1
|
Sridhar GR, Gumpeny L. Melanocortin 4 receptor mutation in obesity. World J Exp Med 2024; 14:99239. [DOI: 10.5493/wjem.v14.i4.99239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/31/2024] Open
Abstract
Obesity is increasingly prevalent worldwide, with genetic factors contributing to its development. The hypothalamic leptin-melanocortin pathway is central to the regulation of appetite and weight; leptin activates the proopiomelanocortin neurons, leading to the production of melanocortin peptides; these in turn act on melanocortin 4 receptors (MC4R) which suppress appetite and increase energy expenditure. MC4R mutations are responsible for syndromic and non-syndromic obesity. These mutations are classified based on their impact on the receptor's life cycle: i.e. null mutations, intracellular retention, binding defects, signaling defects, and variants of unknown function. Clinical manifestations of MC4R mutations include early-onset obesity, hyperphagia, and metabolic abnormalities such as hyperinsulinemia and dyslipidemia. Management strategies for obesity due to MC4R mutations have evolved with the development of targeted therapies such as Setmelanotide, an MC4R agonist which can reduce weight and manage symptoms without adverse cardiovascular effects. Future research directions must include expansion of population studies to better understand the epidemiology of MC4R mutations, exploration of the molecular mechanisms underlying MC4R signaling, and development of new therapeutic agents. Understanding the interaction between MC4R and other genetic and environmental factors will be key to advancing both the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Gumpeny R Sridhar
- Department of Endocrinology and Diabetes, Endocrine and Diabetes Centre, Visakhapatnam 530002, Andhra Pradesh, India
| | - Lakshmi Gumpeny
- Department of Internal Medicine, Gayatri Vidya Parishad Institute of Healthcare and Medical Technology, Visakhapatnam 530048, Andhra Pradesh, India
| |
Collapse
|
2
|
Gala K, Ghusn W, Fansa S, Anazco D, Storm AC, Abu Dayyeh BK, Acosta A. Impact of Leptin-Melanocortin Pathway Genetic Variants on Weight Loss Outcomes After Endoscopic Transoral Outlet Reduction. Obes Surg 2024; 34:4203-4210. [PMID: 39419959 DOI: 10.1007/s11695-024-07547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Variants in the leptin-melanocortin pathway (LMP) are associated with severe obesity. We evaluated weight loss of patients with or without heterozygous LMP variants, with weight recurrence after Roux-en-Y gastric bypass, who underwent endoscopic transoral outlet reduction (TORe). MATERIALS AND METHODS We retrospectively reviewed patients genotyped for an LMP who had undergone TORe, classified as "carriers" or "non-carriers" of genetic variants. RESULTS We included 54 patients (22 carriers, 32 non-carriers). We identified 34 genetic variants in 21 different genes in 22 patients. Total body weight loss (%TBWL) after TORe was significantly different at 9 and 12 months (12 months: 0.68 ± 7.5% vs. 9.6 ± 8.2%, p < 0.01). This difference in weight loss was present even when analyzed in subgroups of patients who had undergone tubular TORe technique, and TORe plus APC. At 3, 6, and 12 months, the percentage of carriers achieving ≥ 5% and ≥ 10% TBWL was lower than non-carriers. CONCLUSIONS Patients with LMP variant who underwent RYGB had decreased weight loss 1 year after undergoing TORe.
Collapse
Affiliation(s)
- Khushboo Gala
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Wissam Ghusn
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sima Fansa
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Diego Anazco
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew C Storm
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Barham K Abu Dayyeh
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Tan HL, Yin L, Tan Y, Ivanov J, Plucinska K, Ilanges A, Herb BR, Wang P, Kosse C, Cohen P, Lin D, Friedman JM. Leptin-activated hypothalamic BNC2 neurons acutely suppress food intake. Nature 2024:10.1038/s41586-024-08108-2. [PMID: 39478220 DOI: 10.1038/s41586-024-08108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/24/2024] [Indexed: 11/04/2024]
Abstract
Leptin is an adipose tissue hormone that maintains homeostatic control of adipose tissue mass by regulating the activity of specific neural populations controlling appetite and metabolism1. Leptin regulates food intake by inhibiting orexigenic agouti-related protein (AGRP) neurons and activating anorexigenic pro-opiomelanocortin (POMC) neurons2. However, whereas AGRP neurons regulate food intake on a rapid time scale, acute activation of POMC neurons has only a minimal effect3-5. This has raised the possibility that there is a heretofore unidentified leptin-regulated neural population that rapidly suppresses appetite. Here we report the discovery of a new population of leptin-target neurons expressing basonuclin 2 (Bnc2) in the arcuate nucleus that acutely suppress appetite by directly inhibiting AGRP neurons. Opposite to the effect of AGRP activation, BNC2 neuronal activation elicited a place preference indicative of positive valence in hungry but not fed mice. The activity of BNC2 neurons is modulated by leptin, sensory food cues and nutritional status. Finally, deleting leptin receptors in BNC2 neurons caused marked hyperphagia and obesity, similar to that observed in a leptin receptor knockout in AGRP neurons. These data indicate that BNC2-expressing neurons are a key component of the neural circuit that maintains energy balance, thus filling an important gap in our understanding of the regulation of food intake and leptin action.
