1
|
Lazarova HI, Rusew RI, Tsvetanova LV, Barbov BZ, Tacheva ES, Shivachev BL. Elaboration and Characterization of Different Zirconium Modified ETS Photocatalysts for the Degradation of Crystal Violet and Methylene Blue. ChemistryOpen 2025; 14:e202400348. [PMID: 39538980 DOI: 10.1002/open.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, Zirconium-modified Engelhard Titanium Silicate 4 (Na-K-ETS-4/xZr) catalysts were synthesized and evaluated for their photocatalytic efficiency in degrading crystal violet (CV) and methylene blue (MB) in aqueous solutions. The catalysts were characterized using XRD, FTIR, SEM, WDXRF, and nitrogen adsorption/desorption isotherms. The results confirmed the successful incorporation of Zr into the ETS-4 framework, with the highest Zr content reaching 9.2 wt %. The photocatalytic performance under visible light irradiation was studied at varying pH levels. The Na-K-ETS-4/6.3Zr catalyst exhibited the highest photodegradation efficiency for CV (76.6 %), while Na-K-ETS-4/8.9Zr achieved 86.6 % efficiency for MB. A combination of Engelhard Titanium Silicate 10, Na-K-ETS-10/6.3Zr and Na-K-ETS-4/8.9Zr significantly enhanced dye degradation, achieving up to 96.5 % efficiency for MB. Kinetic studies indicated that the degradation process follows a non-linear pseudo-first-order model. The catalysts also demonstrated excellent reusability, with minimal efficiency loss after five cycles, and full recovery after an ethanol wash. These findings suggest that Na-K-ETS-4/xZr is a promising candidate for environmental water treatment applications due to its efficient photodegradation performance and stability.
Collapse
Affiliation(s)
- Hristina I Lazarova
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Rusi I Rusew
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Liliya V Tsvetanova
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Borislav Z Barbov
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Elena S Tacheva
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Boris L Shivachev
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| |
Collapse
|
2
|
Coulombe A, Soubaneh YD, Pelletier É. Uptake, desorption, and hysteresis of heavy metals and PAHs with environmental concerns onto quick clays: effects of salinity and temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36142-8. [PMID: 40011331 DOI: 10.1007/s11356-025-36142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
This study investigated the sorption, desorption, and trapping of 9,10 dimethylated anthracene (DMA), copper (Cu), and cadmium (Cd) onto quick clay (QC), focusing on the effects of temperature, salinity, and their environmental relevance. Sorption isotherms were generated at different temperatures (4, 10, and 20 °C) and salinities (1 and 25 g·L-1). Thermodynamic parameters were calculated to elucidate the underlying mechanisms. Isosteric heat of adsorption (ΔHX) was determined to assess the heterogeneity of adsorption sites. Isotherms results were processed using the Freundlich model to assess sorption and hysteresis parameters of QC. Kinetic studies revealed a rapid initial uptake of DMA followed by a slower logarithmic phase, reaching equilibrium within 1440 min. The presence of the methyl group in DMA compared to non-methylated PAHs from other studies likely influences its adsorption rate. Temperature and salinity significantly impacted both the adsorption and desorption processes. Notably, Cd adsorption was nearly made ineffective with increasing salinity. Interestingly, Cu hysteresis index (HI) decreased from 1.57 to - 0.08 with increasing salinity, suggesting a shift from inner-sphere complexation at low salinity to outer-sphere complexation at high salinity. Conversely, DMA adsorption increased by 1.83-fold with increasing salinity, likely due to the salting-out effect. Thermodynamic analysis indicated a spontaneous and endothermic adsorption process driven by a positive entropy change (ΔS0). The ΔHX values supported physical adsorption as the dominant mechanism. The observed homogeneity in ΔHX values for DMA and Cd suggests consistent interaction with the clay surface, while the heterogeneity observed for Cu signifies a variation in adsorption site energies.
Collapse
Affiliation(s)
- Alexandre Coulombe
- Département de Biologie, Chimie Et Géographie, Université du Québec À Rimouski, 300, Allée Des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - Youssouf Djibril Soubaneh
- Département de Biologie, Chimie Et Géographie, Université du Québec À Rimouski, 300, Allée Des Ursulines, Rimouski, QC, G5L 3A1, Canada.
| | - Émilien Pelletier
- Institut Des Sciences de La Mer de Rimouski, Université du Québec À Rimouski, 310, Allée Des Ursulines, Rimouski, QC, G5L 3A1, Canada
| |
Collapse
|
3
|
Abu Elella MH, Abdallah HM, Ali EA, Makhado E, Abd El-Ghany NA. Recent developments in conductive polysaccharide adsorbent formulations for environmental remediation: A review. Int J Biol Macromol 2025; 304:140915. [PMID: 39947533 DOI: 10.1016/j.ijbiomac.2025.140915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Environmental remediation is crucial for human life and ecosystems, involving the cleanup of contaminated water to protect health and restore ecological balance. However, rapid industrialization and population growth have worsened pollution, particularly in water bodies, making effective wastewater treatment a key challenge in ensuring clean drinking water, and the adsorption of toxic gases for air treatment are the main strategies for environmental remediation. Among the various treatment methods, adsorption stands out for its high selectivity, low energy and chemical use, ease of operation, and cost-effectiveness. To date, innovative, highly efficient, non-toxic, engineered adsorbent materials have received potential interest from scientific and governmental communities. Conducting polymer-modified polysaccharide formulations are crucial in wastewater treatment due to their high surface area, adsorption efficiency, excellent stability, and eco-friendly, biodegradable properties. This review offers an extensive overview of recent progress in synthesizing conducting polymer-modified polysaccharide formulations (hydrogels, aerogels, nanofibers, and nanocomposites) for capturing toxic heavy metal ions, organic dyes, pharmaceuticals, phenols as well as adsorbing different toxic gases using various adsorption mechanisms. It also emphasizes the integration of different nanofillers, including carbon-based materials, Mxenes, nanoclay, metal/metal oxides, and hybrid nanomaterials, into conductive polysaccharide chains to improve their physicochemical properties and adsorption efficiency. The reported data showed that these engineered adsorbent materials based on conductive polysaccharide formulations have immense potential for wastewater treatment applications, offering more effective and sustainable solutions.
Collapse
Affiliation(s)
| | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research institute, National Research centre, Dokki, Giza 12622, Egypt
| | - Eman AboBakr Ali
- Polymers and Pigments Department, Chemical Industries Research institute, National Research centre, Dokki, Giza 12622, Egypt
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Sovenga, Polokwane 0727, South Africa
| | | |
Collapse
|
4
|
Díaz J, Roa K, Boulett A, Azócar L, Sánchez J. Reusable aminated lignin-based hydrogel biocomposite for effective dye adsorption in wastewater. Int J Biol Macromol 2025; 304:140842. [PMID: 39929464 DOI: 10.1016/j.ijbiomac.2025.140842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/19/2025]
Abstract
This study reports enhanced organic dye adsorption capacity from aqueous solutions of a synthesized novel biocomposite hydrogel based on aminated lignin (AL) and poly(3-acryloamidopropyl)-trimethylammonium chloride P(ClAPTA). The biocomposites were characterized via Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and elemental analysis, confirming successful functionalization and polymerization. A factorial design was used to screen the operational parameters, showing that the P(ClAPTA-AL) composition was the most significant factor affecting dye adsorption compared to the amination ratio. Optimization of the adsorption process was achieved using alizarin red S (ARS) as a model dye through a Box-Behnken design, revealing optimal conditions: pH 12.0, 20 °C, 120 min contact time, and a composite-to-ARS mass ratio of 10, resulting in a high adsorption capacity of 102.1 mg g-1 and a maximum adsorption of 3889 mg g-1. Kinetic studies showed an adsorption process followed a pseudo-second-order model, confirming chemisorption as the predominant mechanism, while thermodynamic analysis revealed a spontaneous and endothermic adsorption process. Furthermore, promissory results demonstrated high reusability, with adsorption efficiency remaining at ∼99 % until the fourth cycle and maintaining 81.1 % after seven cycles.
Collapse
Affiliation(s)
- Juan Díaz
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Karina Roa
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Andrés Boulett
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente, Santiago, Chile
| | - Laura Azócar
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción (UCSC), Chile; Universidad Católica de la Santísima Concepción, Centro de Energía, Concepción, Chile
| | - Julio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Franco AJ, Alocilja E. Adsorption Studies of Salmonella Enteritidis and Escherichia coli on Chitosan-Coated Magnetic Nanoparticles. Cells 2025; 14:225. [PMID: 39937016 DOI: 10.3390/cells14030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
One of the challenges of microbiological testing is the complex and lengthy sample preparation, causing delays in getting the final result. Immunomagnetic separation is one of the sample preparation techniques recently used to overcome this complexity. However, it is expensive, fragile, and requires cold storage. This study aimed to use chitosan-coated magnetic nanoparticles (cMNP) to capture bacterial cells from a simulated matrix and understand the interaction between the bacteria and the cMNP using batch adsorption studies. To illustrate the concept, Salmonella Enteritidis and Escherichia coli were used. Results showed that the adsorption of Salmonella Enteritidis and E. coli fitted the pseudo-second-order kinetic model (R2 = 0.939 and 0.968, respectively) and the Freundlich isotherm model (R2 = 0.999 and 0.970, respectively). The increased ionic strength enhanced bacterial adsorption, and the highest capture efficiency was observed at pH 4 (32.8% and 98.1% for Salmonella Enteritidis and E. coli, respectively). These results show that chemisorption plays a significant role in bacterial adsorption to cMNP. Furthermore, increasing ionic strength and acidic pH (pH 4) significantly affects the adsorption of Salmonella Enteritidis and E. coli on cMNP, making them crucial for enhancing the performance of cMNP-based sample preparation methods.
Collapse
Affiliation(s)
- Anthony James Franco
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn Alocilja
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Cicilinski AD, Melo VF, Peralta-Zamora P. Mechanisms of interactions and the significance of different colloidal structures in the vertical transport of glyphosate in soils with contrasting mineralogies. CHEMOSPHERE 2025; 371:144075. [PMID: 39761701 DOI: 10.1016/j.chemosphere.2025.144075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Soil is regarded as a natural repository for strongly adsorbed pollutants since glyphosate (GLY) is preferentially adsorbed by the inorganic fraction of the soil, which may greatly limits its leaching. In this way, understanding how clay mineralogy influences the sorption and transport processes of glyphosate in soils with different mineralogical characteristics is highly relevant. In this work, two clay mineralogy contrasting soils were used to evaluate GLY retention: a Oxisol (OX) with high levels of iron oxides (amorphous and crystalline) and a Inceptisol (IN) with a predominance of kaolinite. According to results obtained, the sorption process is influenced by more than one mechanism, including intraparticle diffusion, which is particularly favored at pH 4.00, and mass transfer across the boundary layer, which is favored at pH 6.50. When evaluating the adsorption isotherms, some differences associated with pH were also observed. At pH 4.00, good fits were obtained with the Freundlich model, suggesting electrostatic interaction between the compound and the soil. At pH 6.50, the best modeling involves the Langmuir-Freundlich model, indicating the occurrence of chemical and physical interactions. Desorption studies suggest that GLY sorption at pH 4.00 mostly involves the formation of inner-sphere complexes, while at pH 6.50, much of the sorption involves outer-sphere complexes. In column studies, GLY leaching was observed in both soils at concentrations between 0.01 and 0.02 mg L-1. After pH correction by liming, differences were observed in the leached GLY concentration, especially in the second rain event in, which leached concentrations greater than 0.04 mg L-1. These results confirm the strong sorption of GLY in the soil, as well as its evident mobilization through the soil column, probably due to colloid-facilitated transport.
