive experiments. The presented results have the potential to increase the numbers of parahydrogen hyperpolarizable molecules.
Collapse
Affiliation(s)
- Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| | - Sylwia Jopa
- Faculty of Chemistry, University of Warsaw Pasteura 1 Warsaw 02-093 Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| |
Collapse
|
27
|
Lee K, Park SH, Lee JH. Selective detection of protein acetylation by NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107169. [PMID: 35255256 DOI: 10.1016/j.jmr.2022.107169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Selective detection of biomolecules and their modifications in cells is essential for understanding cell functions and diseases. We have developed an NMR pulse sequence, Ac-FIND (Acetylation-FIltered aNd eDited), which uses isotope editing/filtering techniques for selective detection of protein acetylation. Acetylation of the N-terminus and lysine side chains by N-succinimidyl acetate was selectively observed for intrinsically disordered α-synuclein and well-ordered ubiquitin. Furthermore, when nonacetylated 13C/15N-enriched α-synuclein was introduced into live HEK293 cells, intracellular N-terminal acetylation of α-synuclein was detected by the appearance of a single peak using Ac-FIND. This work demonstrates the utility of NMR to detect a specific protein modification both in vitro and in live cells.
Collapse
Affiliation(s)
- Kyungryun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sho Hee Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea; Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229, South Korea.
| |
Collapse
|
28
|
Iali W, Moustafa GAI, Dagys L, Roy SS. 15 N hyperpolarisation of the antiprotozoal drug ornidazole by Signal Amplification By Reversible Exchange in aqueous medium. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1199-1207. [PMID: 33656772 DOI: 10.1002/mrc.5144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Signal amplification by reversible exchange (SABRE) offers a cost-effective route to boost nuclear magnetic resonance (NMR) signal by several orders of magnitude by employing readily available para-hydrogen as a source of hyperpolarisation. Although 1 H spins have been the natural choice of SABRE hyperpolarisation since its inception due to its simplicity and accessibility, limited spin lifetimes of 1 H makes it harder to employ them in a range of time-dependent NMR experiments. Heteronuclear spins, for example, 13 C and 15 N, in general have much longer T1 lifetimes and thereby are found to be more suitable for hyperpolarised biological applications as demonstrated previously by para-hydrogen induced polarisation (PHIP) and dynamic nuclear polarisation (DNP). In this study we demonstrate a simple procedure to enhance 15 N signal of an antibiotic drug ornidazole by up to 71,000-folds with net 15 N polarisation reaching ~23%. Further, the effect of co-ligand strategy is studied in conjunction with the optimum field transfer protocols and consequently achieving 15 N hyperpolarised spin lifetime of >3 min at low field. Finally, we present a convenient route to harness the hyperpolarised solution in aqueous medium free from catalyst contamination leading to a strong 15 N signal detection for an extended duration of time.
Collapse
Affiliation(s)
- Wissam Iali
- Department of Chemistry, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Gamal A I Moustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- School of Chemistry, University of Southampton, Southampton, UK
| | - Laurynas Dagys
- School of Chemistry, University of Southampton, Southampton, UK
| | - Soumya S Roy
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
29
|
Bae J, Zhang G, Park H, Warren WS, Wang Q. 15N-Azides as practical and effective tags for developing long-lived hyperpolarized agents. Chem Sci 2021; 12:14309-14315. [PMID: 34760217 DOI: 10.1039/d1sc04647k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/08/2021] [Indexed: 01/24/2023] Open
Abstract
Azide moieties, unique linear species containing three nitrogen atoms, represent an attractive class of molecular tag for hyperpolarized magnetic resonance imaging (HP-MRI). Here we demonstrate (15N)3-azide-containing molecules exhibit long-lasting hyperpolarization lifetimes up to 9.8 min at 1 T with remarkably high polarization levels up to 11.6% in water, thus establishing (15N)3-azide as a powerful spin storage for hyperpolarization. A single (15N)-labeled azide has also been examined as an effective alternative tag with long-lived hyperpolarization. A variety of biologically important molecules are studied in this work, including choline, glucose, amino acid, and drug derivatives, demonstrating great potential of 15N-labeled azides as universal hyperpolarized tags for nuclear magnetic resonance imaging applications.
