1
|
Althobaiti NA. Heavy metals exposure and Alzheimer's disease: Underlying mechanisms and advancing therapeutic approaches. Behav Brain Res 2025; 476:115212. [PMID: 39187176 DOI: 10.1016/j.bbr.2024.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metals such as lead, cadmium, mercury, and arsenic are prevalent in the environment due to both natural and anthropogenic sources, leading to significant public health concerns. These heavy metals are known to cause damage to the nervous system, potentially leading to a range of neurological conditions including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and attention-deficit hyperactivity disorder (ADHD). The present study examines the complex relationship between heavy metal exposure and AD, focusing on the underlying mechanisms of toxicity and potential therapeutic approaches. This review article highlights how these metals can impair brain function through mechanisms such as oxidative stress, inflammation, and neurotransmitter disruption, ultimately contributing to neurodegenerative diseases like AD. It also addresses the challenges in diagnosing heavy metal-induced cognitive impairments and emphasizes the need for further research to explore effective treatment strategies and preventive measures against heavy metal exposure.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia.
| |
Collapse
|
2
|
Yin J, Wu Z, Li H, Cao B, Wang W. Monitoring of mercury ion in environmental media and biological systems using a red emissive fluorescent probe with a large Stokes shift. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125272. [PMID: 39418676 DOI: 10.1016/j.saa.2024.125272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The development of practical fluorescent probe for detecting toxic mercury ions (Hg2+) is desirable for environmental assurance and public health. In this study, a new red emissive fluorescent probe (KJL) was designed and synthesized for monitoring trace Hg2+ both in vitro and in vivo with distinct features including ideal response rate (within 4 min), red emission (596 nm), large Stokes shift (162 nm), highly sensitivity (LOD = 4.79 nM) and excellent specificity. KJL also validated the good capability for accurately monitoring trace Hg2+ levels in actual samples (faucet water, drinking water, river water, lake water, urine and serum) and possessed the eye-catching ability in visualization of Hg2+ under environmental/biological conditions, which revealed the great potential of this red-emitting fluorescent probe for practical applications in complex environmental and biological systems.
Collapse
Affiliation(s)
- Juan Yin
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Zejie Wu
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Heng Li
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Bianli Cao
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wanzhi Wang
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
3
|
Moutapam-Ngamby-Adriaansen Y, Journaud M, Tudorancea A, Benatre H, Stankovic Stojanovic K, Leclercq M. [High fever in a 39 year-old woman]. Rev Med Interne 2024; 45:600-602. [PMID: 38853049 DOI: 10.1016/j.revmed.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Affiliation(s)
- Y Moutapam-Ngamby-Adriaansen
- Service de médecine interne et polyvalente 2, centre hospitalier de Blois, Mail Pierre-Charlot, 41016 Blois cedex, France
| | - M Journaud
- Service de médecine interne et polyvalente 2, centre hospitalier de Blois, Mail Pierre-Charlot, 41016 Blois cedex, France
| | - A Tudorancea
- Service de diabétologie et endocrinologie, centre hospitalier de Blois, Mail Pierre-Charlot, 41016 Blois cedex, France
| | - H Benatre
- Laboratoire d'analyses médicales, centre hospitalier de Blois, Mail Pierre-Charlot, 41016 Blois cedex, France
| | - K Stankovic Stojanovic
- Service de médecine interne et polyvalente 2, centre hospitalier de Blois, Mail Pierre-Charlot, 41016 Blois cedex, France.
| | - M Leclercq
- Service de médecine interne, CHU de Rouen, 37, boulevard Gambetta, 76031 Rouen, France
| |
Collapse
|
4
|
Niu H, Ye T, Yao L, Lin Y, Chen K, Zeng Y, Li L, Guo L, Wang J. A novel red-to-near-infrared AIE fluorescent probe for detection of Hg 2+ with large Stokes shift in plant and living cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134914. [PMID: 38885588 DOI: 10.1016/j.jhazmat.2024.134914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Due to the highly toxic nature of mercury ions to living organisms, accurately detecting Hg2+ in water samples and biological systems is of great significance. In this study, we designed and synthesized a novel red-to-near-infrared Aggregation-Induced Emission (AIE) fluorescent probe (named as DS) based Fluorene derivatives on specifically for Hg2+ detection. Probe DS can visually identify Hg2+ through an red-to-near-infrared fluorescence enhancement change, characterized by a large Stokes shift (130 nm) and AIE feature. This probe offers a fast response, high selectivity and sensitivity. The Hg2+-induced deprotection reaction of the thioketal mechanism was thoroughly investigated using nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS) and density functional theory (DFT) calculation. Additionly, dynamic light scattering (DLS) results indicated that the aggregation states changes of the molecular play a crucial role in the AIE fluorescence response of probe DS toward Hg2+. The red-to-near-infrared response with AIE feature not only avoids the interference of auto-fluorescence signals in complex environments, but also reduces the fluorescence quenching caused by probe molecular aggregation. This makes probe DS highly suitable for high-quality imaging detection of Hg2+ in aqueous environments. Furthermore, probe DS demonstrates the capability for visual fluorescence detection of Hg2+ concentrations in water sample, plant roots and living cells.
Collapse
Affiliation(s)
- Haiyi Niu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tianqing Ye
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Liangyi Yao
- Jiaxing No.1 Middle School Experimental Sub-Branch, Jiaxing 314050, China
| | - Yanfei Lin
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jianbo Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
5
|
Baia-da-Silva DC, Mendes PFS, Silva DCBD, Chemelo VS, Bittencourt LO, Padilha PM, Oriá RB, Aschner M, Lima RR. What does scientometry tell us about mercury toxicology and its biological impairments? Heliyon 2024; 10:e27526. [PMID: 38586377 PMCID: PMC10998116 DOI: 10.1016/j.heliyon.2024.e27526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Mercury is a toxic pollutant that poses risks to both human and environmental health, making it a pressing public health concern. This study aimed to summarize the knowledge on mercury toxicology and the biological impairments caused by exposure to mercury in experimental studies and/or diagnosis in humans. The research was conducted on the main collection of Web of Science, employing as a methodological tool a bibliometric analysis. The selected articles were analyzed, and extracted data such as publication year, journal, author, title, number of citations, corresponding author's country, keywords, and the knowledge mapping was performed about the type of study, chemical form of mercury, exposure period, origin of exposure, tissue/fluid of exposure measurement, mercury concentration, evaluation period (age), mercury effect, model experiments, dose, exposure pathway, and time of exposure. The selected articles were published between 1965 and 2021, with Clarkson TW being the most cited author who has also published the most articles. A total of 38% of the publications were from the USA. These studies assessed the prenatal and postnatal effects of mercury, emphasizing the impact of methylmercury on neurodevelopment, including motor and cognitive evaluations, the association between mercury and autism, and an evaluation of its protective effects against mercury toxicity. In observational studies, the blood, umbilical cord, and hair were the most frequently used for measuring mercury levels. Our data analysis reveals that mercury neurotoxicology has been extensively explored, but the association among the outcomes evaluated in experimental studies has yet to be strengthened. Providing metric evidence on what is unexplored allows for new studies that may help governmental and non-governmental organizations develop guidelines and policies.
Collapse
Affiliation(s)
- Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Diane Cleydes Baia da Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Victória Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Pedro Magalhães Padilha
- School of Veterinary Medicine and Animal Science, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Reinaldo Barreto Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
6
|
Chamorro F, Cassani L, Garcia-Oliveira P, Barral-Martinez M, Jorge AOS, Pereira AG, Otero P, Fraga-Corral M, P. P. Oliveira MB, Prieto MA. Health benefits of bluefin tuna consumption: ( Thunnus thynnus) as a case study. Front Nutr 2024; 11:1340121. [PMID: 38628271 PMCID: PMC11018964 DOI: 10.3389/fnut.2024.1340121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Consumers are increasingly interested in food products with high nutritional value and health benefits. For instance, fish consumption is linked with diverse positive health benefits and the prevention of certain widespread disorders, such as obesity, metabolic syndrome, or cardiovascular diseases. These benefits have been attributed to its excellent nutritional value (large amounts of high-quality fatty acids, proteins, vitamins, and minerals) and bioactive compounds, while being relatively low-caloric. Atlantic bluefin tuna (Thunnus tynnus) is one of the most consumed species worldwide, motivated by its good nutritional and organoleptic characteristics. Recently, some organizations have proposed limitations on its consumption due to the presence of contaminants, mainly heavy metals such as mercury. However, several studies have reported that most specimens hold lower levels of contaminants than the established limits and that their richness in selenium effectively limits the contaminants' bioaccessibility in the human body. Considering this situation, this study aims to provide baseline data about the nutritional composition and the latest evidence regarding the beneficial effects of Atlantic bluefin tuna consumption. A review of the risk-benefit ratio was also conducted to evaluate the safety of its consumption, considering the current suggested limitations to this species' consumption.
Collapse
Affiliation(s)
- F. Chamorro
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - L. Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - M. Barral-Martinez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - A. O. S. Jorge
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
- REQUIMTE/Serviço de Bromatologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - A. G. Pereira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - M. Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | | | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
- LAQV@REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Huang H, Hu Z, Zhao X, Cheng X, Chen J, Wang Z, Qian H, Zhang S. Trophic transfer of heavy metals across four trophic levels based on muscle tissue residuals: a case study of Dachen Fishing Grounds, the East China Sea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:361. [PMID: 38472544 DOI: 10.1007/s10661-024-12536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
In this study, we collected 56 species of fishery organisms (including fish, crustaceans, cephalopods, gastropods, and bivalves) from four seasonal survey cruises at the Dachen fishery grounds. We measured the concentrations of seven heavy metals (Cd, Zn, Cu, Pb, Cr, As, and Hg) in these fisheries organisms. We determined their trophic levels using carbon and nitrogen stable isotope techniques. We analyzed the characteristics of heavy metal transfer in the food chain. The results showed significant differences in heavy metal concentrations among different species. Among all biological groups, bivalves and gastropods exhibited higher levels of heavy metal enrichment than other biological groups, while fish had the lowest levels of heavy metal enrichment. Heavy metals exhibited different patterns of nutritional transfer in the food chain. While Hg showed a biomagnification phenomenon in the food chain, it was not significant. Cd, Zn, Cu, Pb, Cr, and As exhibited a trend of biodilution with increasing nutritional levels, except for As, which showed no significant correlation with δ15N.
Collapse
Affiliation(s)
- Hong Huang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| | - Zhiming Hu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Xu Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Xiaopeng Cheng
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jing Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Zhenhua Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Han Qian
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Shouyu Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
8
|
Li S, Li Z, Wu M, Zhou Y, Tang W, Zhong H. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168690. [PMID: 38000748 DOI: 10.1016/j.scitotenv.2023.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Mercury (Hg) is a global pollutant showing potent toxicity to living organisms. The transformations of Hg are critical to global Hg cycling and Hg exposure risks, considering Hg mobilities and toxicities vary depending on Hg speciation. Though currently well understood in ambient environments, Hg transformations are inadequately explored in non-microbial organisms. The primary drivers of in vivo Hg transformations are far from clear, and the impacts of these processes on global Hg cycling and Hg associated health risks are not well understood. This hinders a comprehensive understanding of global Hg cycling and the effective mitigation of Hg exposure risks. Here, we focused on Hg transformations in non-microbial organisms, particularly algae, plants, and animals. The process of Hg oxidation/reduction and methylation/demethylation in organisms were reviewed since these processes are the key transformations between the dominant Hg species, i.e., elemental Hg (Hg0), divalent inorganic Hg (IHgII), and methylmercury (MeHg). By summarizing the current knowledge of Hg transformations in organisms, we proposed the potential yet overlooked drivers of these processes, along with potential challenges that hinder a full understanding of in vivo Hg transformations. Knowledge summarized in this review would help achieve a comprehensive understanding of the fate and toxicity of Hg in organisms, providing a basis for predicting Hg cycles and mitigating human exposure.