Collapse
Affiliation(s)
| | - Vander Freitas Melo
- Departamento de Solos e Engenharia Agrícola, Universidade Federal do Paraná, 33505-658, Curitiba, PR, Brazil
| | | |
Collapse
|
7
|
Zhang Z, Tang L, Luo J, Tan J, Jiang X. Comparative study of Mg/Al-LDH and Mg/Fe-LDH on adsorption and loss control of 2,4-dichlorophenoxyacetic acid. ADVANCED BIOTECHNOLOGY 2025; 3:4. [PMID: 39883343 DOI: 10.1007/s44307-024-00055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 12/15/2024] [Indexed: 01/31/2025]
Abstract
Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.e. Mg/Al-LDH vs Mg/Fe-LDH) on adsorption of 2,4-D and corresponding intrinsic mechanisms are still unclear, and the studies on the leaching control of 2,4-D by LDHs in soil environment are particularly limited. In this study, Mg/Al-LDH and Mg/Fe-LDH were selected to conduct their adsorption kinetics experiment for 2,4-D combined with the characterization technology. The results showed that the adsorption capacity of Mg/Al-LDH and Mg/Fe-LDH for 2,4-D was up to 242 mg kg-1 and 64 mg kg-1, respectively, which were negatively correlated with pH. Adsorption mechanisms of both Mg/Al-LDH and Mg/Fe-LDH for 2,4-D are dominated by chemical adsorption, including electrostatic attraction and inner sphere complexation, but no interlayer adsorption mechanism. Mg/Al-LDH contains smaller metal ion radius, which provides greater surface charge density, resulting in greater electrostatic attraction and inner sphere complexation to 2,4-D compared to Mg/Fe-LDH. The greater adsorption capacity of Mg/Al-LDH for 2,4-D was driven by the higher adsorption energy (Eads) and lower electron density, as corroborated by density functional theory (DFT) calculation. The soil column experiment further verified that Mg/Al-LDH could control the loss of 2,4-D more effectively, and the leaching amount could be significantly reduced by 61.7%, while the effect of Mg/Fe-LDH was only 24.2%. This study provides theoretical guidance for screening more potential LDH types to solve the leaching loss of 2,4-D from soil and improve its effectiveness in agricultural production.
Collapse
Affiliation(s)
- Zeyuan Zhang
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Liangjie Tang
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Jing Luo
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Jinfang Tan
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Xiaoqian Jiang
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.
| |
Collapse
|
8
|
Bogyor A, Csavdari AA, Lovász T, Bitay E. A Comparative Kinetic and Thermodynamic Adsorption Study of Methylene Blue and Its Analogue Dye on Filter Paper. Int J Mol Sci 2025; 26:516. [PMID: 39859233 PMCID: PMC11764774 DOI: 10.3390/ijms26020516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
A comparative adsorption study was carried out for methylene blue (MB) and its 3,7-bis(N,N-(2-hydroxyethyl)amino)-phenothiazinium dye analog (MBI). Batch experiments employed aqueous solutions and commercial filter paper. Out of seven kinetic models tested by means of four quality statistical indicators, the pseudo-second-order, the double-exponential, and the bi-linear Weber-Morris equations were best fits. For both dyes, the process was described as a succession of two diffusion-controlled steps. The Freundlich isotherm was chosen from 11 models describing a variety of mechanism assumptions. Physisorption was considered responsible for the dye removal from liquid. Adsorption of MB is thermodynamically favored, whereas that of MBI is sterically hindered. Both processes are exothermic and exhibit reduced randomness at the S-L interface. The paper was found suitable for retaining MB but served rather filtration/purification purposes for MBI.
Collapse
Affiliation(s)
- Andrea Bogyor
- Department of Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, Arany Janos Street 11, 400028 Cluj-Napoca, Romania; (A.B.); (T.L.)
| | - Alexandra Ana Csavdari
- Department of Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, Arany Janos Street 11, 400028 Cluj-Napoca, Romania; (A.B.); (T.L.)
- Department of Analytical, Colloidal Chemistry and Technology of Rare Elements, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, 050040 Almaty, Kazakhstan
| | - Tamás Lovász
- Department of Chemical Engineering, Babeş-Bolyai University of Cluj-Napoca, Arany Janos Street 11, 400028 Cluj-Napoca, Romania; (A.B.); (T.L.)
- Research Institute of the Transylvanian Museum Society, Napoca Street 2-4, 400009 Cluj-Napoca, Romania
| | - Enikő Bitay
- Department of Mechanical Engineering, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Calea Sighișoarei 2, 540485 Târgu-Mureş, Romania;
- Bánki Donát Faculty of Mechanical and Safety Engineering, Óbuda University, Bécsi Street 96/b, 1034 Budapest, Hungary
- Research Institute of the Transylvanian Museum Society, Napoca Street 2-4, 400009 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Aljubiri SM, Younes AAO, Alosaimi EH, Abdel-Daiem MM, Abdel-Salam ET, El-Shwiniy WH. Efficient Removal of Phenol Red Dye from Polluted Water Using Sustainable Low-Cost Sewage Sludge Activated Carbon: Adsorption and Reusability Studies. Molecules 2024; 29:5865. [PMID: 39769955 PMCID: PMC11677155 DOI: 10.3390/molecules29245865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The use of sewage sludge activated carbon (thickened samples ACS1 and non-thickened samples ACS2) in a variety of applications and simple environmentally friendly production techniques are attracting more and more attention. We offer here a novel environmentally friendly method based on the green synthesis of activated carbons (ACS1/ACS2) using sewage sludge (SS). These activated carbons are then used to effectively remove the water-based reactive dye phenol red (PR). The ACS1 and ACS2 produced are porous materials with an average diameter of 20.72-13.30 and 6.20-7.34 nm, respectively. These ACS1/ACS2 were analyzed using a range of characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis. Elimination of toxic PR dye was investigated using several operational factors, including ACS1/ACS2 dose, initial PR dye concentration, pH and temperature. Under the best experimental conditions, the ACS1 and ACS2 adsorbents absorbed nearly 89.58% and 97.69% of the PR dye, respectively. It was found that both ACS1 and ACS2 adsorption corresponded to pseudo-first-order kinetics (R = 0.996 and 0.980) and fulfilled Langmuir's (ACS1) and Freundlich's (ACS2) models well, with maximum adsorption capacities of 65.35 and 122.72 mg/g, respectively. It was found that the adsorption processes are basically exothermic. The results suggest that sewage sludge can be effective as a low-cost and environmentally beneficial synthesis of ACS1 and ACS2 in the purification of water sources contaminated with hazardous dyes.
Collapse
Affiliation(s)
- Salha M. Aljubiri
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia; (S.M.A.); (A.A.O.Y.); (E.H.A.); (E.T.A.-S.)
| | - Ayman A. O. Younes
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia; (S.M.A.); (A.A.O.Y.); (E.H.A.); (E.T.A.-S.)
| | - Eid H. Alosaimi
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia; (S.M.A.); (A.A.O.Y.); (E.H.A.); (E.T.A.-S.)
| | - Mahmoud M. Abdel-Daiem
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt;
- Civil Engineering Department, College of Engineering, Shaqra University, Dawadmi 11911, Saudi Arabia
| | - Enas T. Abdel-Salam
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia; (S.M.A.); (A.A.O.Y.); (E.H.A.); (E.T.A.-S.)
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Walaa H. El-Shwiniy
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia; (S.M.A.); (A.A.O.Y.); (E.H.A.); (E.T.A.-S.)
| |
Collapse
|
10
|
Liu J, Duan Y, Chen H, Ye B, Zhang H, Tan W, Kappler A, Hou J. Extent of As(III) versus As(V) adsorption on iron (oxyhydr) oxides depends on the presence of vacancy cluster-like micropore sites: Insights into a seesaw effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176376. [PMID: 39304166 DOI: 10.1016/j.scitotenv.2024.176376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Iron (oxyhydr)oxides are ubiquitous in terrestrial environments and play a crucial role in controling the fate of arsenic in sediments and groundwater. Although there is evidence that different iron (oxyhydr)oxides have different affinities towards As(III) and As(V), it is still unclear why As(V) adsorption on some iron (oxyhydr)oxides is larger than As(III) adsorption, while it is opposite for other ones. In this study, six typical iron (oxyhydr)oxides are selected to evaluate their adsorption capacities for As(III) and As(V). The characteristics of these iron minerals such as morphology, arsenic adsorption species, and pore size distribution are carefully examined using transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), positron annihilation lifetime (PAL) spectroscopy, and X-ray absorption spectroscopy (XAS). We confirm a seesaw effect occurred in different iron minerals for As(III) and As(V) immobilization, i.e., at pH 6.0, adsorption of As(V) on hematite (0.73 μmol m-2) and magnetite (0.33 μmol m-2) is higher than for As(III) (0.61 μmol m-2 and 0.27 μmol m-2, respectively), for goethite and lepidocrocite it is almost equal, while As(III) sorption on ferrihydrite (5.77 μmol m-2) and schwertmannite (28.41 μmol m-2) showed higher sorption than As(V) (1.53 μmol m-2 and 12.99 μmol m-2, respectively). PAL analysis demonstrates that ferrihydrite and schwertmannite have a large concentration of vacancy cluster-like micropores, significantly more than goethite and lepidocrocite, followed by hematite and magnetite. The difference of adsorption of As(III) and As(V) to different iron (oxyhydr)oxides is due to differences in the abundance of vacancy cluster-like micropore sites, which are conducive for smaller size As(III) immobilization but not for larger size of As(V). The findings of this study provide novel insights into a seesaw effect for As(III) and As(V) immobilization on naturally occurring iron mineral.
Collapse
Affiliation(s)
- Juan Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yixin Duan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China.
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Wang G, Zhang Q, Qin L, Tan K, Li C, Li L, Yang T, Liu X. Construction of MIL-100(Fe)-DMA material for efficient adsorption of Sr and Cs ions from radioactive wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176296. [PMID: 39284449 DOI: 10.1016/j.scitotenv.2024.176296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
A novel metal-organic framework (MOF) material, MIL-100(Fe)-DMA, was synthesized using the solvothermal method. The structure of the MOF was characterized using scanning electron microscopy-energy dispersive X-ray spectroscopy, N2 adsorption-desorption isotherms, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy. Batch adsorption experiments were performed to investigate the effects of initial Sr2+ and Cs+ concentrations, adsorption time, pH, and coexisting cations on the adsorption performance of the material. The adsorption mechanism was further elucidated using adsorption kinetics and isotherm models. The results indicated that the adsorption of Sr2+ and Cs+ does not significantly affect the MOF material structure. As reaction time and initial ion concentration increased, the adsorption capacity of MIL-100(Fe)-DMA for Sr2+ and Cs+ increased rapidly and then gradually reached equilibrium. Optimal adsorption occurred under alkaline conditions, with maximum adsorption capacity observed at pH = 8. The adsorption process for Sr2+ and Cs+ was well described by the pseudo-second-order kinetic model, the Weber-Morris model, and the Langmuir adsorption isothermal model. The adsorption process was mainly identified as monolayer chemical adsorption, influenced by multiple factors. Characterization combined with density functional theory calculations revealed that the unsaturated carboxylic acid groups on the surface of the MOFs play a crucial role in the interaction with Sr2+ and Cs+.
Collapse
Affiliation(s)
- Guohui Wang
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China; Chengdu Nuclear Engineering Design &Research Institute Co., Ltd, 404., CNNC, Chengdu 610000, China
| | - Qixin Zhang
- CPC Affairs and Administration Office, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Lailai Qin
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China; Chengdu Nuclear Engineering Design &Research Institute Co., Ltd, 404., CNNC, Chengdu 610000, China
| | - Kaixuan Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Chunguang Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Lianshun Li
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China; Chengdu Nuclear Engineering Design &Research Institute Co., Ltd, 404., CNNC, Chengdu 610000, China
| | - Tinggui Yang
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China.
| | - Xiaojuan Liu
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China; Chengdu Nuclear Engineering Design &Research Institute Co., Ltd, 404., CNNC, Chengdu 610000, China
| |
Collapse
|
12
|
Lourêdo AAM, Pereira HH, Bonfilio R, Santos MG. Online restricted access molecularly imprinted solid phase extraction coupled with electrospray ionization-tandem mass spectrometry for determination of mebendazole and albendazole in milk samples. J Chromatogr A 2024; 1737:465466. [PMID: 39476776 DOI: 10.1016/j.chroma.2024.465466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/10/2024]
Abstract
Multifunctional materials, such as restricted access molecularly imprinted polymers covered with bovine serum albumin (RAMIP-BSA), are effective alternatives for sample preparation techniques. This material selectively adsorbs analytes while excluding macromolecules, enhancing the analysis's efficiency. Among analytical techniques, ESI-MS/MS (Electrospray Ionization-Tandem Mass Spectrometry) has successfully identified and quantified various molecules, including trace-level drugs. Therefore, we proposed, for the first time, an integrated online extraction/analysis system that combines the benefits of RAMIP-BSA and ESI-MS/MS for analyzing mebendazole (MBZ) and albendazole (ABZ) in milk samples without the need for chromatographic separation. Initially, a RAMIP selective for MBZ was synthesized using the bulk method with methacrylic acid and glycidyl methacrylate. Then, the polymer was covered with bovine serum albumin. Subsequently, this adsorbent was packed in a small column and coupled with an ESI-MS/MS instrument in an online configuration. Milli-Q water was used as the loading and reconditioning mobile phases, and a solution of formic acid in methanol (1:100 v/v) was employed as the elution phase. The system enabled simultaneous extraction and determination of MBZ and ABZ in milk samples. The method exhibited linearity between 15.0 and 125.0 μg L-1 for MBZ and 10.0 and 125.0 μg L-1 for ABZ (with a correlation coefficient exceeding 0.99). The limits of quantification were 15.0 and 10.0 μg L-1 for MBZ and ABZ, respectively. Good precision and accuracy were achieved. The developed method was used to analyze MBZ and ABZ in real milk samples and proved to be a viable alternative to conventional sample preparation and chromatographic techniques.