Collapse
Affiliation(s)
- Junu Bae
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Guannan Zhang
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Hyejin Park
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Warren S Warren
- Department of Chemistry, Duke University Durham North Carolina 27708 USA .,Department of Physics, Duke University Durham North Carolina 27708 USA.,Department of Radiology and Biomedical Engineering, Duke University Durham North Carolina 27708 USA
| | - Qiu Wang
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| |
Collapse
|
30
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
31
|
Korchak S, Kaltschnee L, Dervisoglu R, Andreas L, Griesinger C, Glöggler S. Spontaneous Enhancement of Magnetic Resonance Signals Using a RASER. Angew Chem Int Ed Engl 2021; 60:20984-20990. [PMID: 34289241 PMCID: PMC8518078 DOI: 10.1002/anie.202108306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/06/2022]
Abstract
Nuclear magnetic resonance is usually drastically limited by its intrinsically low sensitivity: Only a few spins contribute to the overall signal. To overcome this limitation, hyperpolarization methods were developed that increase signals several times beyond the normal/thermally polarized signals. The ideal case would be a universal approach that can signal enhance the complete sample of interest in solution to increase detection sensitivity. Here, we introduce a combination of para-hydrogen enhanced magnetic resonance with the phenomenon of the RASER: Large signals of para-hydrogen enhanced molecules interact with the magnetic resonance coil in a way that the signal is spontaneously converted into an in-phase signal. These molecules directly interact with other compounds via dipolar couplings and enhance their signal. We demonstrate that this is not only possible for solvent molecules but also for an amino acid.
Collapse
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement GroupMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGVon-Siebold-Str. 3A37075GöttingenGermany
| | - Lukas Kaltschnee
- NMR Signal Enhancement GroupMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGVon-Siebold-Str. 3A37075GöttingenGermany
| | - Riza Dervisoglu
- Research Group for Solid State NMRMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| | - Loren Andreas
- Research Group for Solid State NMRMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| | - Christian Griesinger
- Department of NMR-based Structural BiologyMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| | - Stefan Glöggler
- NMR Signal Enhancement GroupMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGVon-Siebold-Str. 3A37075GöttingenGermany
| |
Collapse
|
32
|
Korchak S, Kaltschnee L, Dervisoglu R, Andreas L, Griesinger C, Glöggler S. Spontaneous Enhancement of Magnetic Resonance Signals Using a RASER. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sergey Korchak
- NMR Signal Enhancement Group Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Lukas Kaltschnee
- NMR Signal Enhancement Group Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Riza Dervisoglu
- Research Group for Solid State NMR Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
| | - Loren Andreas
- Research Group for Solid State NMR Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A 37075 Göttingen Germany
| |
Collapse
|
33
|
Feng S, Hao Ngo H, Guo W, Woong Chang S, Duc Nguyen D, Cheng D, Varjani S, Lei Z, Liu Y. Roles and applications of enzymes for resistant pollutants removal in wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 335:125278. [PMID: 34015565 DOI: 10.1016/j.biortech.2021.125278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Resistant pollutants like oil, grease, pharmaceuticals, pesticides, and plastics in wastewater are difficult to be degraded by traditional activated sludge methods. These pollutants are prevalent, posing a great threat to aquatic environments and organisms since they are toxic, resistant to natural biodegradation, and create other serious problems. As a high-efficiency biocatalyst, enzymes are proposed for the treatment of these resistant pollutants. This review focused on the roles and applications of enzymes in wastewater treatment. It discusses the influence of enzyme types and their sources, enzymatic processes in resistant pollutants remediation, identification and ecotoxicity assay of enzymatic transformation products, and typically employed enzymatic wastewater treatment systems. Perspectives on the major challenges and feasible future research directions of enzyme-based wastewater treatment are also proposed.