Collapse
Affiliation(s)
- Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Zhuoran Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
9
|
Zábojníková L. Seasonal and age-dependent differences in mercury concentrations in Apodemus sp. in the north-western region of Slovakia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10521-10532. [PMID: 38200190 PMCID: PMC10850257 DOI: 10.1007/s11356-023-31802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Pollution of ecosystems by heavy metals such as mercury is currently a great concern. Mercury (Hg) can be released into the environment anthropogenically, but it is also naturally present in small quantities in all environmental compartments. Many different factors contribute to different rates of Hg deposition in animal bodies. The aim of this work is to describe how Hg concentrations in the bodies of small rodents change throughout the season at a site where massive anthropogenic pollution is not expected. Mice of the genus Apodemus were sampled during the whole year. Samples of blood, hair, liver, kidney, and brain were analyzed. Total Hg concentrations were measured by DMA-80. The mean Hg concentrations in examined organs were in the order hairs > kidney > liver > blood > brain, and their values decreased from 0.0500 to 0.0046 mg kg-1 dry weight. Males and females did not differ in contamination levels, but age-dependent differences in Hg concentrations were found. It was also identified how Hg concentrations in different organs correlate with each other. Different levels of seasonal variability were detected in Hg concentrations in blood, hair, and kidney.
Collapse
Affiliation(s)
- Lenka Zábojníková
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, 059 56, Tatranská Javorina, Slovakia.
| |
Collapse
|
10
|
Wang S, Wang Y, Ma J, Huang C, Chen L. Portable smartphone-assisted highly sensitive detection of mercury ions based on gold nanoparticle-modified NH 2-UiO-66 metal-organic framework. Anal Bioanal Chem 2024; 416:1001-1010. [PMID: 38097760 DOI: 10.1007/s00216-023-05090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024]
Abstract
A novel portable smartphone-assisted colorimetric method was reported for the determination of Hg2+ with good analytical performance. A Zr(IV)-based metal-organic framework functionalized with amino groups (NH2-UiO-66) has been adopted as a supporting platform to anchor gold nanoparticles (AuNPs), avoiding the migration and aggregation of AuNPs. With the addition of Hg2+, the formation of gold amalgam proved possible to enhance peroxidase-like activity of the composite (AuNPs/NH2-UiO-66), accelerating the oxidization of zymolyte 3,3',5,5'-tetramethylbenzidine (TMB). In the meantime, the color of the reaction solution turned a vivid blue, and the red, green, and blue (RGB) values of the solution color changed accordingly. On account of this strategy, the quantitative detection of Hg2+ could be achieved. After the optimization of the experiment conditions, the average color intensity (Ic) resulting from RGB values was linear related to the concentration of Hg2+ from 10 to 100 nM, accompanied with a detection limit (LOD) down to 5.4 nM calculated by 3σ/S. The successful application of the designed method has been promoted to detect Hg2+ in some water samples, displaying a great potential in practical application. Furthermore, the use of a smartphone made our proposed method simple and accurate, and thus puts forward a possible way for in situ and real-time monitoring.
Collapse
Affiliation(s)
- Shasha Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yifei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jiping Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Chaonan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| |
Collapse
|
11
|
Wang L, Ma Y, Lin W. A coumarin-based fluorescent probe for highly selective detection of hazardous mercury ions in living organisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132604. [PMID: 37757555 DOI: 10.1016/j.jhazmat.2023.132604] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
In recent years, heavy metal mercury (II) pollutants have caused serious harm to human health and ecosystems. It has become critical to develop simple and highly selective sensing solutions for monitoring mercury (II). In this work, we designed and developed a novel fluorescent probe Coa-SH using the Hg2+-induced chemical reaction as a sensing mechanism. The probe Coa-SH showed high selectivity for the detection of Hg2+ by desulfurization reactions in solution. The test strips prepared with this probe could be applied to detect mercury ions in aqueous solutions. In addition, the probe Coa-SH provided a tool to detect Hg2+ in living systems. In living cells and zebrafish, the probe turned on bright red fluorescent signals in the presence of mercury ions. Importantly, the probe Coa-SH enabled Hg2+ detection in plant onion roots. This work provides an effective method for monitoring mercury ions in the environment and in living organisms.
Collapse
Affiliation(s)
- Lin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Yanyan Ma
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, Shandong 266061, PR China
| | - Weiying Lin
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China; Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
12
|
Zhang Y, Ge H, Sun L, Cheng Y, Xu Z, Gao W, Wang B, Rong X, Qiu X, Li J, Fang M, Shang J. Novel design of near-infrared fluorescent sensors for the detection of Hg 2+ in living cells and real water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123258. [PMID: 37619473 DOI: 10.1016/j.saa.2023.123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Mercury sensing and imaging in the bio-system is essential for comprehending its toxicity and therapies. Based on the merocyanine scaffold, we designed and synthesized two novel near-infrared (NIR) fluorescent probes for detecting Hg2+. The release of chloro-substituted merocyanine structure on the probe CyHg-Cl enables fluorescence enhancement rapidly by introducing Hg2+. In addition, the probe CyHg-Cl exhibits NIR emission and a low detection limit of 0.59 µM. Finally, the probe CyHg-Cl was used to detect Hg2+ in live cells and real water samples.
Collapse
Affiliation(s)
- Yibin Zhang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China; College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Hongjing Ge
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Lin Sun
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Yueting Cheng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Zihan Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Wei Gao
- Jiangxi Academy of Forestry, Nanchang, China.
| | - Boling Wang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Xiaoqian Rong
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Xianyu Qiu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China.
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China.
| | - Jinting Shang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
13
|
Mille T, Wessel N, Brun M, Bustamante P, Chouvelon T, Méndez-Fernandez P, Poiriez G, Spitz J, Mauffret A. Development of an integrated indicator to assess chemical contamination in different marine species: The case of mercury on the French Atlantic continental shelf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165753. [PMID: 37495124 DOI: 10.1016/j.scitotenv.2023.165753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Good Environmental Status (GES) for Descriptor 8 (D8) of the Marine Strategy Framework Directive (MSFD) is considered to be achieved when concentrations of contaminants are at levels not giving rise to pollution effects. This study proposes a framework to assess GES in marine waters adjacent to France, including four groups of species (bivalves, fish, birds and mammals) living on the continental shelf and covering different dimensions of the marine environment. This framework is applied to mercury (Hg) in the three marine regions along the French Atlantic coast and includes two assessment types: i) an absolute assessment by comparing contamination levels with environmental thresholds, and ii) a relative assessment by comparing contamination levels over time, performed for bivalves and mammals that had long time-series available. Mercury concentrations were higher than environmental thresholds for bivalves and fish in all the three studied regions. Plus, they significantly increased since the 2000s for most bivalve stations and for the common dolphin Delphinus delphis. Our results therefore indicate that Hg concentrations have increased in marine waters and have reached levels possibly giving rise to pollution effects in biota from the three marine regions. The present study also highlighted the complementarity of monitoring Hg concentrations in each group of species and each type of assessment, making it possible to propose a conceptual framework for assessing the environmental pressure of bioaccumulated and biomagnified contaminants over the continental shelf.
Collapse
Affiliation(s)
- Tiphaine Mille
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins (CCEM), Rue de l'Île d'Yeu, 44980 Nantes, France
| | - Nathalie Wessel
- Ifremer, Service Valorisation de l'Information pour la Gestion Intégrée et la Surveillance (VIGIES), Rue de l'Île d'Yeu, 44980 Nantes, France
| | - Mélanie Brun
- Ifremer, Service Valorisation de l'Information pour la Gestion Intégrée et la Surveillance (VIGIES), Rue de l'Île d'Yeu, 44980 Nantes, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 La Rochelle Université-CNRS, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Tiphaine Chouvelon
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins (CCEM), Rue de l'Île d'Yeu, 44980 Nantes, France; Observatoire Pelagis, UAR 3462 La Rochelle Université-CNRS, 5 Allée de l'Océan, 17000 La Rochelle, France
| | - Paula Méndez-Fernandez
- Observatoire Pelagis, UAR 3462 La Rochelle Université-CNRS, 5 Allée de l'Océan, 17000 La Rochelle, France
| | - Gauthier Poiriez
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 La Rochelle Université-CNRS, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Jérôme Spitz
- Observatoire Pelagis, UAR 3462 La Rochelle Université-CNRS, 5 Allée de l'Océan, 17000 La Rochelle, France; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 La Rochelle Université-CNRS, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois, France
| | - Aourell Mauffret
- Ifremer, Unité Contamination Chimique des Ecosystèmes Marins (CCEM), Rue de l'Île d'Yeu, 44980 Nantes, France.
| |
Collapse
|
14
|
Dack K, Bustamante M, Taylor CM, Llop S, Lozano M, Yousefi P, Gražulevičienė R, Gutzkow KB, Brantsæter AL, Mason D, Escaramís G, Lewis SJ. Genome-Wide Association Study of Blood Mercury in European Pregnant Women and Children. Genes (Basel) 2023; 14:2123. [PMID: 38136945 PMCID: PMC10742428 DOI: 10.3390/genes14122123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Mercury has high industrial utility and is present in many products, and environmental contamination and occupational exposure are widespread. There are numerous biological systems involved in the absorption, metabolism, and excretion of Hg, and it is possible that some systems may be impacted by genetic variation. If so, genotype may affect tissue concentrations of Hg and subsequent toxic effects. Genome-wide association testing was performed on blood Hg samples from pregnant women of the Avon Longitudinal Study of Parents and Children (n = 2893) and children of the Human Early Life Exposome (n = 1042). Directly-genotyped single-nucleotide polymorphisms (SNPs) were imputed to the Haplotype Reference Consortium r1.1 panel of whole genotypes and modelled againstlog-transformed Hg. Heritability was estimated using linkage disequilibrium score regression. The heritability of Hg was estimated as 24.0% (95% CI: 16.9% to 46.4%) in pregnant women, but could not be determined in children. There were 16 SNPs associated with Hg in pregnant women above a suggestive p-value threshold (p < 1 × 10-5), and 21 for children. However, no SNP passed this threshold in both studies, and none were genome-wide significant (p < 5 × 10-8). SNP-Hg associations were highly discordant between women and children, and this may reflect differences in metabolism, a gene-age interaction, or dose-response effects. Several suggestive variants had plausible links to Hg metabolism, such as rs146099921 in metal transporter SLC39A14, and two variants (rs28618224, rs7154700) in potassium voltage-gated channel genes. The findings would benefit from external validation, as suggestive results may contain both true associations and false positives.
Collapse
Affiliation(s)
- Kyle Dack
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK; (K.D.)
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, 08036 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08018 Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain (G.E.)
| | - Caroline M. Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK;
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain (G.E.)