Collapse
Affiliation(s)
- Amanda Aparecida Marques Lourêdo
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Helton Hanchuck Pereira
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Rudy Bonfilio
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Mariane Gonçalves Santos
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil.
| |
Collapse
|
13
|
Duwiejuah AB, Mutawakil Z, Oyelude EO. Eco-friendly banana peel biochar for adsorption of toxic metals from landfill treatment pond leachate. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-10. [PMID: 39552213 DOI: 10.1080/15226514.2024.2428434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Adsorption is one of the most efficient ways to eliminate hazardous metals. The study evaluated the effectiveness of banana peel biochar as a cheap adsorbent to remove hazardous metals from landfill leachate. The landfill leachate of 100 mg/L was mixed with banana peel biochar (0.50, 1.50, and 3.00 g each) and placed in a water bath for 15, 30, and 45 min at a constant temperature of 30 °C and 35 °C. The adsorption efficiency of banana peel biochar for nickel in the leachate ranged from 98.76% to 98.96% and chromium ranged from 99.71% to 99.77% at a temperature of 30 °C for 15 mins and 99.07% to 99.27% for Ni and 99.71% to 99.73% for Cr at a temperature of 35 °C for 45 min. Banana peel biochar maximum adsorption capacity of nickel ranged from 1.15 × 10-5 mg/g to 5.27 × 10-6 mg/g, and 1.05 × 10-5 mg/g to 6.76 × 10-6 mg/g for chromium. Adsorbent made from less expensive banana peel can affordably remove nickel and chromium from landfill leachate. To acquire a broad understanding of the adsorbent's application, more adsorptive research utilizing banana peels as an adsorbent to treat various wastes ought to be conducted.
Collapse
Affiliation(s)
- Abudu Ballu Duwiejuah
- Department of Biotechnology and Molecular Biology, Faculty of Biosciences, University for Development Studies, Tamale, Ghana
| | - Zubayda Mutawakil
- Department of Biotechnology and Molecular Biology, Faculty of Biosciences, University for Development Studies, Tamale, Ghana
| | - Emmanuel O Oyelude
- Department of Applied Chemistry, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| |
Collapse
|
14
|
Shoaib AGM, Sikaily AE, Ragab S, Masoud MS, Ramadan MS, El Nemr A. Starch-grafted-poly(acrylic acid)/Pterocladia capillacea–derived activated carbon composite for removal of methylene blue dye from water. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:27189-27209. [DOI: 10.1007/s13399-022-03382-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 10/09/2022] [Indexed: 01/12/2025]
Abstract
AbstractStarch-g-poly(acrylic acid)/Pterocladia capillacea–derived activated carbon (St-g-P(AA)/P-AC) composites were prepared via aqueous solution graft copolymerization using starch, acrylic acid, and activated carbon of red alga Pterocladia capillacea (0–10%) with N,N′-methylenebisacrylamide crosslinker and ammonium persulfate (NH4)2S2O8 initiator. Fourier-transform infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) were used to characterize St-g-P(AA)/P-AC composites. Additionally, St-g-P(AA)/P-AC composites were investigated for methylene blue (MB) dye removal from water. The impact of the beginning concentration of MB dye, temperature, pH, and adsorption time on MB dye removal was examined. The maximum adsorption capacity obtained at pH 8 was 496.29 mg/g at 0.02 mg/L composites dose and 100 mg/L MB dye. The properties of adsorption were studied by the adsorption isotherm, kinetic, and thermodynamic models. The pseudo-first-order and Freundlich isotherm models demonstrated the kinetics and equilibrium adsorptions data, respectively. The maximum monolayer capacity (qm) was 1428.57 mg/g from Langmuir isotherm. Thermodynamic parameters indicated that the MB dye adsorption is exothermic physisorption and spontaneous. The results show that St-g-P(AA)/P-AC composites were effective for MB dye adsorption from water solution and could be recycled.
Collapse
|
15
|
Liu L, Ahmadi Y, Kim KH, Kukkar D, Szulejko J. Assessment of interfering/synergistic effects in the adsorption between polar and non-polar VOCs on a commercial biomass-based microporous carbon. CHEMOSPHERE 2024; 368:143701. [PMID: 39522699 DOI: 10.1016/j.chemosphere.2024.143701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This research has been carried out to investigate unique relationships in adsorption behavior between polar and non-polar volatile organic compounds (VOCs: formaldehyde (FA) versus toluene) using commercial macadamia nutshell (MNS)-based microporous activated carbon (i.e., Procarb-900: namely, P900). The breakthrough (BT) volume, adsorption capacity, and partition coefficient of P900 are estimated for 100 ppm FA as a single component and as a binary phase with 100 ppm toluene. The contrasting features of adsorption (such as interfering/synergistic relationships) for VOC mixtures with different polarities are accounted for in terms of interaction between the key variables (e.g., pore size distribution, adsorbent particle size, surface element compositions, and sorbent bed mass). Accordingly, the powdered P900 (0.212-0.6 mm: 150 mg) exhibits an adsorption capacity of 5.7 mg g-1 and a partition coefficient of 0.19 mol kg-1 Pa-1 for single-phase FA at the 10% BT level. Interestingly, its FA adsorption performance is synergistically improved in the presence of toluene (e.g., > 150%) in the early stage of adsorption (e.g., 10% BT), although their competition reduced its performance at 99% BT. The apparent synergistic trend in the early BT stage may possibly reflect diffusion resistance of the adsorbent (e.g., small particle size and developed ultra-micropore structure) and natural attributes of FA (e.g., low affinity and smaller kinetic diameter). The overall results of this study are expected to offer a better understanding of the mechanisms underlying the interactions between the mixed VOC system and microporous adsorbents.
Collapse
Affiliation(s)
- Lu Liu
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea; Department of Chemistry, Sonoma State University, 1801 E, Cotati Ave, Rohnert Park, CA, 94928, USA
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Jan Szulejko
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| |
Collapse
|
16
|
de Carvalho DT, Santos MG, Hirata DB, Gorup LF, Figueiredo EC. Interaction between modified magnetic nanoparticles and human albumin: Kinetics and isotherm studies and application in protein depletion. Int J Biol Macromol 2024; 280:135763. [PMID: 39313054 DOI: 10.1016/j.ijbiomac.2024.135763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Magnetic nanoparticles modified with tetraethyl orthosilicate (Fe3O4@TEOS) and bovine serum albumin (Fe3O4@TEOS@BSA) were evaluated as sorbent in albumin depletion from human serum samples by magnetic dispersive solid phase extraction. Characterization studies were carried out by X-ray diffraction, thermogravimetry, Fourier transform infrared spectroscopy, zeta potential, and scanning electron microscopy. Both nanoparticles also showed high thermal stability and pH-dependent surface charges. The human serum albumin adsorption protocol was optimized using a central composite rotatable design. Nanoparticle mass, pH, and albumin concentration were the most influential variables. Avrami's fractional order and Freundlich isotherm models best fitted the data for human albumin adsorption kinetic and isotherm studies for Fe3O4@TEOS and Fe3O4@TEOS@BSA, and the maximum adsorption capacities were 11.93 and 14.89 mg g-1, respectively. The protein desorption was influenced by the pH of samples and eluent volume. Electrophoresis in a polyacrylamide gel containing sodium dodecyl sulfate showed different patterns of serum protein bands when consecutive depletions were performed. The Fe3O4@TEOS showed greater affinity for HSA and efficiency in depletion. The process was versatile, and the depleted albumin proportion could be controlled by the nanoparticle masses. The proposed method is a powerful sample preparation technique for rapid, reliable, and specific depletion of albumin.
Collapse
Affiliation(s)
- Diailison Teixeira de Carvalho
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | | | | | - Luiz Fernando Gorup
- Department of Chemistry, Interdisciplinary Laboratory of Electrochemistry and Ceramics (LIEC), Federal University of São Carlos (UFSCar), Washington Luis Highway, Km 235, São Carlos, SP 13565-905, Brazil,; School of Chemistry and Food Science, Federal University of Rio Grande (FURG), Av. Italia km 8, Rio Grande, RS 96203-900, Brazil; Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Eduardo Costa Figueiredo
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
17
|
Bulin C, Zheng R, Guo T. Fabrication of ion imprinted chitosan-polyethylene glycol-polyvinyl alcohol hybrid membrane for selective recovery of Nd(III). Int J Biol Macromol 2024; 282:136845. [PMID: 39471927 DOI: 10.1016/j.ijbiomac.2024.136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/25/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Reclamation of rare earths from secondary sources is in line with both environmental remediation and sustainable utilization of rare earth resources. Herein, neodymium Nd(III) imprinted polyethylene glycol-polyvinyl alcohol hybrid membrane (IIP-CS-PEG-PVA) with high selectivity, increased specific surface area, acid stability and easy recyclability was constructed using chitosan (CS) as functional monomer, polyethylene glycol (PEG) as porogenic agent, polyvinyl alcohol (PVA) as filmogen, and Nd(III) as template ion. Batch adsorption indicates, adsorption of IIP-CS-PEG-PVA for Nd(III) is induced by electrostatic interaction, reaching rapid equilibration in 35 min at pH = 5. The maximum adsorption capacity determined by Langmuir fitting is 221.73 mg·g-1. Owing to its ion imprinting sites, IIP-CS-PEG-PVA exhibits selectivity coefficient 3.47, 3.72, 9.71, 8.33 towards Nd(III) for binary solution Nd/Eu, Nd/Dy, Nd/Cu, Nd/Cr, respectively. Being as a membrane, IIP-CS-PEG-PVA can be easily recovered for cyclic adsorption, whereby retaining adsorption quantity 73.95 mg·g-1 on Nd(III) in five consecutive cycles. Compared with other adsorbents, IIP-CS-PEG-PVA exhibits fast equilibrium, high adsorption capacity and selectivity towards Nd(III). For adsorption mechanism, versatile functional groups -OH, -NH2, -C(=O)NH-, C-O-C in IIP-CS-PEG-PVA provides heterogeneous affinity for Nd(III), giving rise to chemical adsorption. This work provides a novel strategy for fabricating bio adsorbent towards selective recovery of Nd(III).
Collapse
Affiliation(s)
- Chaoke Bulin
- College of Material Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China; Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China.
| | - Rongxiang Zheng
- College of Material Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Ting Guo
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China
| |
Collapse
|
18
|
Lee SY, Tan YH, Lau SY, Mubarak NM, Tan YY, Tan IS, Lee YH, Ibrahim ML, Karri RR, Khalid M, Chan YS, Adeoye JB. A state-of-the-art review of metal oxide nanoflowers for wastewater treatment: Dye removal. ENVIRONMENTAL RESEARCH 2024; 259:119448. [PMID: 38942255 DOI: 10.1016/j.envres.2024.119448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Dye wastewater consists of high solids concentrations, heavy metals, minor contaminants, dissolved chemical oxygen demand, and microorganisms. Nanoflowers are nanoparticles that resemble flowers when viewed at a microscopic level. Inorganic metal oxide nanoflowers have been discovered to be a potential source for overcoming this situation. Their flower-like features give them a higher surface area to volume ratio and porosity structure, which can absorb a significant amount of dye. The metal oxide nanoflower synthesized from different synthesis methods is used to compare which one is cost-effective and capable of generating a large scale of nanoflower. This review has demonstrated outstanding dye removal efficiency by applying inorganic nanoflowers to dye removal. Since both adsorption and photocatalytic reactions enhance the dye degradation process, complete dye degradation could be achieved. Meanwhile, the inorganic metal oxide nanoflowers' exemplary reusability characteristics with negligible performance drop further prove that this approach is highly sustainable and may help to save costs. This review has proven the momentum of obtaining high dye removal efficiency in wastewater treatment to conclude that the metal oxide nanoflower study is worth researching.
Collapse
Affiliation(s)
- Sing Ying Lee
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Yie Hua Tan
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam.
