1
|
Lourêdo AAM, Pereira HH, Bonfilio R, Santos MG. Online restricted access molecularly imprinted solid phase extraction coupled with electrospray ionization-tandem mass spectrometry for determination of mebendazole and albendazole in milk samples. J Chromatogr A 2024; 1737:465466. [PMID: 39476776 DOI: 10.1016/j.chroma.2024.465466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/10/2024]
Abstract
Multifunctional materials, such as restricted access molecularly imprinted polymers covered with bovine serum albumin (RAMIP-BSA), are effective alternatives for sample preparation techniques. This material selectively adsorbs analytes while excluding macromolecules, enhancing the analysis's efficiency. Among analytical techniques, ESI-MS/MS (Electrospray Ionization-Tandem Mass Spectrometry) has successfully identified and quantified various molecules, including trace-level drugs. Therefore, we proposed, for the first time, an integrated online extraction/analysis system that combines the benefits of RAMIP-BSA and ESI-MS/MS for analyzing mebendazole (MBZ) and albendazole (ABZ) in milk samples without the need for chromatographic separation. Initially, a RAMIP selective for MBZ was synthesized using the bulk method with methacrylic acid and glycidyl methacrylate. Then, the polymer was covered with bovine serum albumin. Subsequently, this adsorbent was packed in a small column and coupled with an ESI-MS/MS instrument in an online configuration. Milli-Q water was used as the loading and reconditioning mobile phases, and a solution of formic acid in methanol (1:100 v/v) was employed as the elution phase. The system enabled simultaneous extraction and determination of MBZ and ABZ in milk samples. The method exhibited linearity between 15.0 and 125.0 μg L-1 for MBZ and 10.0 and 125.0 μg L-1 for ABZ (with a correlation coefficient exceeding 0.99). The limits of quantification were 15.0 and 10.0 μg L-1 for MBZ and ABZ, respectively. Good precision and accuracy were achieved. The developed method was used to analyze MBZ and ABZ in real milk samples and proved to be a viable alternative to conventional sample preparation and chromatographic techniques.
Collapse
Affiliation(s)
- Amanda Aparecida Marques Lourêdo
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Helton Hanchuck Pereira
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Rudy Bonfilio
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Mariane Gonçalves Santos
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil.
| |
Collapse
|
2
|
Bulin C, Zheng R, Guo T. Fabrication of ion imprinted chitosan-polyethylene glycol-polyvinyl alcohol hybrid membrane for selective recovery of Nd(III). Int J Biol Macromol 2024; 282:136845. [PMID: 39471927 DOI: 10.1016/j.ijbiomac.2024.136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/25/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Reclamation of rare earths from secondary sources is in line with both environmental remediation and sustainable utilization of rare earth resources. Herein, neodymium Nd(III) imprinted polyethylene glycol-polyvinyl alcohol hybrid membrane (IIP-CS-PEG-PVA) with high selectivity, increased specific surface area, acid stability and easy recyclability was constructed using chitosan (CS) as functional monomer, polyethylene glycol (PEG) as porogenic agent, polyvinyl alcohol (PVA) as filmogen, and Nd(III) as template ion. Batch adsorption indicates, adsorption of IIP-CS-PEG-PVA for Nd(III) is induced by electrostatic interaction, reaching rapid equilibration in 35 min at pH = 5. The maximum adsorption capacity determined by Langmuir fitting is 221.73 mg·g-1. Owing to its ion imprinting sites, IIP-CS-PEG-PVA exhibits selectivity coefficient 3.47, 3.72, 9.71, 8.33 towards Nd(III) for binary solution Nd/Eu, Nd/Dy, Nd/Cu, Nd/Cr, respectively. Being as a membrane, IIP-CS-PEG-PVA can be easily recovered for cyclic adsorption, whereby retaining adsorption quantity 73.95 mg·g-1 on Nd(III) in five consecutive cycles. Compared with other adsorbents, IIP-CS-PEG-PVA exhibits fast equilibrium, high adsorption capacity and selectivity towards Nd(III). For adsorption mechanism, versatile functional groups -OH, -NH2, -C(=O)NH-, C-O-C in IIP-CS-PEG-PVA provides heterogeneous affinity for Nd(III), giving rise to chemical adsorption. This work provides a novel strategy for fabricating bio adsorbent towards selective recovery of Nd(III).
Collapse
Affiliation(s)
- Chaoke Bulin
- College of Material Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Baotou 014010, China; Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources (Inner Mongolia University of Science and Technology), Ministry of Education, Baotou 014010, China.
| | - Rongxiang Zheng
- College of Material Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Ting Guo
- College of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China
| |
Collapse
|
3
|
Lee SY, Tan YH, Lau SY, Mubarak NM, Tan YY, Tan IS, Lee YH, Ibrahim ML, Karri RR, Khalid M, Chan YS, Adeoye JB. A state-of-the-art review of metal oxide nanoflowers for wastewater treatment: Dye removal. ENVIRONMENTAL RESEARCH 2024; 259:119448. [PMID: 38942255 DOI: 10.1016/j.envres.2024.119448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Dye wastewater consists of high solids concentrations, heavy metals, minor contaminants, dissolved chemical oxygen demand, and microorganisms. Nanoflowers are nanoparticles that resemble flowers when viewed at a microscopic level. Inorganic metal oxide nanoflowers have been discovered to be a potential source for overcoming this situation. Their flower-like features give them a higher surface area to volume ratio and porosity structure, which can absorb a significant amount of dye. The metal oxide nanoflower synthesized from different synthesis methods is used to compare which one is cost-effective and capable of generating a large scale of nanoflower. This review has demonstrated outstanding dye removal efficiency by applying inorganic nanoflowers to dye removal. Since both adsorption and photocatalytic reactions enhance the dye degradation process, complete dye degradation could be achieved. Meanwhile, the inorganic metal oxide nanoflowers' exemplary reusability characteristics with negligible performance drop further prove that this approach is highly sustainable and may help to save costs. This review has proven the momentum of obtaining high dye removal efficiency in wastewater treatment to conclude that the metal oxide nanoflower study is worth researching.
Collapse
Affiliation(s)
- Sing Ying Lee
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Yie Hua Tan
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam.
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam; Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Yee Yong Tan
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Yeong Huei Lee
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Mohd Lokman Ibrahim
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia; Centre of Nanomaterials Research, Institute of Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Centre of Research Impact and Outcome, Chitkara University, Punjab, 140401, India
| | - Yen San Chan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - John Busayo Adeoye
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| |
Collapse
|
4
|
Salfate G, Negrete-Vergara C, Azócar L, Xiao LP, Sun RC, Sánchez J. Lignin and functional polymer-based materials: Synthesis, characterization and application for Cr (VI) and As (V) removal from aqueous media. Int J Biol Macromol 2024; 278:134697. [PMID: 39147352 DOI: 10.1016/j.ijbiomac.2024.134697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/12/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
In this study, lignin derived from corncobs was chemically modified by substituting the hydroxyl groups present in its structure with methacrylate groups through a catalytic reaction using methacrylic anhydride, resulting in methacrylated lignin (ML). These MLs were incorporated in polymerization reaction of the monomer 2-[(acryloyloxy)ethyl trimethylammonium] chloride (Cl-AETA) and Cl-AETA, Cl-AETA/ML polymers were obtained, characterized (spectroscopic, thermal and microscopic analysis), and evaluated for removing Cr (VI) and As (V) from aqueous media in function of pH, contact time, initial metal concentrations and adsorbent amount. The Cl-AETA/ML polymers followed the Langmuir adsorption model for the evaluated metal anions and were able to remove up to 91 % of Cr (VI) with a qmax (maximum adsorption capacity) of 201 mg/g, while for As (V), up to 60 % could be removed with a qmax of 58 mg/g. The results demonstrate that simple modifications in lignin enhance its functionalization and properties, making it suitable for removing contaminants from aqueous media, showing promising results for potential future applications.
Collapse
Affiliation(s)
- Gabriel Salfate
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Santiago, Chile
| | - Camila Negrete-Vergara
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Santiago, Chile
| | - Laura Azócar
- Universidad Católica de la Santísima Concepción/Facultad de Ciencias, Departamento de Química Ambiental, Chile
| | - Ling-Ping Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Run-Cang Sun
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Julio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Moradi O, Mirzaian M, Sedaghat S. Poly(methyl methacrylate) functionalized graphene oxide/CuO as nanocomposite for efficient removal of dye pollutants. Sci Rep 2024; 14:22318. [PMID: 39333146 PMCID: PMC11436928 DOI: 10.1038/s41598-024-72937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
In this research, the use of a three-component nanocomposite of graphene oxide-methyl methacrylate and copper(II) oxide (PMMA-GO-CuO) was investigated. The aim of synthesizing this nanocomposite is to removal dye pollutants, specifically methylene blue (MB) and methyl orange (MO), which are commonly used in dyeing industries, through adsorption. The study focuses on creating GO-CuO and PMMA-GO-CuO nanocomposites as effective adsorbents. A simple and quick method led to the development of the PMMA-GO-CuO nanocomposite, which shows enhanced physical and chemical properties. Key materials include graphene oxide, methyl methacrylate, and copper(II) oxide nanoparticles. Characterization techniques such as FT-IR, XRD, SEM, and TGA were used to analyze the nanocomposite. Results indicate that dye adsorption is more effective at lower pH levels, suggesting that the PMMA-GO-CuO nanocomposite can efficiently remove dyes from industrial wastewater. The experimental data showed that the Langmuir isotherm model accurately represented the equilibrium adsorption, with maximum capacities of 285.71 mg g-1 for methylene blue and 256.41 mg g-1 for methyl orange, indicating a single layer of adsorption. The kinetics followed a pseudo-second order model, suggesting that the adsorption process involves chemical bonding. Additionally, thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicated that the adsorption is spontaneous. The adsorption mechanism involves hydrogen bonding, π-π interactions, and electrostatic interactions. This study investigates how factors like pH, temperature, contact time, and dye concentration affect the adsorption of methyl orange and methylene blue dyes. A PMMA-GO-CuO nanocomposite was used, achieving 84% removal of MB and 35% removal of MO from industrial wastewater. This study highlights the promising potential of PMMA-GO-CuO nanocomposite as an effective material for the removal of dye pollutants from industrial wastewater. The results showed that the graphene oxide in the composite is effective for removing cationic dyes due to its negative charge. Further research will focus on the optimization of the synthesis process with the aim of achieving competitive performance of this nanocomposite on a large scale. These findings not only advance the field of nanocomposite materials but also provide a practical solution to an important environmental issue, demonstrating the innovation of the present study in the literature.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Masoud Mirzaian
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Sajjad Sedaghat
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
de Carvalho DT, Santos MG, Hirata DB, Gorup LF, Figueiredo EC. Interaction between modified magnetic nanoparticles and human albumin: Kinetics and isotherm studies and application in protein depletion. Int J Biol Macromol 2024; 280:135763. [PMID: 39313054 DOI: 10.1016/j.ijbiomac.2024.135763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Magnetic nanoparticles modified with tetraethyl orthosilicate (Fe3O4@TEOS) and bovine serum albumin (Fe3O4@TEOS@BSA) were evaluated as sorbent in albumin depletion from human serum samples by magnetic dispersive solid phase extraction. Characterization studies were carried out by X-ray diffraction, thermogravimetry, Fourier transform infrared spectroscopy, zeta potential, and scanning electron microscopy. Both nanoparticles also showed high thermal stability and pH-dependent surface charges. The human serum albumin adsorption protocol was optimized using a central composite rotatable design. Nanoparticle mass, pH, and albumin concentration were the most influential variables. Avrami's fractional order and Freundlich isotherm models best fitted the data for human albumin adsorption kinetic and isotherm studies for Fe3O4@TEOS and Fe3O4@TEOS@BSA, and the maximum adsorption capacities were 11.93 and 14.89 mg g-1, respectively. The protein desorption was influenced by the pH of samples and eluent volume. Electrophoresis in a polyacrylamide gel containing sodium dodecyl sulfate showed different patterns of serum protein bands when consecutive depletions were performed. The Fe3O4@TEOS showed greater affinity for HSA and efficiency in depletion. The process was versatile, and the depleted albumin proportion could be controlled by the nanoparticle masses. The proposed method is a powerful sample preparation technique for rapid, reliable, and specific depletion of albumin.