- Epidemiology and Environmental Health Joint Research Unit, FISABIO- Universitat Jaume I - Universitat de València, 46020 Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO- Universitat Jaume I - Universitat de València, 46020 Valencia, Spain
- Department of Preventative Medicine, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, 46100 Valencia, Spain
| | - Paul Yousefi
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK; (K.D.)
| | - Regina Gražulevičienė
- Department of Environmental Sciences, Faculty of Natural Sciences, Vytautas Magnus University, 53361 Kaunas, Lithuania
| | - Kristine Bjerve Gutzkow
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skoyen, NO-0213 Oslo, Norway;
| | - Anne Lise Brantsæter
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skoyen, NO-0213 Oslo, Norway
| | - Dan Mason
- Bradford Teaching Hospitals NHS Foundation Trust, Duckworth Lane, Bradford BD9 6RJ, UK
| | - Georgia Escaramís
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain (G.E.)
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, 08035 Barcelona, Spain
| | - Sarah J. Lewis
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK; (K.D.)
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
15
|
Pourbadiei B, Eftekhari-Sis B, Kordzadeh A, Pourjavadi A. Simultaneous detection of mercury and cadmium ions: A colorimetric method in aqueous media. Heliyon 2023; 9:e21674. [PMID: 38034750 PMCID: PMC10682545 DOI: 10.1016/j.heliyon.2023.e21674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Hg and Cd are the two most toxic heavy metal ions that could be found in aqueous solutions. In this study, a chemosensor based on 5-(4-((4-nitrophenyl) diazenyl) phenyl)-1,3,4-oxadiazole-2-thiol (DOT) was reported to detect these ions simultaneously. DOT showed high selectivity towards Hg ion by changing the color of the solution from beige to gold-yellow at different concentrations of Hg ion. In comparison, other relevant metals, such as Li+, Na+, K+, Cs+, Mg2+, Ca2+, Al3+, Fe2+, Ag+, Cu2+, Pb2+, Ni2+, Zn2+, Cr3+, Fe3+, Pb4+, Mn2+, and Cd2+ did not affect the color of the DOT solution as the interfering ions. Despite no changes in the color of DOT solution in the presence of Cd ion, a solution containing DOT-Hg complex was changed from gold-yellow to orange by adding Cd ion, providing an approach for detecting Hg and Cd ion simultaneously with UV-Vis and Fluorescent spectroscopy. DOT exhibited a high association constant with a detection limit of 0.05 μM for Hg and Cd ions in an aqueous solution. The results of quantum mechanics (QM) calculations were also consistent with the experimental observations, which indicated that changes in the band gap could explain the various colors of DOT complex with metal ions.
Collapse
Affiliation(s)
- Behzad Pourbadiei
- Department of Chemistry, Sharif University of Technology, Tehran, 11365-9516, Iran
| | | | - Azadeh Kordzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, 11365-9516, Iran
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, Tehran, 11365-9516, Iran
| |
Collapse
|
16
|
Oguro A, Fujiyama T, Ishihara Y, Kataoka C, Yamamoto M, Eto K, Komohara Y, Imaoka S, Sakuragi T, Tsuji M, Shibata E, Kotake Y, Yamazaki T. Maternal DHA intake in mice increased DHA metabolites in the pup brain and ameliorated MeHg-induced behavioral disorder. J Lipid Res 2023; 64:100458. [PMID: 37838304 PMCID: PMC10656226 DOI: 10.1016/j.jlr.2023.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023] Open
Abstract
Although pregnant women's fish consumption is beneficial for the brain development of the fetus due to the DHA in fish, seafood also contains methylmercury (MeHg), which adversely affects fetal brain development. Epidemiological studies suggest that high DHA levels in pregnant women's sera may protect the fetal brain from MeHg-induced neurotoxicity, but the underlying mechanism is unknown. Our earlier study revealed that DHA and its metabolite 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP) produced by cytochrome P450s (P450s) and soluble epoxide hydrolase (sEH) can suppress MeHg-induced cytotoxicity in mouse primary neuronal cells. In the present study, DHA supplementation to pregnant mice suppressed MeHg-induced impairments of pups' body weight, grip strength, motor function, and short-term memory. DHA supplementation also suppressed MeHg-induced oxidative stress and the decrease in the number of subplate neurons in the cerebral cortex of the pups. DHA supplementation to dams significantly increased the DHA metabolites 19,20-epoxydocosapentaenoic acid (19,20-EDP) and 19,20-DHDP as well as DHA itself in the fetal and infant brains, although the expression levels of P450s and sEH were low in the fetal brain and liver. DHA metabolites were detected in the mouse breast milk and in human umbilical cord blood, indicating the active transfer of DHA metabolites from dams to pups. These results demonstrate that DHA supplementation increased DHA and its metabolites in the mouse pup brain and alleviated the effects of MeHg on fetal brain development. Pregnant women's intake of fish containing high levels of DHA (or DHA supplementation) may help prevent MeHg-induced neurotoxicity in the fetus.
Collapse
Affiliation(s)
- Ami Oguro
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Taichi Fujiyama
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | | | | | - Komyo Eto
- National Institute for Minamata Disease, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Susumu Imaoka
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo, Japan
| | - Toshihide Sakuragi
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan; Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Mayumi Tsuji
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Eiji Shibata
- Department of Obstetrics and Gynecology, Dokkyo Medical University, Tochigi, Japan
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Yamazaki
- Program of Life and Environmental Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Tinant G, Van Larebeke M, Lemaire B, Courteille M, Gardin C, Neefs I, Das K, Page MM, Rees JF, Larondelle Y, Debier C. Dietary methylmercury and fatty acids affect the lipid metabolism of adipose tissue and liver in rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106673. [PMID: 37669601 DOI: 10.1016/j.aquatox.2023.106673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
Methylmercury (MeHg) is a pervasive environmental contaminant in aquatic ecosystems that can reach elevated concentrations in fish of high trophic levels, such as salmonids. The present study aims at investigating the individual and combined impacts of dietary MeHg and fatty acids on lipid metabolism in juvenile rainbow trout (Oncorhynchus mykiss) with a focus on two key organs, adipose tissue and liver. MeHg and fatty acids are both known to act on energy homeostasis although little is known about their interplay on lipid metabolism in fish. Fish were fed diets enriched in linoleic acid (LA, 18:2 n-6), α-linolenic acid (ALA, 18:3 n-3), eicosapentaenoic acid (EPA, 20:5 n-3) or docosahexaenoic acid (DHA, 22:6 n-3) for ten weeks, with the addition of MeHg to the diets during the last six weeks (0, 2.4 or 5.5 mg MeHg/kg dry matter). LA and ALA are polyunsaturated fatty acids (PUFA) typical of plant-derived oils whereas EPA and DHA are n-3 long chain PUFA largely found in fish oil, all used in feed formulation in aquaculture. The results showed that the LA-enriched diet induced a higher whole-body lipid content compared to the three other diets. On the contrary, the addition of MeHg led to a significant reduction of the whole-body lipid content, regardless of the diet. Interestingly, the adipocytes were larger both in presence of LA, compared to EPA and DHA, or MeHg, indicating a lipogenic effect of these two compounds. No effect was, however, observed on lipid accumulation per gram of adipose tissue. The fatty acid composition of adipose tissue and liver was significantly modified by the dietary lipids, reflecting both the fatty acid composition of the diets and the high bioconversion capacity of the rainbow trout. Exposure to MeHg selectively led to a release of n-6 PUFA from the hepatic membranes of fish fed the LA-enriched diet, showing a disruption of the pathways using n-6 PUFA. This study highlights the significant impact of MeHg exposure and dietary fatty acids on lipid metabolism in fish. Further investigation is needed to elucidate the underlying mechanisms and to explore the potential involvement of other organs.
Collapse
Affiliation(s)
- Gilles Tinant
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium.
| | - Mélusine Van Larebeke
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Benjamin Lemaire
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Marine Courteille
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Cécile Gardin
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Ineke Neefs
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Krishna Das
- Laboratory of Oceanology, Université de Liège, 11 Allée du 6 Août, B6C, 4000 Liège, Belgium
| | - Melissa M Page
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Jean-François Rees
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Croix du Sud 4-5/L7.07.03, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
18
|
Girolametti F, Illuminati S, Annibaldi A, Ajdini B, Fanelli M, Truzzi C. Mercury in honey from the Marche region (central Italy). Risk assessment from human consumption and its use as bioindicator of environmental pollution. Heliyon 2023; 9:e20502. [PMID: 37790959 PMCID: PMC10543224 DOI: 10.1016/j.heliyon.2023.e20502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Honey is a natural product made by honeybees (Apis mellifera) from nectar or honeydew. It is a very popular and appreciated product all over the world as it represents a rapidly available energy source and exerts several beneficial properties for humans. However, it has been demonstrated that honey can be contaminated by potentially toxic elements (PTEs) of natural or anthropogenic origin. Among them, mercury (Hg) represents one of the most dangerous for its toxicity and its capacity to biomagnify along the trophic web. In the present study, 100 honey samples from the Marche Region (Central Italy) produced in the year 2021, were analyzed by thermal decomposition amalgamation atomic absorption spectrometry to determine the Hg content. The overall mean concentration was 0.2 ± 0.2 μg kg-1. The results showed that no statistically significant differences were found in Hg content among honey from different pollen origin, but honeydew had a significantly higher Hg content with respect to all other honey samples (0.6 ± 0.3 μg kg-1). The Hg content in honey depends mainly on local pollution, while geographical origin did not play a key role. Furthermore, considering the regulatory limits and provisional tolerable weekly intake (PTWIs) identified by FAO/WHO, the Hg Hazard Quotient (HQ) measurement revealed that this product is safe for human consumption.
Collapse
Affiliation(s)
- Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Behixhe Ajdini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Matteo Fanelli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
19
|
Rebelo A, Almeida A, Peixe L, Antunes P, Novais C. Unraveling the Role of Metals and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. Antibiotics (Basel) 2023; 12:1474. [PMID: 37760770 PMCID: PMC10525130 DOI: 10.3390/antibiotics12091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has a significant impact on human, animal, and environmental health, being spread in diverse settings. Antibiotic misuse and overuse in the food chain are widely recognized as primary drivers of antibiotic-resistant bacteria. However, other antimicrobials, such as metals and organic acids, commonly present in agri-food environments (e.g., in feed, biocides, or as long-term pollutants), may also contribute to this global public health problem, although this remains a debatable topic owing to limited data. This review aims to provide insights into the current role of metals (i.e., copper, arsenic, and mercury) and organic acids in the emergence and spread of AMR in the food chain. Based on a thorough literature review, this study adopts a unique integrative approach, analyzing in detail the known antimicrobial mechanisms of metals and organic acids, as well as the molecular adaptive tolerance strategies developed by diverse bacteria to overcome their action. Additionally, the interplay between the tolerance to metals or organic acids and AMR is explored, with particular focus on co-selection events. Through a comprehensive analysis, this review highlights potential silent drivers of AMR within the food chain and the need for further research at molecular and epidemiological levels across different food contexts worldwide.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4150-180 Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
20
|
Singh AD, Khanna K, Kour J, Dhiman S, Bhardwaj T, Devi K, Sharma N, Kumar P, Kapoor N, Sharma P, Arora P, Sharma A, Bhardwaj R. Critical review on biogeochemical dynamics of mercury (Hg) and its abatement strategies. CHEMOSPHERE 2023; 319:137917. [PMID: 36706814 DOI: 10.1016/j.chemosphere.2023.137917] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is among the naturally occurring heavy metal with elemental, organic, and inorganic distributions in the environment. Being considered a global pollutant, high pools of Hg-emissions ranging from >6000 to 8000 Mg Hg/year get accumulated by the natural and anthropogenic activities in the atmosphere. These toxicants have high persistence, toxicity, and widespread contamination in the soil, water, and air resources. Hg accumulation inside the plant parts amplifies the traces of toxic elements in the linking food chains, leads to Hg exposure to humans, and acts as a potential genotoxic, neurotoxic and carcinogenic entity. However, excessive Hg levels are equally toxic to the plant system and severely disrupt the physiological and metabolic processes in plants. Thus, a plausible link between Hg-concentration and its biogeochemical behavior is highly imperative to analyze the plant-soil interactions. Therefore, it is requisite to bring these toxic contaminants in between the acceptable limits to safeguard the environment. Plants efficiently incorporate or absorb the bioavailable Hg from the soil thus a constructive understanding of Hg uptake, translocation/sequestration involving specific heavy metal transporters, and detoxification mechanisms are drawn. Whereas recent investigations in biological remediation of Hg provide insights into the potential associations between the plants and microbes. Furthermore, intense research on Hg-induced antioxidants, protein networks, metabolic mechanisms, and signaling pathways is required to understand these bioremediations techniques. This review sheds light on the mercury (Hg) sources, pollution, biogeochemical cycles, its uptake, translocation, and detoxification methods with respect to its molecular approaches in plants.