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam; Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Yee Yong Tan
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Yeong Huei Lee
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Mohd Lokman Ibrahim
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia; Centre of Nanomaterials Research, Institute of Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Centre of Research Impact and Outcome, Chitkara University, Punjab, 140401, India
| | - Yen San Chan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - John Busayo Adeoye
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| |
Collapse
|
19
|
Salfate G, Negrete-Vergara C, Azócar L, Xiao LP, Sun RC, Sánchez J. Lignin and functional polymer-based materials: Synthesis, characterization and application for Cr (VI) and As (V) removal from aqueous media. Int J Biol Macromol 2024; 278:134697. [PMID: 39147352 DOI: 10.1016/j.ijbiomac.2024.134697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/12/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
In this study, lignin derived from corncobs was chemically modified by substituting the hydroxyl groups present in its structure with methacrylate groups through a catalytic reaction using methacrylic anhydride, resulting in methacrylated lignin (ML). These MLs were incorporated in polymerization reaction of the monomer 2-[(acryloyloxy)ethyl trimethylammonium] chloride (Cl-AETA) and Cl-AETA, Cl-AETA/ML polymers were obtained, characterized (spectroscopic, thermal and microscopic analysis), and evaluated for removing Cr (VI) and As (V) from aqueous media in function of pH, contact time, initial metal concentrations and adsorbent amount. The Cl-AETA/ML polymers followed the Langmuir adsorption model for the evaluated metal anions and were able to remove up to 91 % of Cr (VI) with a qmax (maximum adsorption capacity) of 201 mg/g, while for As (V), up to 60 % could be removed with a qmax of 58 mg/g. The results demonstrate that simple modifications in lignin enhance its functionalization and properties, making it suitable for removing contaminants from aqueous media, showing promising results for potential future applications.
Collapse
Affiliation(s)
- Gabriel Salfate
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Santiago, Chile
| | - Camila Negrete-Vergara
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Santiago, Chile
| | - Laura Azócar
- Universidad Católica de la Santísima Concepción/Facultad de Ciencias, Departamento de Química Ambiental, Chile
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Julio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
20
|
Moradi O, Mirzaian M, Sedaghat S. Poly(methyl methacrylate) functionalized graphene oxide/CuO as nanocomposite for efficient removal of dye pollutants. Sci Rep 2024; 14:22318. [PMID: 39333146 PMCID: PMC11436928 DOI: 10.1038/s41598-024-72937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
In this research, the use of a three-component nanocomposite of graphene oxide-methyl methacrylate and copper(II) oxide (PMMA-GO-CuO) was investigated. The aim of synthesizing this nanocomposite is to removal dye pollutants, specifically methylene blue (MB) and methyl orange (MO), which are commonly used in dyeing industries, through adsorption. The study focuses on creating GO-CuO and PMMA-GO-CuO nanocomposites as effective adsorbents. A simple and quick method led to the development of the PMMA-GO-CuO nanocomposite, which shows enhanced physical and chemical properties. Key materials include graphene oxide, methyl methacrylate, and copper(II) oxide nanoparticles. Characterization techniques such as FT-IR, XRD, SEM, and TGA were used to analyze the nanocomposite. Results indicate that dye adsorption is more effective at lower pH levels, suggesting that the PMMA-GO-CuO nanocomposite can efficiently remove dyes from industrial wastewater. The experimental data showed that the Langmuir isotherm model accurately represented the equilibrium adsorption, with maximum capacities of 285.71 mg g-1 for methylene blue and 256.41 mg g-1 for methyl orange, indicating a single layer of adsorption. The kinetics followed a pseudo-second order model, suggesting that the adsorption process involves chemical bonding. Additionally, thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicated that the adsorption is spontaneous. The adsorption mechanism involves hydrogen bonding, π-π interactions, and electrostatic interactions. This study investigates how factors like pH, temperature, contact time, and dye concentration affect the adsorption of methyl orange and methylene blue dyes. A PMMA-GO-CuO nanocomposite was used, achieving 84% removal of MB and 35% removal of MO from industrial wastewater. This study highlights the promising potential of PMMA-GO-CuO nanocomposite as an effective material for the removal of dye pollutants from industrial wastewater. The results showed that the graphene oxide in the composite is effective for removing cationic dyes due to its negative charge. Further research will focus on the optimization of the synthesis process with the aim of achieving competitive performance of this nanocomposite on a large scale. These findings not only advance the field of nanocomposite materials but also provide a practical solution to an important environmental issue, demonstrating the innovation of the present study in the literature.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Masoud Mirzaian
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Sajjad Sedaghat
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Wołowicz A, Hubicki Z. Evaluation of Adsorption Ability of Lewatit ® VP OC 1065 and Diaion™ CR20 Ion Exchangers for Heavy Metals with Particular Consideration of Palladium(II) and Copper(II). Molecules 2024; 29:4386. [PMID: 39339381 PMCID: PMC11434107 DOI: 10.3390/molecules29184386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The adsorption capacities of ion exchangers with the primary amine (Lewatit® VP OC 1065) and polyamine (Diaion™ CR20) functional groups relative to Pd(II) and Cu(II) ions were tested in a batch system, taking into account the influence of the acid concentration (HCl: 0.1-6 mol/L; HCl-HNO3: 0.9-0.1 mol/L HCl-0.1-0.9 mol/L HNO3), phase contact time (1-240 min), initial concentration (10-1000 mg/L), agitation speed (120-180 rpm), bead size (0.385-1.2 mm), and temperature (293-333 K), as well as in a column system where the variable operating parameters were HCl and HNO3 concentrations. There were used the pseudo-first order, pseudo-second order, and intraparticle diffusion models to describe the kinetic studies and the Langmuir and Freundlich isotherm models to describe the equilibrium data to obtain better knowledge about the adsorption mechanism. The physicochemical properties of the ion exchangers were characterized by the nitrogen adsorption/desorption analyses, CHNS analysis, Fourier transform infrared spectroscopy, the sieve analysis, and points of zero charge measurements. As it was found, Lewatit® VP OC 1065 exhibited a better ability to remove Pd(II) than Diaion™ CR20, and the adsorption ability series for heavy metals was as follows: Pd(II) >> Zn(II) ≈ Ni(II) >> Cu(II). The optimal experimental conditions for Pd(II) sorption were 0.1 mol/L HCl, agitation speed 180 rpm, temperature 293 K, and bead size fraction 0.43 mm ≤ f3 < 0.6 mm for Diaion™ CR20 and 0.315-1.25 mm for Lewatit® VP OC 1065. The maximum adsorption capacities were 289.68 mg/g for Lewatit® VP OC 1065 and 208.20 mg/g for Diaion™ CR20. The greatest adsorption ability of Lewatit® VP OC 1065 for Pd(II) was also demonstrated in the column studies. The working ion exchange in the 0.1 mol/L HCl system was 0.1050 g/mL, much higher compared to Diaion™ CR20 (0.0545 g/mL). The best desorption yields of %D1 = 23.77% for Diaion™ CR20 and 33.57% for Lewatit® VP OC 1065 were obtained using the 2 mol/L NH3·H2O solution.
Collapse
Affiliation(s)
- Anna Wołowicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland
| | - Zbigniew Hubicki
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland
| |
Collapse
|
22
|
Manzar MS, Palaniandy P, Georgin J, Franco DSP, Zubair M, Muazu ND, Faisal W, El Messaoudi N. Synthesis of LDH-MgAl and LDH-MgFe composites for the efficient removal of the antibiotic from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55577-55596. [PMID: 39240434 DOI: 10.1007/s11356-024-34837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
In this study, novel lamellar double hydroxide composites (LDH-MgAl and LDH-MgFe) were synthesized at different metal salt ratios (1:1 to 3:1) and fully characterized using various techniques such as XRD, FTIR, SEM, EDS, and TGA. The resulting LDHs demonstrated a high affinity for efficiently removing tetracycline (TC) antibiotic from water, particularly at a moderate molar ratio of 3:1. This ratio exhibited improved structural characteristics, resulting in better TC uptake from water. The improved performance was supported by the increased abundance of surface functional groups (OH, NO3, CO32-, C-O-C, Fe-O, and Al-O-Al). The TGA analysis established the high stability of the LDHs when subjected to high temperatures. The kinetics of TC adsorption onto LDH fitted with the PSO (R2 = 0.935-0.994) and Avrami (R2 = 0.9528-0.9824) models, while the equilibrium data fitted the Liu and Langmuir isotherm models, with maximum monolayer adsorption capacities of 101.1 mg g-1 and 70.83 mg g-1, respectively-significantly higher than many reported values in the literature. The positive values of ΔH0 and ΔS0 indicate an endothermic process, with TC removal mechanisms influenced by physical interactions, such as hydrogen bonding, electrostatic interaction, and π-cation with the surface functional groups of the LDH adsorbents. These results suggest that LDH-MgAl and LDH-MgFe are promising adsorbents for the removal of TC from water.
Collapse
Affiliation(s)
- Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Jordana Georgin
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nuhu Dalhat Muazu
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Wamda Faisal
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr, University, 80000, Agadir, Morocco.
| |
Collapse
|
23
|
Dos Santos DF, Moreira WM, de Araújo TP, Bernardo MMS, de Figueiredo Ligeiro da Fonseca IM, Ostroski IC, de Barros MASD. Competitive adsorption of acetaminophen and caffeine onto activated Tingui biochar: characterization, modeling, and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53611-53628. [PMID: 38008834 DOI: 10.1007/s11356-023-31024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023]
Abstract
Tingui biochar (TB) activated with potassium hydroxide (TB-KOH) was synthesized in the present study. The adsorption capacity of TB-KOH was evaluated for the removal of acetaminophen and caffeine in monocomponent and bicomponent solutions. As a result, the study of the TB-KOH characterization as well as the adsorption kinetics, isotherm, thermodynamics, and a suggestion of the global adsorption mechanism are presented. TB-KOH was characterized through physical-chemical analysis to understand its surface morphology and how it contributes to the adsorption of these drugs. Furthermore, modelling using advanced statistical physical models was performed to describe how acetaminophen and caffeine molecules are adsorbed in the active sites of TB-KOH. Through the characterizations, it was observed that the activation with KOH contributed to the development of porosity and functional groups (-OH, C-O, and C = O) on the surface of TB. The monocomponent adsorption equilibrium was reached in 90 min with a maximum adsorption capacity of 424.7 and 350.8 mg g-1 for acetaminophen and caffeine, respectively. For the bicomponent solution adsorption, the maximum adsorption capacity was 199.4 and 297.5 mg g-1 for acetaminophen and caffeine, respectively. The isotherm data was best fitted to the Sips model, and the thermodynamic study indicated that acetaminophen removal was endothermic, while caffeine removal was exothermic. The mechanism of adsorption of acetaminophen and caffeine by TB-KOH was described by the involvement of hydrogen bonds and π-π interactions between the surface of TB-KOH and the molecules of the contaminants.
Collapse
Affiliation(s)
| | | | - Thiago Peixoto de Araújo
- Department of Chemical Engineering, Federal Technological University of Paraná, Ponta Grossa, Paraná, 84017-220, Brazil
| | - Maria Manuel Serrano Bernardo
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | | | | | | |
Collapse
|
24
|
Mo H, Shan H, Xu Y, Liao H, Peng S. Advancing Antimony(III) Adsorption: Impact of Varied Manganese Oxide Modifications on Iron-Graphene Oxide-Chitosan Composites. Molecules 2024; 29:4021. [PMID: 39274869 PMCID: PMC11397251 DOI: 10.3390/molecules29174021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Antimony (Sb) is one of the most concerning toxic metals globally, making the study of methods for efficiently removing Sb(III) from water increasingly urgent. This study uses graphene oxide and chitosan as the matrix (GOCS), modifying them with FeCl2 and four MnOx to form iron-manganese oxide (FM/GC) at a Fe/Mn molar ratio of 4:1. FM/GC quaternary composite microspheres are prepared, showing that FM/GC obtained from different MnOx exhibits significant differences in the ability to remove Sb(III) from neutral solutions. The order of Sb(III) removal effectiveness is MnSO4 > KMnO4 > MnCl2 > MnO2. The composite microspheres obtained by modifying GOCS with FeCl2 and MnSO4 are selected for further batch experiments and characterization tests to analyze the factors and mechanisms influencing Sb(III) removal. The results show that the adsorption capacity of Sb(III) decreases with increasing pH and solid-liquid ratio, and gradually increases with the initial concentration and reaction time. The Langmuir model fitting indicates that the maximum adsorption capacity of Sb(III) is 178.89 mg/g. The adsorption mechanism involves the oxidation of the Mn-O group, which converts Sb(III) in water into Sb(V). This is followed by ligand exchange and complex formation with O-H in FeO(OH) groups, and further interactions with C-OH, C-O, O-H, and other functional groups in GOCS.