Collapse
Affiliation(s)
- Diailison Teixeira de Carvalho
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | | | | | - Luiz Fernando Gorup
- Department of Chemistry, Interdisciplinary Laboratory of Electrochemistry and Ceramics (LIEC), Federal University of São Carlos (UFSCar), Washington Luis Highway, Km 235, São Carlos, SP 13565-905, Brazil,; School of Chemistry and Food Science, Federal University of Rio Grande (FURG), Av. Italia km 8, Rio Grande, RS 96203-900, Brazil; Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Eduardo Costa Figueiredo
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
7
|
Liu J, Duan Y, Chen H, Ye B, Zhang H, Tan W, Kappler A, Hou J. Extent of As(III) versus As(V) adsorption on iron (oxyhydr) oxides depends on the presence of vacancy cluster-like micropore sites: Insights into a seesaw effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176376. [PMID: 39304166 DOI: 10.1016/j.scitotenv.2024.176376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Iron (oxyhydr)oxides are ubiquitous in terrestrial environments and play a crucial role in controling the fate of arsenic in sediments and groundwater. Although there is evidence that different iron (oxyhydr)oxides have different affinities towards As(III) and As(V), it is still unclear why As(V) adsorption on some iron (oxyhydr)oxides is larger than As(III) adsorption, while it is opposite for other ones. In this study, six typical iron (oxyhydr)oxides are selected to evaluate their adsorption capacities for As(III) and As(V). The characteristics of these iron minerals such as morphology, arsenic adsorption species, and pore size distribution are carefully examined using transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), positron annihilation lifetime (PAL) spectroscopy, and X-ray absorption spectroscopy (XAS). We confirm a seesaw effect occurred in different iron minerals for As(III) and As(V) immobilization, i.e., at pH 6.0, adsorption of As(V) on hematite (0.73 μmol m-2) and magnetite (0.33 μmol m-2) is higher than for As(III) (0.61 μmol m-2 and 0.27 μmol m-2, respectively), for goethite and lepidocrocite it is almost equal, while As(III) sorption on ferrihydrite (5.77 μmol m-2) and schwertmannite (28.41 μmol m-2) showed higher sorption than As(V) (1.53 μmol m-2 and 12.99 μmol m-2, respectively). PAL analysis demonstrates that ferrihydrite and schwertmannite have a large concentration of vacancy cluster-like micropores, significantly more than goethite and lepidocrocite, followed by hematite and magnetite. The difference of adsorption of As(III) and As(V) to different iron (oxyhydr)oxides is due to differences in the abundance of vacancy cluster-like micropore sites, which are conducive for smaller size As(III) immobilization but not for larger size of As(V). The findings of this study provide novel insights into a seesaw effect for As(III) and As(V) immobilization on naturally occurring iron mineral.
Collapse
Affiliation(s)
- Juan Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yixin Duan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China.
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Wołowicz A, Hubicki Z. Evaluation of Adsorption Ability of Lewatit ® VP OC 1065 and Diaion™ CR20 Ion Exchangers for Heavy Metals with Particular Consideration of Palladium(II) and Copper(II). Molecules 2024; 29:4386. [PMID: 39339381 PMCID: PMC11434107 DOI: 10.3390/molecules29184386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The adsorption capacities of ion exchangers with the primary amine (Lewatit® VP OC 1065) and polyamine (Diaion™ CR20) functional groups relative to Pd(II) and Cu(II) ions were tested in a batch system, taking into account the influence of the acid concentration (HCl: 0.1-6 mol/L; HCl-HNO3: 0.9-0.1 mol/L HCl-0.1-0.9 mol/L HNO3), phase contact time (1-240 min), initial concentration (10-1000 mg/L), agitation speed (120-180 rpm), bead size (0.385-1.2 mm), and temperature (293-333 K), as well as in a column system where the variable operating parameters were HCl and HNO3 concentrations. There were used the pseudo-first order, pseudo-second order, and intraparticle diffusion models to describe the kinetic studies and the Langmuir and Freundlich isotherm models to describe the equilibrium data to obtain better knowledge about the adsorption mechanism. The physicochemical properties of the ion exchangers were characterized by the nitrogen adsorption/desorption analyses, CHNS analysis, Fourier transform infrared spectroscopy, the sieve analysis, and points of zero charge measurements. As it was found, Lewatit® VP OC 1065 exhibited a better ability to remove Pd(II) than Diaion™ CR20, and the adsorption ability series for heavy metals was as follows: Pd(II) >> Zn(II) ≈ Ni(II) >> Cu(II). The optimal experimental conditions for Pd(II) sorption were 0.1 mol/L HCl, agitation speed 180 rpm, temperature 293 K, and bead size fraction 0.43 mm ≤ f3 < 0.6 mm for Diaion™ CR20 and 0.315-1.25 mm for Lewatit® VP OC 1065. The maximum adsorption capacities were 289.68 mg/g for Lewatit® VP OC 1065 and 208.20 mg/g for Diaion™ CR20. The greatest adsorption ability of Lewatit® VP OC 1065 for Pd(II) was also demonstrated in the column studies. The working ion exchange in the 0.1 mol/L HCl system was 0.1050 g/mL, much higher compared to Diaion™ CR20 (0.0545 g/mL). The best desorption yields of %D1 = 23.77% for Diaion™ CR20 and 33.57% for Lewatit® VP OC 1065 were obtained using the 2 mol/L NH3·H2O solution.
Collapse
Affiliation(s)
- Anna Wołowicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland
| | - Zbigniew Hubicki
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland
| |
Collapse
|
9
|
Wang G, Zhang Q, Qin L, Tan K, Li C, Li L, Yang T, Liu X. Construction of MIL-100(Fe)-DMA material for efficient adsorption of Sr and Cs ions from radioactive wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176296. [PMID: 39284449 DOI: 10.1016/j.scitotenv.2024.176296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
A novel metal-organic framework (MOF) material, MIL-100(Fe)-DMA, was synthesized using the solvothermal method. The structure of the MOF was characterized using scanning electron microscopy-energy dispersive X-ray spectroscopy, N2 adsorption-desorption isotherms, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy. Batch adsorption experiments were performed to investigate the effects of initial Sr2+ and Cs+ concentrations, adsorption time, pH, and coexisting cations on the adsorption performance of the material. The adsorption mechanism was further elucidated using adsorption kinetics and isotherm models. The results indicated that the adsorption of Sr2+ and Cs+ does not significantly affect the MOF material structure. As reaction time and initial ion concentration increased, the adsorption capacity of MIL-100(Fe)-DMA for Sr2+ and Cs+ increased rapidly and then gradually reached equilibrium. Optimal adsorption occurred under alkaline conditions, with maximum adsorption capacity observed at pH = 8. The adsorption process for Sr2+ and Cs+ was well described by the pseudo-second-order kinetic model, the Weber-Morris model, and the Langmuir adsorption isothermal model. The adsorption process was mainly identified as monolayer chemical adsorption, influenced by multiple factors. Characterization combined with density functional theory calculations revealed that the unsaturated carboxylic acid groups on the surface of the MOFs play a crucial role in the interaction with Sr2+ and Cs+.
Collapse
Affiliation(s)
- Guohui Wang
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China; Chengdu Nuclear Engineering Design &Research Institute Co., Ltd, 404., CNNC, Chengdu 610000, China
| | - Qixin Zhang
- CPC Affairs and Administration Office, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Lailai Qin
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China; Chengdu Nuclear Engineering Design &Research Institute Co., Ltd, 404., CNNC, Chengdu 610000, China
| | - Kaixuan Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Chunguang Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Lianshun Li
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China; Chengdu Nuclear Engineering Design &Research Institute Co., Ltd, 404., CNNC, Chengdu 610000, China
| | - Tinggui Yang
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China.
| | - Xiaojuan Liu
- The 404 Company Limited, CNNC, Lanzhou 735100, China; Key Laboratory of Nuclear Fuel Cycle Technology, The 404 Company Limited, Lanzhou 735100, China; Chengdu Nuclear Engineering Design &Research Institute Co., Ltd, 404., CNNC, Chengdu 610000, China
| |
Collapse
|
10
|
Manzar MS, Palaniandy P, Georgin J, Franco DSP, Zubair M, Muazu ND, Faisal W, El Messaoudi N. Synthesis of LDH-MgAl and LDH-MgFe composites for the efficient removal of the antibiotic from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55577-55596. [PMID: 39240434 DOI: 10.1007/s11356-024-34837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
In this study, novel lamellar double hydroxide composites (LDH-MgAl and LDH-MgFe) were synthesized at different metal salt ratios (1:1 to 3:1) and fully characterized using various techniques such as XRD, FTIR, SEM, EDS, and TGA. The resulting LDHs demonstrated a high affinity for efficiently removing tetracycline (TC) antibiotic from water, particularly at a moderate molar ratio of 3:1. This ratio exhibited improved structural characteristics, resulting in better TC uptake from water. The improved performance was supported by the increased abundance of surface functional groups (OH, NO3, CO32-, C-O-C, Fe-O, and Al-O-Al). The TGA analysis established the high stability of the LDHs when subjected to high temperatures. The kinetics of TC adsorption onto LDH fitted with the PSO (R2 = 0.935-0.994) and Avrami (R2 = 0.9528-0.9824) models, while the equilibrium data fitted the Liu and Langmuir isotherm models, with maximum monolayer adsorption capacities of 101.1 mg g-1 and 70.83 mg g-1, respectively-significantly higher than many reported values in the literature. The positive values of ΔH0 and ΔS0 indicate an endothermic process, with TC removal mechanisms influenced by physical interactions, such as hydrogen bonding, electrostatic interaction, and π-cation with the surface functional groups of the LDH adsorbents. These results suggest that LDH-MgAl and LDH-MgFe are promising adsorbents for the removal of TC from water.
Collapse
Affiliation(s)
- Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Jordana Georgin
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nuhu Dalhat Muazu
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Wamda Faisal
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr, University, 80000, Agadir, Morocco.
| |
Collapse
|
11
|
Dos Santos DF, Moreira WM, de Araújo TP, Bernardo MMS, de Figueiredo Ligeiro da Fonseca IM, Ostroski IC, de Barros MASD. Competitive adsorption of acetaminophen and caffeine onto activated Tingui biochar: characterization, modeling, and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53611-53628. [PMID: 38008834 DOI: 10.1007/s11356-023-31024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023]
Abstract
Tingui biochar (TB) activated with potassium hydroxide (TB-KOH) was synthesized in the present study. The adsorption capacity of TB-KOH was evaluated for the removal of acetaminophen and caffeine in monocomponent and bicomponent solutions. As a result, the study of the TB-KOH characterization as well as the adsorption kinetics, isotherm, thermodynamics, and a suggestion of the global adsorption mechanism are presented. TB-KOH was characterized through physical-chemical analysis to understand its surface morphology and how it contributes to the adsorption of these drugs. Furthermore, modelling using advanced statistical physical models was performed to describe how acetaminophen and caffeine molecules are adsorbed in the active sites of TB-KOH. Through the characterizations, it was observed that the activation with KOH contributed to the development of porosity and functional groups (-OH, C-O, and C = O) on the surface of TB. The monocomponent adsorption equilibrium was reached in 90 min with a maximum adsorption capacity of 424.7 and 350.8 mg g-1 for acetaminophen and caffeine, respectively. For the bicomponent solution adsorption, the maximum adsorption capacity was 199.4 and 297.5 mg g-1 for acetaminophen and caffeine, respectively. The isotherm data was best fitted to the Sips model, and the thermodynamic study indicated that acetaminophen removal was endothermic, while caffeine removal was exothermic. The mechanism of adsorption of acetaminophen and caffeine by TB-KOH was described by the involvement of hydrogen bonds and π-π interactions between the surface of TB-KOH and the molecules of the contaminants.
Collapse
Affiliation(s)
| | | | - Thiago Peixoto de Araújo
- Department of Chemical Engineering, Federal Technological University of Paraná, Ponta Grossa, Paraná, 84017-220, Brazil
| | - Maria Manuel Serrano Bernardo
- LAQV/REQUIMTE, Department of Chemistry, Faculty of Science and Technology, New University of Lisbon, 2829-516, Caparica, Portugal
| | | | | | | |
Collapse
|
12
|
Mo H, Shan H, Xu Y, Liao H, Peng S. Advancing Antimony(III) Adsorption: Impact of Varied Manganese Oxide Modifications on Iron-Graphene Oxide-Chitosan Composites. Molecules 2024; 29:4021. [PMID: 39274869 PMCID: PMC11397251 DOI: 10.3390/molecules29174021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Antimony (Sb) is one of the most concerning toxic metals globally, making the study of methods for efficiently removing Sb(III) from water increasingly urgent. This study uses graphene oxide and chitosan as the matrix (GOCS), modifying them with FeCl2 and four MnOx to form iron-manganese oxide (FM/GC) at a Fe/Mn molar ratio of 4:1. FM/GC quaternary composite microspheres are prepared, showing that FM/GC obtained from different MnOx exhibits significant differences in the ability to remove Sb(III) from neutral solutions. The order of Sb(III) removal effectiveness is MnSO4 > KMnO4 > MnCl2 > MnO2. The composite microspheres obtained by modifying GOCS with FeCl2 and MnSO4 are selected for further batch experiments and characterization tests to analyze the factors and mechanisms influencing Sb(III) removal. The results show that the adsorption capacity of Sb(III) decreases with increasing pH and solid-liquid ratio, and gradually increases with the initial concentration and reaction time. The Langmuir model fitting indicates that the maximum adsorption capacity of Sb(III) is 178.89 mg/g. The adsorption mechanism involves the oxidation of the Mn-O group, which converts Sb(III) in water into Sb(V). This is followed by ligand exchange and complex formation with O-H in FeO(OH) groups, and further interactions with C-OH, C-O, O-H, and other functional groups in GOCS.