Collapse
Affiliation(s)
- Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pardeep Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nitika Kapoor
- P.G. Department of Botany, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| | - Priyanka Sharma
- School of Bioengineering Sciences and Research, MIT-ADT University, Pune, Maharashtra, India
| | - Priya Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
21
|
Marquès M, Iftimie S, Camps J, Joven J, Domingo JL. The concentrations of essential/toxic elements in serum of COVID-19 patients are not directly related to the severity of the disease. J Trace Elem Med Biol 2023; 78:127160. [PMID: 36996642 PMCID: PMC10044018 DOI: 10.1016/j.jtemb.2023.127160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND In recent months, the current COVID-19 pandemic has generated thousands of studies directly or indirectly related with this disease and/or the coronavirus SARS-CoV-2 causing the infection. On August 22, 2022, the database PUBMED included 287,639 publications containing the term COVID-19. However, in spite of the importance of trace elements in human health, including the immune system, data on the levels of metals/metalloids in COVID-19 patients is very limited. METHODS The concentrations of As, Cd, Cr, Cu, Hg, Fe, Mg, Mn, Pb, Se, V and Zn were determined by inductively coupled plasma-mass spectrometry (ICP-MS) in 126 serum samples of individuals infected with SARS-CoV-2, as well as in 88 samples of non-infected individuals. Participants were divided into four groups: i) individuals COVID-19 positive (COVID-19 +) with an asymptomatic infection course; ii) individuals suffering mild COVID-19; iii) individuals suffering severe COVID-19, and iv) individuals COVID-19 negative (COVID-19-) (control group). The occurrence of the analyzed metals/metalloids was evaluated along with the biochemical profile, including blood cell counts, lipids, proteins and crucial enzymes. RESULTS Serum levels of Mg, V, Cr, Cu, Cd, and Pb were higher in COVID-19 positive patients than those in the control group. Although no significant differences were observed between the different groups of patients, the concentrations of Cd, Pb, V and Zn showed a tendency to be higher in individuals with severe COVID-19 than in those showing mild symptoms or being asymptomatic. Arsenic and Hg were rarely detected, regardless if the subjects were infected by SARS-CoV-2, or not. The current results did not show significant differences in the levels of the rest of analyzed elements according to the severity of the disease (asymptomatic, mild and severe). CONCLUSIONS In spite of the results here obtained, we highlight the need to reduce the exposure to Cd, Pb and V to minimize the potential adverse health outcomes after COVID-19 infection. On the other hand, although a protective role of essential elements was not found, Mg and Cu concentrations were higher in severe COVID-19 patients than in non-infected individuals.
Collapse
Affiliation(s)
- Montse Marquès
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, 43201 Reus, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Spain
| | - Simona Iftimie
- Universitat Rovira i Virgili, Department of Internal Medicine, Hospital Universitari de Sant Joan, IISPV, 43204 Reus, Spain
| | - Jordi Camps
- Universitat Rovira i Virgili, Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, 43201 Reus, Spain
| | - Jorge Joven
- Universitat Rovira i Virgili, Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, 43201 Reus, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, 43201 Reus, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Spain.
| |
Collapse
|
22
|
Zhan W, Su Y, Chen X, Xiong H, Wei X, Huang X, Xiong Y. Aggregation-Induced Emission Luminogen-Encapsulated Fluorescent Hydrogels Enable Rapid and Sensitive Quantitative Detection of Mercury Ions. BIOSENSORS 2023; 13:bios13040421. [PMID: 37185496 PMCID: PMC10135736 DOI: 10.3390/bios13040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Hg2+ contamination in sewage can accumulate in the human body through the food chains and cause health problems. Herein, a novel aggregation-induced emission luminogen (AIEgen)-encapsulated hydrogel probe for ultrasensitive detection of Hg2+ was developed by integrating hydrophobic AIEgens into hydrophilic hydrogels. The working mechanism of the multi-fluorophore AIEgens (TPE-RB) is based on the dark through-bond energy transfer strategy, by which the energy of the dark tetraphenylethene (TPE) derivative is completely transferred to the rhodamine-B derivative (RB), thus resulting in intense photoluminescent intensity. The spatial networks of the supporting hydrogels further provide fixing sites for the hydrophobic AIEgens to enlarge accessible reaction surface for hydrosoluble Hg2+, as well create a confined reaction space to facilitate the interaction between the AIEgens and the Hg2+. In addition, the abundant hydrogen bonds of hydrogels further promote the Hg2+ adsorption, which significantly improves the sensitivity. The integrated TPE-RB-encapsulated hydrogels (TR hydrogels) present excellent specificity, accuracy and precision in Hg2+ detection in real-world water samples, with a 4-fold higher sensitivity compared to that of pure AIEgen probes. The as-developed TR hydrogel-based chemosensor holds promising potential as a robust, fast and effective bifunctional platform for the sensitive detection of Hg2+.
Collapse
Affiliation(s)
- Wenchao Zhan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Su
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hanpeng Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaxia Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
23
|
Ishida K, Takeda K, Takehara Y, Takabayashi T, Miyara M, Sanoh S, Kawai H, Ohta S, Kotake Y. Methylmercury Decreases AMPA Receptor Subunit GluA2 Levels in Cultured Rat Cortical Neurons. Biol Pharm Bull 2023; 46:292-300. [PMID: 36724957 DOI: 10.1248/bpb.b22-00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Methylmercury (MeHg) is a well-known environmental pollutant that has harmful effects on the central nervous systems of humans and animals. The molecular mechanisms of MeHg-induced neurotoxicity at low concentrations are not fully understood. Here, we investigated the effects of low-concentration MeHg on the cell viability, Ca2+ homeostasis, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2 levels, which determine Ca2+ permeability of AMPA receptors, in rat primary cortical neurons. Exposure of cortical neurons to 100 and 300 nM MeHg for 7 d resulted in a decrease in GluA2 levels, an increase in basal intracellular Ca2+ concentration, increased phosphorylation levels of extracellular signal-regulated kinase (ERK)1/2 and p38, and decreased cell viability. Moreover, glutamate stimulation exacerbated the decrease in cell viability and increased intracellular Ca2+ levels in MeHg-treated neurons compared to control neurons. MeHg-induced neuronal cell death was ameliorated by 1-naphthyl acetyl spermine, a specific antagonist of Ca2+-permeable, GluA2-lacking AMPA receptors. Our findings raise the possibility that decreased neuronal GluA2 levels and the subsequent increase in intracellular Ca2+ concentration may contribute to MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Keishi Ishida
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Kazuki Takeda
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yuki Takehara
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | - Masatsugu Miyara
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,Wakayama Medical University
| | - Hidehiko Kawai
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,Wakayama Medical University
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
24
|
Santiago MGA, Faria VD, Cirinêu FD, Queiroz da Silva LLDL, de Almeida EC, Cavallini NG, Souza Vieira JC, Henrique Fernandes AA, Braga CP, Zara LF, Rabelo Buzalaf MA, Adamec J, de Magalhães Padilha P. Metalloproteomic approach to liver tissue of rats exposed to mercury. CHEMOSPHERE 2023; 312:137222. [PMID: 36375612 DOI: 10.1016/j.chemosphere.2022.137222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The aims of this study were to identify mercury-associated protein spots in the liver tissue of rats exposed to low concentrations of mercury and to elucidate the physiological and functional aspects of the proteins identified in the protein spots. Therefore, proteomic analysis of the liver tissue of Wistar rats exposed to mercury chloride (4.60 μg kg-1 in Hg2+) was performed for thirty days (Hg-30 group) and sixty days (Hg-60 group). The proteomic profile of the liver tissue of the rats was obtained by two-dimensional electrophoresis (2D-PAGE), and the determinations of total mercury in the liver tissue, pellets and protein spots were performed by graphite furnace atomic absorption spectrometry (GFAAS). ImageMaster 2D Platinum 7.0 software was used to identify the differentially expressed mercury-associated protein spots, which were then characterized by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The determinations by GFAAS indicated a total mercury bioaccumulation of 2812% in the Hg-30 group and 3298% in the Hg-60 group and 10 mercury-associated protein spots with a concentration range of 51 ± 1.0 to 412 ± 6.00 mg kg-1 in the 2D PAGE gels from the liver tissue of the Hg-60 group. The LC-MS/MS analyses allowed the identification of 11 metal binding proteins in mercury-associated protein spots that presented fold change with upregulation >1.5, downregulation < -1.7 or that were expressed only in the Hg-60 group. Using the FASTA sequences of the proteins identified in the mercury-associated protein spots, bioinformatics analyses were performed to elucidate the physiological and functional aspects of the metal binding proteins, allowing us to infer that enzymes such as GSTM2 presented greater mercury concentrations and downregulation < -3; Acaa2 and Bhmt, which showed expression only in the Hg-60 group, among others, may act as potential mercury exposure biomarkers.
Collapse
Affiliation(s)
| | - Victor Diego Faria
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil
| | | | | | | | | | | | | | | | - Luís Fabrício Zara
- University of Brasília (UNB), College of Planaltina, Distrito Federal, Brazil
| | | | | | | |
Collapse
|
25
|
Filipoiu DC, Bungau SG, Endres L, Negru PA, Bungau AF, Pasca B, Radu AF, Tarce AG, Bogdan MA, Behl T, Nechifor AC, Hassan SSU, Tit DM. Characterization of the Toxicological Impact of Heavy Metals on Human Health in Conjunction with Modern Analytical Methods. TOXICS 2022; 10:toxics10120716. [PMID: 36548549 PMCID: PMC9785207 DOI: 10.3390/toxics10120716] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 05/13/2023]
Abstract
Increased environmental pollution, urbanization, and a wide variety of anthropogenic activities have led to the release of toxic pollutants into the environment, including heavy metals (HMs). It has been found that increasing concentrations of HMs lead to toxicity, mineral imbalances, and serious diseases, which are occurring more and more frequently. Therefore, testing has become imperative to detect these deficiencies in a timely manner. The detection of traces of HMs, especially toxic ones, in human tissues, various biological fluids, or hair is a complex, high-precision analysis that enables early diagnosis, addressing people under constant stress or exposed to a toxic environment; the test also targets people who have died in suspicious circumstances. Tissue mineral analysis (TMA) determines the concentration of toxic minerals/metals at the intracellular level and can therefore determine correlations between measured concentrations and imbalances in the body. Framing the already-published information on the topic, this review aimed to explore the toxicity of HMs to human health, the harmful effects of their accumulation, the advantages vs. the disadvantages of choosing different biological fluids/tissues/organs necessary for the quantitative measurement of HM in the human body, as well as the choice of the optimal method, correlated with the purpose of the analysis.