Collapse
Affiliation(s)
- Han L Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Luping Yin
- Department of Psychiatry, Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Yuqi Tan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica Ivanov
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Kaja Plucinska
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Anoj Ilanges
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Brian R Herb
- Department of Pharmacology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Putianqi Wang
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Christin Kosse
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Dayu Lin
- Department of Psychiatry, Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
Santana CVN, Magno LAV, Ramos AV, Rios MA, Sandrim VC, De Marco LA, de Miranda DM, Romano-Silva MA. Genetic Variations in AMPK, FOXO3A, and POMC Increase the Risk of Extreme Obesity. J Obes 2024; 2024:3813621. [PMID: 39484290 PMCID: PMC11527528 DOI: 10.1155/2024/3813621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/11/2024] [Indexed: 11/03/2024] Open
Abstract
Objective: Genetic variability significantly impacts metabolism, weight gain, and feeding behaviors, predisposing individuals to obesity. This study explored how variations in key genes related to obesity-FOXO3A (forkhead box O3), AMPK (protein kinase AMP-activated), and POMC (proopiomelanocortin)-are associated with extreme obesity (EOB). Methods: We conducted a case-control study with 251 EOB patients and 212 healthy controls with a body mass index (BMI) of less than 25 kg/m2. We genotyped 10 single nucleotide variants (SNVs) using TaqMan-based assays. Results: Four SNVs-rs1536057 in FOXO3A, rs103685 in AMPK, rs934778, and rs6545975 in POMC-were associated with an increased risk of EOB. The strongest association was observed with rs934778 (POMC), which had a maximum odds ratio (OR) of 5.26 (95% CI: 2.86-9.09). While these genetic variations are closely linked to EOB, they do not affect serum glucose, triglycerides, HDL, LDL, BMI, or waist circumference. Conclusions: These findings indicate that factors beyond traditional metabolic pathways, potentially related to feeding behavior or hormonal regulation, may also link these genetic variations to obesity. Further research in a larger sample is essential to validate these findings and explore their potential to guide clinical interventions and public health strategies.
Collapse
Affiliation(s)
- Cinthia Vila Nova Santana
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Luiz Alexandre Viana Magno
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
| | | | - Maria Angélica Rios
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Faculdade Ciências Médicas de Minas Gerais (FCMMG), Belo Horizonte, Brazil
| | - Valéria Cristina Sandrim
- Instituto de Biociências Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, Brazil
| | - Luiz Armando De Marco
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
| | - Débora Marques de Miranda
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
| | - Marco Aurélio Romano-Silva
- Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
| |
Collapse
|
5
|
Fontaine T, Busch A, Laeremans T, De Cesco S, Liang YL, Jaakola VP, Sands Z, Triest S, Masiulis S, Dekeyzer L, Samyn N, Loeys N, Perneel L, Debaere M, Martini M, Vantieghem C, Virmani R, Skieterska K, Staelens S, Barroco R, Van Roy M, Menet C. Structure elucidation of a human melanocortin-4 receptor specific orthosteric nanobody agonist. Nat Commun 2024; 15:7029. [PMID: 39353917 PMCID: PMC11445563 DOI: 10.1038/s41467-024-50827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/23/2024] [Indexed: 10/03/2024] Open
Abstract
The melanocortin receptor 4 (MC4R) belongs to the melanocortin receptor family of G-protein coupled receptors and is a key switch in the leptin-melanocortin molecular axis that controls hunger and satiety. Brain-produced hormones such as α-melanocyte-stimulating hormone (agonist) and agouti-related peptide (inverse agonist) regulate the molecular communication of the MC4R axis but are promiscuous for melanocortin receptor subtypes and induce a wide array of biological effects. Here, we use a chimeric construct of conformation-selective, nanobody-based binding domain (a ConfoBody Cb80) and active state-stabilized MC4R-β2AR hybrid for efficient de novo discovery of a sequence diverse panel of MC4R-specific, potent and full agonistic nanobodies. We solve the active state MC4R structure in complex with the full agonistic nanobody pN162 at 3.4 Å resolution. The structure shows a distinct interaction with pN162 binding deeply in the orthosteric pocket. MC4R peptide agonists, such as the marketed setmelanotide, lack receptor selectivity and show off-target effects. In contrast, the agonistic nanobody is highly specific and hence can be a more suitable agent for anti-obesity therapeutic intervention via MC4R.