Collapse
Affiliation(s)
- Huinan Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huimei Shan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center of Water Pollution Control and Water Security in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yuqiao Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center of Water Pollution Control and Water Security in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Haimin Liao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center of Water Pollution Control and Water Security in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Sanxi Peng
- College of Earth Science, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
13
|
Kussainova B, Tazhkenova G, Kazarinov I, Burashnikova M, Nurlybayeva A, Seitbekova G, Kantarbayeva S, Murzakasymova N, Baibazarova E, Altynbekova D, Shinibekova A, Bazarkhankyzy A. Adsorption of Bichromate and Arsenate Anions by a Sorbent Based on Bentonite Clay Modified with Polyhydroxocations of Iron and Aluminum by the "Co-Precipitation" Method. Molecules 2024; 29:3709. [PMID: 39125112 PMCID: PMC11314478 DOI: 10.3390/molecules29153709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
The physicochemical properties of natural bentonite and its sorbents were studied. It has been established the modification of natural bentonites using polyhydroxoxides of iron (III) (mod.1_Fe_5-c) and aluminum (III) (mod.1_Al_5-c) by the "co-precipitation" method led to changes in their chemical composition, structure, and sorption properties. It was shown that modified sorbents based on natural bentonite are finely porous (nanostructured) objects with a predominance of pores of 1.5-8.0 nm in size. The modification of bentonite with iron (III) and aluminum compounds by the "co-precipitation" method also leads to an increase in the sorption capacity of the obtained sorbents with respect to bichromate and arsenate anions. A kinetic analysis showed that, at the initial stage, the sorption process was controlled by an external diffusion factor, that is, the diffusion of the sorbent from the solution to the liquid film on the surface of the sorbent. The sorption process then began to proceed in a mixed diffusion mode when it limited both the external diffusion factor and the intra-diffusion factor (diffusion of the sorbent to the active centers through the system of pores and capillaries). To clarify the contribution of the chemical stage to the rate of adsorption of bichromate and arsenate anions by the sorbents under study, kinetic curves were processed using equations of chemical kinetics (pseudo-first-order, pseudo-second-order, and Elovich models). It was found that the adsorption of the studied anions by the modified sorbents based on natural bentonite was best described by a pseudo-second-order kinetic model. The high value of the correlation coefficient for the Elovich model (R2 > 0.9) allows us to conclude that there are structural disorders in the porous system of the studied sorbents, and their surfaces can be considered heterogeneous. Considering that heterogeneous processes occur on the surface of the sorbent, it is natural that all surface properties (structure, chemical composition of the surface layer, etc.) play an important role in anion adsorption.
Collapse
Affiliation(s)
- Bakytgul Kussainova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Gaukhar Tazhkenova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Ivan Kazarinov
- Department of Physical Chemistry, Saratov State University, Saratov 410000, Russia; (I.K.); (M.B.)
| | - Marina Burashnikova
- Department of Physical Chemistry, Saratov State University, Saratov 410000, Russia; (I.K.); (M.B.)
| | - Aisha Nurlybayeva
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Gulnaziya Seitbekova
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Saule Kantarbayeva
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Nazgul Murzakasymova
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Elvira Baibazarova
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Dinara Altynbekova
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Assem Shinibekova
- Department of Chemistry and Chemical Technology, Faculty of Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan; (G.S.); (S.K.); (N.M.); (E.B.); (D.A.); (A.S.)
| | - Aidana Bazarkhankyzy
- Research Institute of New Chemical Technologies, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
- Department of General and Biological Chemistry, Astana Medical University, Beibitshilik Str., 49a, Astana 010000, Kazakhstan
| |
Collapse
|
14
|
Kumari S, Chowdhry J, Kumar M, Garg MC. Machine learning (ML): An emerging tool to access the production and application of biochar in the treatment of contaminated water and wastewater. GROUNDWATER FOR SUSTAINABLE DEVELOPMENT 2024; 26:101243. [DOI: 10.1016/j.gsd.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
15
|
Zhu J, Wang X, Jiang Q, Duan J, Wang H. Green electrospun Janus membrane of polyether block amide (PEBA) doped with hierarchical magnesium hydrogen phosphate for the removal of pharmaceuticals and personal care products. J Colloid Interface Sci 2024; 667:32-43. [PMID: 38615621 DOI: 10.1016/j.jcis.2024.03.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
It has been a challenge to prepared polyether block amide (PEBA) fibrous membrane via solution electrospinning. The only few reported methods though involved hazardous solvents and surfactants which were against the principle of green chemistry. In this work, uniform fibrous membrane of PEBA was successfully fabricated by solution electrospinning with a bio-based solvent dihydrolevoglucosenone (Cyrene). To further improve the mechanical strength and adsorption performance of the PEBA membrane, a hierarchical magnesium hydrogen phosphate (MgHPO4·1.2H2O, MHP) was synthesized to blend evenly into the PEBA matrix. A Janus MHP/PEBA membrane with one side of hydrophobic surface and the other side of hydrophilic surface was subsequently prepared, which exhibited fast adsorption, high capacity, good selectivity and reusability towards ibuprofen, acetaminophen, carbamazepine and triclosan. In addition, the Janus membrane showed high removal efficiency of the above contaminants in secondary wastewater effluent with good long term stability. It demonstrated that this Janus MHP/PEBA membrane had a good potential in practical wastewater treatment.
Collapse
Affiliation(s)
- Jiaxin Zhu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiao Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Quantong Jiang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Haizeng Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
16
|
Correa-Soto CE, Sengupta R, Gonzales I, Schupp S, Bejgum B, Alvarez-Nunez F, Kiang YH. Mechanistic Insights into Propylparaben Sorption on Polyvinyl Chloride. J Pharm Sci 2024; 113:2314-2319. [PMID: 38580143 DOI: 10.1016/j.xphs.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
The mechanism of loss of propylparaben potency from formulations when in contact with polyvinyl chloride has been determined. It is caused by the adsorption of propylparaben onto polyvinyl chloride surfaces. The adsorption kinetics is best described using a pseudo-second order model based on non-linear fit. The rate of adsorption increases with increasing bulk concentration of propylparaben. Adsorption equilibrium isotherm was fitted to three isotherm models: Langmuir, Freundlich, and Temkin, using non-linear fit. The Freundlich and Temkin models show the best fit, indicating a multi-layer adsorption. Using this case study, we present a methodology to provide mechanistic insights into the compatibility data between pharmaceutical ingredients and product contact materials when sorption is involved.
Collapse
Affiliation(s)
- Clara E Correa-Soto
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Rajarshi Sengupta
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Isaiah Gonzales
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Sydney Schupp
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Bhanu Bejgum
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA.
| | - Fernando Alvarez-Nunez
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| | - Y-H Kiang
- Drug Product Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320, USA
| |
Collapse
|
17
|
Carvalho CMD, Sanches-Neto FO, Carvalho-Silva VH, Ascheri DPR, Signini R. Response surface and DFT protocols for improvement of the adsorption process of lignocellulosic-based biomass for the removal of basic dyes. Int J Biol Macromol 2024; 275:133208. [PMID: 38889837 DOI: 10.1016/j.ijbiomac.2024.133208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Jatobá-do-cerrado fruit shells, archetypical of lignocellulosic-based biomass, were used as an adsorbent to remove crystal violet (CV) and methylene blue (MB) from water. The adsorbent was characterized using various techniques, and kinetic studies showed dye adsorption followed second-order kinetics. An experimental design investigated the effects of pH and temperature on removal efficiency, with a quadratic model fitting the data best. The results suggest pH influences MB's adsorption capacity more than temperature and at 25 °C and pH 8, MB had a desirability value of 0.89, with 95 % removal efficiency. For CV, temperature had a greater influence, with a desirability value of 0.874 at 25 °C and pH 10, and 95 % removal efficiency. Adsorption isotherm studies revealed maximum adsorption capacities of 123.0 mg·g-1 and 113.0 mg·g-1 for CV and MB, respectively. Experimental thermodynamic parameters indicated an endothermic and spontaneous process which it was supported by quantum chemistry calculations. The protocols developed confirmed the potential for adsorbing CV and MB dyes in water, achieving over 73.1 and 74.4 mg g-1 dyes removal.
Collapse
Affiliation(s)
| | - Flávio Olimpio Sanches-Neto
- Laboratory for Modeling of Physical and Chemical Transformations, Theoretical and Structural Chemistry Group, Goiás State University, 75132-903 Anápolis, Brazil; Instituto Federal de Goiás, IFG-Câmpus Valparaíso de Goiás, GO 72876-601, Brazil
| | - Valter Henrique Carvalho-Silva
- Laboratory for Modeling of Physical and Chemical Transformations, Theoretical and Structural Chemistry Group, Goiás State University, 75132-903 Anápolis, Brazil
| | | | - Roberta Signini
- Goiás State University, Central Campus, Anápolis, PO Box 459, Goiás 75001-970, Brazil.
| |
Collapse
|
18
|
Asman MKA, Lutpi NA, Wong YS, Ong SA, Hanif MA, Ibrahim N, Dahalan FA, Taweepreda W, Raja Nazri RNH. Unravelling the kinetics, isotherms, thermodynamics, and mass transfer behaviours of Zeolite Socony Mobil - 5 in removing hydrogen sulphide resulting from a dark fermentative biohydrogen production process. Phys Chem Chem Phys 2024. [PMID: 39018044 DOI: 10.1039/d4cp01421a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Research into the speciation of sulfur and hydrogen molecules produced through the complex process of thermophilic dark fermentation has been conducted. Detailed surface studies of solid-gas systems using real biogas (biohydrogen) streams have unveiled the mechanisms and specific interactions between these gases and the physicochemical properties of a zeolite as an adsorbent. These findings highlight the potential of zeolites to effectively capture and interact with these molecules. In this study, the hydrogen sulphide removal analysis was conducted using 0.8 g of the adsorbent and at various reaction temperatures (25-125 °C), a flow rate of 100 mL min-1, and an initial concentration of approximately 5000 ppm hydrogen sulphide. The reaction temperature has been observed to be an essential parameter of Zeolite Socony Mobil - 5 adsorption capacity. The optimum adsorption capacity attains a maximum value of 0.00890 mg g-1 at an optimal temperature of 25 °C. The formation of sulphur species resulting from the hydrogen sulphide adsorption on the zeolite determines the kinetics, thermodynamics, and mass transfer behaviours of Zeolite Socony Mobil - 5 in hydrogen sulphide removal and Zeolite Socony Mobil - 5 is found to improve the quality of biohydrogen produced in thermophilic environments. Biohydrogen (raw gas) yield was enhanced from 2.48 mol H2 mol-1 hexose consumed before adsorption to 2.59 mol H2 mol-1 hexose consumed after adsorption at a temperature of 25 °C. The Avrami kinetic model was fitted for hydrogen sulphide removal on Zeolite Socony Mobil - 5. The process is explained well and fitted using the Temkin isotherm model and the investigation into thermodynamics reveals that the adsorption behaviour is exothermic and non-spontaneous. Furthermore, the gas molecule's freedom of movement becomes random. The adsorption phase is restricted by intra-particle diffusion followed by film diffusion during the transfer of hydrogen sulphide into the pores of Zeolite Socony Mobil - 5 prior to adsorption on its active sites. The utilisation of Zeolite Socony Mobil - 5 for hydrogen sulphide removal offers the benefit of reducing environmental contamination and exhibiting significant applications in industrial operations.
Collapse
Affiliation(s)
- Muhammad Khairul Adha Asman
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Nabilah Aminah Lutpi
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Soon-An Ong
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Muhammad Adli Hanif
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Naimah Ibrahim
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Farrah Aini Dahalan
- Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia.
- Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Wirach Taweepreda
- Faculty of Science, Prince of Songkla University (PSU), Hat-Yai 90110, Thailand
| | - Raja Nazrul Hakim Raja Nazri
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988, Kawasan Perindustrian Bandar Vendor, 78000 Alor Gajah, Melaka, Malaysia
| |
Collapse
|
19
|
Sivaranjanee R, Senthil Kumar P, Chitra B, Rangasamy G. A critical review on biochar for the removal of toxic pollutants from water environment. CHEMOSPHERE 2024; 360:142382. [PMID: 38768788 DOI: 10.1016/j.chemosphere.2024.142382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
As an effort to tackle some of the most pressing ecological issues we are currently experiencing, there has been an increasing interest in employing biomass-derived char products in various disciplines. Thermal combustion of biomass results in biochar production, which is a remarkably rich source of carbon. Not only does the biochar obtained by the thermochemical breakdown of biomass lower the quantity of carbon released into the environment, but it also serves as an eco-friendly substitute for activated carbon (AC) and further carbon-containing products. An overview of using biochar to remove toxic pollutants is the main subject of this article. Several techniques for producing biochar have been explored. The most popular processes for producing biochar are hydrothermal carbonization, gasification and pyrolysis. Carbonaceous materials, alkali, acid and steam are all capable of altering biochar. Depending on the environmental domains of applications, several modification techniques are chosen. The current findings on characterization and potential applications of biochar are compiled in this survey. Comprehensive discussion is given on the fundamentals regarding the formation of biochar. Process variables influencing the yield of biochar have been summarized. Several biochars' adsorption capabilities for expulsion pollutants under various operating circumstances are compiled. In the domain of developing biochar, a few suggestions for future study have been given.