Collapse
Affiliation(s)
- Dana Claudia Filipoiu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (S.G.B.); (L.E.)
| | - Laura Endres
- Department of Psycho-neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (S.G.B.); (L.E.)
| | - Paul Andrei Negru
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Alexa Florina Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Bianca Pasca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Alexandra Georgiana Tarce
- Medicine Program of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Mihaela Alexandra Bogdan
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi 248007, India
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
26
|
Galiciolli MEA, Pedroso TF, Mesquita M, Oliveira VA, Pereira ME, Oliveira CS. Biochemical Parameters of Female Wistar Rats and Their Offspring Exposed to Inorganic Mercury in Drinking Water during the Gestational and Lactational Periods. TOXICS 2022; 10:664. [PMID: 36355955 PMCID: PMC9696705 DOI: 10.3390/toxics10110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the effects of inorganic mercury (Hg2+) exposure on biochemical parameters of dams and their offspring exposed to metal in drinking water. Female Wistar rats were exposed to 0, 10, and 50 µg Hg2+/mL (as HgCl2) for 42 days corresponding to gestational (21 days) and lactational (21 days) periods. The offspring were sacrificed on postnatal days 10, 20, 30, and 40. Dams exposed to Hg2+ presented a decrease in water intake in gestation [total: F(2,19) = 15.84; p ≤ 0.0001; daily: F(2,21) = 12.71; p = 0.0002] and lactation [total: F(2,19) = 4.619; p = 0.024; daily: F(2,21) = 5.309; p = 0.0136] without alteration in food intake. Dams exposed to 50 µg Hg2+/mL had an increase in kidney total [F(2,21) = 8.081; p = 0.0025] and relative [F(2,21) = 14.11; p = 0.0001] weight without changes in biochemical markers of nephrotoxicity. Moreover, dams had an increase in hepatic [F(2,10) = 3.847; p = 0.0577] and renal [F(2,11) = 6.267; p = 0.0152] metallothionein content concomitantly with an increase in renal Hg levels after Hg2+ exposure. Regarding offspring, the exposure to Hg2+in utero and breast milk increased the relative liver [F(2,18) = 5.33; p = 0.0152] and kidney [F(2,18) = 3.819; p = 0.0415] weight only on the postnatal day 40. In conclusion, dams were able to handle the Hg2+ avoiding the classic Hg2+ toxic effects as well as protecting the offspring. We suggest that this protection is related to the hepatic and renal metallothionein content increase.
Collapse
Affiliation(s)
- Maria Eduarda A. Galiciolli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Avenida Iguaçu, 333, Curitiba 80230-020, PR, Brazil
| | - Taíse F. Pedroso
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Mariana Mesquita
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Vitor A. Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Maria E. Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Cláudia S. Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Rua Silva Jardim, 1632, Curitiba 80250-060, PR, Brazil
- Faculdades Pequeno Príncipe, Avenida Iguaçu, 333, Curitiba 80230-020, PR, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
27
|
Mutagenic, Carcinogenic, and Teratogenic Effect of Heavy Metals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8011953. [PMID: 36248437 PMCID: PMC9556253 DOI: 10.1155/2022/8011953] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/10/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
Heavy metal (HM)-induced toxicity and its associated complications have become a major issue in the medical world. HMs are not biodegradable, enter into the food chain, and gets accumulated in the living systems. Increased concentrations and accumulation of HMs can cause severely damaging effects and severe complications in living organisms and can even lead to the death of the organism. In Ayurvedic medicine, ingredients of natural origin, including whole plants or certain portions of the plant, animal sources, and minerals, are used for therapeutic purposes as medicine, both alone and in combination. HM such as cadmium, copper, zinc, lead, chromium, nickel, and arsenic cause hazardous effects on animals, human health, and the environment. This review focuses on mutagenic, carcinogenic, and teratogenic effects of HM , mechanism, organ toxicity, available remedies in the market, and their side effects. Also, emphasis is given to alternative systems of medicine to treat HM toxicity.
Collapse
|
28
|
Espiritu EQ, Claveria RJR, Bernadas PJC. Assessment of surface water quality and mercury levels from Artisanal and small-scale gold mining (ASGM) along Acupan River, Benguet, Philippines. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3655-3676. [PMID: 34687407 DOI: 10.1007/s10653-021-01137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Artisanal and small-scale mining activities are most evident among communities surrounding the Acupan River in Itogon Benguet. The mining activities include manual extraction of gold ores, use of improvised ball/rod mills and sluice boxes, and metallurgical processing such as cyanidation, carbon-in-pulp (CIP) and amalgamation. This study evaluates the influence of small-scale mining and the geology/mineralization of the Acupan Au-Ag-Te deposit to the water quality of the Acupan River and to the possible human exposures to Hg within the small-scale mining community. Different water quality parameters were monitored along selected sites along the Acupan River for a year and the results showed that the low average values of dissolve oxygen (DO) (2.54-4.53 mg L-1) and the relatively high average values of pH (8.84-10.10), sulfate (300.00-1133.33 mg L-1), nitrate (11.33-134.67 mg L-1), arsenic (As) (0.227-0.574 mg L-1) and mercury (Hg) (0.004-0.054 mg L-1) have exceeded the acceptable criteria limit of the Department of Environment and Natural Resources for Class C waters. The exceeded values are noted to occur in areas where extensive small-scale mining activities are being done and have affected as well the downstream areas. To test possible human contamination in the use of Hg, hair samples from 56 volunteers were analyzed for total Hg (T-Hg) following standard protocols. The T-Hg concentrations in hair samples are mostly inorganic and are determined in various parameters such as sex, geographic location, occupation, age, fish consumption and localization in hair. Though not significantly different, higher Hg values are noted in males (1.280 ± 0.446 ng mg-1) than among females (0.651 ± 0.163 ng mg-1) as well as those with ages 41-50 years (3.130 ± 2.330 ng mg-1) as compared to other age groups. The higher amounts of inorganic Hg in human hairs could be attributed to the discrete yet prevalent use of amalgamation. The findings of this study emphasize the need for better regulations of the small-scale mining activities and for stricter implementation of the total ban on the use of Hg in ore processing to ensure better water quality of Acupan River as well as the health and safety of the communities surrounding the river.
Collapse
Affiliation(s)
- Emilyn Q Espiritu
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, 1108, Quezon City, Philippines
| | - Rene Juna R Claveria
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, 1108, Quezon City, Philippines.
| | - Philip Joshua C Bernadas
- Department of Environmental Science, Ateneo de Manila University, Loyola Heights, 1108, Quezon City, Philippines
| |
Collapse
|
29
|
Suzuki Y, Kondo M, Akiyama H, Ogra Y. Presence of nano-sized mercury-containing particles in seafoods, and an estimate of dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119555. [PMID: 35654251 DOI: 10.1016/j.envpol.2022.119555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The toxicity of nano-sized particles of mercury (NP-Hg), which are thought to be generated during the detoxification of methyl mercury (MeHg), may differ from that of MeHg, elemental Hg (Hg0), and inorganic Hg (I-Hg). From a human health perspective, it is important to evaluate the presence of NP-Hg in seafoods. We investigated the in vivo formation of NP-Hg in fish and shellfish, which are the main sources of Hg exposure in humans. NP-Hg was measured in 90 fish samples with single-particle inductively coupled plasma mass spectrometry (spICP-MS) after enzyme degradation with pancreatin and lipase. In addition to NP-Hg, total Hg (T-Hg), MeHg, and selenium (Se) concentrations were evaluated. Transient Hg signals were detected as nanoparticles from almost all samples by using spICP-MS. Higher particle number concentrations (CPN) were observed in the tuna-swordfish group than in the shellfish group (17.7 × 107 vs. 1.2 × 106 particles/g, respectively). Although the CPN and maximum particle mass increased significantly with increasing T-Hg concentration, the increase in CPN was greater than those in maximum particle mass. Assuming that the NP-Hg detected was HgSe (tiemannite) and spherical based on previous reports, the maximum particle diameter was estimated to be 89 nm. The mean dietary exposures to NP-Hg, T-Hg, and MeHg were estimated to be 0.067, 5.75, and 5.32 μg/person per day, respectively. Generation of NP-Hg was inferred to be widespread in marine animals, with a preferential increase in the number of particles rather than an increase in particle size. The mean dietary exposure to NP-Hg in Japanese people was estimated to be 1.2 ng/kg body weight (BW) per day. Compared to PTWI of 4 μg/kg BW per week (0.57 μg/kg BW per day) derived by JECFA (2011), the health risk from redissolved I-Hg from NP-Hg is small.
Collapse
Affiliation(s)
- Yoshinari Suzuki
- Division of Foods, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Midori Kondo
- Division of Foods, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Hiroshi Akiyama
- Division of Foods, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan; Department of Analytical Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8675, Japan
| |
Collapse
|
30
|
Li X, Wang Q, Xing M, Ma Z, Li Y, Zhou X. Typical scaled food web structure and total mercury enrichment characteristics in Xingkai Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58297-58311. [PMID: 35366206 DOI: 10.1007/s11356-022-19874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Different from the widely used constant discrimination factor Δ15N = 3.4‰ between two adjacent trophic positions (TPs), a scaled Δ15N framework for evaluating the TP of species was developed in 2014, that is, the Δ15N between two adjacent TPs decreases as the TP increases which is considered to be in closer conformity to the trophic cascade in the natural food web. In this study, we compared the two TP calculation methods and then reconsidered the evaluation of the trophic magnification factors (TMFs). Our results show that the TPscaled value is higher and the TMFs value is lower under the scaled Δ15N framework, indicating that the TMFs value under the constant Δ15N framework is often overestimated. We further constructed a diet proportion food web model, which shows that species with lower TP has higher contribution rate as food sources. In Xingkai Lake, the enrichment process of mercury in the food web is not strictly consistent with the diet proportion of the food web. Based on the diet proportion food web model and the mercury enrichment model, it can be found that the White shrimp (Exopalaemon modestus) is not only an important food source, but also the main source of mercury transmission in the food web. Overall, our findings have quantified the food web construction and thus facilitated a better understanding of the interaction between the diet proportion and the bio-concentration in the food web.
Collapse
Affiliation(s)
- Xingchun Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Qiang Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin Province, China
| | - Minyan Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Zhilong Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Yike Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Xuehong Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| |
Collapse
|
31
|
Lancaster ST, Peniche G, Alzahrani A, Blanz M, Newton J, Taggart MA, Corns WT, Krupp EM, Feldmann J. Mercury speciation in Scottish raptors reveals high proportions of inorganic mercury in Scottish golden eagles (Aquila chrysaetos): Potential occurrence of mercury selenide nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154557. [PMID: 35302012 DOI: 10.1016/j.scitotenv.2022.154557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Knowledge of the uptake and fate of mercury (Hg) compounds in biota is important in understanding the global cycling of Hg and its transfer pathways through food chains. In this study, we analysed total mercury (T-Hg) and methylmercury (MeHg) concentrations in 117 livers of Scottish birds of prey that were found across Scotland and submitted for post-mortem examination through the Raptor Health Scotland project between 2009 and 2019. Statistical comparisons focussed on six species (barn owl, Tyto alba; Eurasian common buzzard, Buteo buteo; golden eagle, Aquila chrysaetos; hen harrier, Circus cyaneus; Eurasian sparrowhawk, Accipiter nisus; and tawny owl, Strix aluco) and showed that golden eagles had a statistically lower fraction of MeHg compared to other raptor species. Further investigation using stable carbon and stable nitrogen isotope ratio measurements carried out for the golden eagles (n = 15) indicated that the increased presence of inorganic mercury (iHg) correlated with a marine influence on the primarily terrestrial diet. Additional bioimaging (n = 1) with laser ablation - inductively coupled plasma - mass spectrometry indicated the co-location of Hg and selenium (Se) within the liver tissue and transmission electron microscopy showed evidence of nanoparticles within the range of 10-20 nm. Further analysis using single particle - inductively coupled plasma - mass spectrometry (n = 4) confirmed the presence of Hg nanoparticles. Together, the evidence suggests the presence of mercury selenide (HgSe) nanoparticles in the liver of some golden eagles that, to our knowledge, has never been directly observed in terrestrial birds of prey. This study points to two alternative hypotheses: these golden eagles may be efficient at breaking down MeHg and form HgSe nanoparticles as a detoxification mechanism (as previously observed in cetaceans), or some golden eagles with elevated iHg may have accumulated these nanoparticles by foraging on stranded cetaceans or seabirds.