Collapse
Affiliation(s)
- Huinan Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huimei Shan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center of Water Pollution Control and Water Security in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yuqiao Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center of Water Pollution Control and Water Security in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Haimin Liao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center of Water Pollution Control and Water Security in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Sanxi Peng
- College of Earth Science, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
25
|
Kussainova B, Tazhkenova G, Kazarinov I, Burashnikova M, Nurlybayeva A, Seitbekova G, Kantarbayeva S, Murzakasymova N, Baibazarova E, Altynbekova D, Shinibekova A, Bazarkhankyzy A. Adsorption of Bichromate and Arsenate Anions by a Sorbent Based on Bentonite Clay Modified with Polyhydroxocations of Iron and Aluminum by the "Co-Precipitation" Method. Molecules 2024; 29:3709. [PMID: 39125112 PMCID: PMC11314478 DOI: 10.3390/molecules29153709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The physicochemical properties of natural bentonite and its sorbents were studied. It has been established the modification of natural bentonites using polyhydroxoxides of iron (III) (mod.1_Fe_5-c) and aluminum (III) (mod.1_Al_5-c) by the "co-precipitation" method led to changes in their chemical composition, structure, and sorption properties. It was shown that modified sorbents based on natural bentonite are finely porous (nanostructured) objects with a predominance of pores of 1.5-8.0 nm in size. The modification of bentonite with iron (III) and aluminum compounds by the "co-precipitation" method also leads to an increase in the sorption capacity of the obtained sorbents with respect to bichromate and arsenate anions. A kinetic analysis showed that, at the initial stage, the sorption process was controlled by an external diffusion factor, that is, the diffusion of the sorbent from the solution to the liquid film on the surface of the sorbent. The sorption process then began to proceed in a mixed diffusion mode when it limited both the external diffusion factor and the intra-diffusion factor (diffusion of the sorbent to the active centers through the system of pores and capillaries). To clarify the contribution of the chemical stage to the rate of adsorption of bichromate and arsenate anions by the sorbents under study, kinetic curves were processed using equations of chemical kinetics (pseudo-first-order, pseudo-second-order, and Elovich models). It was found that the adsorption of the studied anions by the modified sorbents based on natural bentonite was best described by a pseudo-second-order kinetic model. The high value of the correlation coefficient for the Elovich model (R2 > 0.9) allows us to conclude that there are structural disorders in the porous system of the studied sorbents, and their surfaces can be considered heterogeneous. Considering that heterogeneous processes occur on the surface of the sorbent, it is natural that all surface properties (structure, chemical composition of the surface layer, etc.) play an important role in anion adsorption.
Collapse
Affiliation(s)
- Bakytgul Kussainova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Gaukhar Tazhkenova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Ivan Kazarinov
- Department of Physical Chemistry, Saratov State University, Saratov 410000, Russia; (I.K.); (M.B.)
| | - Marina Burashnikova
- Department of Physical Chemistry, Saratov State University, Saratov 410000, Russia; (I.K.); (M.B.)
| | - Aisha Nurlybayeva
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Gulnaziya Seitbekova
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Saule Kantarbayeva
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Nazgul Murzakasymova
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Elvira Baibazarova
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Dinara Altynbekova
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Assem Shinibekova
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Aidana Bazarkhankyzy
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
- Department of General and Biological Chemistry, Astana Medical University, Beibitshilik Str., 49a, Astana 010000, Kazakhstan
| |
Collapse
|
26
|
Kumari S, Chowdhry J, Kumar M, Garg MC. Machine learning (ML): An emerging tool to access the production and application of biochar in the treatment of contaminated water and wastewater. GROUNDWATER FOR SUSTAINABLE DEVELOPMENT 2024; 26:101243. [DOI: 10.1016/j.gsd.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
27
|
Correa-Soto CE, Sengupta R, Gonzales I, Schupp S, Bejgum B, Alvarez-Nunez F, Kiang YH. Mechanistic Insights into Propylparaben Sorption on Polyvinyl Chloride. J Pharm Sci 2024; 113:2314-2319. [PMID: 38580143 DOI: 10.1016/j.xphs.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
The mechanism of loss of propylparaben potency from formulations when in contact with polyvinyl chloride has been determined. It is caused by the adsorption of propylparaben onto polyvinyl chloride surfaces. The adsorption kinetics is best described using a pseudo-second order model based on non-linear fit. The rate of adsorption increases with increasing bulk concentration of propylparaben. Adsorption equilibrium isotherm was fitted to three isotherm models: Langmuir, Freundlich, and Temkin, using non-linear fit. The Freundlich and Temkin models show the best fit, indicating a multi-layer adsorption. Using this case study, we present a methodology to provide mechanistic insights into the compatibility data between pharmaceutical ingredients and product contact materials when sorption is involved.
Collapse
Affiliation(s)
- Clara E Correa-Soto
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Rajarshi Sengupta
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Isaiah Gonzales
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Sydney Schupp
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Bhanu Bejgum
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Fernando Alvarez-Nunez
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Y-H Kiang
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| |
Collapse
|
28
|
Carvalho CMD, Sanches-Neto FO, Carvalho-Silva VH, Ascheri DPR, Signini R. Response surface and DFT protocols for improvement of the adsorption process of lignocellulosic-based biomass for the removal of basic dyes. Int J Biol Macromol 2024; 275:133208. [PMID: 38889837 DOI: 10.1016/j.ijbiomac.2024.133208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Jatobá-do-cerrado fruit shells, archetypical of lignocellulosic-based biomass, were used as an adsorbent to remove crystal violet (CV) and methylene blue (MB) from water. The adsorbent was characterized using various techniques, and kinetic studies showed dye adsorption followed second-order kinetics. An experimental design investigated the effects of pH and temperature on removal efficiency, with a quadratic model fitting the data best. The results suggest pH influences MB's adsorption capacity more than temperature and at 25 °C and pH 8, MB had a desirability value of 0.89, with 95 % removal efficiency. For CV, temperature had a greater influence, with a desirability value of 0.874 at 25 °C and pH 10, and 95 % removal efficiency. Adsorption isotherm studies revealed maximum adsorption capacities of 123.0 mg·g-1 and 113.0 mg·g-1 for CV and MB, respectively. Experimental thermodynamic parameters indicated an endothermic and spontaneous process which it was supported by quantum chemistry calculations. The protocols developed confirmed the potential for adsorbing CV and MB dyes in water, achieving over 73.1 and 74.4 mg g-1 dyes removal.
Collapse
Affiliation(s)
| | - Flávio Olimpio Sanches-Neto
- Laboratory for Modeling of Physical and Chemical Transformations, Theoretical and Structural Chemistry Group, Goiás State University, 75132-903 Anápolis, Brazil; Instituto Federal de Goiás, IFG-Câmpus Valparaíso de Goiás, GO 72876-601, Brazil
| | - Valter Henrique Carvalho-Silva
- Laboratory for Modeling of Physical and Chemical Transformations, Theoretical and Structural Chemistry Group, Goiás State University, 75132-903 Anápolis, Brazil
| | | | - Roberta Signini
- Goiás State University, Central Campus, Anápolis, PO Box 459, Goiás 75001-970, Brazil.
| |
Collapse
|
29
|
Zhu J, Wang X, Jiang Q, Duan J, Wang H. Green electrospun Janus membrane of polyether block amide (PEBA) doped with hierarchical magnesium hydrogen phosphate for the removal of pharmaceuticals and personal care products. J Colloid Interface Sci 2024; 667:32-43. [PMID: 38615621 DOI: 10.1016/j.jcis.2024.03.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
It has been a challenge to prepared polyether block amide (PEBA) fibrous membrane via solution electrospinning. The only few reported methods though involved hazardous solvents and surfactants which were against the principle of green chemistry. In this work, uniform fibrous membrane of PEBA was successfully fabricated by solution electrospinning with a bio-based solvent dihydrolevoglucosenone (Cyrene). To further improve the mechanical strength and adsorption performance of the PEBA membrane, a hierarchical magnesium hydrogen phosphate (MgHPO4·1.2H2O, MHP) was synthesized to blend evenly into the PEBA matrix. A Janus MHP/PEBA membrane with one side of hydrophobic surface and the other side of hydrophilic surface was subsequently prepared, which exhibited fast adsorption, high capacity, good selectivity and reusability towards ibuprofen, acetaminophen, carbamazepine and triclosan. In addition, the Janus membrane showed high removal efficiency of the above contaminants in secondary wastewater effluent with good long term stability. It demonstrated that this Janus MHP/PEBA membrane had a good potential in practical wastewater treatment.
Collapse
Affiliation(s)
- Jiaxin Zhu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Quantong Jiang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haizeng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
30
|
Asman MKA, Lutpi NA, Wong YS, Ong SA, Hanif MA, Ibrahim N, Dahalan FA, Taweepreda W, Raja Nazri RNH. Unravelling the kinetics, isotherms, thermodynamics, and mass transfer behaviours of Zeolite Socony Mobil - 5 in removing hydrogen sulphide resulting from a dark fermentative biohydrogen production process. Phys Chem Chem Phys 2024. [PMID: 39018044 DOI: 10.1039/d4cp01421a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Research into the speciation of sulfur and hydrogen molecules produced through the complex process of thermophilic dark fermentation has been conducted. Detailed surface studies of solid-gas systems using real biogas (biohydrogen) streams have unveiled the mechanisms and specific interactions between these gases and the physicochemical properties of a zeolite as an adsorbent. These findings highlight the potential of zeolites to effectively capture and interact with these molecules. In this study, the hydrogen sulphide removal analysis was conducted using 0.8 g of the adsorbent and at various reaction temperatures (25-125 °C), a flow rate of 100 mL min-1, and an initial concentration of approximately 5000 ppm hydrogen sulphide. The reaction temperature has been observed to be an essential parameter of Zeolite Socony Mobil - 5 adsorption capacity. The optimum adsorption capacity attains a maximum value of 0.00890 mg g-1 at an optimal temperature of 25 °C. The formation of sulphur species resulting from the hydrogen sulphide adsorption on the zeolite determines the kinetics, thermodynamics, and mass transfer behaviours of Zeolite Socony Mobil - 5 in hydrogen sulphide removal and Zeolite Socony Mobil - 5 is found to improve the quality of biohydrogen produced in thermophilic environments. Biohydrogen (raw gas) yield was enhanced from 2.48 mol H2 mol-1 hexose consumed before adsorption to 2.59 mol H2 mol-1 hexose consumed after adsorption at a temperature of 25 °C. The Avrami kinetic model was fitted for hydrogen sulphide removal on Zeolite Socony Mobil - 5. The process is explained well and fitted using the Temkin isotherm model and the investigation into thermodynamics reveals that the adsorption behaviour is exothermic and non-spontaneous. Furthermore, the gas molecule's freedom of movement becomes random. The adsorption phase is restricted by intra-particle diffusion followed by film diffusion during the transfer of hydrogen sulphide into the pores of Zeolite Socony Mobil - 5 prior to adsorption on its active sites. The utilisation of Zeolite Socony Mobil - 5 for hydrogen sulphide removal offers the benefit of reducing environmental contamination and exhibiting significant applications in industrial operations.
Collapse
Affiliation(s)
- Muhammad Khairul Adha Asman
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Nabilah Aminah Lutpi
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Soon-An Ong
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Muhammad Adli Hanif
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Naimah Ibrahim
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Farrah Aini Dahalan
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Wirach Taweepreda
- Faculty of Science, Prince of Songkla University (PSU), Hat-Yai 90110, Thailand
| | - Raja Nazrul Hakim Raja Nazri
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988, Kawasan Perindustrian Bandar Vendor, 78000 Alor Gajah, Melaka, Malaysia
| |
Collapse
|
31
|
Sivaranjanee R, Senthil Kumar P, Chitra B, Rangasamy G. A critical review on biochar for the removal of toxic pollutants from water environment. CHEMOSPHERE 2024; 360:142382. [PMID: 38768788 DOI: 10.1016/j.chemosphere.2024.142382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
As an effort to tackle some of the most pressing ecological issues we are currently experiencing, there has been an increasing interest in employing biomass-derived char products in various disciplines. Thermal combustion of biomass results in biochar production, which is a remarkably rich source of carbon. Not only does the biochar obtained by the thermochemical breakdown of biomass lower the quantity of carbon released into the environment, but it also serves as an eco-friendly substitute for activated carbon (AC) and further carbon-containing products. An overview of using biochar to remove toxic pollutants is the main subject of this article. Several techniques for producing biochar have been explored. The most popular processes for producing biochar are hydrothermal carbonization, gasification and pyrolysis. Carbonaceous materials, alkali, acid and steam are all capable of altering biochar. Depending on the environmental domains of applications, several modification techniques are chosen. The current findings on characterization and potential applications of biochar are compiled in this survey. Comprehensive discussion is given on the fundamentals regarding the formation of biochar. Process variables influencing the yield of biochar have been summarized. Several biochars' adsorption capabilities for expulsion pollutants under various operating circumstances are compiled. In the domain of developing biochar, a few suggestions for future study have been given.