Collapse
Affiliation(s)
- Siran Feng
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Dongle Cheng
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar-382 010, Gujarat, India
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
34
|
Kharkov BB, Podkorytov IS, Bondarev SA, Belousov MV, Salikov VA, Zhouravleva GA, Skrynnikov NR. The Role of Rotational Motion in Diffusion NMR Experiments on Supramolecular Assemblies: Application to Sup35NM Fibrils. Angew Chem Int Ed Engl 2021; 60:15445-15451. [PMID: 33891789 DOI: 10.1002/anie.202102408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/19/2021] [Indexed: 11/08/2022]
Abstract
Pulsed-field gradient (PFG) NMR is an important tool for characterization of biomolecules and supramolecular assemblies. However, for micrometer-sized objects, such as amyloid fibrils, these experiments become difficult to interpret because in addition to translational diffusion they are also sensitive to rotational diffusion. We have constructed a mathematical theory describing the outcome of PFG NMR experiments on rod-like fibrils. To test its validity, we have studied the fibrils formed by Sup35NM segment of the prion protein Sup35. The interpretation of the PFG NMR data in this system is fully consistent with the evidence from electron microscopy. Contrary to some previously expressed views, the signals originating from disordered regions in the fibrils can be readily differentiated from the similar signals representing small soluble species (e.g. proteolytic fragments). This paves the way for diffusion-sorted NMR experiments on complex amyloidogenic samples.
Collapse
Affiliation(s)
- Boris B Kharkov
- Laboratory of Biomolecular NMR, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Ivan S Podkorytov
- Laboratory of Biomolecular NMR, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Mikhail V Belousov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russia.,Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St. Petersburg, Russia
| | - Vladislav A Salikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, 199034, St. Petersburg, Russia.,Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
35
|
Kharkov BB, Podkorytov IS, Bondarev SA, Belousov MV, Salikov VA, Zhouravleva GA, Skrynnikov NR. The Role of Rotational Motion in Diffusion NMR Experiments on Supramolecular Assemblies: Application to Sup35NM Fibrils. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Boris B. Kharkov
- Laboratory of Biomolecular NMR St. Petersburg State University 199034 St. Petersburg Russia
| | - Ivan S. Podkorytov
- Laboratory of Biomolecular NMR St. Petersburg State University 199034 St. Petersburg Russia
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology St. Petersburg State University 199034 St. Petersburg Russia
| | - Mikhail V. Belousov
- Department of Genetics and Biotechnology St. Petersburg State University 199034 St. Petersburg Russia
- Laboratory for Proteomics of Supra-Organismal Systems All-Russia Research Institute for Agricultural Microbiology (ARRIAM) 196608 St. Petersburg Russia
| | - Vladislav A. Salikov
- Laboratory of Biomolecular NMR St. Petersburg State University 199034 St. Petersburg Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology St. Petersburg State University 199034 St. Petersburg Russia
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR St. Petersburg State University 199034 St. Petersburg Russia
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
36
|
Vincenzi M, Mercurio FA, Leone M. NMR Spectroscopy in the Conformational Analysis of Peptides: An Overview. Curr Med Chem 2021; 28:2729-2782. [PMID: 32614739 DOI: 10.2174/0929867327666200702131032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND NMR spectroscopy is one of the most powerful tools to study the structure and interaction properties of peptides and proteins from a dynamic perspective. Knowing the bioactive conformations of peptides is crucial in the drug discovery field to design more efficient analogue ligands and inhibitors of protein-protein interactions targeting therapeutically relevant systems. OBJECTIVE This review provides a toolkit to investigate peptide conformational properties by NMR. METHODS Articles cited herein, related to NMR studies of peptides and proteins were mainly searched through PubMed and the web. More recent and old books on NMR spectroscopy written by eminent scientists in the field were consulted as well. RESULTS The review is mainly focused on NMR tools to gain the 3D structure of small unlabeled peptides. It is more application-oriented as it is beyond its goal to deliver a profound theoretical background. However, the basic principles of 2D homonuclear and heteronuclear experiments are briefly described. Protocols to obtain isotopically labeled peptides and principal triple resonance experiments needed to study them, are discussed as well. CONCLUSION NMR is a leading technique in the study of conformational preferences of small flexible peptides whose structure can be often only described by an ensemble of conformations. Although NMR studies of peptides can be easily and fast performed by canonical protocols established a few decades ago, more recently we have assisted to tremendous improvements of NMR spectroscopy to investigate instead large systems and overcome its molecular weight limit.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| |
Collapse
|
37
|
Cheng CY, Brinzari TV, Hao Z, Wang X, Pan L. Understanding Methyl Salicylate Hydrolysis in the Presence of Amino Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6013-6021. [PMID: 34009964 DOI: 10.1021/acs.jafc.1c00958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Methyl salicylate, the major flavor component in wintergreen oil, is commonly used as food additives. It was found that amino acids can unexpectedly expedite methyl salicylate hydrolysis in an alkaline environment, while the detailed mechanism of this reaction merits investigation. Herein, the role of amino acid, more specifically, glycine, in methyl salicylate hydrolysis in aqueous solution was explored. 1H NMR spectroscopy, combined with density functional theory calculations, was employed to investigate the methyl salicylate hydrolysis in the presence and absence of glycine at pH 9. The addition of glycine was found to accelerate the hydrolysis by an order of magnitude at pH 9, compared to that at pH 7. The end hydrolyzed product was confirmed to be salicylic acid, suggesting that glycine does not directly form an amide bond with methyl salicylate via aminolysis. Importantly, our results indicate that the ortho-hydroxyl substituent in methyl salicylate is essential for its hydrolysis due to an intramolecular hydrogen bond, and the carboxyl group of glycine is crucial to methyl salicylate hydrolysis. This study gains a new understanding of methyl salicylate hydrolysis that will be helpful in finding ways of stabilizing wintergreen oil as a flavorant in consumer food products that also contain amino acids.