Collapse
MESH Headings
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/metabolism
- Receptor, Melanocortin, Type 4/chemistry
- Receptor, Melanocortin, Type 4/genetics
- Humans
- Single-Domain Antibodies/chemistry
- Single-Domain Antibodies/pharmacology
- Single-Domain Antibodies/metabolism
- alpha-MSH/chemistry
- alpha-MSH/pharmacology
- alpha-MSH/metabolism
- HEK293 Cells
- Protein Binding
- Binding Sites
- Crystallography, X-Ray
- Models, Molecular
- Animals
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Simonas Masiulis
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Brito Nunes C, Borges MC, Freathy RM, Lawlor DA, Qvigstad E, Evans DM, Moen GH. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites 2024; 14:508. [PMID: 39330515 PMCID: PMC11434570 DOI: 10.3390/metabo14090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: During pregnancy, physiological changes in maternal circulating glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women, this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM), a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies globally, and it is often associated with short- and long-term adverse health outcomes in both mothers and offspring. Although recent studies have highlighted the role of genetic determinants in the development of GDM, research in this area is still lacking, hindering the development of prevention and treatment strategies. Methods: In this paper, we review recent advances in the understanding of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions: Our review highlights the need for further collaborative efforts as well as larger and more diverse genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address research gaps, and further improve diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Caroline Brito Nunes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David M. Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
7
|
Weirath NA, Haskell-Luevano C. Recommended Tool Compounds for the Melanocortin Receptor (MCR) G Protein-Coupled Receptors (GPCRs). ACS Pharmacol Transl Sci 2024; 7:2706-2724. [PMID: 39296259 PMCID: PMC11406693 DOI: 10.1021/acsptsci.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024]
Abstract
The melanocortin receptors are a centrally and peripherally expressed family of Class A GPCRs with physiological roles, including pigmentation, steroidogenesis, energy homeostasis, and others yet to be fully characterized. There are five melanocortin receptor subtypes that, apart from the melanocortin-2 receptor (MC2R), are stimulated by a shared set of endogenous agonists. Until 2020, X-ray crystallographic and cryo-electron microscopic (cryo-EM) structures of these receptors were unavailable, and the investigation of their mechanisms of action and putative ligand-receptor interactions was driven by site-directed mutagenesis studies of the receptors and targeted structure-activity relationship (SAR) studies of the endogenous and derivative synthetic ligands. Synthetic derivatives of the endogenous agonist ligand α-MSH have evolved into a suite of powerful ligands such as NDP-MSH (melanotan I), melanotan II (MTII), and SHU9119. This suite of tool compounds now enables the study of the melanocortin receptors and serves as scaffolds for FDA-approved drugs, means of validating stably expressing melanocortin receptor cell lines, core ligands in assessing cryo-EM structures of active and inactive receptor complexes, and essential references for high-throughput discovery and mechanism of action studies. Herein, we review the history and significance of a finite set of these essential tool compounds and discuss how they are being utilized to further the field's understanding of melanocortin receptor physiology and greater druggability.
Collapse
Affiliation(s)
- Nicholas A Weirath
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry & Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
M JN, Bharadwaj D. The complex web of obesity: from genetics to precision medicine. Expert Rev Endocrinol Metab 2024; 19:403-418. [PMID: 38869356 DOI: 10.1080/17446651.2024.2365785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Obesity is a growing public health concern affecting both children and adults. Since it involves both genetic and environmental components, the management of obesity requires both, an understanding of the underlying genetics and changes in lifestyle. The knowledge of obesity genetics will enable the possibility of precision medicine in anti-obesity medications. AREAS COVERED Here, we explore health complications and the prevalence of obesity. We discuss disruptions in energy balance as a symptom of obesity, examining evolutionary theories, its multi-factorial origins, and heritability. Additionally, we discuss monogenic and polygenic obesity, the converging biological pathways, potential pharmacogenomics applications, and existing anti-obesity medications - specifically focussing on the leptin-melanocortin and incretin pathways. Comparisons between childhood and adult obesity genetics are made, along with insights into structural variants, epigenetic changes, and environmental influences on epigenetic signatures. EXPERT OPINION With recent advancements in anti-obesity drugs, genetic studies pinpoint new targets and allow for repurposing existing drugs. This creates opportunities for genotype-informed treatment options. Also, lifestyle interventions can help in the prevention and treatment of obesity by altering the epigenetic signatures. The comparison of genetic architecture in adults and children revealed a significant overlap. However, more robust studies with diverse ethnic representation is required in childhood obesity.