Collapse
Affiliation(s)
- R Sivaranjanee
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - B Chitra
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
32
|
Kuśmierek K, Świątkowski A, Wierzbicka E, Legocka I. Modified Halloysite as an Adsorbent for the Removal of Cu(II) Ions and Reactive Red 120 Dye from Aqueous Solutions. Molecules 2024; 29:3099. [PMID: 38999051 PMCID: PMC11243603 DOI: 10.3390/molecules29133099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
The adsorption of copper ions and Reactive Red 120 azo dye (RR-120) as models of water pollutants on unmodified halloysite (H-NM), as well as halloysites modified with sulfuric acid (H-SA) and (3-aminopropyl)triethoxysilane (H-APTES), was investigated. The results showed that adsorption of both the adsorbates was pH-dependent and increased with the increase in halloysite dosage. The adsorption kinetics were evaluated and the results demonstrated that the adsorption followed the pseudo-second-order model. The adsorption isotherms of Cu(II) ions and RR-120 dye on the halloysites were described satisfactorily by the Langmuir model. The maximum adsorption capacities for the Cu(II) ions were 0.169, 0.236, and 0.507 mmol/g, respectively, for H-NM, H-SA, and H-APTES indicating that the NH2-functionalization rather than the surface area of the adsorbents was responsible for the enhanced adsorption. The adsorption capacities for RR-120 dye were found to be 9.64 μmol/g for H-NM, 75.76 μmol/g for H-SA, and 29.33 μmol/g for H-APTES. The results demonstrated that APTES-functionalization and sulfuric acid activation are promising modifications, and both modified halloysites have good application potential for heavy metals as well as for azo dye removal.
Collapse
Affiliation(s)
- Krzysztof Kuśmierek
- Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland;
| | - Andrzej Świątkowski
- Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland;
| | - Ewa Wierzbicka
- Department of Polymer Technology and Processing, Łukasiewicz-Industrial Chemistry Institute, 01-793 Warsaw, Poland; (E.W.); (I.L.)
| | - Izabella Legocka
- Department of Polymer Technology and Processing, Łukasiewicz-Industrial Chemistry Institute, 01-793 Warsaw, Poland; (E.W.); (I.L.)
| |
Collapse
|
33
|
Ismail UM, Vohra MS, Onaizi SA. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. ENVIRONMENTAL RESEARCH 2024; 251:118562. [PMID: 38447605 DOI: 10.1016/j.envres.2024.118562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Increased levels of heavy metals (HMs) in aquatic environments poses serious health and ecological concerns. Hence, several approaches have been proposed to eliminate/reduce the levels of HMs before the discharge/reuse of HMs-contaminated waters. Adsorption is one of the most attractive processes for water decontamination; however, the efficiency of this process greatly depends on the choice of adsorbent. Therefore, the key aim of this article is to review the progress in the development and application of different classes of conventional and emerging adsorbents for the abatement of HMs from contaminated waters. Adsorbents that are based on activated carbon, natural materials, microbial, clay minerals, layered double hydroxides (LDHs), nano-zerovalent iron (nZVI), graphene, carbon nanotubes (CNTs), metal organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) are critically reviewed, with more emphasis on the last four adsorbents and their nanocomposites since they have the potential to significantly boost the HMs removal efficiency from contaminated waters. Furthermore, the optimal process conditions to achieve efficient performance are discussed. Additionally, adsorption isotherm, kinetics, thermodynamics, mechanisms, and effects of varying adsorption process parameters have been introduced. Moreover, heavy metal removal driven by other processes such as oxidation, reduction, and precipitation that might concurrently occur in parallel with adsorption have been reviewed. The application of adsorption for the treatment of real wastewater has been also reviewed. Finally, challenges, limitations and potential areas for improvements in the adsorptive removal of HMs from contaminated waters are identified and discussed. Thus, this article serves as a comprehensive reference for the recent developments in the field of adsorptive removal of heavy metals from wastewater. The proposed future research work at the end of this review could help in addressing some of the key limitations facing this technology, and create a platform for boosting the efficiency of the adsorptive removal of heavy metals.
Collapse
Affiliation(s)
- Usman M Ismail
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad S Vohra
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
34
|
Ishaq S, Nadim AH, Amer SM, Elbalkiny HT. Optimization of graphene polypyrrole for enhanced adsorption of moxifloxacin antibiotic: an experimental design approach and isotherm investigation. BMC Chem 2024; 18:113. [PMID: 38872197 DOI: 10.1186/s13065-024-01208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The presence of antibiotics in water systems had raised a concern about their potential harm to the aquatic environment and human health as well as the possible development of antibiotic resistance. Herein, this study investigates the power of adsorption using graphene-polypyrrole (GRP-PPY) nanoparticles as a promising approach for the removal of Moxifloxacin HCl (MXF) as a model antibiotic drug. GRP-PPY nanoparticles synthesis was performed with a simple and profitable method, leading to the formation of high surface area particles with excellent adsorption properties. Characterization was assessed with various techniques, including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET). Box-Behnken experimental design was developed to optimize the adsorption process. Critical parameters such as initial antibiotic concentration, nanoparticle concentration, and pH were investigated. The Freundlich isotherm model provided a good fit to the experimental data, indicating multilayer adsorption of MXF onto the GRP-PPY-NP. As a result, a high adsorption capacity of MXF (92%) was obtained in an optimum condition of preparing 30 μg/mL of the drug to be adsorbed by 1 mg/mL of GRP-PPY-NP in pH 9 within 1 h in a room temperature. Moreover, the regeneration and reusability of GRP-PPY-NP were investigated. They could be effectively regenerated for 3 cycles using appropriate desorption agents without significant loss in adsorption capacity. Overall, this study highlights the power of GRP-PPY-NP as a highly efficient adsorbent for the removal of MXF from wastewater as it is the first time to use this NP for a pharmaceutical product which shows the study's novelty, and the findings provide valuable insights into the development of sustainable and effective wastewater treatment technologies for combating antibiotic contamination in aquatic environments.
Collapse
Affiliation(s)
- Sara Ishaq
- Analytical Chemistry Department, Faculty of Pharmacy, MSA University: October University for Modern Sciences and Arts, Cairo, Egypt.
| | - Ahmed H Nadim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sawsan M Amer
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba T Elbalkiny
- Analytical Chemistry Department, Faculty of Pharmacy, MSA University: October University for Modern Sciences and Arts, Cairo, Egypt
| |
Collapse
|
35
|
Zhang C, Chen W, Owens G, Chen Z. Recovery of rare earth elements from mine wastewater using alginate microspheres encapsulated with zeolitic imidazolate framework-8. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134435. [PMID: 38691933 DOI: 10.1016/j.jhazmat.2024.134435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
There is increasing demand and interest in efficient methods for the recovery of rare earth elements (REEs) from wastewater because of the growing concerns associated with the negative impacts of REEs-rich waste discharged on pristine ecosystems. Here, we designed a ZIF-8@ALG composite hydrogel by encapsulating zeolitic imidazolate frameworks-8 (ZIF-8) into sodium alginate and poly (vinyl alcohol) double cross-linked networks (ALG) for the recovery of REEs from mine wastewater. ZIF-8@ALG showed exceptional REEs adsorption performance with the most superior separation factor (Ho/Mn) of 597.5. For the REEs considered, the ZIF-8@ALG composite exhibited a preference for heavy REEs with high adsorption efficiencies (65.3 ∼ 97.2%) and distribution coefficients (2045.5 ∼ 28500.0 mL·g-1). Adsorption involved a combination of electrostatic attraction, complexation and ion exchange mechanisms. REEs adsorbed on ZIF-8@ALG could also be desorbed using sodium citrate via ion-exchange and complexation, thus achieving efficient REEs recovery. In addition, ZIF-8@ALG was stable and reusable, maintaining effective adsorption in wastewater over four consecutive cycles, where the optimal adsorption efficiency reached 80.0%. Overall, this study provided an effective and feasible method for the recovery of REEs in mine wastewater, and confirmed that ZIF-8-based materials have significant potential for REEs recovery applications in wastewater engineering treatment.
Collapse
Affiliation(s)
- Chenxin Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Wei Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| |
Collapse
|
36
|
Jourdain A, Taviot-Gueho C, Nielsen UG, Prévot V, Forano C. In-depth characterization of phosphate intercalated Mg Al Layered double hydroxides and study of the PO 4 release properties. Dalton Trans 2024; 53:9568-9577. [PMID: 38771566 DOI: 10.1039/d4dt00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Slow-release fertilizers (SRFs) form the core of innovative strategies in sustainable agriculture. Layered Double Hydroxides (LDH), known for their high capacity to sequester plant nutrients, especially phosphate, are emerging as promising candidates for SRF synthesis. The phosphate release properties of MgAl LDH (with a targeted Mg/Al ratio of 2.0) intercalated with HPO42- anions were assessed in various aqueous environments. A comprehensive analysis, including in-depth chemical and structural characterizations (ICP-OES, XRD, PDF, 27Al NMR, 31P NMR, FTIR, SEM) of the as-prepared phase unveiled a more intricate composition than anticipated for a pure or ideal Mg2Al-HPO4 LDH, encompassing an excess of intercalated phosphate in conjunction with K+. Beyond the intercalated phosphate, solid state 31P NMR speciation identified multiple HxPO4(-3+x) environments, indicating a portion of the phosphate reacting with intralayer Mg2+ to form K-struvite. Additionally, some phosphates were adsorbed onto the surface of amorphous aluminum hydroxide, a side phase formed during MgAl coprecipitation. The phosphate release demonstrated rapid kinetics, occurring within 6 days. Moreover, the released phosphate increased significantly when reducing the Solid/Liquid (S/L) ratio (58%) and further increasing in the presence of carbonate ions (90%). The released phosphate varied from 12% to 90% under different release conditions, transitioning from water to a 3.33 mM NaHCO3 aqueous solution at a low S/L ratio (from 20 mg LDH per mL to 0.02 mg LDH per mL). The simultaneous release of K+, Mg2+, Al3+ indicated the complete dissolution of the K-struvite and partial dissolution of phosphate intercalated MgAl LDH. These results enhanced our understanding of the mechanism governing phosphate release from MgAl LDH, paving the way for potential phosphate recovery by LDH or for the development of LDH-based SRFs.
Collapse
Affiliation(s)
- Alexandra Jourdain
- Université Clermont Auvergne, CNRS, INP Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Christine Taviot-Gueho
- Université Clermont Auvergne, CNRS, INP Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Vanessa Prévot
- Université Clermont Auvergne, CNRS, INP Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Claude Forano
- Université Clermont Auvergne, CNRS, INP Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
37
|
Puiatti GA, Elerate EM, de Carvalho JP, Luciano VA, de Carvalho Teixeira AP, Lopes RP, Teixeira de Matos A. Reuse of iron ore tailings as an efficient adsorbent to remove dyes from aqueous solution. ENVIRONMENTAL TECHNOLOGY 2024; 45:2308-2319. [PMID: 34839789 DOI: 10.1080/09593330.2021.2011427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
In this work, an iron ore tailings sample (IOT), collected from a tailings dam in Minas Gerais, Brazil, was characterized. The IOT presented point of zero charge of ∼ 6, specific surface area of 4 m2 g-1, and was mainly composed of hematite and quartz. Subsequently, experiments were performed to evaluate the adsorption of an anionic dye, Direct Red 80 (DR80), and a cationic dye, Methylene Blue (MB), by the IOT, studying the effects of its dose (doseIOT) and the solution initial pH (pH0). The DR80 removal increased with the decrease of the pH0 while the opposite effect occurred in the experiments with the MB, suggesting the process is governed by the adsorption resulting from electrostatic forces. The increase in the doseIOT increased the DR80 and MB removal, which can be attributed to the greater availability of adsorption sites. Pseudo-second order kinetic (R2 > 0.9994) and the Langmuir equilibrium isotherm (R2 > 0.9842) models described well the DR80 adsorption by the IOT, being the reaction rate and maximum adsorption capacity higher at lower pH0. In a regeneration experiment, it was possible to desorb almost entirely the DR80 using a NaOH solution. Additionally, the regenerated IOT was able to adsorb the DR80, demonstrating its reusability. In a preliminary assay, the IOT decreased the colour of the textile wastewater sample at pH0 3. Therefore, the results indicate the potential use of IOT for removing electric-charged pollutants by adsorption, especially anionic ones under acidic conditions.