Collapse
Affiliation(s)
- Shaun T Lancaster
- Trace Element Speciation Laboratory Aberdeen (TESLA), Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE, UK; PS Analytical, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP, UK; Department of General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, Franz Josef-Strasse 18, 8700 Leoben, Austria.
| | - Gabriela Peniche
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - Ali Alzahrani
- Trace Element Speciation Laboratory Aberdeen (TESLA), Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Magdalena Blanz
- Trace Element Speciation Laboratory Aberdeen (TESLA), Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE, UK; Archaeology Institute, University of the Highlands and Islands, Orkney College UHI, Kirkwall, Orkney, KW15 1LX, Scotland, UK
| | - Jason Newton
- National Environmental Isotope Facility, Scottish Universities Environmental Research Centre (SUERC), East Kilbride, G75 0QF, UK
| | - Mark A Taggart
- The Environmental Research Institute (ERI), University of Highlands and Islands, Castle St, Thurso KW14 7JD, UK
| | - Warren T Corns
- PS Analytical, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP, UK
| | - Eva M Krupp
- Trace Element Speciation Laboratory Aberdeen (TESLA), Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Jörg Feldmann
- Trace Element Speciation Laboratory Aberdeen (TESLA), Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE, UK; TESLA - Analytical Chemistry, Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| |
Collapse
|
32
|
Huang H, Mangal V, Rennie MD, Tong H, Simpson MJ, Mitchell CPJ. Mercury methylation and methylmercury demethylation in boreal lake sediment with legacy sulphate pollution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:932-944. [PMID: 35532885 DOI: 10.1039/d2em00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulphate and dissolved organic matter (DOM) in freshwater systems may regulate the formation of methylmercury (MeHg), a potent neurotoxin that biomagnifies in aquatic ecosystems. While many boreal lakes continue to recover from decades of elevated atmospheric sulphate deposition, little research has examined whether historically high sulphate concentrations can result in persistently elevated MeHg production and accumulation in aquatic systems. This study used sediment from a historically sulphate-impacted lake and an adjacent reference lake in northwestern Ontario, Canada to investigate the legacy effects of sulphate pollution, as well as the effects of newly added sulphate, natural organic matter (NOM) of varying sulphur content and a sulphate reducing bacteria (SRB) inhibitor on enhancing or inhibiting the Hg methylation and demethylation activity (Kmeth and Kdemeth) in the sediment. We found that Kmeth and MeHg concentrations in sulphate-impacted lake sediment were significantly greater than in reference lake sediment. Further adding sulphate or NOM with different sulphur content to sediment of both lakes did not significantly change Kmeth. The addition of a SRB inhibitor resulted in lower Kmeth only in sulphate-impacted sediment, but methylation was not entirely depressed. Methylmercury demethylation potentials in sediment were consistent across lakes and experimental treatments, except for some impacts related to SRB inhibitor additions in the reference lake sediment. Overall, a broader community of microbes beyond SRB may be methylating Hg and demethylating MeHg in this system. This study reveals that legacies of sulphate pollution in boreal lakes may persist for decades in stimulating elevated Hg methylation in sediment.
Collapse
Affiliation(s)
- Haiyong Huang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada.
| | - Vaughn Mangal
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada.
| | - Michael D Rennie
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Huan Tong
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada.
- Environmental NMR Centre, University of Toronto Scarborough, Ontario, Canada
| | - Myrna J Simpson
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada.
- Environmental NMR Centre, University of Toronto Scarborough, Ontario, Canada
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Ontario, Canada.
| |
Collapse
|
33
|
Yao Z, Liu J, Mao X, Chen G, Ma Z, Li B. Ultratrace mercury speciation analysis in rice by in-line solid phase extraction - liquid chromatography - atomic fluorescence spectrometry. Food Chem 2022; 379:132116. [PMID: 35063845 DOI: 10.1016/j.foodchem.2022.132116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
For the first time, Hg2+ and methylmercury speciation analysis was accomplished by in-line SPE-LC-AFS. After modification with 0.1 mL of 0.001% (m:v) sodium diethyldithiocarbamate, a C18 microcolumn retained Hg2+ and MetHg in rice extract within 3 min; the captured Hg species were separated within 12 min in 0.25% (v:v) 2-mercaptoethanol + 60 mmol L-1 (m:v) ammonium acetate + 4% (v:v) acetonitrile. Under optimized conditions, the detection limits were 0.3 ng L-1 for Hg2+ and 0.2 ng L-1 for MetHg, respectively, with 10 mL injection vs. 0.1 mL eluent; in-line SPE achieved ∼ 100x enrichment. Method precision and accuracy were satisfactory at < 2% relative standard deviations (RSDs) for 20 ng L-1 of Hg2+ and MetHg and 95-102% recoveries for real rice samples. In-line SPE obviated human involvement and avoided invalid transportation between interfaces, rendering this SPE-LC-AFS method easy, compact, robust, yet sensitive in mercury speciation analysis to uphold food safety.
Collapse
Affiliation(s)
- Zhenzhen Yao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Jixin Liu
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Beijing Ability Technology Company, Limited, Beijing 100081, China.
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Guoying Chen
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Zhihong Ma
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Bingru Li
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| |
Collapse
|
34
|
Takeuchi H, Shiota Y, Yaoi K, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Ikeda S, Yokota S, Magistro D, Sassa Y, Kawashima R. Mercury levels in hair are associated with reduced neurobehavioral performance and altered brain structures in young adults. Commun Biol 2022; 5:529. [PMID: 35655003 PMCID: PMC9163068 DOI: 10.1038/s42003-022-03464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe detrimental effects of high-level mercury exposure on the central nervous system as well as effects of low-level exposure during early development have been established. However, no previous studies have investigated the effects of mercury level on brain morphometry using advance imaging techniques in young adults. Here, utilizing hair analysis which has been advocated as a method for biological monitoring, data of regional gray matter volume (rGMV), regional white matter volume (rWMV), fractional anisotropy (FA) and mean diffusivity (MD), cognitive functions, and depression among 920 healthy young adults in Japan, we showed that greater hair mercury levels were weakly but significantly associated with diminished cognitive performance, particularly on tasks requiring rapid processing (speed measures), lower depressive tendency, lower rGMV in areas of the thalamus and hippocampus, lower rWMV in widespread areas, greater FA in bilaterally distributed white matter areas overlapping with areas of significant rWMV reductions and lower MD of the widely distributed gray and white matter areas particularly in the bilateral frontal lobe and the right basal ganglia. These results suggest that even normal mercury exposure levels in Japan are weakly associated with differences of brain structures and lower neurobehavioral performance and altered mood among young adults.
Collapse
|
35
|
Chu JH, Yan YX, Chen XW, Gao PC, Li LX, Fan RF. Aberrant Gene Expression of Selenoproteins in Chicken Spleen Lymphocytes Induced by Mercuric Chloride. Biol Trace Elem Res 2022; 200:2857-2865. [PMID: 34436752 DOI: 10.1007/s12011-021-02870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Mercury (Hg) is a heavy metal widely distributed in ecological environment, poisoning the immune system of humans and animals. Selenium (Se) is an essential microelement and selenoproteins involved in the procedure of Se antagonizing organ toxicity induced by heavy metals. The aim of this research was to investigate the changes of gene expression profile of selenoproteins induced by mercuric chloride (HgCl2) in chicken spleen lymphocytes. We established cytotoxicity model of chicken spleen lymphocytes by HgCl2 exposure, the messenger RNA (mRNA) expression levels of 25 selenoproteins in spleen lymphocytes were analyzed by real-time quantitative PCR (qPCR), and the gene expression pattern of selenoproteins was revealed by principal component analysis (PCA). The results showed that the mRNA expression levels of 13 selenoproteins (GPX3, GPX4, TXNRD2, TXNRD3, DIO2, SELENOS, SELENON, SELENOT, SELENOO, SELENOP, SELENOP2, MSRB1, and SEPHS2) were decreased in HgCl2 treatment group, and there was strong positive correlation between these selenoproteins and component 1 as well as component 2 of the PCA. At the same time, the protein expression levels of GPX4, TXNRD1, TXNRD2, SELENOM, SELENOS, and SELENON were detected by Western blotting, which were consistent with the changes of gene expression. The results showed that the expression levels of selenoproteins were aberrant in response to HgCl2 toxicity. The information presented in this study provided clues for further research on the interaction between HgCl2 and selenoproteins, and the possible mechanism of immune organ toxicity induced by HgCl2.
Collapse
Affiliation(s)
- Jia-Hong Chu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Yu-Xue Yan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Lan-Xin Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| |
Collapse
|
36
|
Li Y, Lu C, Zhu N, Chao J, Hu W, Zhang Z, Wang Y, Liang L, Chen J, Xu D, Gao Y, Zhao J. Mobilization and methylation of mercury with sulfur addition in paddy soil: Implications for integrated water-sulfur management in controlling Hg accumulation in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128447. [PMID: 35158248 DOI: 10.1016/j.jhazmat.2022.128447] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Sulfur-fertilizer is commonly applied in croplands and in immobilizing Hg in contaminated soil. However, there is still great uncertainty and controversy concerning Hg transportability and transformation when supplying sulfur in paddies with complex conditions. Herein, we explored the effect of adding sulfate in paddy soil at different rice growth stages on soil Hg release and MeHg accumulation in rice and uncovered the correlation between sulfur induced MeHg production and the dynamically changed soil Eh, dissolved Fe, and dissolved organic carbon (DOC). In specific, sulfate addition at early stages (flooding period) triggered the decrease of Eh and increase of DOC and dissolved Fe, which in turn promoted Hg release and favored MeHg generation (increased by 235.19-555.07% vs control). Interestingly, adding sulfate at late stages (drainage condition), as compared with that at early stages, alleviated Hg release and MeHg production accompanied by the increase of Eh and decrease of dissolved Fe and DOC. The microcosmic experiment further confirmed the reduction of sulfate to sulfide promoted the change of Eh, thereby stimulating HgS dissolution in soil extract. The results give clues on the rational application of sulfur-fertilizer and through the water-sulfur fertilizer management considering the correspondingly changed soil conditions to diminish Hg bioavailability and MeHg production in paddies and paddy-like environments.