Collapse
Affiliation(s)
- Chi-Yuan Cheng
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08855, United States
| | - Tatiana V Brinzari
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08855, United States
| | - Zhigang Hao
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08855, United States
| | - Xiaotai Wang
- Department of Chemistry, University of Colorado, Denver, Campus Box 194, P.O. Box 173364, Denver, Colorado 80217-3364, United States
| | - Long Pan
- Colgate-Palmolive Company, 909 River Road, Piscataway, New Jersey 08855, United States
| |
Collapse
|
38
|
Abhyankar N, Szalai V. Challenges and Advances in the Application of Dynamic Nuclear Polarization to Liquid-State NMR Spectroscopy. J Phys Chem B 2021; 125:5171-5190. [PMID: 33960784 PMCID: PMC9871957 DOI: 10.1021/acs.jpcb.0c10937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful method to study the molecular structure and dynamics of materials. The inherently low sensitivity of NMR spectroscopy is a consequence of low spin polarization. Hyperpolarization of a spin ensemble is defined as a population difference between spin states that far exceeds what is expected from the Boltzmann distribution for a given temperature. Dynamic nuclear polarization (DNP) can overcome the relatively low sensitivity of NMR spectroscopy by using a paramagnetic matrix to hyperpolarize a nuclear spin ensemble. Application of DNP to NMR can result in sensitivity gains of up to four orders of magnitude compared to NMR without DNP. Although DNP NMR is now more routinely utilized for solid-state (ss) NMR spectroscopy, it has not been exploited to the same degree for liquid-state samples. This Review will consider challenges and advances in the application of DNP NMR to liquid-state samples. The Review is organized into four sections: (i) mechanisms of DNP NMR relevant to hyperpolarization of liquid samples; (ii) applications of liquid-state DNP NMR; (iii) available detection schemes for liquid-state samples; and (iv) instrumental challenges and outlook for liquid-state DNP NMR.
Collapse
Affiliation(s)
- Nandita Abhyankar
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Veronika Szalai
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
39
|
Zhu S, Weber DK, Separovic F, Sani MA. Expression and purification of the native C-amidated antimicrobial peptide maculatin 1.1. J Pept Sci 2021; 27:e3330. [PMID: 33843136 DOI: 10.1002/psc.3330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022]
Abstract
Maculatin 1.1 (Mac1) is an antimicrobial peptide (AMP) from an Australian tree frog and exhibits low micromolar activity against Gram-positive bacteria. The antimicrobial properties of Mac1 are linked to its disruption of bacterial lipid membranes, which has been studied extensively by in vitro nuclear magnetic resonance (NMR) spectroscopy and biophysical approaches. Although in vivo NMR has recently proven effective in probing peptide-lipid interplay in live bacterial cells, direct structural characterisation of AMPs has been prohibited by low sensitivity and overwhelming background noise. To overcome this issue, we report a recombinant expression protocol to produce isotopically enriched Mac1. We utilized a double-fusion construct to alleviate toxicity against the Escherichia coli host and generate the native N-free and C-amidated termini Mac1 peptide. The SUMO and intein tags allowed native N-terminus and C-terminal amidation, respectively, to be achieved in a one-pot reaction. The protocol yielded 0.1 mg/L of native, uniformly 15 N-labelled, Mac1, which possessed identical structure and activity to peptide obtained by solid-phase peptide synthesis.