Collapse
Affiliation(s)
- Gustavo Alves Puiatti
- Department of Environmental and Sanitary Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | - Antonio Teixeira de Matos
- Department of Environmental and Sanitary Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
38
|
Manninen M, Kangas T, Hu T, Varila T, Lassi U, Runtti H. Zn(II) removal from wastewater by an alkali-activated material prepared from steel industry slags: optimization and modelling of a fixed-bed process. ENVIRONMENTAL TECHNOLOGY 2024; 45:2519-2530. [PMID: 36756951 DOI: 10.1080/09593330.2023.2177565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Removal of dissolved zinc (Zn) from water by a novel alkali-activated material (AAM) prepared from steel industry slags in a fixed-bed column was investigated. Design of experiments was used to find the optimum operation parameters [flow rate ( Q ) , adsorbent mass, (m ads ), and initial Zn concentration (C 0 )] for the removal of Zn2+ from a ZnCl2 solution. Regression models for the breakthrough (q b ), and saturation (q sat ) capacities of the bed and three other response parameters as functions of Q , m ads and C 0 were fitted with coefficients of determination (R 2 ) ranging from 0.48 to 0.99. Experimental values of q b and q sat varied within 1.42-7.03 mg Zn/g and 10.57-17.25 mg Zn/g, respectively. The optimum operation parameters were determined to be Q = 1.64 ml/min and m ads = 4.5 g, whereas C 0 had negligible effect on the response parameters in the range 73-107 mg Zn/l. Finally, three empirical breakthrough curve (BTC) models were employed to describe the individual BTCs of which the modified dose - response model was found to give the best fit (0.960 ≤ R 2 ≤ 0.998). The results of the present work demonstrate that the novel AAM has considerable potential to be utilized in water purification applications.
Collapse
Affiliation(s)
- Mikael Manninen
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Teija Kangas
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Tao Hu
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Toni Varila
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Ulla Lassi
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Hanna Runtti
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| |
Collapse
|
39
|
Lobo WV, Loureiro Paes OADR, Pinheiro W, Soares ER, de Souza MP, Dos Santos Sousa A, Kumar V, Iglauer S, de Freitas FA. Application of chemically modified waste tucumã (Astrocaryum aculeatum) seeds in the biosorption of methylene blue: kinetic and thermodynamic parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34097-34111. [PMID: 38693458 DOI: 10.1007/s11356-024-33517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Dye effluents cause diverse environmental problems. Methylene blue (MB) dye stands out since it is widely used in the textile industry. To reduce the pollution caused by the MB, we developed biosorbents from tucumã seeds, where the in natura seeds were treated with NaOH (BT) and H3PO4 (AT) solutions and characterized by Boehm titration, point of zero charges, FTIR, TGA, BET, and SEM. It was observed that the acid groups predominate on the surface of the three biosorbents. The process was optimized for all biosorbents at pH = 8, 7.5 g/L, 240 min, C0 = 250 mg/L, and 45 ℃. BT was more efficient in removing MB (96.20%; QMax = 35.71 mg/g), while IT and AT removed around 60% in similar conditions. The adsorption process best fits Langmuir and Redlich-Peterson isotherms, indicating a hybrid adsorption process (monolayer and multilayer) and pseudo-second-order kinetics. Thermodynamic data confirmed an endothermic and spontaneous adsorption process, mainly for BT. MB was also recovered through a desorption process with ethanol, allowing the BT recycling and reapplication of the dye. Thus, an efficient and sustainable biosorbent was developed, contributing to reducing environmental impacts.
Collapse
Affiliation(s)
- Wyvirlany Valente Lobo
- Programa de Pós-Graduação Em Química, Universidade Federal Do Amazonas, Setor Norte, Manaus, AM, 69080-900, Brazil
| | | | - William Pinheiro
- Programa de Pós-Graduação Em Química, Universidade Federal Do Amazonas, Setor Norte, Manaus, AM, 69080-900, Brazil
| | - Elzalina Ribeiro Soares
- Centro de Estudos Superiores de Tefé, Universidade Do Estado Do Amazonas, Estrada Do Bexiga, 1085, Bairro Jerusalém, Tefé, AM, 69470-000, Brazil
| | - Mayane Pereira de Souza
- Centro de Biotecnologia da Amazônia, Av. Gov. Danilo de Matos Areosa, 690 - Distrito Industrial I, Manaus, AM, 69075-351, Brazil
| | - Airi Dos Santos Sousa
- Centro de Biotecnologia da Amazônia, Av. Gov. Danilo de Matos Areosa, 690 - Distrito Industrial I, Manaus, AM, 69075-351, Brazil
| | - Vineet Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Stefan Iglauer
- School of Engineering, Edith Cowan University, 270 Joondalup Dr., Joondalup, WA, 6027, Australia
| | - Flávio A de Freitas
- Programa de Pós-Graduação Em Química, Universidade Federal Do Amazonas, Setor Norte, Manaus, AM, 69080-900, Brazil.
- Centro de Biotecnologia da Amazônia, Av. Gov. Danilo de Matos Areosa, 690 - Distrito Industrial I, Manaus, AM, 69075-351, Brazil.
| |
Collapse
|
40
|
Yin Y, Fan C, Cheng L, Shan Y. Adsorption of perfluoroalkyl substances on deep eutectic solvent-based amorphous metal-organic framework: Structure and mechanism. ENVIRONMENTAL RESEARCH 2024; 248:118261. [PMID: 38272299 DOI: 10.1016/j.envres.2024.118261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a class of emerging organic pollutants characterized by high toxicity, environmental persistence, and widespread detection in water sources. The removal of PFASs from water is a matter of global concern, given their detrimental impact on both the environment and public health. Many commonly used PFAS adsorbents demonstrate limited adsorption capacities and/or slow adsorption kinetics. Therefore, there is an urgent need for the development of efficient adsorbents. For the first time, this work systematically investigated the performance of a deep eutectic solvent (DES)-based amorphous metal-organic framework (MOF) for the adsorption of PFASs with different carbon-chain lengths under the state of the mixture in aquatic environments. The adsorption mechanism was probed by a suite of adsorption kinetics studies, adsorption isotherm profiling, spectral characterization, and ab initio molecular dynamics (AIMD) simulations, revealing that PFAS adsorption is driven by synergistic capturing effects including acid/base coordination, CF-π (carbon-fluorine-π), hydrogen bonding, and hydrophobic interactions. Furthermore, the adsorption processes of short-chain and long-chain targets were found to involve different rate-controlling steps and interaction sites. Hydrophobic interactions facilitated the swift arrival of long-chain PFASs at the coordinatively interacting sites between carboxyl termini and Lewis acid Zr unsaturated sites, thanks to their lower reaction barriers. On the other hand, the adsorption of short-chain PFASs primarily relied on a Zr hydroxyl-based ligand exchange force, which would take place at Brønsted acid sites. The existence of massive structural disorder in amorphous UiO-66 led to the development of larger pores, thus improving the accessibility of abundant adsorption sites and facilitating adsorption and diffusion. The presence of multiple types of interactions and flexible structure in defect-rich amorphous UiO-66 significantly increased the exposure of functional groups to the adsorbates. Additionally, this material possessed outstanding regeneration efficiency and outperformed other MOF-based adsorbents with high affinity for targets. It enhances our understanding of the adsorption performances and mechanisms of amorphous materials toward PFASs, thereby paving the way for designing more efficient PFAS adsorbents.
Collapse
Affiliation(s)
- Yaqi Yin
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chen Fan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Linru Cheng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuwei Shan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
41
|
Dubey S, Mishra RK, Kaya S, Rene ER, Giri BS, Sharma YC. Microalgae derived honeycomb structured mesoporous diatom biosilica for adsorption of malachite green: Process optimization and modeling. CHEMOSPHERE 2024; 355:141696. [PMID: 38499077 DOI: 10.1016/j.chemosphere.2024.141696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
The present study investigated the removal of malachite green dye from aquifers by means of microalgae-derived mesoporous diatom biosilica. The various process variables (dye concentration, pH, and adsorbent dose) influencing the removal of the dye were optimized and their interactive effects on the removal efficiency were explored by response surface methodology. The pH of the solution (pH = 5.26) was found to be the most dominating among other tested variables. The Langmuir isotherm (R2 = 0.995) best fitted the equilibrium adsorption data with an adsorption capacity of 40.7 mg/g at 323 K and pseudo-second-order model (R2 = 0.983) best elucidated the rate of dye removal (10.6 mg/g). The underlying mechanism of adsorption was investigated by Weber-Morris and Boyd models and results revealed that the film diffusion governed the overall adsorption process. The theoretical investigations on the dye structure using DFT-based chemical reactivity descriptors indicated that malachite green cations are electrophilic, reactive and possess the ability to accept electrons, and are strongly adsorbed on the surface of diatom biosilica. Also, the Fukui function analysis proposed the favorable adsorption sites available on the adsorbent surface.
Collapse
Affiliation(s)
- Shikha Dubey
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal) 246174, India; Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India.
| | - Rakesh K Mishra
- Department of Chemistry, National Institute of Technology, Uttarakhand (NITUK), Srinagar (Garhwal) 246174, India
| | - Savaş Kaya
- Department of Pharmacy, Health Services Vocational School, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft 2601DA, the Netherlands
| | - Balendu Shekher Giri
- Sustainability Cluster, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
| | - Yogesh C Sharma
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
42
|
Jaramillo-Fierro X, Cuenca G. Theoretical and Experimental Analysis of Hydroxyl and Epoxy Group Effects on Graphene Oxide Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:714. [PMID: 38668208 PMCID: PMC11054681 DOI: 10.3390/nano14080714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
In this study, we analyzed the impact of hydroxyl and epoxy groups on the properties of graphene oxide (GO) for the adsorption of methylene blue (MB) dye from water, addressing the urgent need for effective water purification methods due to industrial pollution. Employing a dual approach, we integrated experimental techniques with theoretical modeling via density functional theory (DFT) to examine the atomic structure of GO and its adsorption capabilities. The methodology encompasses a series of experiments to evaluate the performance of GO in MB dye adsorption under different conditions, including differences in pH, dye concentration, reaction temperature, and contact time, providing a comprehensive view of its effectiveness. Theoretical DFT calculations provide insights into how hydroxyl and epoxy modifications alter the electronic properties of GO, improving adsorption efficiency. The results demonstrate a significant improvement in the dye adsorption capacity of GO, attributed to the interaction between the functional groups and MB molecules. This study not only confirms the potential of GO as a superior adsorbent for water treatment, but also contributes to the optimization of GO-based materials for environmental remediation, highlighting the synergy between experimental observations and theoretical predictions in advances in materials science to improve sustainability.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Guisella Cuenca
- Ingeniería Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador;
| |
Collapse
|
43
|
Umeh CT, Nduka JK, Mogale R, Akpomie KG, Okoye NH. Acid-activated corn silk as a promising phytosorbent for uptake of Malachite green and Cd (II) ion from simulated wastewater: equilibrium, kinetic and thermodynamic studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1593-1610. [PMID: 38623998 DOI: 10.1080/15226514.2024.2339478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Malachite green (MG) dye and cadmium metal ion are toxic pollutants that should be removed from aqueous environment. The recent study aimed to examine the adsorption behavior of MG dye and Cd (II) from wastewater onto low-cost adsorbent prepared by activating corn silk with nitric acid (ACS) and characterized by SEM, FTIR, XRD, BET and TGA. The optimum MG and Cd (II) adsorption was observed at pH 7 and pH 9 and maximum uptake of both pollutants was at 0.5 g dosage, 60 mins contact time and 20 mg/L initial concentration. The retention of dye and metal ion by the studied adsorbent was best fit to Langmuir isotherm and Pseudo-second order kinetics. The maximum monolayer coverage capacity of ACS for MG dye and Cd (II) ion was 18.38 mg/g and 25.53 mg/g, respectively. Thermodynamic studies predicted a spontaneous reaction with exothermic process for MG dye whereas an endothermic and spontaneous process was confirmed for Cd ion based on estimated parameters. The adsorption mechanism of MG dye and Cd (II) uptake was by combination of electrostatic interaction, pore diffusion, ion exchange, pie-pie attraction, hydrogen bonding, and complexation. The adsorbed pollutants were effectively desorbed with significant regeneration efficiency after successive five cycles that proved the potential of low-cost biosorbent for selective sequestration of cationic dye and divalent metal ion from effluents.