Collapse
Affiliation(s)
- Yunyun Li
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chang Lu
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiang Chao
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wenjun Hu
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhiyuan Zhang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Yongjie Wang
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Lichun Liang
- Agricultural and rural Bureau of Dehua County, 362500, Fujian China
| | - Jinkan Chen
- Agricultural and rural Bureau of Dehua County, 362500, Fujian China
| | - Diandou Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Mellado M, Roldán N, Miranda R, Aguilar LF, Bravo MA, Quiroz W. Sensitive fluorescent chemosensor for Hg(II) in aqueous solution using 4'-dimethylaminochalcone. J Fluoresc 2022; 32:1449-1456. [PMID: 35441925 DOI: 10.1007/s10895-022-02941-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
Mercury (Hg) is an element with high toxicity, especially to the nervous system, and fluorescent pigments are used to visualize dynamic processes in living cells. A little explored fluorescent core is chalcone. Herein, we synthesized chalcone (2E)-3-(4-(dimethylamino)phenyl)-1-phenylprop-2-en-1-one (8) and assessed its photophysical properties. Moreover, the application of this chemosensor in aqueous media shows a selective fluorescence quenching effect with Hg(II). The figures of merit for the chemosensor were calculated to be LOD = 136 nM and LOQ = 454 nM, as well as a stoichiometry of 1:1. Furthermore, the association constant (Ka) and fluorescence quenching constant (KSV) were calculated using the Benesi-Hildebrand and Stern-Volmer equations to be Ka= 9.08 × 104 and KSV= 1.60 × 105, respectively. Finally, by using a computational approach, we explain the interaction between chalcone (8) and Hg(II) and propose a potential quenching mechanism based on the blocking of photoinduced electron transfer.
Collapse
Affiliation(s)
- Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507, Santiago, Chile.
| | - Nicole Roldán
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Rodrigo Miranda
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Luis F Aguilar
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Manuel A Bravo
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Waldo Quiroz
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile.
| |
Collapse
|
38
|
Kendricks DR, Boomhower SR, Newland MC. Adolescence as a sensitive period for neurotoxicity: Lifespan developmental effects of methylmercury. Pharmacol Biochem Behav 2022; 217:173389. [PMID: 35452710 DOI: 10.1016/j.pbb.2022.173389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity resulting from the environmental contaminant, methylmercury (MeHg), is a source of concern for many human populations that rely heavily on the consumption of fish and rice as stable ingredients in the diet. The developmental period of exposure is important both to the qualitative effects of MeHg and to the dose required to produce those effects. MeHg exposure during the sensitive prenatal period causes deleterious and long-lasting changes in neurodevelopment at particularly low doses. The effects include a wide host of cognitive and behavioral outcomes expressed in adulthood and sometimes not until aging. However, neurotoxic outcomes of methylmercury when exposure occurs during adolescence are only recently revealing impacts on human populations and animal models. This review examines the current body of work and showcases the sensitivity of adolescence, a period that straddles early development and adulthood, to methylmercury neurotoxicity and the implications such toxicity has in our understanding of methylmercury's effects in human populations and animal models.
Collapse
Affiliation(s)
- Dalisa R Kendricks
- Department of Psychology, Auburn University, Auburn, AL, United States of America.
| | - Steven R Boomhower
- Gradient, Boston, MA, United States of America; Harvard Division of Continuing Education, Harvard University, Cambridge, MA, United States of America
| | | |
Collapse
|
39
|
Makarova AS, Nikulina E, Fedotov P. Induced Phytoextraction of Mercury. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2021.1881794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Anna S. Makarova
- UNESCO Chair ‘Green Chemistry for Sustainable Development’, Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
| | - Elena Nikulina
- NRC ‘Kurchatov Institute’ – IREA, Moscow, Russian Federation
| | - Petr Fedotov
- Department of Geochemistry, Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, and National University of Science and Technology ‘Misis’, Moscow, Russian Federation
- Laboratory of separation and pre-concentration in the chemical diagnostics of functional materials and environmental objects, National University of Science and Technology ‘MISIS’, Moscow, Russian Federation
| |
Collapse
|
40
|
Sahu MK, Patel RK, Kurwadkar S. Mechanistic insight into the adsorption of mercury (II) on the surface of red mud supported nanoscale zero-valent iron composite. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 246:103959. [PMID: 35066263 DOI: 10.1016/j.jconhyd.2022.103959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Recently, nanoscale zero-valent iron (nZVI) particles have been efficiently used in the remediation of many heavy metals, yet potential agglomeration and loss of nZVI remain a critical area of research. In this study, we used red mud as a stable supporting medium to develop red mud modified nZVI to form (RM-nZVI) composite. We assessed its sorptive/reductive removal of mercury (Hg2+) from aqueous solutions. The RM-nZVI was synthesized through the reduction of ferric iron by sodium borohydride (NaBH4) in the presence of red mud. Morphological characterization of RM-nZVI confirmed its diffusion state with lesser aggregation. The RM-nZVI has the BET surface area, pore diameter, and pore volume as 111.59 m2g-1, 3.82 nm, and 0.49 cm3g-1, respectively. Adsorption of mercury (Hg2+) by RM-nZVI exhibits pH-dependent behavior with increased removal of Hg2+ with the increase in pH up to 5, and the removal rate decreased gradually as the pH increased from 5 to 10. Extensive characterization of RM-nZVI corroborated the evidence that the removal of Hg2+ was initially by rapid physical adsorption, followed by a reduction of Hg2+ to Hg0. The adsorption data were best fitted with Langmuir isotherm with R2 (correlation coefficient) > 0.99 with high uptake capacity of 94.58 (mg g-1). The novel RM-nZVI composite with enhanced sorptive and reductive capacity is an ideal alternative for removing Hg2+ from contaminated water.
Collapse
Affiliation(s)
- Manoj Kumar Sahu
- Department of Basic Science and Humanities, GIET University, Gunupur, Odisha 765022, India; Department of Chemistry, National Institute of Technology, Rourkela 769008, India.
| | - Raj Kishore Patel
- Department of Chemistry, National Institute of Technology, Rourkela 769008, India.
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, 800 N. State College Blvd., California State University, Fullerton, CA 92831, United States of America.
| |
Collapse
|
41
|
Li H, Li Y, Tang W, Liu Y, Zheng L, Xu N, Li YF, Xu D, Gao Y, Zhao J. Bioavailability and methylation of bulk mercury sulfide in paddy soils: New insights into mercury risks in rice paddies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127394. [PMID: 34628266 DOI: 10.1016/j.jhazmat.2021.127394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Mercury sulfide (HgS) constitutes the largest Hg reservoir in the lithosphere but has long been considered to be not bioavailable and a minor participant in Hg biogeochemical cycling. Herein, we report that bulk α-HgS can be dissolved and methylated in paddy soils, especially with rice culture. Bulk α-HgS exposure did not affect rice growth compared to the control group but significantly increased methylmercury (MeHg) contents in the rhizospheric soils (e.g., 80.15% and 108.71% higher for bulk α-HgS treatment vs. control at the seedling and maturation stages, respectively). Moreover, bulk α-HgS exposure induced an apparent accumulation of MeHg (50% higher for bulk α-HgS treatment vs. control) and markedly elevated total Hg (THg) in rice grains. The presence of DOM and reduced sulfide in paddy soils was further evidenced to drive the mobilization and dissolution of bulk α-HgS, thereby resulting in THg and MeHg accumulation in rice grains. These findings highlight the bioavailability of HgS in rice paddies and suggest that bulk HgS should be considered when assessing Hg health risks and developing efficient remediation approaches in Hg-contaminated croplands.
Collapse
Affiliation(s)
- Hong Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yunyun Li
- College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Yunpeng Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Zheng
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Xu
- School of Environm ental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Diandou Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Dack K, Fell M, Taylor CM, Havdahl A, Lewis SJ. Prenatal Mercury Exposure and Neurodevelopment up to the Age of 5 Years: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041976. [PMID: 35206164 PMCID: PMC8871549 DOI: 10.3390/ijerph19041976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Abstract
Neurodevelopmental delays can interfere with children’s engagement with the world and further development, and may have negative consequences into adulthood. Mercury is highly toxic and may negatively influence neurodevelopment because it can freely cross the placenta and accumulate in the fetal brain. We searched four publication databases (Embase, PsycINFO, PubMed/MEDLINE, Scopus) for studies examining the relationship between early life mercury exposure and scores on neurodevelopmental performance measures in children aged 0 to 5 years old. Study quality was assessed using the National Institutes of Health (NIH) Quality Assessment Tool. Thirty-two prospective studies were included in the review. Neurodevelopmental performance was measured using 23 different scales, most commonly the Bayley Scales of Infant and Toddler Development (BSID). In most cases, the evidence for an association between mercury and neurodevelopment was weak. There did not appear to be exceptions for particular childhood ages, outcome scales, or mercury levels. The small number of results to the contrary were more likely to be studies which did not meet our high-quality criteria, and could be a consequence of multiple testing, selection bias, or incomplete confounder adjustment. Based on current evidence, dietary mercury exposure during pregnancy is unlikely to be a risk factor for low neurodevelopmental functioning in early childhood.