Collapse
Affiliation(s)
- Shiying Zhu
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel K Weber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Luchinat E, Barbieri L, Cremonini M, Banci L. Protein in-cell NMR spectroscopy at 1.2 GHz. JOURNAL OF BIOMOLECULAR NMR 2021; 75:97-107. [PMID: 33580357 PMCID: PMC8018933 DOI: 10.1007/s10858-021-00358-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/25/2021] [Indexed: 05/02/2023]
Abstract
In-cell NMR spectroscopy provides precious structural and functional information on biological macromolecules in their native cellular environment at atomic resolution. However, the intrinsic low sensitivity of NMR imposes a big limitation in the applicability of the methodology. In this respect, the recently developed commercial 1.2 GHz NMR spectrometer is expected to introduce significant benefits. However, cell samples may suffer from detrimental effects at ultrahigh fields, that must be carefully evaluated. Here we show the first in-cell NMR spectra recorded at 1.2 GHz on human cells, and we compare resolution and sensitivity against those obtained at 900 and 950 MHz. To evaluate the effects of different spin relaxation rates, SOFAST-HMQC and BEST-TROSY spectra were recorded on intracellular α-synuclein and carbonic anhydrase. Major improvements are observed at 1.2 GHz when analyzing unfolded proteins, such as α-synuclein, while the TROSY scheme improves the resolution for both globular and unfolded proteins.
Collapse
Affiliation(s)
- Enrico Luchinat
- Università degli Studi di Firenze, Via Luigi sacconi 6, 50019, Sesto Fiorentino, Italy.
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase - CSGI, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Letizia Barbieri
- Università degli Studi di Firenze, Via Luigi sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Università degli Studi di Firenze, Via Luigi sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Lucia Banci
- Università degli Studi di Firenze, Via Luigi sacconi 6, 50019, Sesto Fiorentino, Italy.
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
41
|
Yang H, Mecha MF, Goebel CP, Cavagnero S. Enhanced nuclear-spin hyperpolarization of amino acids and proteins via reductive radical quenchers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 324:106912. [PMID: 33524671 PMCID: PMC7925436 DOI: 10.1016/j.jmr.2021.106912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Low-concentration photochemically induced dynamic nuclear polarization (LC-photo-CIDNP) has recently emerged as an effective tool for the hyperpolarization of aromatic amino acids in solution, either in isolation or within proteins. One factor limiting the maximum achievable signal-to-noise ratio in LC-photo-CIDNP is the progressive degradation of the target molecule and photosensitizer upon long-term optical irradiation. Fortunately, this effect does not cause spectral distortions but leads to a progressively smaller signal buildup upon long-term data-collection (e.g. 500 nM tryptophan on a 600 MHz spectrometer after ca. 200 scans). Given that it is generally desirable to minimize the extent of photodamage, we report that low-μM amounts of the reductive radical quenchers vitamin C (VC, i.e., ascorbic acid) or 2-mercaptoethylamine (MEA) enable LC-photo-CIDNP data to be acquired for significantly longer time than ever possible before. This approach increases the sensitivity of LC-photo-CIDNP by more than 100%, with larger enhancement factors achieved in experiments involving more transients. Our results are consistent with VC and MEA acting primarily by reducing transient free radicals of the NMR molecule of interest, thus attenuating the extent of photodamage. The benefits of this reductive radical-quencher approach are highlighted by the ability to collect long-term high-resolution 2D 1H-13C LC-photo-CIDNP data on a dilute sample of the drkN SH3 protein (5 μM).
Collapse
Affiliation(s)
- Hanming Yang
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Miranda F Mecha
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Collin P Goebel
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Ave, Madison, WI 53706, USA.
| |
Collapse
|
42
|
Araneda JF, Hui P, Leskowitz GM, Riegel SD, Mercado R, Green C. Lithium-7 qNMR as a method to quantify lithium content in brines using benchtop NMR. Analyst 2021; 146:882-888. [PMID: 33236728 DOI: 10.1039/d0an02088e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel 7Li quantitative NMR (qNMR) method to analyze lithium was developed to determine the lithium content in real brine samples using benchtop NMR instruments. The method was validated, and limits of detection and quantification of 40 and 100 ppm, respectively, were determined. Linearity, precision, and bias were also experimentally determined, and the results are presented herein. The results were compared to those obtained using atomic absorption (AA) spectroscopy, currently one of the few validated methods for the quantification of lithium. The method provides both accurate and precise results, as well as excellent correlation with AA. The absence of matrix effects, combined with no need for sample preparation or deuterated solvents, shows potential applicability in the mining industry.