Collapse
Affiliation(s)
- Janaki Nair M
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Fernandois D, Rusidzé M, Mueller-Fielitz H, Sauve F, Deligia E, Silva MSB, Evrard F, Franco-García A, Mazur D, Martinez-Corral I, Jouy N, Rasika S, Maurage CA, Giacobini P, Nogueiras R, Dehouck B, Schwaninger M, Lenfant F, Prevot V. Estrogen receptor-α signaling in tanycytes lies at the crossroads of fertility and metabolism. Metabolism 2024; 158:155976. [PMID: 39019342 PMCID: PMC7616427 DOI: 10.1016/j.metabol.2024.155976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Estrogen secretion by the ovaries regulates the hypothalamic-pituitary-gonadal axis during the reproductive cycle, influencing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion, and also plays a role in regulating metabolism. Here, we establish that hypothalamic tanycytes-specialized glia lining the floor and walls of the third ventricle-integrate estrogenic feedback signals from the gonads and couple reproduction with metabolism by relaying this information to orexigenic neuropeptide Y (NPY) neurons. METHODS Using mouse models, including mice floxed for Esr1 (encoding estrogen receptor alpha, ERα) and those with Cre-dependent expression of designer receptors exclusively activated by designer drugs (DREADDs), along with viral-mediated, pharmacological and indirect calorimetric approaches, we evaluated the role of tanycytes and tanycytic estrogen signaling in pulsatile LH secretion, cFos expression in NPY neurons, estrous cyclicity, body-weight changes and metabolic parameters in adult females. RESULTS In ovariectomized mice, chemogenetic activation of tanycytes significantly reduced LH pulsatile release, mimicking the effects of direct NPY neuron activation. In intact mice, tanycytes were crucial for the estrogen-mediated control of GnRH/LH release, with tanycytic ERα activation suppressing fasting-induced NPY neuron activation. Selective knockout of Esr1 in tanycytes altered estrous cyclicity and fertility in female mice and affected estrogen's ability to inhibit refeeding in fasting mice. The absence of ERα signaling in tanycytes increased Npy transcripts and body weight in intact mice and prevented the estrogen-mediated decrease in food intake as well as increase in energy expenditure and fatty acid oxidation in ovariectomized mice. CONCLUSIONS Our findings underscore the pivotal role of tanycytes in the neuroendocrine coupling of reproduction and metabolism, with potential implications for its age-related deregulation after menopause. SIGNIFICANCE STATEMENT Our investigation reveals that tanycytes, specialized glial cells in the brain, are key interpreters of estrogen signals for orexigenic NPY neurons in the hypothalamus. Disrupting tanycytic estrogen receptors not only alters fertility in female mice but also impairs the ability of estrogens to suppress appetite. This work thus sheds light on the critical role played by tanycytes in bridging the hormonal regulation of cyclic reproductive function and appetite/feeding behavior. This understanding may have potential implications for age-related metabolic deregulation after menopause.
Collapse
Affiliation(s)
- Daniela Fernandois
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297UPS, CHU, Toulouse, France
| | - Helge Mueller-Fielitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Florent Sauve
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Eleonora Deligia
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Mauro S B Silva
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Florence Evrard
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain, Instituto Murciano de Investigación Biosanitaria (IMIB), Pascual Parrilla, Murcia, Spain
| | - Daniele Mazur
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Ines Martinez-Corral
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | | | - S Rasika
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Claude-Alain Maurage
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Benedicte Dehouck
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Francoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC) Equipe 4, Inserm U1297UPS, CHU, Toulouse, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, F-59000 Lille, France.
| |
Collapse
|
10
|
Haberman M, Menashe T, Cohen N, Kisliouk T, Yadid T, Marco A, Meiri N, Weller A. Paternal high-fat diet affects weight and DNA methylation of their offspring. Sci Rep 2024; 14:19874. [PMID: 39191806 DOI: 10.1038/s41598-024-70438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Obesity poses a public health threat, reaching epidemic proportions. Our hypothesis suggests that some of this epidemic stems from its transmission across generations via paternal epigenetic mechanisms. To investigate this possibility, we focused on examining the paternal transmission of CpG methylation. First-generation male Wistar rats were fed either a high-fat diet (HF) or chow and were mated with females fed chow. We collected sperm from these males. The resulting offspring were raised on a chow diet until day 35, after which they underwent a dietary challenge. Diet-induced obese (DIO) male rats passed on the obesogenic trait to both male and female offspring. We observed significant hypermethylation of the Pomc promoter in the sperm of HF-treated males and in the hypothalamic arcuate nucleus (Arc) of their offspring at weaning. However, these differences in Arc methylation decreased later in life. This hypermethylation is correlated with increased expression of DNMT3B. Further investigating genes in the Arc that might be involved in obesogenic transgenerational transmission, using reduced representation bisulfite sequencing (RRBS) we identified 77 differentially methylated regions (DMRs), highlighting pathways associated with neuronal development. These findings support paternal CpG methylation as a mechanism for transmitting obesogenic traits across generations.
Collapse
Affiliation(s)
- Michal Haberman
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tzlil Menashe
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Nir Cohen
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tam Yadid
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
11
|
Anazco D, Acosta A. Precision medicine for obesity: current evidence and insights for personalization of obesity pharmacotherapy. Int J Obes (Lond) 2024:10.1038/s41366-024-01599-z. [PMID: 39127792 DOI: 10.1038/s41366-024-01599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Obesity is a chronic and complex disease associated with increased morbidity, mortality, and financial burden. It is expected that by 2030 one of two people in the United States will have obesity. The backbone for obesity management continues to be lifestyle interventions, consisting of calorie deficit diets and increased physical activity levels, however, these interventions are often insufficient to achieve sufficient and maintained weight loss. As a result, multiple patients require additional interventions such as antiobesity medications or bariatric interventions in order to achieve clinically significant weight loss and improvement or resolution of obesity-associated comorbidities. Despite the recent advances in the field of obesity pharmacotherapy that have resulted in never-before-seen weight loss outcomes, comorbidity improvement, and even reduction in cardiovascular mortality, there is still a significant interindividual variability in terms of response to antiobesity medications, with a subset of patients not achieving a clinically significant weight loss. Currently, the trial-and-error paradigm for the selection of antiobesity medications results in increased costs and risks for developing side effects, while also reduces engagement in weight management programs for patients with obesity. The implementation of a precision medicine framework to the selection of antiobesity medications might help reduce heterogeneity and optimize weight loss outcomes by identifying unique subsets of patients, or phenotypes, that have a better response to a specific intervention. The detailed study of energy balance regulation holds promise, as actionable behavioral and physiologic traits could help guide antiobesity medication selection based on previous mechanistic studies. Moreover, the rapid advances in genotyping, multi-omics, and big data analysis might hold the key to discover additional signatures or phenotypes that might respond better to a certain intervention and might permit the widespread adoption of a precision medicine approach for obesity management.