Collapse
Affiliation(s)
- Kyle Dack
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1TH, UK
- Correspondence:
| | - Matthew Fell
- Cleft Collective, University of Bristol, Bristol BS8 1TH, UK;
| | - Caroline M. Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK;
| | - Alexandra Havdahl
- Department of Mental Disorders, Norwegian Institute of Public Health, 0213 Oslo, Norway;
- Nic Waals Institute, Lovisenberg Diaconal Hospital, 0853 Oslo, Norway
| | - Sarah J. Lewis
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK;
| |
Collapse
|
43
|
Lazzari M, Bettini S, Milani L, Maurizii MG, Franceschini V. Response of Olfactory Sensory Neurons to Mercury Ions in Zebrafish: An Immunohistochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:227-242. [PMID: 35177137 DOI: 10.1017/s1431927621013763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Olfactory sensory neurons (OSNs) of fish belong to three main types: ciliated olfactory sensory neurons (cOSNs), microvillous olfactory sensory neurons (mOSNs), and crypt cells. Mercury is a toxic metal harmful for olfaction. We exposed the olfactory epithelium of zebrafish to three sublethal Hg2+ concentrations. Molecular markers specific for the different types of OSNs were immunohistochemically detected. Image analysis of treated sections enabled counting of marked cells and measurement of staining optical density indicative of the response of OSNs to Hg2+ exposure. The three types of OSNs reacted to mercury in a different way. Image analysis revealed that mOSNs are more susceptible to Hg2+ exposure than cOSNs and crypt cell density decreases. Moreover, while the ratio between sensory/nonsensory epithelium areas is unchanged, epithelium thickness drops, and dividing cells increase in the basal layer of the olfactory epithelium. Cell death but also reduction of apical processes and marker expression could account for changes in OSN immunostaining. Also, the differential results between dorsal and ventral halves of the olfactory rosette could derive from different water flows inside the olfactory chamber or different subpopulations in OSNs.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Maria G Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| |
Collapse
|
44
|
Pan J, Li X, Wei Y, Ni L, Xu B, Deng Y, Yang T, Liu W. Advances on the Influence of Methylmercury Exposure during Neurodevelopment. Chem Res Toxicol 2022; 35:43-58. [PMID: 34989572 DOI: 10.1021/acs.chemrestox.1c00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mercury (Hg) is a toxic heavy-metal element, which can be enriched in fauna and flora and transformed into methylmercury (MeHg). MeHg is a widely distributed environmental pollutant that may be harmful to fish-eating populations through enrichment of aquatic food chains. The central nervous system is a primary target of MeHg. Embryos and infants are more sensitive to MeHg, and exposure to MeHg during gestational feeding can significantly impair the homeostasis of offspring, leading to long-term neurodevelopmental defects. At present, MeHg-induced neurodevelopmental toxicity has become a hotspot in the field of neurotoxicology, but its mechanisms are not fully understood. Some evidence point to oxidative damage, excitotoxicity, calcium ion imbalance, mitochondrial dysfunction, epigenetic changes, and other molecular mechanisms that play important roles in MeHg-induced neurodevelopmental toxicity. In this review, advances in the study of neurodevelopmental toxicity of MeHg exposure during pregnancy and the molecular mechanisms of related pathways are summarized, in order to provide more scientific basis for the study of neurodevelopmental toxicity of MeHg.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| |
Collapse
|
45
|
Mahmood MHR, Qayyum MA, Yaseen F, Farooq T, Farooq Z, Yaseen M, Irfan A, Muddassir K, Zafar MN, Qamar MT, Abbasi AM, Liu HY. Multivariate Investigation of Toxic and Essential Metals in the Serum from Various Types and Stages of Colorectal Cancer Patients. Biol Trace Elem Res 2022; 200:31-48. [PMID: 33635516 DOI: 10.1007/s12011-021-02632-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/08/2021] [Indexed: 01/22/2023]
Abstract
Colorectal cancer (CRC) is currently one of the most frequent malignant neoplasms, ranking 3rd in incidence and 2nd in mortality both in the USA and across the world. The pathogenesis of CRC is a complex interaction between genetic susceptibility and environmental factors such as exposure to metals. Therefore, the present study was intended to assess the imbalances in the concentrations of selected essential/toxic elements (Pb, Cr, Fe, Zn, As, Cd, Cu, Se, Ni, and Hg) in the serum of newly diagnosed colorectal carcinoma patients (n = 165) in comparison with counterpart controls (n = 151) by atomic absorption spectrometry after wet-acid digestion method. Serum carcinoembryonic antigen (CEA) of the CRC patients was determined using immunoradiometric method. Body mass index (BMI) which is an established risk factor for CRC was also calculated for patients and healthy controls. Conversely, average Ni (2.721 μg/g), Cd (0.563 μg/g), As (0.539 μg/g), and Pb (1.273 μg/g) levels were significantly elevated in the serum of CRC patients compared to the healthy donors, while the average Se (7.052 μg/g), Fe (15.67 μg/g), Cu (2.033 μg/g), and Zn (8.059 μg/g) concentrations were elevated in controls. The correlation coefficients between the elements in the cancerous patients demonstrated significantly dissimilar communal relationships compared with the healthy subjects. Significant differences in the elemental levels were also showed for CRC types (primary colorectal lymphoma, gastrointestinal stromal tumor, and adenocarcinoma) and CRC stages (stage-I, stage-II, stage-III, and stage-IV) among the patients. Majority of the elements demonstrated perceptible disparities in their levels based on dietary, habitat, gender, and smoking habits of the malignant patients and healthy subjects. Multivariate methods revealed noticeably divergent apportionment among the toxic/essential elements in the cancerous patients than the healthy counterparts. Overall, the study showed significantly divergent distribution and associations of the essential and toxic elemental levels in the serum of the CRC patients in comparison with the healthy donors.
Collapse
Affiliation(s)
- Mian H R Mahmood
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan.
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Farhan Yaseen
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Zahid Farooq
- Department of Physics, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Muhammad Yaseen
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Khawaja Muddassir
- Division of Pulmonary Critical Care and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | | | - Muhammad Tariq Qamar
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Hai-Yang Liu
- Department of Chemistry, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
46
|
Spanu D, Butti L, Boldrocchi G, Bettinetti R, Recchia S, Monticelli D. Selective organomercury determination by ICP-MS made easy. Anal Chim Acta 2022; 1206:339553. [DOI: 10.1016/j.aca.2022.339553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 11/01/2022]
|
47
|
Uritis S, Thummel RP, Lee HS, Hancock RD. A study of the complexes of Hg(II) with polypyridyl ligands by Fluorescence, absorbance Spectroscopy, and DFT calculations. The effect of ligand preorganization and relativistic effects on complex stability. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
48
|
Koenigsmark F, Weinhouse C, Berky AJ, Morales AM, Ortiz EJ, Pierce EM, Pan WK, Hsu-Kim H. Efficacy of Hair Total Mercury Content as a Biomarker of Methylmercury Exposure to Communities in the Area of Artisanal and Small-Scale Gold Mining in Madre de Dios, Peru. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13350. [PMID: 34948962 PMCID: PMC8707462 DOI: 10.3390/ijerph182413350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/05/2022]
Abstract
Total mercury content (THg) in hair is an accepted biomarker for chronic dietary methylmercury (MeHg) exposure. In artisanal and small-scale gold mining (ASGM) communities, the validity of this biomarker is questioned because of the potential for contamination from inorganic mercury. As mining communities may have both inorganic and organic mercury exposures, the efficacy of the hair-THg biomarker needs to be evaluated, particularly as nations begin population exposure assessments under their commitments to the Minamata Convention. We sought to validate the efficacy of hair THg for public health monitoring of MeHg exposures for populations living in ASGM communities. We quantified both THg and MeHg contents in hair from a representative subset of participants (N = 287) in a large, population-level mercury exposure assessment in the ASGM region in Madre de Dios (MDD), Peru. We compared population MeHg-THg correlations and %MeHg values with demographic variables including community location, sex, occupation, and nativity. We observed that hair MeHg-THg correlations were high (r > 0.7) for all communities, regardless of location or nativity. Specifically, for individuals within ASGM communities, 81% (121 of 150 total) had hair THg predominantly in the form of MeHg (i.e., >66% of THg) and reflective of dietary exposure to mercury. Furthermore, for individuals with hair THg exceeding the U.S. EPA threshold (1.0 μg/g), 88 out of 106 (83%) had MeHg as the predominant form. As a result, had urine THg solely been used for mercury exposure monitoring, approximately 59% of the ASGM population would have been misclassified as having low mercury exposure. Our results support the use of hair THg for monitoring of MeHg exposure of populations in ASGM settings where alternative biomarkers of MeHg exposure are not feasible.
Collapse
Affiliation(s)
- Faye Koenigsmark
- Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA;
| | - Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA;
| | - Axel J. Berky
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC 27710, USA;
| | - Ana Maria Morales
- Centro Nacional de Salud Intercultural, Instituto Nacional de Salud, Ministerio de Salud, Cápac Yupanqui 1400-Jesus María, Lima 15027, Peru;
| | - Ernesto J. Ortiz
- Duke Global Health Innovation Center, Duke University, 310 Blackwell Street, Durham, NC 27701, USA;
| | - Eric M. Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley, Oak Ridge, TN 37831, USA;
| | - William K. Pan
- Nicholas School of the Environment, Duke University, 9 Circuit Drive, Durham, NC 27710, USA;
- Duke Global Health Institute, Duke University, 310 Trent Drive, Durham, NC 27710, USA
| | - Heileen Hsu-Kim
- Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA;
| |
Collapse
|
49
|
Sánchez-Alarcón J, Milić M, Bustamante-Montes LP, Isaac-Olivé K, Valencia-Quintana R, Ramírez-Durán N. Genotoxicity of Mercury and Its Derivatives Demonstrated In Vitro and In Vivo in Human Populations Studies. Systematic Review. TOXICS 2021; 9:326. [PMID: 34941760 PMCID: PMC8704886 DOI: 10.3390/toxics9120326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Beside partial coverage in three reviews so far (1994, 2009, 2019), there is no review on genotoxic studies dealing with mercury (Hg) and human exposure using the most usual genotoxic assays: sister chromatid exchanges (SCE), chromosomal aberrations (CA), cytochalasin B blocked micronucleus assay (CBMN), and single-cell gel electrophoresis (SCGE or alkaline comet assay). Fifty years from the first Hg genotoxicity study and with the Minamata Convention in force, the genotoxic potential of Hg and its derivatives is still controversial. Considering these antecedents, we present this first systematic literature overview of genotoxic studies dealing with Hg and human exposure that used the standard genotoxic assays. To date, there is not sufficient evidence for Hg human carcinogen classification, so the new data collections can be of great help. A review was made of the studies available (those published before the end of October 2021 on PubMed or Web of Science in English or Spanish language) in the scientific literature dealing with genotoxic assays and human sample exposure ex vivo, in vivo, and in vitro. Results from a total of 66 articles selected are presented. Organic (o)Hg compounds were more toxic than inorganic and/or elemental ones, without ruling out that all represent a risk. The most studied inorganic (i)Hg compounds in populations exposed accidentally, occupationally, or iatrogenically, and/or in human cells, were Hg chloride and Hg nitrate and of the organic compounds, were methylmercury, thimerosal, methylmercury chloride, phenylmercuric acetate, and methylmercury hydroxide.
Collapse
Affiliation(s)
- Juana Sánchez-Alarcón
- Doctorado en Ciencias de la Salud, Facultad de Ciencias de la Conducta, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico;
- Cuerpo Académico Ambiente y Genética UATLX-CA-223, Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Santa María Acuitlapilco 90120, Tlaxcala, Mexico;
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; or
| | | | - Keila Isaac-Olivé
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico;
| | - Rafael Valencia-Quintana
- Cuerpo Académico Ambiente y Genética UATLX-CA-223, Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Santa María Acuitlapilco 90120, Tlaxcala, Mexico;
| | - Ninfa Ramírez-Durán
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico;
| |
Collapse
|
50
|
Zhang L, Rezeng C, Wang Y, Li Z. Changes in Copper, Zinc, Arsenic, Mercury, and Lead Concentrations in Rat Biofluids and Tissues Induced by the "Renqing Changjue" Pill, a Traditional Tibetan Medicine. Biol Trace Elem Res 2021; 199:4646-4656. [PMID: 33464547 DOI: 10.1007/s12011-021-02586-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023]
Abstract
The "Renqing Changjue" pill (RQCJ), as an effective prescription of Traditional Tibetan Medicine (TTM), has been widely used in treating advanced gastroenteropathy diseases for over a thousand years. However, the toxicity and adverse effects of TTM have attracted increasing attention because heavy metals may be added as active ingredients. In this work, we introduced a robust model based on endogenous metabolism enabling the study of changes in copper (Cu), zinc (Zn), arsenic (As), mercury (Hg), and lead (Pb) concentrations and the mechanism between biofluids (blood and urine) and tissue (liver, kidney, spleen) samples from rats treated with RQCJ, along with metabolic changes after different treatment time points. Inductively coupled plasma-mass spectrometry was used to monitor the heavy metals. Slightly different trends of heavy metals were observed in rat metabolites. The levels of Hg, As, and Pb were clearly dose-dependent in the tissue and biofluid samples. Basic recovery of Hg and Pb was found after stopping treatment with RQCJ. The accumulation of As was more obvious in the blood, liver, kidney, and spleen; however, Hg was deposited in the kidney. Pb accumulated the most in the spleen. The concentrations of Cu and Zn were constant or accumulated to a certain extent, which could cause the body to have Cu and Zn metabolism disorders in the administration period. Our findings highlight how metal changes and effects on the mechanisms might contribute to the progression of understanding of the toxicity information for RQCJ. Therefore, precautions should be taken in the clinic to monitor the potential toxicity of RQCJ with long-term administration.
Collapse
Affiliation(s)
- Lan Zhang
- The Analysis & Test Center, Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Caidan Rezeng
- College of Pharmacy, Qinghai Nationalities University, 810001, Xining, People's Republic of China
| | - Yingfeng Wang
- The Analysis & Test Center, Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Zhongfeng Li
- The Analysis & Test Center, Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| |
Collapse
|