Collapse
Affiliation(s)
- Chisom T Umeh
- Department of Chemistry, Nnamdi Azikiwe University, Awka, Anambra, Nigeria
| | | | - Refilwe Mogale
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Nkechi H Okoye
- Department of Chemistry, Nnamdi Azikiwe University, Awka, Anambra, Nigeria
| |
Collapse
|
44
|
Fernández D, Abalde J, Torres E. The Biosorption Capacity of the Marine Microalga Phaeodactylum tricornutum for the Removal of Toluidine Blue from Seawater. TOXICS 2024; 12:277. [PMID: 38668500 PMCID: PMC11053973 DOI: 10.3390/toxics12040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
A wide variety of dyes, such as toluidine blue (TB), are used daily for a multitude of purposes. After use, many of these compounds end up in aqueous effluents, reaching natural environments, including marine environments. The removal of these pollutants from marine environments must be considered a priority problem. The search for natural techniques, such as biosorption, is a preferred option to eliminate pollution from natural environments. However, biosorption studies in seawater are scarce. For this reason, the living biomass of the marine microalga Phaeodactylum tricornutum was studied to determine its ability to remove TB from seawater. The kinetics of the biosorption process, the isotherms, and the effect of light and pH were determined. This biomass showed a maximum TB removal capacity of 45 ± 2 mg g-1 in the presence of light. Light had a positive effect on the TB removal capacity of this living biomass. The best fitting kinetics was the pseudo-second order kinetics. The efficiency of the removal process increased with increasing pH. This removal was more effective at alkaline pH values. The results demonstrated the efficacy of P. tricornutum living biomass for the efficient removal of toluidine blue dye from seawater both in the presence and absence of light.
Collapse
Affiliation(s)
| | | | - Enrique Torres
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071 A Coruña, Spain; (D.F.L.); (J.A.A.)
| |
Collapse
|
45
|
Pereira L, Castillo V, Calero M, González-Egido S, Martín-Lara MÁ, Solís RR. Promoting the circular economy: Valorization of a residue from industrial char to activated carbon with potential environmental applications as adsorbents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120753. [PMID: 38531130 DOI: 10.1016/j.jenvman.2024.120753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Pyrolysis of residues enriched with carbon, such as in agroforestry or industrial activities, has been postulated as an emerging technology to promote the production of biofuels, contributing to the circular economy and minimizing waste. However, during the pyrolysis processes a solid fraction residue is generated. This work aims to study the viability of these chars to develop porous carbonaceous materials that can be used for environmental applications. Diverse chars discharged by an industrial pyrolysis factory have been activated with KOH. Concretely, the char residues came from the pyrolysis of olive stone, pine, and acacia splinters, spent residues fuel, and cellulose artificial casings. The changes in the textural, structural, and composition characteristics after the activation process were studied by N2 adsorption-desorption isotherms, scanning electron microscopy, FTIR, elemental analysis, and XPS. A great porosity was developed, SBET within 776-1186 m2 g-1 and pore volume of 0.37-0.59 cm3 g-1 with 70-90% of micropores contribution. The activated chars were used for the adsorption of CO2, leading to CO2 maximum uptakes of 90-130 mg g-1. There was a good correlation between the CO2 uptake with microporosity and oxygenated surface groups of the activated chars. Moreover, their ability to adsorption of contaminants in aqueous solution was also evaluated. Concretely, there was studied the adsorption of aqueous heavy metals, i.e., Cd, Cu, Ni, Pb, and Zn, and organic pollutants of emerging concern such as caffeine, diclofenac, and acetaminophen.
Collapse
Affiliation(s)
- Ledicia Pereira
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Ventura Castillo
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Mónica Calero
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Sergio González-Egido
- Environment and Bioproducts Group, Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28871, Madrid, Spain
| | - M Ángeles Martín-Lara
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.
| | - Rafael R Solís
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
46
|
Singh J, Verma M. Waste derived modified biochar as promising functional material for enhanced water remediation potential. ENVIRONMENTAL RESEARCH 2024; 245:117999. [PMID: 38154567 DOI: 10.1016/j.envres.2023.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
The waste management and water purification are daunting environmental challenges. Biochar, a carbonaceous material prepared from diverse organic waste (agricultural, household residues and municipal sewage sludge) has garnered substantial attention due to its excellent attributes, including carbon content, cation exchange efficacy, ample specific surface area, and structural robustness. Thus, the present review comprehensively analyzes bio waste-derived biochar with a particular emphasis on water remediation applications. This article primarily delves into various strategies for modifying biochar, elucidating the underlying mechanisms behind these modifications and their potential for bolstering pollutant removal efficiency. Furthermore, it addresses the impact of functionalization on both biochar stability and cost for commercialization. Lastly, the article outlines key developments, SWOT analysis, and future prospects, offering insights into the practical execution of biochar applications at a larger scale. Therefore, this article paves the way for future research to deepen the understanding of modified biochar with mechanisms for exploring water remediation applications in a more sustainable manner.
Collapse
Affiliation(s)
- Jagpreet Singh
- Department of Chemistry, Chandigarh University, Mohali - 140413, Punjab, India; University Centre for Research & Development, Chandigarh University, Mohali - 140413 , Punjab, India.
| | - Meenakshi Verma
- Department of Chemistry, Chandigarh University, Mohali - 140413, Punjab, India; University Centre for Research & Development, Chandigarh University, Mohali - 140413 , Punjab, India.
| |
Collapse
|
47
|
Liang X, Chen S, Zhang X, Hou Z, Lin X, Chao L. Effects of different aging methods on the ability of biochar to adsorb heavy metal cadmium and its physical and chemical properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19409-19422. [PMID: 38358633 DOI: 10.1007/s11356-024-32406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The aging process can affect the physical and chemical properties as well as adsorption capacity of biochar. This study focuses on the heavy metal cadmium (Cd) as the research object, and artificially ages biochar prepared from rice straw and corn straw through accelerated freeze-thaw cycles, alternating dry wet cycles, and ultraviolet light treatment, in order to evaluate the effects of different aging conditions on the physical and chemical properties of the two different types of biochar and on their adsorption capacities for Cd. After aging, the pH of rice and corn biochar decreased to varying degrees, respectively. The surface structure was ruptured, the average pore diameter was decreased, and the specific surface area was increased by 27.3%, 21.9%, and 9.8% (rice) and 95.4%, 27.7%, and 13.4% (corn). Ultraviolet light aging has the most significant impact on the elemental content of biochar, and the C content was decreased by 12.4% (rice) and 9.3% (corn). The O content was increased by 11.2% (rice) and 44.1% (corn), and the numbers of O/C, H/C, (O + N)/C, and oxygen-containing functional groups were increased. These results demonstrate that the aging process reduces the degree of aromatization of biochar, while enhancing its polarity and Cd adsorption capacity. Rice straw biochar (RSB) has a greater ability to adsorb Cd than corn straw biochar (CSB). In addition, ultraviolet light aging is particularly effective in increasing heavy metal adsorption.
Collapse
Affiliation(s)
- Xiao Liang
- College of Environment, Shenyang University, Shenyang, 110044, China
| | - Su Chen
- College of Environment, Shenyang University, Shenyang, 110044, China.
- College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Xiaoying Zhang
- College of Environment, Shenyang University, Shenyang, 110044, China
| | - Ziyan Hou
- College of Environment, Shenyang University, Shenyang, 110044, China
| | - Xiaonan Lin
- College of Environment, Shenyang University, Shenyang, 110044, China
| | - Lei Chao
- College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| |
Collapse
|
48
|
He D, Zhang Z, Zhang W, Zhang H, Liu J. Municipal sludge biochar skeletal sodium alginate beads for phosphate removal. Int J Biol Macromol 2024; 261:129732. [PMID: 38280708 DOI: 10.1016/j.ijbiomac.2024.129732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
A novel Fe/La decorative biochar filled in sodium alginate beads (SA-KBC-Fe/La) was prepared by a simple sol-gel method and applied to adsorb phosphate (P) efficiently from water in this study. The morphology, structure and chemical component of the hydrogel beads were characterized in detail. And the synthesized bead exhibited easy separation and high P uptake of 46.65 mg/g when the Fe: La was of 1: 2 at 298 K with initial P of 100 mg/L, which was much higher than SA gel bead. The adsorption showed that the optimal pH was 6, and the adsorption was met with pseudo-second-order kinetics and Langmuir isothermal models, indicating a chemical adsorption process. The adsorption capacity remained 82 % after 5 cycles of adsorption. The adsorption mechanism of P was mainly of ligand exchange and electrostatic attraction. Compared with other reported adsorbents, the modification of Fe/La could enhance the mechanical property of SA-KBC-Fe/La beads with increasing active sites. Additionally, the involved biochar could lead to excellent thermal stability and hierarchical porous structure of beads with larger specific surface area (54.22 m2/g). The study could provide new ideas for P removal and strategy for the final disposal of municipal sludge.
Collapse
Affiliation(s)
- Dandan He
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Zeyu Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Wenbo Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| | - Hong Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| | - Juanli Liu
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| |
Collapse
|
49
|
Nogueira M, Matos I, Bernardo M, Tarelho LAC, Ferraria AM, Botelho do Rego AM, Fonseca I, Lapa N. Recovery of rare earth elements (Nd 3+ and Dy 3+) by using carbon-based adsorbents from spent tire rubber. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:451-461. [PMID: 38113670 DOI: 10.1016/j.wasman.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Two samples of spent tire rubber (rubber A and rubber B) were submitted to thermochemical conversion by pyrolysis process. A450, B450 and A900, B900 chars were obtained from rubber A and rubber B at 450 °C and 900 °C, respectively. The chars were then applied as recovery agents of Nd3+ and Dy3+ from aqueous solutions in mono and bicomponent solutions, and their performance was benchmarked with a commercial activated carbon. The chars obtained at 900 °C were the most efficient adsorbents for both elements with uptake capacities around 30 mg g-1. The chars obtained at 450 °C presented uptake capacities similar to the commercial carbon (≈ 11 mg g-1). A900 and B900 chars presented a higher availability of Zn ions that favored the ion exchange mechanism. It was found that Nd3+ and Dy3+ were adsorbed as oxides after Zn was released from silicate structures (Zn2SiO4). A900 char was further selected to be tested with Nd/Dy binary mixtures and it was found a trend to adsorb a slightly higher amount of Dy3+ due to its smaller ionic radius. The uptake capacity in bicomponent solutions was generally higher than for single component solutions due to the higher driving force triggered by the higher concentration gradient.
Collapse
Affiliation(s)
- M Nogueira
- LAQV/REQUIMTE, Departamento of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal
| | - I Matos
- LAQV/REQUIMTE, Departamento of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal.
| | - M Bernardo
- LAQV/REQUIMTE, Departamento of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal.
| | - L A C Tarelho
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Aveiro 3810-193, Portugal
| | - A M Ferraria
- BSIRG, IBB - Institute for Bioengineering and Biosciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
| | - A M Botelho do Rego
- BSIRG, IBB - Institute for Bioengineering and Biosciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
| | - I Fonseca
- LAQV/REQUIMTE, Departamento of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal
| | - N Lapa
- LAQV/REQUIMTE, Departamento of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal
| |
Collapse
|
50
|
Bulin C, Xiong Q, Zheng R, Li C, Ma Y, Guo T. High efficiency removal of methyl blue using phytic acid modified graphene oxide and adsorption mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123645. [PMID: 37976572 DOI: 10.1016/j.saa.2023.123645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Phytic acid modified graphene oxide (PGO) has encouraging prospect in environmental application. Herein, PGO was fabricated with a simple hydrothermal method and used as adsorbent to remove methyl blue (MB). Elaborate inspection based on the hard-soft acid-base (HSAB) principle, spectroscopic characterization, as well as batch adsorption and fitting were conducted to unravel the adsorption mechanism. Results show, PGO efficiently adsorbs 89.08 mg·g-1 of MB in 22 min. HSAB principle proposes, high electron transfer (ΔN) and energy lowering (ΔE) induce covalent bond (chemical interaction), while low ΔN and ΔE induce electrostatic effect (physical interaction). Accordingly, both the first and second strongest interaction occurs between PA moiety and MB: π electrons of MB flows towards O atom in OH and O(-O-) of PA, respectively. Yet the third strongest interaction happens between GO moiety and MB: electron of O atom in OH group of GO flows towards N atom of MB. Above top three interactions are characterized by prominent ΔN and ΔE implying the formation of covalent bond. However, other interactions yield low ΔN and ΔE, suggesting the presence of electrostatic effect. HSAB principle conclusion was substantiated by FTIR and UV-Vis analyses. These findings confirm that PA modification enhances the adsorption affinity of graphene oxide. Thereby, chemical adsorption induced by physical interaction is proposed. This work may inspire the design of efficient adsorbent based on PGO framework for environmental restoration.
Collapse
Affiliation(s)
- Chaoke Bulin
- College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, PR China.
| | - Qianhui Xiong
- College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Rongxiang Zheng
- College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Chenna Li
- College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Yuelong Ma
- College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Ting Guo
- College of and Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| |
Collapse
|