Collapse
Affiliation(s)
- Juan F Araneda
- Nanalysis Corp., 1-4600 5 St NE, Calgary, AB T2E 7C3, Canada.
| | | | | | | | | | | |
Collapse
|
43
|
Salnikov OG, Svyatova A, Kovtunova LM, Chukanov NV, Bukhtiyarov VI, Kovtunov KV, Chekmenev EY, Koptyug IV. Heterogeneous Parahydrogen-Induced Polarization of Diethyl Ether for Magnetic Resonance Imaging Applications. Chemistry 2021; 27:1316-1322. [PMID: 32881102 PMCID: PMC7855047 DOI: 10.1002/chem.202003638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/29/2020] [Indexed: 11/07/2022]
Abstract
Magnetic resonance imaging (MRI) with the use of hyperpolarized gases as contrast agents provides valuable information on lungs structure and function. While the technology of 129 Xe hyperpolarization for clinical MRI research is well developed, it requires the expensive equipment for production and detection of hyperpolarized 129 Xe. Herein we present the 1 H hyperpolarization of diethyl ether vapor that can be imaged on any clinical MRI scanner. 1 H nuclear spin polarization of up to 1.3 % was achieved using heterogeneous hydrogenation of ethyl vinyl ether with parahydrogen over Rh/TiO2 catalyst. Liquefaction of diethyl ether vapor proceeds with partial preservation of hyperpolarization and prolongs its lifetime by ≈10 times. The proof-of-principle 2D 1 H MRI of hyperpolarized diethyl ether was demonstrated with 0.1×1.1 mm2 spatial and 120 ms temporal resolution. The long history of use of diethyl ether for anesthesia is expected to facilitate the clinical translation of the presented approach.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Alexandra Svyatova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| |
Collapse
|
44
|
Amponsah-Efah KK, Demeler B, Suryanarayanan R. Characterizing Drug-Polymer Interactions in Aqueous Solution with Analytical Ultracentrifugation. Mol Pharm 2020; 18:246-256. [PMID: 33264020 DOI: 10.1021/acs.molpharmaceut.0c00849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present a new approach for characterizing drug-polymer interactions in aqueous media, using sedimentation velocity analytical ultracentrifugation (AUC). We investigated the potential interaction of ketoconazole (KTZ), a poorly water-soluble drug, with polyacrylic acid (PAA) and a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus) in aqueous buffers. The effect of the polymer on the sedimentation coefficient of the drug was the observable metric. The drug alone, when subjected to AUC, exhibited a very narrow sedimentation peak at 0.2 Svedberg (S), in agreement with the expectation for a monomeric drug with a molar mass < 1000 Dalton. Conversely, the neat polymers showed broad profiles with higher sedimentation coefficients, reflecting their larger more heterogeneous size distributions. The sedimentation profiles of the drug-polymer mixtures were expectedly different from the profile of the neat drug. With KTZ-Soluplus, a complete shift to faster sedimentation times (indicative of an interaction) was observed, while with KTZ-PAA, a split peak indicated the existence of the drug in both free and interacting states. The sedimentation profile of carbamazepine, a second model drug, in the presence of hydroxypropyl methyl cellulose acetate succinate (HPMCAS, another polymer) revealed multiple "populations" of drug-polymer species, very similar to the sedimentation profile of neat HPMCAS. The interactions probed by AUC were compared with the results from isothermal titration calorimetry. In vitro dissolution tests performed on amorphous solid dispersions prepared with the same drug-polymer pairs suggested that the interactions may play a role in prolonging drug supersaturation. The results show the possibility of characterizing drug-polymer interactions in aqueous solution with high hydrodynamic resolution, addressing a major challenge frequently encountered in the mechanistic investigations of the dissolution behavior of amorphous solid dispersions.