Collapse
Affiliation(s)
- R Sivaranjanee
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - B Chitra
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
20
|
Kuśmierek K, Świątkowski A, Wierzbicka E, Legocka I. Modified Halloysite as an Adsorbent for the Removal of Cu(II) Ions and Reactive Red 120 Dye from Aqueous Solutions. Molecules 2024; 29:3099. [PMID: 38999051 PMCID: PMC11243603 DOI: 10.3390/molecules29133099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
The adsorption of copper ions and Reactive Red 120 azo dye (RR-120) as models of water pollutants on unmodified halloysite (H-NM), as well as halloysites modified with sulfuric acid (H-SA) and (3-aminopropyl)triethoxysilane (H-APTES), was investigated. The results showed that adsorption of both the adsorbates was pH-dependent and increased with the increase in halloysite dosage. The adsorption kinetics were evaluated and the results demonstrated that the adsorption followed the pseudo-second-order model. The adsorption isotherms of Cu(II) ions and RR-120 dye on the halloysites were described satisfactorily by the Langmuir model. The maximum adsorption capacities for the Cu(II) ions were 0.169, 0.236, and 0.507 mmol/g, respectively, for H-NM, H-SA, and H-APTES indicating that the NH2-functionalization rather than the surface area of the adsorbents was responsible for the enhanced adsorption. The adsorption capacities for RR-120 dye were found to be 9.64 μmol/g for H-NM, 75.76 μmol/g for H-SA, and 29.33 μmol/g for H-APTES. The results demonstrated that APTES-functionalization and sulfuric acid activation are promising modifications, and both modified halloysites have good application potential for heavy metals as well as for azo dye removal.
Collapse
Affiliation(s)
- Krzysztof Kuśmierek
- Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland;
| | - Andrzej Świątkowski
- Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland;
| | - Ewa Wierzbicka
- Department of Polymer Technology and Processing, Łukasiewicz-Industrial Chemistry Institute, 01-793 Warsaw, Poland; (E.W.); (I.L.)
| | - Izabella Legocka
- Department of Polymer Technology and Processing, Łukasiewicz-Industrial Chemistry Institute, 01-793 Warsaw, Poland; (E.W.); (I.L.)
| |
Collapse
|
21
|
Ismail UM, Vohra MS, Onaizi SA. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. ENVIRONMENTAL RESEARCH 2024; 251:118562. [PMID: 38447605 DOI: 10.1016/j.envres.2024.118562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Increased levels of heavy metals (HMs) in aquatic environments poses serious health and ecological concerns. Hence, several approaches have been proposed to eliminate/reduce the levels of HMs before the discharge/reuse of HMs-contaminated waters. Adsorption is one of the most attractive processes for water decontamination; however, the efficiency of this process greatly depends on the choice of adsorbent. Therefore, the key aim of this article is to review the progress in the development and application of different classes of conventional and emerging adsorbents for the abatement of HMs from contaminated waters. Adsorbents that are based on activated carbon, natural materials, microbial, clay minerals, layered double hydroxides (LDHs), nano-zerovalent iron (nZVI), graphene, carbon nanotubes (CNTs), metal organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) are critically reviewed, with more emphasis on the last four adsorbents and their nanocomposites since they have the potential to significantly boost the HMs removal efficiency from contaminated waters. Furthermore, the optimal process conditions to achieve efficient performance are discussed. Additionally, adsorption isotherm, kinetics, thermodynamics, mechanisms, and effects of varying adsorption process parameters have been introduced. Moreover, heavy metal removal driven by other processes such as oxidation, reduction, and precipitation that might concurrently occur in parallel with adsorption have been reviewed. The application of adsorption for the treatment of real wastewater has been also reviewed. Finally, challenges, limitations and potential areas for improvements in the adsorptive removal of HMs from contaminated waters are identified and discussed. Thus, this article serves as a comprehensive reference for the recent developments in the field of adsorptive removal of heavy metals from wastewater. The proposed future research work at the end of this review could help in addressing some of the key limitations facing this technology, and create a platform for boosting the efficiency of the adsorptive removal of heavy metals.
Collapse
Affiliation(s)
- Usman M Ismail
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad S Vohra
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
22
|
Ishaq S, Nadim AH, Amer SM, Elbalkiny HT. Optimization of graphene polypyrrole for enhanced adsorption of moxifloxacin antibiotic: an experimental design approach and isotherm investigation. BMC Chem 2024; 18:113. [PMID: 38872197 DOI: 10.1186/s13065-024-01208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The presence of antibiotics in water systems had raised a concern about their potential harm to the aquatic environment and human health as well as the possible development of antibiotic resistance. Herein, this study investigates the power of adsorption using graphene-polypyrrole (GRP-PPY) nanoparticles as a promising approach for the removal of Moxifloxacin HCl (MXF) as a model antibiotic drug. GRP-PPY nanoparticles synthesis was performed with a simple and profitable method, leading to the formation of high surface area particles with excellent adsorption properties. Characterization was assessed with various techniques, including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET). Box-Behnken experimental design was developed to optimize the adsorption process. Critical parameters such as initial antibiotic concentration, nanoparticle concentration, and pH were investigated. The Freundlich isotherm model provided a good fit to the experimental data, indicating multilayer adsorption of MXF onto the GRP-PPY-NP. As a result, a high adsorption capacity of MXF (92%) was obtained in an optimum condition of preparing 30 μg/mL of the drug to be adsorbed by 1 mg/mL of GRP-PPY-NP in pH 9 within 1 h in a room temperature. Moreover, the regeneration and reusability of GRP-PPY-NP were investigated. They could be effectively regenerated for 3 cycles using appropriate desorption agents without significant loss in adsorption capacity. Overall, this study highlights the power of GRP-PPY-NP as a highly efficient adsorbent for the removal of MXF from wastewater as it is the first time to use this NP for a pharmaceutical product which shows the study's novelty, and the findings provide valuable insights into the development of sustainable and effective wastewater treatment technologies for combating antibiotic contamination in aquatic environments.
Collapse
Affiliation(s)
- Sara Ishaq
- Analytical Chemistry Department, Faculty of Pharmacy, MSA University: October University for Modern Sciences and Arts, Cairo, Egypt.
| | - Ahmed H Nadim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sawsan M Amer
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba T Elbalkiny
- Analytical Chemistry Department, Faculty of Pharmacy, MSA University: October University for Modern Sciences and Arts, Cairo, Egypt
| |
Collapse
|
23
|
Zhang C, Chen W, Owens G, Chen Z. Recovery of rare earth elements from mine wastewater using alginate microspheres encapsulated with zeolitic imidazolate framework-8. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134435. [PMID: 38691933 DOI: 10.1016/j.jhazmat.2024.134435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
There is increasing demand and interest in efficient methods for the recovery of rare earth elements (REEs) from wastewater because of the growing concerns associated with the negative impacts of REEs-rich waste discharged on pristine ecosystems. Here, we designed a ZIF-8@ALG composite hydrogel by encapsulating zeolitic imidazolate frameworks-8 (ZIF-8) into sodium alginate and poly (vinyl alcohol) double cross-linked networks (ALG) for the recovery of REEs from mine wastewater. ZIF-8@ALG showed exceptional REEs adsorption performance with the most superior separation factor (Ho/Mn) of 597.5. For the REEs considered, the ZIF-8@ALG composite exhibited a preference for heavy REEs with high adsorption efficiencies (65.3 ∼ 97.2%) and distribution coefficients (2045.5 ∼ 28500.0 mL·g-1). Adsorption involved a combination of electrostatic attraction, complexation and ion exchange mechanisms. REEs adsorbed on ZIF-8@ALG could also be desorbed using sodium citrate via ion-exchange and complexation, thus achieving efficient REEs recovery. In addition, ZIF-8@ALG was stable and reusable, maintaining effective adsorption in wastewater over four consecutive cycles, where the optimal adsorption efficiency reached 80.0%. Overall, this study provided an effective and feasible method for the recovery of REEs in mine wastewater, and confirmed that ZIF-8-based materials have significant potential for REEs recovery applications in wastewater engineering treatment.
Collapse
Affiliation(s)
- Chenxin Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Wei Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China.
| |
Collapse
|
24
|
Jourdain A, Taviot-Gueho C, Nielsen UG, Prévot V, Forano C. In-depth characterization of phosphate intercalated Mg Al Layered double hydroxides and study of the PO 4 release properties. Dalton Trans 2024; 53:9568-9577. [PMID: 38771566 DOI: 10.1039/d4dt00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Slow-release fertilizers (SRFs) form the core of innovative strategies in sustainable agriculture. Layered Double Hydroxides (LDH), known for their high capacity to sequester plant nutrients, especially phosphate, are emerging as promising candidates for SRF synthesis. The phosphate release properties of MgAl LDH (with a targeted Mg/Al ratio of 2.0) intercalated with HPO42- anions were assessed in various aqueous environments. A comprehensive analysis, including in-depth chemical and structural characterizations (ICP-OES, XRD, PDF, 27Al NMR, 31P NMR, FTIR, SEM) of the as-prepared phase unveiled a more intricate composition than anticipated for a pure or ideal Mg2Al-HPO4 LDH, encompassing an excess of intercalated phosphate in conjunction with K+. Beyond the intercalated phosphate, solid state 31P NMR speciation identified multiple HxPO4(-3+x) environments, indicating a portion of the phosphate reacting with intralayer Mg2+ to form K-struvite. Additionally, some phosphates were adsorbed onto the surface of amorphous aluminum hydroxide, a side phase formed during MgAl coprecipitation. The phosphate release demonstrated rapid kinetics, occurring within 6 days. Moreover, the released phosphate increased significantly when reducing the Solid/Liquid (S/L) ratio (58%) and further increasing in the presence of carbonate ions (90%). The released phosphate varied from 12% to 90% under different release conditions, transitioning from water to a 3.33 mM NaHCO3 aqueous solution at a low S/L ratio (from 20 mg LDH per mL to 0.02 mg LDH per mL). The simultaneous release of K+, Mg2+, Al3+ indicated the complete dissolution of the K-struvite and partial dissolution of phosphate intercalated MgAl LDH. These results enhanced our understanding of the mechanism governing phosphate release from MgAl LDH, paving the way for potential phosphate recovery by LDH or for the development of LDH-based SRFs.
Collapse
Affiliation(s)
- Alexandra Jourdain
- Université Clermont Auvergne, CNRS, INP Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Christine Taviot-Gueho
- Université Clermont Auvergne, CNRS, INP Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Vanessa Prévot
- Université Clermont Auvergne, CNRS, INP Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Claude Forano
- Université Clermont Auvergne, CNRS, INP Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
25
|
Puiatti GA, Elerate EM, de Carvalho JP, Luciano VA, de Carvalho Teixeira AP, Lopes RP, Teixeira de Matos A. Reuse of iron ore tailings as an efficient adsorbent to remove dyes from aqueous solution. ENVIRONMENTAL TECHNOLOGY 2024; 45:2308-2319. [PMID: 34839789 DOI: 10.1080/09593330.2021.2011427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
In this work, an iron ore tailings sample (IOT), collected from a tailings dam in Minas Gerais, Brazil, was characterized. The IOT presented point of zero charge of ∼ 6, specific surface area of 4 m2 g-1, and was mainly composed of hematite and quartz. Subsequently, experiments were performed to evaluate the adsorption of an anionic dye, Direct Red 80 (DR80), and a cationic dye, Methylene Blue (MB), by the IOT, studying the effects of its dose (doseIOT) and the solution initial pH (pH0). The DR80 removal increased with the decrease of the pH0 while the opposite effect occurred in the experiments with the MB, suggesting the process is governed by the adsorption resulting from electrostatic forces. The increase in the doseIOT increased the DR80 and MB removal, which can be attributed to the greater availability of adsorption sites. Pseudo-second order kinetic (R2 > 0.9994) and the Langmuir equilibrium isotherm (R2 > 0.9842) models described well the DR80 adsorption by the IOT, being the reaction rate and maximum adsorption capacity higher at lower pH0. In a regeneration experiment, it was possible to desorb almost entirely the DR80 using a NaOH solution. Additionally, the regenerated IOT was able to adsorb the DR80, demonstrating its reusability. In a preliminary assay, the IOT decreased the colour of the textile wastewater sample at pH0 3. Therefore, the results indicate the potential use of IOT for removing electric-charged pollutants by adsorption, especially anionic ones under acidic conditions.