Collapse
Affiliation(s)
- Diego Anazco
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Dosda S, Renard E, Meyre D. Sequencing methods, functional characterization, prevalence, and penetrance of rare coding mutations in panels of monogenic obesity genes from the leptin-melanocortin pathway: A systematic review. Obes Rev 2024; 25:e13754. [PMID: 38779716 DOI: 10.1111/obr.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024]
Abstract
The recent development of next-generation sequencing (NGS) technologies has led to an increase of mutation screening reports of monogenic obesity genes in diverse experimental designs. However, no study to date has summarized their findings. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases from inception to September 2022 to identify monogenic non-syndromic obesity gene screening studies. Of 1051 identified references, 31 were eligible after title and abstract screening and 28 after full-text reading and risk of bias and quality assessment. Most studies (82%) used NGS methods. The number of genes screened varied from 2 to 12 genes from the leptin-melanocortin pathway. While all the included studies used in silico tools to assess the functional status of mutations, only 2 performed in vitro tests. The prevalence of carriers of pathogenic/likely pathogenic monogenic mutations is 13.24% on average (heterozygous: 12.31%; homozygous/heterozygous composite: 0.93%). As no study reported the penetrance of pathogenic mutations on obesity, we estimated that homozygous carriers exhibited a complete penetrance (100%) and heterozygous carriers a variable penetrance (3-100%). The review provides an exhaustive description of sequencing methods, functional characterization, prevalence, and penetrance of rare coding mutations in monogenic non-syndromic obesity genes.
Collapse
Affiliation(s)
- Sonia Dosda
- INSERM UMR 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Specialized Obesity Center and Endocrinology, Diabetology, Department of Nutrition, Brabois Hospital, CHRU of Nancy, Nancy, France
- Department of Pediatrics, University Hospital of Nancy, Nancy, France
| | - Emeline Renard
- INSERM UMR 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Department of Pediatrics, University Hospital of Nancy, Nancy, France
| | - David Meyre
- INSERM UMR 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Nancy, France
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Van Roessel IMAA, Van Den Brink M, Dekker J, Ruitenburg-van Essen BG, Tissing WJE, van Santen HM. Feasibility, safety, and efficacy of dietary or lifestyle interventions for hypothalamic obesity: A systematic review. Clin Nutr 2024; 43:1798-1811. [PMID: 38955055 DOI: 10.1016/j.clnu.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND & AIMS A dysfunctional hypothalamus may result in decreased feelings of satiety (hyperphagia), decreased energy expenditure, and increased fat storage as a consequence of hyperinsulinemia. Hypothalamic dysfunction may thus lead to morbid obesity and can be encountered in childhood as a consequence of congenital, genetic, or acquired disorders. There is currently no effective treatment for hypothalamic obesity (HO). However, comparable to alimentary obesity, dietary and lifestyle interventions may be considered the cornerstones of obesity treatment. We questioned the effect of dietary or lifestyle interventions for HO and systematically searched the literature for evidence on feasibility, safety, or efficacy of dietary or lifestyle interventions for childhood hypothalamic overweight or obesity. METHODS A systematic search was conducted in MEDLINE (including Cochrane Library), EMBASE, and CINAHL (May 2023). Studies assessing feasibility, safety, or efficacy of any dietary or lifestyle intervention in children with hypothalamic overweight or obesity, were included. Animal studies, studies on non-diet interventions, and studies with no full text available were excluded. Because the number of studies to be included was low, the search was repeated for adults with hypothalamic overweight or obesity. Risk of bias was assessed with an adapted Cochrane Risk of Bias Tool. Level of evidence was assessed using the GRADE system. Descriptive data were described, as pooled-data analysis was not possible due to heterogeneity of included studies. RESULTS In total, twelve studies were included, with a total number of 118 patients (age 1-19 years) of whom one with craniopharyngioma, one with ROHHAD-NET syndrome, 50 with monogenic obesity, and 66 with Prader-Willi syndrome (PWS). Four studies reported a dietary intervention as feasible. However, parents did experience difficulties with children still stealing food, and especially lowering carbohydrates was considered to be challenging. Seven studies reported on efficacy of a dietary intervention: a well-balanced restrictive caloric diet (30% fat, 45% carbohydrates, and 25% protein) and various hypocaloric diets (8-10 kcal/cm/day) were considered effective in terms of weight stabilization or decrease. No negative effect on linear growth was reported. Four studies reported on specific lifestyle interventions, of which three also included a dietary intervention. Combined dietary and lifestyle intervention resulted in decreased BMI, although BMI returned to baseline values on long-term. One additional study was identified in adults after brain trauma and showed a significant reduction in BMI in one out of eight patients after a combined dietary and lifestyle intervention. CONCLUSIONS Hypocaloric diet or restrictive macronutrient diet with lower percentage of carbohydrates seems feasible and effective for childhood HO, although most of the studies had a high risk of bias, small cohorts without control groups, and were conducted in children with PWS only, compromising the generalizability. Lifestyle interventions only resulted in BMI decrease in short-term, indicating that additional guidance is needed to sustain its effect in the long-term. Literature on feasibility and efficacy of a dietary or lifestyle intervention for hypothalamic overweight or obesity is scarce, especially in children with acquired HO (following treatment for a suprasellar tumor). There is need for prospective (controlled) studies to determine which dietary and lifestyle intervention are most helpful for this specific patient group.