Collapse
Affiliation(s)
- Kweku K Amponsah-Efah
- Department of Pharmaceutics, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Raj Suryanarayanan
- Department of Pharmaceutics, University of Minnesota, 308 Harvard St SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
45
|
Jeong HJ, Min S, Jeong K. Analysis of 1-aminoisoquinoline using the signal amplification by reversible exchange hyperpolarization technique. Analyst 2020; 145:6478-6484. [PMID: 32744263 DOI: 10.1039/d0an00967a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Signal amplification by reversible exchange (SABRE), a parahydrogen-based hyperpolarization technique, is valuable in detecting low concentrations of chemical compounds, which facilitates the understanding of their functions at the molecular level as well as their applicability in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). SABRE of 1-aminoisoquinoline (1-AIQ) is significant because isoquinoline derivatives are the fundamental structures in compounds with notable biological activity and are basic organic building blocks. Through this study, we explain how SABRE is applied to hyperpolarize 1-AIQ for diverse solvent systems such as deuterated and non-deuterated solvents. We observed the amplification of individual protons of 1-AIQ at various magnetic fields. Further, we describe the polarization transfer mechanism of 1-AIQ compared to pyridine using density functional theory (DFT) calculations. This hyperpolarization technique, including the polarization transfer mechanism investigation on 1-AIQ, will provide a firm basis for the future application of the hyperpolarization study on various bio-friendly materials.
Collapse
Affiliation(s)
- Hye Jin Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, South Korea.
| | - Sein Min
- Department of Chemistry, Seoul Women's University, Seoul 01797, South Korea
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, South Korea.
| |
Collapse
|
46
|
Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 2020; 284:102246. [PMID: 32977142 DOI: 10.1016/j.cis.2020.102246] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
The unique silver properties, especially in the form of nanoparticles (NPs), allow to utilize them in numerous applications. For instance, Ag NPs can be utilized for the production of electronic and solar energy harvesting devices, in advanced analytical techniques (NALDI, SERS), catalysis and photocatalysis. Moreover, the Ag NPs can be useful in medicine for bioimaging, biosensing as well as in antibacterial and anticancer therapies. The Ag NPs utilization requires comprehensive knowledge about their features regarding the synthesis approaches as well as exploitation conditions. Unfortunately, a large number of scientific articles provide only restricted information according to the objects under investigation. Additionally, the results could be affected by artifacts introduced with exploited equipment, the utilized technique or sample preparation stages. However, it is rather difficult to get information about problems, which may occur during the studies. Thus, the review provides information about novel trends in the Ag NPs synthesis, among which the physical, chemical, and biological approaches can be found. Basic information about approaches for the control of critical parameters of NPs, i.e. size and shape, was also revealed. It was shown, that the reducing agent, stabilizer, the synthesis environment, including trace ions, have a direct impact on the Ag NPs properties. Further, the capabilities of modern analytical techniques for Ag NPs and nanocomposites investigations were shown, among other microscopic (optical, TEM, SEM, STEM, AFM), spectroscopic (UV-Vis, IR, Raman, NMR, electron spectroscopy, XRD), spectrometric (MALDI-TOF MS, SIMS, ICP-MS), and separation (CE, FFF, gel electrophoresis) techniques were described. The limitations and possible artifacts of the techniques were mentioned. A large number of presented techniques is a distinguishing feature, which makes the review different from others. Finally, the physicochemical and biological properties of Ag NPs were demonstrated. It was shown, that Ag NPs features are dependent on their basic parameters, such as size, shape, chemical composition, etc. At the end of the review, the modern theories of the Ag NPs toxic mechanism were shown in a way that has never been presented before. The review should be helpful for scientists in their own studies, as it can help to prepare experiments more carefully.
Collapse
|
47
|
Di Mauro GM, Hardin NZ, Ramamoorthy A. Lipid-nanodiscs formed by paramagnetic metal chelated polymer for fast NMR data acquisition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183332. [PMID: 32360741 PMCID: PMC7340147 DOI: 10.1016/j.bbamem.2020.183332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Lipid-nanodiscs have been shown to be an exciting innovation as a membrane-mimicking system for studies on membrane proteins by a variety of biophysical techniques, including NMR spectroscopy. Although NMR spectroscopy is unique in enabling the atomic-resolution investigation of dynamic structures of membrane-associated molecules, it, unfortunately, suffers from intrinsically low sensitivity. The long data acquisition often used to enhance the sensitivity is not desirable for sensitive membrane proteins. Instead, paramagnetic relaxation enhancement (PRE) has been used to reduce NMR data acquisition time or to reduce the amount of sample required to acquire an NMR spectra. However, the PRE approach involves the introduction of external paramagnetic probes in the system, which can induce undesired changes in the sample and on the observed NMR spectra. For example, the addition of paramagnetic ions, as frequently used, can denature the protein via direct interaction and also through sample heating. In this study, we show how the introduction of paramagnetic tags on the outer belt of polymer-nanodiscs can be used to speed-up data acquisition by significantly reducing the spin-lattice relaxation (T1) times with minimum-to-no alteration of the spectral quality. Our results also demonstrate the feasibility of using different types of paramagnetic ions (Eu3+, Gd3+, Dy3+, Er3+, Yb3+) for NMR studies on lipid-nanodiscs. Experimental results characterizing the formation of lipid-nanodiscs by the metal-chelated polymer, and their increased tolerance toward metal ions are also reported.