Collapse
Affiliation(s)
- Gustavo Alves Puiatti
- Department of Environmental and Sanitary Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | - Antonio Teixeira de Matos
- Department of Environmental and Sanitary Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
26
|
Manninen M, Kangas T, Hu T, Varila T, Lassi U, Runtti H. Zn(II) removal from wastewater by an alkali-activated material prepared from steel industry slags: optimization and modelling of a fixed-bed process. ENVIRONMENTAL TECHNOLOGY 2024; 45:2519-2530. [PMID: 36756951 DOI: 10.1080/09593330.2023.2177565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Removal of dissolved zinc (Zn) from water by a novel alkali-activated material (AAM) prepared from steel industry slags in a fixed-bed column was investigated. Design of experiments was used to find the optimum operation parameters [flow rate ( Q ) , adsorbent mass, (m ads ), and initial Zn concentration (C 0 )] for the removal of Zn2+ from a ZnCl2 solution. Regression models for the breakthrough (q b ), and saturation (q sat ) capacities of the bed and three other response parameters as functions of Q , m ads and C 0 were fitted with coefficients of determination (R 2 ) ranging from 0.48 to 0.99. Experimental values of q b and q sat varied within 1.42-7.03 mg Zn/g and 10.57-17.25 mg Zn/g, respectively. The optimum operation parameters were determined to be Q = 1.64 ml/min and m ads = 4.5 g, whereas C 0 had negligible effect on the response parameters in the range 73-107 mg Zn/l. Finally, three empirical breakthrough curve (BTC) models were employed to describe the individual BTCs of which the modified dose - response model was found to give the best fit (0.960 ≤ R 2 ≤ 0.998). The results of the present work demonstrate that the novel AAM has considerable potential to be utilized in water purification applications.
Collapse
Affiliation(s)
- Mikael Manninen
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Teija Kangas
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Tao Hu
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Toni Varila
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Ulla Lassi
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Hanna Runtti
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| |
Collapse
|
27
|
Lobo WV, Loureiro Paes OADR, Pinheiro W, Soares ER, de Souza MP, Dos Santos Sousa A, Kumar V, Iglauer S, de Freitas FA. Application of chemically modified waste tucumã (Astrocaryum aculeatum) seeds in the biosorption of methylene blue: kinetic and thermodynamic parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34097-34111. [PMID: 38693458 DOI: 10.1007/s11356-024-33517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Dye effluents cause diverse environmental problems. Methylene blue (MB) dye stands out since it is widely used in the textile industry. To reduce the pollution caused by the MB, we developed biosorbents from tucumã seeds, where the in natura seeds were treated with NaOH (BT) and H3PO4 (AT) solutions and characterized by Boehm titration, point of zero charges, FTIR, TGA, BET, and SEM. It was observed that the acid groups predominate on the surface of the three biosorbents. The process was optimized for all biosorbents at pH = 8, 7.5 g/L, 240 min, C0 = 250 mg/L, and 45 ℃. BT was more efficient in removing MB (96.20%; QMax = 35.71 mg/g), while IT and AT removed around 60% in similar conditions. The adsorption process best fits Langmuir and Redlich-Peterson isotherms, indicating a hybrid adsorption process (monolayer and multilayer) and pseudo-second-order kinetics. Thermodynamic data confirmed an endothermic and spontaneous adsorption process, mainly for BT. MB was also recovered through a desorption process with ethanol, allowing the BT recycling and reapplication of the dye. Thus, an efficient and sustainable biosorbent was developed, contributing to reducing environmental impacts.
Collapse
Affiliation(s)
- Wyvirlany Valente Lobo
- Programa de Pós-Graduação Em Química, Universidade Federal Do Amazonas, Setor Norte, Manaus, AM, 69080-900, Brazil
| | | | - William Pinheiro
- Programa de Pós-Graduação Em Química, Universidade Federal Do Amazonas, Setor Norte, Manaus, AM, 69080-900, Brazil
| | - Elzalina Ribeiro Soares
- Centro de Estudos Superiores de Tefé, Universidade Do Estado Do Amazonas, Estrada Do Bexiga, 1085, Bairro Jerusalém, Tefé, AM, 69470-000, Brazil
| | - Mayane Pereira de Souza
- Centro de Biotecnologia da Amazônia, Av. Gov. Danilo de Matos Areosa, 690 - Distrito Industrial I, Manaus, AM, 69075-351, Brazil
| | - Airi Dos Santos Sousa
- Centro de Biotecnologia da Amazônia, Av. Gov. Danilo de Matos Areosa, 690 - Distrito Industrial I, Manaus, AM, 69075-351, Brazil
| | - Vineet Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Stefan Iglauer
- School of Engineering, Edith Cowan University, 270 Joondalup Dr., Joondalup, WA, 6027, Australia
| | - Flávio A de Freitas
- Programa de Pós-Graduação Em Química, Universidade Federal Do Amazonas, Setor Norte, Manaus, AM, 69080-900, Brazil.
- Centro de Biotecnologia da Amazônia, Av. Gov. Danilo de Matos Areosa, 690 - Distrito Industrial I, Manaus, AM, 69075-351, Brazil.
| |
Collapse
|
28
|
Yin Y, Fan C, Cheng L, Shan Y. Adsorption of perfluoroalkyl substances on deep eutectic solvent-based amorphous metal-organic framework: Structure and mechanism. ENVIRONMENTAL RESEARCH 2024; 248:118261. [PMID: 38272299 DOI: 10.1016/j.envres.2024.118261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a class of emerging organic pollutants characterized by high toxicity, environmental persistence, and widespread detection in water sources. The removal of PFASs from water is a matter of global concern, given their detrimental impact on both the environment and public health. Many commonly used PFAS adsorbents demonstrate limited adsorption capacities and/or slow adsorption kinetics. Therefore, there is an urgent need for the development of efficient adsorbents. For the first time, this work systematically investigated the performance of a deep eutectic solvent (DES)-based amorphous metal-organic framework (MOF) for the adsorption of PFASs with different carbon-chain lengths under the state of the mixture in aquatic environments. The adsorption mechanism was probed by a suite of adsorption kinetics studies, adsorption isotherm profiling, spectral characterization, and ab initio molecular dynamics (AIMD) simulations, revealing that PFAS adsorption is driven by synergistic capturing effects including acid/base coordination, CF-π (carbon-fluorine-π), hydrogen bonding, and hydrophobic interactions. Furthermore, the adsorption processes of short-chain and long-chain targets were found to involve different rate-controlling steps and interaction sites. Hydrophobic interactions facilitated the swift arrival of long-chain PFASs at the coordinatively interacting sites between carboxyl termini and Lewis acid Zr unsaturated sites, thanks to their lower reaction barriers. On the other hand, the adsorption of short-chain PFASs primarily relied on a Zr hydroxyl-based ligand exchange force, which would take place at Brønsted acid sites. The existence of massive structural disorder in amorphous UiO-66 led to the development of larger pores, thus improving the accessibility of abundant adsorption sites and facilitating adsorption and diffusion. The presence of multiple types of interactions and flexible structure in defect-rich amorphous UiO-66 significantly increased the exposure of functional groups to the adsorbates. Additionally, this material possessed outstanding regeneration efficiency and outperformed other MOF-based adsorbents with high affinity for targets. It enhances our understanding of the adsorption performances and mechanisms of amorphous materials toward PFASs, thereby paving the way for designing more efficient PFAS adsorbents.
Collapse
Affiliation(s)
- Yaqi Yin
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chen Fan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Linru Cheng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuwei Shan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
29
|
Dubey S, Mishra RK, Kaya S, Rene ER, Giri BS, Sharma YC. Microalgae derived honeycomb structured mesoporous diatom biosilica for adsorption of malachite green: Process optimization and modeling. CHEMOSPHERE 2024; 355:141696. [PMID: 38499077 DOI: 10.1016/j.chemosphere.2024.141696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
The present study investigated the removal of malachite green dye from aquifers by means of microalgae-derived mesoporous diatom biosilica. The various process variables (dye concentration, pH, and adsorbent dose) influencing the removal of the dye were optimized and their interactive effects on the removal efficiency were explored by response surface methodology. The pH of the solution (pH = 5.26) was found to be the most dominating among other tested variables. The Langmuir isotherm (R2 = 0.995) best fitted the equilibrium adsorption data with an adsorption capacity of 40.7 mg/g at 323 K and pseudo-second-order model (R2 = 0.983) best elucidated the rate of dye removal (10.6 mg/g). The underlying mechanism of adsorption was investigated by Weber-Morris and Boyd models and results revealed that the film diffusion governed the overall adsorption process. The theoretical investigations on the dye structure using DFT-based chemical reactivity descriptors indicated that malachite green cations are electrophilic, reactive and possess the ability to accept electrons, and are strongly adsorbed on the surface of diatom biosilica. Also, the Fukui function analysis proposed the favorable adsorption sites available on the adsorbent surface.
Collapse
Affiliation(s)
- Shikha Dubey
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal) 246174, India; Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India.
| | - Rakesh K Mishra
- Department of Chemistry, National Institute of Technology, Uttarakhand (NITUK), Srinagar (Garhwal) 246174, India
| | - Savaş Kaya
- Department of Pharmacy, Health Services Vocational School, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, Delft 2601DA, the Netherlands
| | - Balendu Shekher Giri
- Sustainability Cluster, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
| | - Yogesh C Sharma
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
30
|
Jaramillo-Fierro X, Cuenca G. Theoretical and Experimental Analysis of Hydroxyl and Epoxy Group Effects on Graphene Oxide Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:714. [PMID: 38668208 PMCID: PMC11054681 DOI: 10.3390/nano14080714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
In this study, we analyzed the impact of hydroxyl and epoxy groups on the properties of graphene oxide (GO) for the adsorption of methylene blue (MB) dye from water, addressing the urgent need for effective water purification methods due to industrial pollution. Employing a dual approach, we integrated experimental techniques with theoretical modeling via density functional theory (DFT) to examine the atomic structure of GO and its adsorption capabilities. The methodology encompasses a series of experiments to evaluate the performance of GO in MB dye adsorption under different conditions, including differences in pH, dye concentration, reaction temperature, and contact time, providing a comprehensive view of its effectiveness. Theoretical DFT calculations provide insights into how hydroxyl and epoxy modifications alter the electronic properties of GO, improving adsorption efficiency. The results demonstrate a significant improvement in the dye adsorption capacity of GO, attributed to the interaction between the functional groups and MB molecules. This study not only confirms the potential of GO as a superior adsorbent for water treatment, but also contributes to the optimization of GO-based materials for environmental remediation, highlighting the synergy between experimental observations and theoretical predictions in advances in materials science to improve sustainability.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Guisella Cuenca
- Ingeniería Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador;
| |
Collapse
|
31
|
Umeh CT, Nduka JK, Mogale R, Akpomie KG, Okoye NH. Acid-activated corn silk as a promising phytosorbent for uptake of Malachite green and Cd (II) ion from simulated wastewater: equilibrium, kinetic and thermodynamic studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1593-1610. [PMID: 38623998 DOI: 10.1080/15226514.2024.2339478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Malachite green (MG) dye and cadmium metal ion are toxic pollutants that should be removed from aqueous environment. The recent study aimed to examine the adsorption behavior of MG dye and Cd (II) from wastewater onto low-cost adsorbent prepared by activating corn silk with nitric acid (ACS) and characterized by SEM, FTIR, XRD, BET and TGA. The optimum MG and Cd (II) adsorption was observed at pH 7 and pH 9 and maximum uptake of both pollutants was at 0.5 g dosage, 60 mins contact time and 20 mg/L initial concentration. The retention of dye and metal ion by the studied adsorbent was best fit to Langmuir isotherm and Pseudo-second order kinetics. The maximum monolayer coverage capacity of ACS for MG dye and Cd (II) ion was 18.38 mg/g and 25.53 mg/g, respectively. Thermodynamic studies predicted a spontaneous reaction with exothermic process for MG dye whereas an endothermic and spontaneous process was confirmed for Cd ion based on estimated parameters. The adsorption mechanism of MG dye and Cd (II) uptake was by combination of electrostatic interaction, pore diffusion, ion exchange, pie-pie attraction, hydrogen bonding, and complexation. The adsorbed pollutants were effectively desorbed with significant regeneration efficiency after successive five cycles that proved the potential of low-cost biosorbent for selective sequestration of cationic dye and divalent metal ion from effluents.