Collapse
Affiliation(s)
- I M A A Van Roessel
- Princess Máxima Center, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center, Lundlaan 6, 3584 EA Utrecht, the Netherlands.
| | - M Van Den Brink
- Princess Máxima Center, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Laboratory of Behavioral Gastronomy, Centre for Healthy Eating and Food Innovation, Nassaustraat 36, 5911 BV, Venlo, the Netherlands
| | - J Dekker
- Department of Dietetics, Princess Máxima Center, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - B G Ruitenburg-van Essen
- Department of Dietetics, Princess Máxima Center, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - W J E Tissing
- Princess Máxima Center, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Department of Pediatric Oncology and Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - H M van Santen
- Princess Máxima Center, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| |
Collapse
|
14
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
15
|
Courbon G, David V. Fibroblast growth factor 23 is pumping iron: C-terminal-fibroblast growth factor 23 cleaved peptide and its function in iron metabolism. Curr Opin Nephrol Hypertens 2024; 33:368-374. [PMID: 38661434 DOI: 10.1097/mnh.0000000000000995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW Iron deficiency regulates the production of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) but also its cleavage, to generate both intact (iFGF23) and C-terminal (Cter)-FGF23 peptides. Novel studies demonstrate that independently of the phosphaturic effects of iFGF23, Cter-FGF23 peptides play an important role in the regulation of systemic iron homeostasis. This review describes the complex interplay between iron metabolism and FGF23 biology. RECENT FINDINGS C-terminal (Cter) FGF23 peptides antagonize inflammation-induced hypoferremia to maintain a pool of bioavailable iron in the circulation. A key mechanism proposed is the down-regulation of the iron-regulating hormone hepcidin by Cter-FGF23. SUMMARY In this manuscript, we discuss how FGF23 is produced and cleaved in response to iron deficiency, and the principal functions of cleaved C-terminal FGF23 peptides. We also review possible implications anemia of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Guillaume Courbon
- INSERM U1059 SAINBIOSE, University of St Etienne, Mines St Etienne, St Etienne, France
| | - Valentin David
- Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
16
|
Urquiza-Martínez MV, Fabián-Avilés IM, Torner L, Servín-Campuzano H, González-Avilés M. Integrative Approach of Treating Early Undernutrition with an Enriched Black Corn Chip, Study on a Murine Model. Nutrients 2024; 16:2001. [PMID: 38999749 PMCID: PMC11243394 DOI: 10.3390/nu16132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
Undernutrition (UN) increases child vulnerability to illness and mortality. Caused by a low amount and/or poor quality of food intake, it impacts physical, cognitive, and social development. Modern types of food consumption have given highly processed food a higher cultural value compared to minimally processed food. OBJECTIVE The objective of this study was to evaluate the effect on growth, metabolism, physical activity (PA), memory, inflammation, and toxicity of an enriched black corn chip (BC) made with endemic ingredients on post-weaned UN mice. METHODS A chip was made with a mixture of black corn, fava beans, amaranth, and nopal cactus. To probe the effects of UN, UN was induced in 3wo post-weaned male C57Bl/6j mice through a low-protein diet (LPD-50% of the regular requirement of protein) for 3w. Then, the BC was introduced to the animals' diet (17%) for 5w; murinometric parameters were measured, as were postprandial glucose response, PA, and short-term memory. Histological analysis was conducted on the liver and kidneys to measure toxicity. Gene expression related to energy balance, thermogenesis, and inflammation was measured in adipose and hypothalamic tissues. RESULTS Treatment with the BC significantly improved mouse growth, even with a low protein intake, as evidenced by a significant increase in body weight, tail length, cerebral growth, memory improvement, physical activation, normalized energy expenditure (thermogenesis), and orexigenic peptides (AGRP and NPY). It decreased anorexigenic peptides (POMC), and there was no tissue toxicity. CONCLUSIONS BC treatment, even with persistent low protein intake, is a promising strategy against UN, as it showed efficacy in correcting growth deficiency, cognitive impairment, and metabolic problems linked to treatment by adjusting energy expenditure, which led to the promotion of energy intake and regulation of thermogenesis, all by using low-cost, accessible, and endemic ingredients.