Collapse
Affiliation(s)
- Giacomo M Di Mauro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nathaniel Z Hardin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics and Chemistry Department, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA; Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
48
|
Kaur M, Lewis CM, Chronister A, Phun GS, Mueller LJ. Non-Uniform Sampling in NMR Spectroscopy and the Preservation of Spectral Knowledge in the Time and Frequency Domains. J Phys Chem A 2020; 124:5474-5486. [PMID: 32496067 DOI: 10.1021/acs.jpca.0c02930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The increased sensitivity under weighted non-uniform sampling (NUS) is demonstrated and quantified using Monte Carlo simulations of nuclear magnetic resonance (NMR) time- and frequency-domain signals. The concept of spectral knowledge is introduced and shown to be superior to the frequency-domain signal-to-noise ratio for assessing the quality of NMR data. Two methods for rigorously preserving spectral knowledge and the time-domain NUS knowledge enhancement upon transformation to the frequency domain are demonstrated, both theoretically and numerically. The first, non-uniform weighted sampling using consistent root-mean-square noise, is applicable to data sampled on the Nyquist grid, whereas the second, the block Fourier transform using consistent root-mean-square noise, can be used to transform time-domain data acquired with arbitrary, off-grid NUS.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Callie M Lewis
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Aaron Chronister
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Gabriel S Phun
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
49
|
Szekely O, Olsen GL, Novakovic M, Rosenzweig R, Frydman L. Assessing Site-Specific Enhancements Imparted by Hyperpolarized Water in Folded and Unfolded Proteins by 2D HMQC NMR. J Am Chem Soc 2020; 142:9267-9284. [PMID: 32338002 PMCID: PMC7304870 DOI: 10.1021/jacs.0c00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Hyperpolarized water
can be a valuable aid in protein NMR, leading
to amide group 1H polarizations that are orders of magnitude
larger than their thermal counterparts. Suitable procedures can exploit
this to deliver 2D 1H–15N correlations
with good resolution and enhanced sensitivity. These enhancements
depend on the exchange rates between the amides and the water, thereby
yielding diagnostic information about solvent accessibility. This
study applied this “HyperW” method to four proteins
exhibiting a gamut of exchange behaviors: PhoA(350–471), an unfolded 122-residue fragment; barstar, a fully folded ribonuclease
inhibitor; R17, a 13.3 kDa system possessing folded and unfolded forms
under slow interconversion; and drkN SH3, a protein domain whose folded
and unfolded forms interchange rapidly and with temperature-dependent
population ratios. For PhoA4(350–471) HyperW sensitivity
enhancements were ≥300×, as expected for an unfolded protein
sequence. Though fully folded, barstar also exhibited substantial
enhancements; these, however, were not uniform and, according to CLEANEX
experiments, reflected the solvent-exposed residues. R17 showed the
expected superposition of ≥100-fold enhancements for its unfolded
form, coexisting with more modest enhancements for their folded counterparts.
Unexpected, however, was the behavior of drkN SH3, for which HyperW
enhanced the unfolded but, surprisingly, enhanced even more certain folded protein sites. These preferential enhancements were
repeatedly and reproducibly observed. A number of explanations—including
three-site exchange magnetization transfers between water and the
unfolded and folded states; cross-correlated relaxation processes
from hyperpolarized “structural” waters and labile side-chain
protons; and the possibility that faster solvent exchange rates characterize
certain folded sites over their unfolded counterparts—are considered
to account for them.
Collapse
|
50
|
Affiliation(s)
- P J Hore
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, USA
| |
Collapse
|