Collapse
Affiliation(s)
- Chisom T Umeh
- Department of Chemistry, Nnamdi Azikiwe University, Awka, Anambra, Nigeria
| | | | - Refilwe Mogale
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Nkechi H Okoye
- Department of Chemistry, Nnamdi Azikiwe University, Awka, Anambra, Nigeria
| |
Collapse
|
32
|
Fernández D, Abalde J, Torres E. The Biosorption Capacity of the Marine Microalga Phaeodactylum tricornutum for the Removal of Toluidine Blue from Seawater. TOXICS 2024; 12:277. [PMID: 38668500 PMCID: PMC11053973 DOI: 10.3390/toxics12040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
A wide variety of dyes, such as toluidine blue (TB), are used daily for a multitude of purposes. After use, many of these compounds end up in aqueous effluents, reaching natural environments, including marine environments. The removal of these pollutants from marine environments must be considered a priority problem. The search for natural techniques, such as biosorption, is a preferred option to eliminate pollution from natural environments. However, biosorption studies in seawater are scarce. For this reason, the living biomass of the marine microalga Phaeodactylum tricornutum was studied to determine its ability to remove TB from seawater. The kinetics of the biosorption process, the isotherms, and the effect of light and pH were determined. This biomass showed a maximum TB removal capacity of 45 ± 2 mg g-1 in the presence of light. Light had a positive effect on the TB removal capacity of this living biomass. The best fitting kinetics was the pseudo-second order kinetics. The efficiency of the removal process increased with increasing pH. This removal was more effective at alkaline pH values. The results demonstrated the efficacy of P. tricornutum living biomass for the efficient removal of toluidine blue dye from seawater both in the presence and absence of light.
Collapse
Affiliation(s)
| | | | - Enrique Torres
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071 A Coruña, Spain; (D.F.L.); (J.A.A.)
| |
Collapse
|
33
|
Pereira L, Castillo V, Calero M, González-Egido S, Martín-Lara MÁ, Solís RR. Promoting the circular economy: Valorization of a residue from industrial char to activated carbon with potential environmental applications as adsorbents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120753. [PMID: 38531130 DOI: 10.1016/j.jenvman.2024.120753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Pyrolysis of residues enriched with carbon, such as in agroforestry or industrial activities, has been postulated as an emerging technology to promote the production of biofuels, contributing to the circular economy and minimizing waste. However, during the pyrolysis processes a solid fraction residue is generated. This work aims to study the viability of these chars to develop porous carbonaceous materials that can be used for environmental applications. Diverse chars discharged by an industrial pyrolysis factory have been activated with KOH. Concretely, the char residues came from the pyrolysis of olive stone, pine, and acacia splinters, spent residues fuel, and cellulose artificial casings. The changes in the textural, structural, and composition characteristics after the activation process were studied by N2 adsorption-desorption isotherms, scanning electron microscopy, FTIR, elemental analysis, and XPS. A great porosity was developed, SBET within 776-1186 m2 g-1 and pore volume of 0.37-0.59 cm3 g-1 with 70-90% of micropores contribution. The activated chars were used for the adsorption of CO2, leading to CO2 maximum uptakes of 90-130 mg g-1. There was a good correlation between the CO2 uptake with microporosity and oxygenated surface groups of the activated chars. Moreover, their ability to adsorption of contaminants in aqueous solution was also evaluated. Concretely, there was studied the adsorption of aqueous heavy metals, i.e., Cd, Cu, Ni, Pb, and Zn, and organic pollutants of emerging concern such as caffeine, diclofenac, and acetaminophen.
Collapse
Affiliation(s)
- Ledicia Pereira
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Ventura Castillo
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Mónica Calero
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | - Sergio González-Egido
- Environment and Bioproducts Group, Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28871, Madrid, Spain
| | - M Ángeles Martín-Lara
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.
| | - Rafael R Solís
- Department of Chemical Engineering, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
34
|
Singh J, Verma M. Waste derived modified biochar as promising functional material for enhanced water remediation potential. ENVIRONMENTAL RESEARCH 2024; 245:117999. [PMID: 38154567 DOI: 10.1016/j.envres.2023.117999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
The waste management and water purification are daunting environmental challenges. Biochar, a carbonaceous material prepared from diverse organic waste (agricultural, household residues and municipal sewage sludge) has garnered substantial attention due to its excellent attributes, including carbon content, cation exchange efficacy, ample specific surface area, and structural robustness. Thus, the present review comprehensively analyzes bio waste-derived biochar with a particular emphasis on water remediation applications. This article primarily delves into various strategies for modifying biochar, elucidating the underlying mechanisms behind these modifications and their potential for bolstering pollutant removal efficiency. Furthermore, it addresses the impact of functionalization on both biochar stability and cost for commercialization. Lastly, the article outlines key developments, SWOT analysis, and future prospects, offering insights into the practical execution of biochar applications at a larger scale. Therefore, this article paves the way for future research to deepen the understanding of modified biochar with mechanisms for exploring water remediation applications in a more sustainable manner.
Collapse
Affiliation(s)
- Jagpreet Singh
- Department of Chemistry, Chandigarh University, Mohali - 140413, Punjab, India; University Centre for Research & Development, Chandigarh University, Mohali - 140413 , Punjab, India.
| | - Meenakshi Verma
- Department of Chemistry, Chandigarh University, Mohali - 140413, Punjab, India; University Centre for Research & Development, Chandigarh University, Mohali - 140413 , Punjab, India.
| |
Collapse
|
35
|
Liang X, Chen S, Zhang X, Hou Z, Lin X, Chao L. Effects of different aging methods on the ability of biochar to adsorb heavy metal cadmium and its physical and chemical properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19409-19422. [PMID: 38358633 DOI: 10.1007/s11356-024-32406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The aging process can affect the physical and chemical properties as well as adsorption capacity of biochar. This study focuses on the heavy metal cadmium (Cd) as the research object, and artificially ages biochar prepared from rice straw and corn straw through accelerated freeze-thaw cycles, alternating dry wet cycles, and ultraviolet light treatment, in order to evaluate the effects of different aging conditions on the physical and chemical properties of the two different types of biochar and on their adsorption capacities for Cd. After aging, the pH of rice and corn biochar decreased to varying degrees, respectively. The surface structure was ruptured, the average pore diameter was decreased, and the specific surface area was increased by 27.3%, 21.9%, and 9.8% (rice) and 95.4%, 27.7%, and 13.4% (corn). Ultraviolet light aging has the most significant impact on the elemental content of biochar, and the C content was decreased by 12.4% (rice) and 9.3% (corn). The O content was increased by 11.2% (rice) and 44.1% (corn), and the numbers of O/C, H/C, (O + N)/C, and oxygen-containing functional groups were increased. These results demonstrate that the aging process reduces the degree of aromatization of biochar, while enhancing its polarity and Cd adsorption capacity. Rice straw biochar (RSB) has a greater ability to adsorb Cd than corn straw biochar (CSB). In addition, ultraviolet light aging is particularly effective in increasing heavy metal adsorption.
Collapse
Affiliation(s)
- Xiao Liang
- College of Environment, Shenyang University, Shenyang, 110044, China
| | - Su Chen
- College of Environment, Shenyang University, Shenyang, 110044, China.
- College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China.
| | - Xiaoying Zhang
- College of Environment, Shenyang University, Shenyang, 110044, China
| | - Ziyan Hou
- College of Environment, Shenyang University, Shenyang, 110044, China
| | - Xiaonan Lin
- College of Environment, Shenyang University, Shenyang, 110044, China
| | - Lei Chao
- College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| |
Collapse
|
36
|
He D, Zhang Z, Zhang W, Zhang H, Liu J. Municipal sludge biochar skeletal sodium alginate beads for phosphate removal. Int J Biol Macromol 2024; 261:129732. [PMID: 38280708 DOI: 10.1016/j.ijbiomac.2024.129732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
A novel Fe/La decorative biochar filled in sodium alginate beads (SA-KBC-Fe/La) was prepared by a simple sol-gel method and applied to adsorb phosphate (P) efficiently from water in this study. The morphology, structure and chemical component of the hydrogel beads were characterized in detail. And the synthesized bead exhibited easy separation and high P uptake of 46.65 mg/g when the Fe: La was of 1: 2 at 298 K with initial P of 100 mg/L, which was much higher than SA gel bead. The adsorption showed that the optimal pH was 6, and the adsorption was met with pseudo-second-order kinetics and Langmuir isothermal models, indicating a chemical adsorption process. The adsorption capacity remained 82 % after 5 cycles of adsorption. The adsorption mechanism of P was mainly of ligand exchange and electrostatic attraction. Compared with other reported adsorbents, the modification of Fe/La could enhance the mechanical property of SA-KBC-Fe/La beads with increasing active sites. Additionally, the involved biochar could lead to excellent thermal stability and hierarchical porous structure of beads with larger specific surface area (54.22 m2/g). The study could provide new ideas for P removal and strategy for the final disposal of municipal sludge.
Collapse
Affiliation(s)
- Dandan He
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Zeyu Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Wenbo Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| | - Hong Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| | - Juanli Liu
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| |
Collapse
|
37
|
Nogueira M, Matos I, Bernardo M, Tarelho LAC, Ferraria AM, Botelho do Rego AM, Fonseca I, Lapa N. Recovery of rare earth elements (Nd 3+ and Dy 3+) by using carbon-based adsorbents from spent tire rubber. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:451-461. [PMID: 38113670 DOI: 10.1016/j.wasman.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Two samples of spent tire rubber (rubber A and rubber B) were submitted to thermochemical conversion by pyrolysis process. A450, B450 and A900, B900 chars were obtained from rubber A and rubber B at 450 °C and 900 °C, respectively. The chars were then applied as recovery agents of Nd3+ and Dy3+ from aqueous solutions in mono and bicomponent solutions, and their performance was benchmarked with a commercial activated carbon. The chars obtained at 900 °C were the most efficient adsorbents for both elements with uptake capacities around 30 mg g-1. The chars obtained at 450 °C presented uptake capacities similar to the commercial carbon (≈ 11 mg g-1). A900 and B900 chars presented a higher availability of Zn ions that favored the ion exchange mechanism. It was found that Nd3+ and Dy3+ were adsorbed as oxides after Zn was released from silicate structures (Zn2SiO4). A900 char was further selected to be tested with Nd/Dy binary mixtures and it was found a trend to adsorb a slightly higher amount of Dy3+ due to its smaller ionic radius. The uptake capacity in bicomponent solutions was generally higher than for single component solutions due to the higher driving force triggered by the higher concentration gradient.
Collapse
Affiliation(s)
- M Nogueira
- LAQV/REQUIMTE, Departamento of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal
| | - I Matos
- LAQV/REQUIMTE, Departamento of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal.
| | - M Bernardo
- LAQV/REQUIMTE, Departamento of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal.
| | - L A C Tarelho
- Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Aveiro 3810-193, Portugal
| | - A M Ferraria
- BSIRG, IBB - Institute for Bioengineering and Biosciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
| | - A M Botelho do Rego
- BSIRG, IBB - Institute for Bioengineering and Biosciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
| | - I Fonseca
- LAQV/REQUIMTE, Departamento of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal
| | - N Lapa
- LAQV/REQUIMTE, Departamento of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516, Caparica, Portugal
| |
Collapse
|
38
|
Bulin C, Xiong Q, Zheng R, Li C, Ma Y, Guo T. High efficiency removal of methyl blue using phytic acid modified graphene oxide and adsorption mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123645. [PMID: 37976572 DOI: 10.1016/j.saa.2023.123645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Phytic acid modified graphene oxide (PGO) has encouraging prospect in environmental application. Herein, PGO was fabricated with a simple hydrothermal method and used as adsorbent to remove methyl blue (MB). Elaborate inspection based on the hard-soft acid-base (HSAB) principle, spectroscopic characterization, as well as batch adsorption and fitting were conducted to unravel the adsorption mechanism. Results show, PGO efficiently adsorbs 89.08 mg·g-1 of MB in 22 min. HSAB principle proposes, high electron transfer (ΔN) and energy lowering (ΔE) induce covalent bond (chemical interaction), while low ΔN and ΔE induce electrostatic effect (physical interaction). Accordingly, both the first and second strongest interaction occurs between PA moiety and MB: π electrons of MB flows towards O atom in OH and O(-O-) of PA, respectively. Yet the third strongest interaction happens between GO moiety and MB: electron of O atom in OH group of GO flows towards N atom of MB. Above top three interactions are characterized by prominent ΔN and ΔE implying the formation of covalent bond. However, other interactions yield low ΔN and ΔE, suggesting the presence of electrostatic effect. HSAB principle conclusion was substantiated by FTIR and UV-Vis analyses. These findings confirm that PA modification enhances the adsorption affinity of graphene oxide. Thereby, chemical adsorption induced by physical interaction is proposed. This work may inspire the design of efficient adsorbent based on PGO framework for environmental restoration.