Collapse
Affiliation(s)
- Mercedes-Victoria Urquiza-Martínez
- Master in Engineering for the Energetic Sustainability, Universidad Intercultural Indígena de Michoacán, Campus Tzipekua, Pátzcuaro 61614, Mexico
| | - Imelda M Fabián-Avilés
- Master in Engineering for the Energetic Sustainability, Universidad Intercultural Indígena de Michoacán, Campus Tzipekua, Pátzcuaro 61614, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58330, Mexico
| | - Hermelinda Servín-Campuzano
- Master in Engineering for the Energetic Sustainability, Universidad Intercultural Indígena de Michoacán, Campus Tzipekua, Pátzcuaro 61614, Mexico
| | - Mauricio González-Avilés
- Master in Engineering for the Energetic Sustainability, Universidad Intercultural Indígena de Michoacán, Campus Tzipekua, Pátzcuaro 61614, Mexico
| |
Collapse
|
17
|
Vos N, Haghshenas S, van der Laan L, Russel PKM, Rooney K, Levy MA, Relator R, Kerkhof J, McConkey H, Maas SM, Vissers LELM, de Vries BBA, Pfundt R, Elting MW, van Hagen JM, Verbeek NE, Jongmans MCJ, Lakeman P, Rumping L, Bosch DGM, Vitobello A, Thauvin-Robinet C, Faivre L, Nambot S, Garde A, Willems M, Genevieve D, Nicolas G, Busa T, Toutain A, Gérard M, Bizaoui V, Isidor B, Merla G, Accadia M, Schwartz CE, Ounap K, Hoffer MJV, Nezarati MM, van den Boogaard MJH, Tedder ML, Rogers C, Brusco A, Ferrero GB, Spodenkiewicz M, Sidlow R, Mussa A, Trajkova S, McCann E, Mroczkowski HJ, Jansen S, Donker-Kaat L, Duijkers FAM, Stuurman KE, Mannens MMAM, Alders M, Henneman P, White SM, Sadikovic B, van Haelst MM. The detection of a strong episignature for Chung-Jansen syndrome, partially overlapping with Börjeson-Forssman-Lehmann and White-Kernohan syndromes. Hum Genet 2024; 143:761-773. [PMID: 38787418 PMCID: PMC11186873 DOI: 10.1007/s00439-024-02679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.
Collapse
Affiliation(s)
- Niels Vos
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Liselot van der Laan
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Perle K M Russel
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Saskia M Maas
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Mariet W Elting
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Johanna M van Hagen
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Marjolijn C J Jongmans
- Department of Genetics, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Phillis Lakeman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Lynne Rumping
- Center for Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Danielle G M Bosch
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonio Vitobello
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
| | - Christel Thauvin-Robinet
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», FHU-TRANSLAD, Dijon, France
| | - Laurence Faivre
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLAD, Dijon, France
| | - Sophie Nambot
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLAD, Dijon, France
| | - Aurore Garde
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», FHU-TRANSLAD, Dijon, France
| | - Marjolaine Willems
- INserm U1183, Department of Clinical Genetics, Montpellier University, 34090 CHU Montpellier, Montpellier, France
| | - David Genevieve
- INserm U1183, Department of Clinical Genetics, Montpellier University, 34090 CHU Montpellier, Montpellier, France
| | - Gaël Nicolas
- Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Univ Rouen Normandie, 76000, Rouen, France
| | - Tiffany Busa
- Department of Medical Genetics, Timone Hospital, Marseille, France
| | - Annick Toutain
- Genetics Department, University Hospital, UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Marion Gérard
- APHP, Department of Genetics, Robert Debré Hospital, 75019, Paris, France
| | - Varoona Bizaoui
- Clinical Genetics and Neurodevelopmental Disorders, Centre Hospitalier de L'Estran, 50170, Pontorson, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000, Nantes, France
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Maria Accadia
- Servizio di Genetica Medica, Ospedale Cardinale G. Panico, Tricase, LE, Italy
| | - Charles E Schwartz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Katrin Ounap
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjan M Nezarati
- Genetics Program, North York General Hospital, Toronto, ON, M2K 1E1, Canada
| | | | | | | | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Unit of Medical Genetics, Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Giovanni B Ferrero
- Department of Clinical and Biological Science, University of Torino, Turin, Italy
| | | | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
- Pediatric Clinical Genetics Unit, Regina Margherita Childrens' Hospital, Turin, Italy
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Emma McCann
- Liverpool Center for Genomic Medicine, Liverpool Women's Hospital, Liverpool, UK
| | - Henry J Mroczkowski
- Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, TN, USA
- Division of Genetics, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sandra Jansen
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Laura Donker-Kaat
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Floor A M Duijkers
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Kyra E Stuurman
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marcel M A M Mannens
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Peter Henneman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.
| | - Mieke M van Haelst
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands.