Collapse
Affiliation(s)
- Chaoke Bulin
- College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, PR China.
| | - Qianhui Xiong
- College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Rongxiang Zheng
- College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Chenna Li
- College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Yuelong Ma
- College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Ting Guo
- College of and Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| |
Collapse
|
39
|
Ismail YH, Wang K, Al Shehhi M, Al Hammadi A. Iodide ion-imprinted chitosan beads for highly selective adsorption for nuclear wastewater treatment applications. Heliyon 2024; 10:e24735. [PMID: 38318068 PMCID: PMC10838745 DOI: 10.1016/j.heliyon.2024.e24735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Iodide ions from radioactive iodine isotopes are common contaminants present in nuclear wastewater from nuclear power plants which are considered hazardous contaminants to be released in water sources even at low concentrations due to their association with metabolic disorders, therefore its removal from the nuclear wastewater effluents is necessary. Chitosan beads are natural and cost-efficient adsorbents that have been used for ion removal from wastewater. However, issues of poor selectivity persist in achieving high-efficiency iodide ion removal. In this study, ion-imprinted chitosan beads (IIC) have been synthesized using the phase-inversion method, IIC beads were modified by cross-linking with epichlorohydrin (IIC-EPI) and modified by cross-linking with epichlorohydrin and silicon dioxide nanoparticles (IIC-SiO2-EPI). Through 4 h of batch adsorption experiments, IIC beads achieved a maximum adsorption capacity (Qe) of 0.65 mmol g-1 and showed more preference for the iodide ions compared to the non-imprinted chitosan beads which achieved a maximum adsorption capacity of 0.27 mmol g-1 at pH 7. While the modified beads IIC-EPI and IIC-SiO2-EPI beads have boosted the adsorption capacities to 0.72 mmol g-1 and 0.91 mmol g-1. Scanning electron microscopic cross-sectional images have shown more pores and cavities than the surface images which agrees with the multilayer heterogeneous diffusion suggested by the Freundlich adsorption isotherm, that the experimental data has fitted. Adsorption kinetic data have fitted the Pseudo-second-order model as well as the Weber and Morris intraparticle model, which suggest an intraparticle pore diffusion adsorption mechanism, with the involvement of the physical electrostatic interactions with the cationic chitosan surface.
Collapse
Affiliation(s)
- Yassmin Handulle Ismail
- Chemical Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
- Emirates Nuclear Technology Center (ENTC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Kean Wang
- Singapore Technology Institute, 138683, Singapore, Singapore
| | - Maryam Al Shehhi
- Emirates Nuclear Technology Center (ENTC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Civil Infrastructure and Environmental Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Ali Al Hammadi
- Chemical Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separation (CeCas), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
40
|
Hoffman JR, Baumann AE, Stafford CM. Thickness Dependent CO 2 Adsorption of Poly(ethyleneimine) Thin Films for Direct Air Capture. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2024; 481:10.1016/j.cej.2023.148381. [PMID: 38511133 PMCID: PMC10949156 DOI: 10.1016/j.cej.2023.148381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Mesoporous silica impregnated with polyethyleneimine (PEI) has been shown to be a suitable material for the direct air capture (DAC) of CO2. Factors such as CO2 concentration, temperature, and amine loading impact overall capture capacity and amine efficiency by altering diffusional resistance and reaction kinetics. When studied in the impregnated 3-dimensional sorbent material, internal diffusion impacts the evaluation of the reaction kinetics at the air/amine interface. In this work, we designed a novel tandem quartz crystal microbalance with dissipation (QCM-D) and polarization modulation infrared reflective absorption spectroscopy (PM-IRRAS) instrument. CO2 adsorption kinetics of the PEI-based amine layer in a 2-dimensional geometry were studied at a variety of film thicknesses (10 nm to 100 nm), temperatures (25 °C to 80 °C), and CO2 concentrations (5 % and 0.04 % by mole fraction). Total CO2 capture capacity increased with film thickness but decreased amine efficiency, as additional diffusional resistance for thicker films limits access to available amine sites. The capture capacity of thick films (>50 nm) is shown to be limited by amine availability, while capture of thin films (<50 nm) is limited by CO2 availability. A 50 nm PEI film was shown to be optimal for capture of 0.04 % (400 ppm) CO2. The adsorption profiles for these conditions were fitted to pseudo-first order and Avrami fractional order models. The reaction process switches between a diffusion limited reaction to a kinetic limited reaction at 80 °C when using 5 % CO2 and 55 °C when using 0.04 % CO2. These results offer accurate analysis of adsorption of CO2 at the air/amine interface of PEI films which can be used for the design of future sorbent materials.
Collapse
Affiliation(s)
- John R Hoffman
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Avery E Baumann
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Christopher M Stafford
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| |
Collapse
|
41
|
Camparotto NG, de Figueiredo Neves T, de Souza Vendemiatti J, Dos Santos BT, Vieira MGA, Prediger P. Adsorption of contaminants by nanomaterials synthesized by green and conventional routes: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12683-12721. [PMID: 38253828 DOI: 10.1007/s11356-024-31922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Nanomaterials, due to their large surface area and selectivity, have stood out as an alternative for the adsorption of contaminants from water and effluents. Synthesized from green or traditional protocols, the main advantages and disadvantages of green nanomaterials are the elimination of the use of toxic chemicals and difficulty of reproducing the preparation of nanomaterials, respectively, while traditional nanomaterials have the main advantage of being able to prepare nanomaterials with well-defined morphological properties and the disadvantage of using potentially toxic chemicals. Thus, based on the particularities of green and conventional nanomaterials, this review aims to fill a gap in the literature on the comparison of the synthesis, morphology, and application of these nanomaterials in the adsorption of contaminants in water. Focusing on the adsorption of heavy metals, pesticides, pharmaceuticals, dyes, polyaromatic hydrocarbons, and phenol derivatives in water, for the first time, a review article explored and compared how chemical and morphological changes in nanoadsorbents synthesized by green and conventional protocols affect performance in the adsorption of contaminants in water. Despite advances in the area, there is still a lack of review articles on the topic.
Collapse
Affiliation(s)
| | | | | | - Bruna Toledo Dos Santos
- School of Technology, University of Campinas - Unicamp, Limeira , São Paulo, CEP: 13484-332, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, Campinas, São Paulo, 13083-852, Brazil
| | - Patrícia Prediger
- School of Technology, University of Campinas - Unicamp, Limeira , São Paulo, CEP: 13484-332, Brazil.
| |
Collapse
|
42
|
Orejon D, Oh J, Preston DJ, Yan X, Sett S, Takata Y, Miljkovic N, Sefiane K. Ambient-mediated wetting on smooth surfaces. Adv Colloid Interface Sci 2024; 324:103075. [PMID: 38219342 DOI: 10.1016/j.cis.2023.103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
A consensus was built in the first half of the 20th century, which was further debated more than 3 decades ago, that the wettability and condensation mechanisms on smooth solid surfaces are modified by the adsorption of organic contaminants present in the environment. Recently, disagreement has formed about this topic once again, as many researchers have overlooked contamination due to its difficulty to eliminate. For example, the intrinsic wettability of rare earth oxides has been reported to be hydrophobic and non-wetting to water. These materials were subsequently shown to display dropwise condensation with steam. Nonetheless, follow on research has demonstrated that the intrinsic wettability of rare earth oxides is hydrophilic and wetting to water, and that a transition to hydrophobicity occurs in a matter of hours-to-days as a consequence of the adsorption of volatile organic compounds from the ambient environment. The adsorption mechanisms, kinetics, and selectivity, of these volatile organic compounds are empirically known to be functions of the substrate material and structure. However, these mechanisms, which govern the surface wettability, remain poorly understood. In this contribution, we introduce current research demonstrating the different intrinsic wettability of metals, rare earth oxides, and other smooth materials, showing that they are intrinsically hydrophilic. Then we provide details on research focusing on the transition from wetting (hydrophilicity) to non-wetting (hydrophobicity) on somooth surfaces due to adsorption of volatile organic compounds. A state-of-the-art figure of merit mapping the wettability of different smooth solid surfaces to ambient exposure as a function of the surface carbon content has also been developed. In addition, we analyse recent works that address these wetting transitions so to shed light on how such processes affect droplet pinning and lateral adhesion. We then conclude with objective perspectives about research on wetting to non-wetting transitions on smooth solid surfaces in an attempt to raise awareness regarding this surface contamination phenomenon within the engineering, interfacial science, and physical chemistry domains.
Collapse
Affiliation(s)
- Daniel Orejon
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Junho Oh
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Daniel J Preston
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | - Xiao Yan
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Soumyadip Sett
- Mechanical Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| | - Yasuyuki Takata
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nenad Miljkovic
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Khellil Sefiane
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK
| |
Collapse
|
43
|
Kumari S, Chowdhry J, Choudhury A, Agarwal S, Narad P, Garg MC. Machine learning approaches for the treatment of textile wastewater using sugarcane bagasse (Saccharum officinarum) biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-31826-z. [PMID: 38227254 DOI: 10.1007/s11356-024-31826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Most dyes present in wastewater from the textile industry exhibit toxicity and are resistant to biodegradation. Hence, the imperative arises for the environmentally significant elimination of textile dye by utilising agricultural waste. The achievement of this objective can be facilitated through the utilisation of the adsorption mechanism, which entails the passive absorption of pollutants using biochar. In this study, we compare the efficacy of the response surface methodology (RSM), the artificial neural network (ANN), the k-nearest neighbour (kNN), and adaptive neuro-fuzzy inference system (ANFIS) in removing crystal violet (CV) from wastewater. The characterisation of biochar is carried out by scanning electron microscope (SEM) and Fourier transform infrared (FTIR). The impacts of the solution pH, adsorbent dosage, initial dye concentration, and temperature were investigated using a variety of models (RSM, ANN, kNN, and ANFIS). The statistical analysis of errors was conducted, resulting in a maximum removal effectiveness of 97.46% under optimised settings. These conditions included an adsorbent dose of 0.4 mg, a pH of 5, a CV concentration of 40.1 mg/L, and a temperature of 20 °C. The ANN, RSM, kNN, and ANFIS models all achieved R2 0.9685, 0.9618, 0.9421, and 0.8823, respectively. Even though all models showed accuracy in predicting the removal of CV dye, it was observed that the ANN model exhibited greater accuracy compared to the other models.
Collapse
Affiliation(s)
- Sheetal Kumari
- Amity Institute of Environmental Science (AIES), Amity University Uttar Pradesh, Sector-125, Noida, 201313, Gautam Budh Nagar, India
| | | | - Alakto Choudhury
- Amity Institute of Biotechnology (AIB), Amity University Uttar Pradesh, Noida, India
| | - Smriti Agarwal
- Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Priyanka Narad
- Amity Institute of Biotechnology (AIB), Amity University Uttar Pradesh, Noida, India
- Division of Biomedical informatics, Indian Council of Medical Research, Ministry of Health and Family Welfare, New Delhi, 110029, India
| | - Manoj Chandra Garg
- Amity Institute of Environmental Science (AIES), Amity University Uttar Pradesh, Sector-125, Noida, 201313, Gautam Budh Nagar, India.
| |
Collapse
|
44
|
Estrela Filho OA, Rivadeneira-Mendoza BF, Fernández-Andrade KJ, Zambrano-Intriago LA, Fred da Silva F, Luque R, Curbelo FD, Rodríguez-Díaz JM. Imidazolate framework material for crude oil removal in aqueus media: Mechanism insight. ENVIRONMENTAL RESEARCH 2024; 241:117680. [PMID: 37980984 DOI: 10.1016/j.envres.2023.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Considerable amount of produced water discharged by the oil industry contributes to an environmental imbalance due to the presence of several components potentially harmful to the ecosystem. We investigated the factors influencing the adsorption capacity of Zinc Imidazolate Framework-8 (ZIF-8) in finite bath systems for crude oil removal from petroleum extraction in synthetic produced water. ZIF-8, experimentally obtained by solvothermal method, was characterized by XRD, FTIR, TGA, BET and its point of zero charge (pHpcz) was determined. Synthesized material showed high crystallinity, with surface area equal to 1558 m2 g-1 and thermal stability equivalent to 400 °C. Adsorption tests revealed, based on the Sips model, that the process takes place in a heterogeneous system. Additionally, intraparticle diffusion model exhibited multilinearity characteristics during adsorption process. Thermodynamic investigation demonstrated that adsorption process is spontaneous and exothermic, indicating a physisorption phenomenon. These properties enable the use of ZIF-8 in oil adsorption, which presented an adsorption capacity equal to 452.9 mg g-1. Adsorption mechanism was based on hydrophobic interactions, through apolar groups present on ZIF-8 structure and oil hydrocarbons, and electrostatic interactions, through the difference in charges between positive surface of adsorbent and negatively charged oil droplets.
Collapse
Affiliation(s)
- Otoniel Anacleto Estrela Filho
- Programa de Pós-Graduação em Engenharia Química, Universidade Federal da Paraíba, Cidade Universitária, 58051-900, João Pessoa, Brazil
| | - Bryan Fernando Rivadeneira-Mendoza
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador
| | - Kevin Jhon Fernández-Andrade
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador; Laboratory of Gas Chromatography and Analytical Pyrolysis, Fac. of Engineering, Universidad del Bío-Bío (UBB), Concepción, Chile
| | - Luis Angel Zambrano-Intriago
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador
| | - Fausthon Fred da Silva
- Departamento de Química, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, PB, Brazil
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador.
| | - Fabiola Ds Curbelo
- Programa de Pós-Graduação em Engenharia Química, Universidade Federal da Paraíba, Cidade Universitária, 58051-900, João Pessoa, Brazil
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador.
| |
Collapse
|
45
|
Gao Y, Yi Z, Wang J, Ding F, Fang Y, Du A, Jiang Y, Zhao H, Jin Y. Interpretation of the adsorption process of toxic Cd 2+ removal by modified sweet potato residue. RSC Adv 2024; 14:433-444. [PMID: 38173571 PMCID: PMC10759277 DOI: 10.1039/d3ra06855b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Cadmium (Cd) is a common and toxic non-essential heavy metal that must be effectively treated to reduce its threat to the environment and public health. Adsorption with an adsorbent, such as agricultural waste, is widely used to remove heavy metals from wastewater. Sweet potato, the sixth most abundant food crop worldwide, produces a large amount of waste during postharvest processing that could be used as an economic adsorbent. In this study, the feasibility of using sweet potato residue (SPR) as an adsorbent for Cd2+ adsorption was assessed. To enhance the removal rate, SPR was modified with NaOH, and the effects of the modification and adsorption conditions on the removal of Cd2+ from wastewater were investigated. The results showed that modified sweet potato residue (MSPR) could be adapted to various pH and temperatures of simulated wastewater, implying its potential for multi-faceted application. Under optimized conditions, the removal of Cd2+ by MSPR was up to 98.94% with a maximum adsorption capacity of 19.81 mg g-1. Further investigation showed that the MSPR exhibited rich functional groups, a loose surface, and a mesoporous structure, resulting in advantageous characteristics for the adsorption of Cd2+. In addition, the MSPR adsorbed Cd2+ by complexation, ion exchange, and precipitation during a monolayer chemisorption adsorption process. This work demonstrates a sustainable and environment friendly strategy for Cd2+ removal from wastewater and a simple approach for the preparation of MSPR and also revealed the adsorption mechanism of Cd2+ by MSPR, thus providing a suitable adsorbent and strategy for the removal of other heavy metals.
Collapse
Affiliation(s)
- Yu Gao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
| | - Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
| | - Jinling Wang
- College of Life Science and Biotechnology, Mianyang Teachers' College Mianyang 621000 China
| | - Fan Ding
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang Academy of Agricultural Sciences Mianyang 621023 China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
| | - Anping Du
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
| | - Yijia Jiang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China
| |
Collapse
|
46
|
Mosaffa E, Patel D, Ramsheh NA, Patel RI, Banerjee A, Ghafuri H. Bacterial cellulose microfiber reinforced hollow chitosan beads decorated with cross-linked melamine plates for the removal of the Congo red. Int J Biol Macromol 2024; 254:127794. [PMID: 37923035 DOI: 10.1016/j.ijbiomac.2023.127794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
In this epoch, the disposal of multipollutant wastewater inevitably compromises life on Earth. In this study, the inclusion of Bacterial cellulose microfilaments reinforced chitosan adorned with melamine 2D plates creates a unique 3D bead structure for anionic dye removal. The establishment of an imine network between melamine and chitosan, along with the quantity of inter- and intra‑hydrogen bonds, boosts the specific surface area to 106.68 m2.g-1. Removal efficiency and in-depth comprehension of synthesized adsorbent characteristics were assessed using batch adsorption experiments and characterization methods. Additionally, pH, adsorbent quantity, time, beginning concentration of solution, and temperature were analyzed and optimized as adsorption essential factors. Owing to the profusion of hydroxyl, amine, imine functional groups and aromatic rings, the synthesized adsorbent intimated an astonishing maximum adsorption capacity of 3168 mg.g-1 in Congo red dye removal at pH 5.5. Based on the kinetic evaluation, pseudo-second-order (R2 = 0.999), pseudo-first-order (R2 = 0.964), and Avrami (R2 = 0.986) models were well-fitted with the kinetic results among the seven investigated models. The isothermal study reveals that the adsorption mechanism predominantly follows the Redlich-Peterson (R2 = 0.996), Koble-Carrigan, and Hill isotherm models (R2 = 0.994). The developed semi-natural sorbent suggests high adsorption capacity, which results from its exceptional structure, presenting promising implications for wastewater treatment.
Collapse
Affiliation(s)
- Elias Mosaffa
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421, Anand, Gujrat, India; Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846 Tehran, Iran
| | - Dhruvi Patel
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421, Anand, Gujrat, India
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846 Tehran, Iran
| | - Rishikumar Indravadan Patel
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421, Anand, Gujrat, India
| | - Atanu Banerjee
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujrat, India.
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846 Tehran, Iran
| |
Collapse
|
47
|
Wang J, Vikrant K, Kim KH. Application of a manganese dioxide/amine-functionalized metal-organic framework nanocomposite as a bifunctional adsorbent-catalyst for the room-temperature removal of gaseous aromatic hydrocarbons. J Colloid Interface Sci 2024; 653:643-653. [PMID: 37741172 DOI: 10.1016/j.jcis.2023.09.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
A high surface area (883 m2·g-1) nanocomposite composed of an amine-functionalized metal-organic framework (NH2-UiO-66 (U6N)) and manganese dioxide (MnO2@U6N) was prepared as bifunctional adsorbent-catalyst for the purification of multiple aromatic volatile organic compounds (VOCs) such as benzene (B), toluene (T), m-xylene (X), and styrene (S), i.e., BTXS. The performance of MnO2@U6N was assessed for BTXS removal both as single- and multi-component systems at room temperature (RT (20 °C)) under dark conditions. MnO2@U6N exhibited superior catalytic-adsorption activity for the RT removal of BTXS. The removal performance of MnO2@U6N against BTXS was then assessed across varying levels of flow rate, VOC concentration, adsorbent/catalyst mass, and relative humidity. To better understand the catalytic-adsorption activity, two types of non-linear kinetic models (pseudo-first-order and pseudo-second-order) were utilized to simulate the experimentally obtained data. In-situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) analysis was also conducted to interpret the removal mechanism of BTXS. Their adsorption capacity (mg·g-1) values are estimated to increase in the order of B (21.1) < T (66.0) < X (79.1) < S (129.7). It is suggested that the adsorbed aromatic VOC molecules on the surface of MnO2@U6N should react with active oxygen species (lattice and adsorbed oxygen) to yield the environmentally benigh end products (i.e., carbon dioxide and water) along with various intermediates (e.g., alkoxides, aldehydes, phenolates, carboxylates, and anhydrides). Accordingly, the VOC removal potential of MnO2@U6N has been validated through the synergistic combination between adsorption (primary process) and catalysis (subordinate process) at RT.
Collapse
Affiliation(s)
- Jiapeng Wang
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
48
|
Ghahremani P, Nezamzadeh-Ejhieh A, Vakili MH. A comparison of adsorption capacity of several synthesis methods of cellulose-based absorbent towards Pb(II) removal: Optimization with response surface methodology. Int J Biol Macromol 2023; 253:127115. [PMID: 37774820 DOI: 10.1016/j.ijbiomac.2023.127115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
The effects of various synthesis methods of a novel biodegradable magnetically recyclable cellulose-based adsorbent (a magnetized modified silica aerogel) on Pb(II) removal efficiency were studied. QSM (quince seed mucilage) was modified via hydrothermal and ultrasonic modes. Oven-drying and freeze-drying procedures were then used to obtain the final adsorbents. The adsorbents were named A1 to A4 and B1 to B4, depending on the synthesis and drying techniques. XRD, FTIR, BET, and SEM are characterization techniques for identifying the adsorbents. Average crystallite sizes of 15.5, 8.3, 10.9, and 2.7 nm were obtained for A1, A2, A3, and A4 samples (Scherrer formula). SEM image confirmed a Sticky bullets-like morphology. The pHpzc values of 3.4, 6.0, and 4.1 were also determined for Fe-silica aerogel, Fe-QSM, and Fe-silica aerogel-QSM samples. The highest adsorption efficiency of the A2 adsorbent towards Pb(II) cations was followed via the experimental design by the RSM (response surface methodology) approach. ANOVA results showed model F value 185 (>F0.05, 14, 15 = 2.42) and LOF F-value of 0.3831 (
Collapse
Affiliation(s)
- Parastoo Ghahremani
- Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, P.O. Box 31186145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 31186145, Shahreza, Isfahan, Iran.
| | - Mohammad Hassan Vakili
- Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, P.O. Box 31186145, Shahreza, Isfahan, Iran.
| |
Collapse
|
49
|
Lapo B, Pavón S, Hoyo J, Fortuny A, Scapan P, Bertau M, Sastre AM. Bioderived Pickering Emulsion Based on Chitosan/Trialkyl Phosphine Oxides Applied to Selective Recovery of Rare Earth Elements. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59731-59745. [PMID: 38091526 PMCID: PMC10802976 DOI: 10.1021/acsami.3c10233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
A novel biobased pickering emulsion (PE) material was prepared by the encapsulation of Cyanex 923 (Cy923) into chitosan (CS) to selectively recover rare earth elements (REEs) from the aqueous phase. The preparation of PE was optimized through sequentially applying a 23 full factorial design, followed by a 33 Box-Behnken design varying the Cy923 content, CS concentration, and pH of CS. The material was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), optical microscopy, rheological, compositional, and stability measurements. The resultant material was evaluated in the removal of yttrium by pH influence, nitrate concentration, kinetics, equilibrium isotherms, reusability, and a comparison with liquid-liquid (L-L) extraction and tested in a real scenario to extract Y from a fluorescent lamp powder waste. In addition, the selectivity of PE for REE was investigated with Y/Ca, Gd/Ca, and La/Ni systems. PE extracts REE at 1 ≤ pH ≤ 5 at nitrate concentrations up to 2 mol/L. The kinetics and equilibrium studies showed reaction times <5 min and a maximum sorption capacity of 89.98 mg/g. Compared with L-L extraction, PE consumed 48% less Cy923 without using organic diluents. PE showed a remarkable selectivity for REE in the systems evaluated, showing separation factors of 22.62, 9.35, and 504.64 for the blends Y/Ca, Gd/Ca/Mg, and La/Ni, respectively. PE showed excellent selectivity extracting Y from a real aqueous liquor from the fluorescent lamp powder. PE demonstrates to be an effective and sustainable alternative for REE recovering due to its excellent efficiency in harsh conditions, favorable green chemistry metrics, and use of a biopolymer material in its composition avoiding the use of organic solvents used in L-L extraction.
Collapse
Affiliation(s)
- Byron Lapo
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EPSEVG, Av. Víctor Balaguer 01, 08800 Vilanova i la Geltrú, Spain
- School
of Chemical Engineering, Technical University
of Machala, UACQS, BIOeng, 070151 Machala, Ecuador
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
| | - Sandra Pavón
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
- Fraunhofer
Institute for Ceramic Technologies and Systems IKTS; Fraunhofer Technology Center for High-Performance Materials THM, Am St.-Niclas-Schacht 13, 09599 Freiberg, Germany
| | - Javier Hoyo
- Department
of Physical-Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Agustín Fortuny
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EPSEVG, Av. Víctor Balaguer 01, 08800 Vilanova i la Geltrú, Spain
| | - Paul Scapan
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
| | - Martin Bertau
- Institute
of Chemical Technology, TU Bergakademie
Freiberg, Leipziger Straße
29, Freiberg 09599, Germany
- Fraunhofer
Institute for Ceramic Technologies and Systems IKTS; Fraunhofer Technology Center for High-Performance Materials THM, Am St.-Niclas-Schacht 13, 09599 Freiberg, Germany
| | - Ana María Sastre
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, ETSEIB,
Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
50
|
Li H, Gong X, Meng D, Wu F, Zhang J, Ren D. Effective adsorption of bisphenol A from aqueous solution using phosphoric acid-assisted hydrochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123083-123097. [PMID: 37980323 DOI: 10.1007/s11356-023-30951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Sycamore leaf biochar (PSAC) was prepared by a two-step phosphoric acid-assisted hydrothermal carbonization combined with a short-time activation method. The characterization results showed that the introduction of phosphoric acid molecules and thermal activation resulted in a substantial increase in the specific surface area (994.21 m2/g) and microporous capacity (0.307 cm3/g) of PSAC. The batch adsorption results showed that the adsorption process of PSAC on bisphenol A (BPA) was best described by the pseudo-second-order kinetic model and Sips isothermal model, with a maximum adsorption capacity of 247.42 mg/g. The adsorption of BPA onto PSAC was determined to be a spontaneous endothermic process. The equilibrium adsorption capacity of PSAC exhibited an upward trend with increasing initial BPA concentration and temperature while decreasing with higher adsorbent dosage and pH value. Coexisting cations and humic acids in water have little impact on the adsorption performance of PSAC for BPA. The adsorption mechanism of BPA by PSAC was mainly governed by pore filling and hydrogen bonding interactions, π-π interactions, and intraparticle diffusion. Furthermore, PSAC demonstrated good reusability by its sustained adsorption capacity of BPA, which remained at 82.6% of the initial adsorption capacity even after four adsorption-desorption cycles. These findings highlight the potential of utilizing low-cost sycamore leaf biochar as an effective adsorbent for the removal of the endocrine disruptor BPA.
Collapse
Affiliation(s)
- Hao Li
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Re-Sources, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiangyi Gong
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Dekang Meng
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Fengying Wu
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Dajun Ren
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|