- Amsterdam UMC, Department of Paediatrics, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
19
|
Zhang N, Wang H, Ran S, Wang Z, Zhou B, Wang S, Li Z, Liu B, Nie Y, Huang Y, Meng H. Mutations in the leptin-melanocortin pathway and weight loss after bariatric surgery: a systematic review and meta-analysis. Obesity (Silver Spring) 2024; 32:1047-1058. [PMID: 38577709 DOI: 10.1002/oby.24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE The objective of this meta-analysis was to quantify the overall effects of gene mutations in the leptin-melanocortin pathway on short- and long-term weight loss after bariatric surgery. METHODS MEDLINE, PubMed, and Embase were searched, and data were analyzed using ReviewManager (RevMan) version 5.4. The datasets were divided into two subgroups based on postoperative time, and the outcome measure was the percentage of total weight loss. Meta-regression analysis was performed, and the outcome was presented as the weighed mean difference of percentage of total weight loss. RESULTS The results showed that patients with mutations in the leptin-melanocortin pathway experienced 3.03% lower total weight loss after bariatric surgery (mean difference, -3.03; 95% CI: -3.63 to -2.44), mainly reflected in lower long-term postoperative weight loss (mean difference, -3.43; 95% CI: -4.09 to -2.77), whereas mutation carriers exhibited a magnitude of short-term postoperative weight loss that was similar to patients without such mutations (total difference value, -1.13; 95% CI: -2.57 to 0.31). CONCLUSIONS Mutations in leptin-melanocortin pathway genes reduce long-term weight loss after bariatric surgery, whereas this effect may not be reflected during the period of rapid weight loss within 12 months. These genetic variants increase the difficulties in maintaining patients' long-term weight loss.
Collapse
Affiliation(s)
- Nianrong Zhang
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Hao Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuman Ran
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Zhe Wang
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Biao Zhou
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Siqi Wang
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Zhengqi Li
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Baoyin Liu
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Yuntao Nie
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Yishan Huang
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| | - Hua Meng
- General Surgery Department & Obesity and Metabolic Disease Center, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
20
|
Rivera-Iñiguez I, Hunot-Alexander C, Sepúlveda-Villegas M, Campos-Medina L, Roman S. Relationship between energy balance and reward system gene polymorphisms and appetitive traits in young Mexican subjects. Front Nutr 2024; 11:1373578. [PMID: 38863583 PMCID: PMC11166199 DOI: 10.3389/fnut.2024.1373578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024] Open
Abstract
Introduction Appetitive traits are influenced by the interplay between genetic and environmental factors. This study aimed to explore the relationship between gene polymorphisms involved in the regulation of energy balance and food reward and appetitive traits in young Mexican subjects. Methods This cross-sectional study involved 118 university freshman undergraduates who completed the Adult Eating Behaviour Questionnaire for Spanish speakers (AEBQ-Esp) to assess their appetitive traits. A real-time PCR system was employed to determine gene polymorphisms involved in energy balance (LEP rs7799039, MC4R rs17782313, FTO rs9939609, GHRL rs696217), and reward system (DRD2/ANKK1 Taq1A rs1800497 and COMT rs4680). Results The mean age of participants was 20.14 ± 3.95 years, 71.2% were women and their mean BMI was 23.52 ± 4.05 kg/m2. COMT Met allele carriers presented a significantly higher "Emotional overeating" mean score than Val allele carriers (2.63 ± 0.70 vs. 2.23 ± 0.70, p = 0.028). The MC4R CC + CT genotype correlated positively with "Emotional overeating" (Phi = 0.308, p = 0.01). The COMT MetMet+MetVal genotype correlated with higher "Emotional overeating" (r = 0.257, p = 0.028; Phi = 0.249, p = 0.033). The protective genotype FTO TT correlated positively with "Emotional undereating" (Phi = 0.298, p = 0.012). Carriers of the risk genotype MC4R CC + CT presented a higher risk of "Emotional overeating" than TT carriers (OR = 2.4, 95% CI 1.3-4.8, p = 0.034). Carriers of the risk genotype COMT MetMet+MetVal (OR = 3.4, 95% CI 1.1-10.3, p = 0.033), were associated with a higher risk of "Emotional overeating" than ValVal carriers. The protective FTO genotype TT was associated with "Emotional undereating" (OR = 1.8, 95% CI 1.1-9.1, p = 0.014). Discussion The study found a relationship between the protective genotypes of FTO TT and "Emotional undereating" and risk genotypes of COMT Met/Met+Met/Val and MC4R CC + CT with "Emotional overeating." These genetic factors may increase weight gain by enhancing hedonic food consumption and reducing satiety control. Future studies should focus on replication studies in ethnically diverse young adults and life stages to explore the relationship between polymorphisms and appetitive traits and weight. This will help tailor personalized nutrigenetic strategies to counteract disordered eating patterns leading to obesity and associated co-morbidities.
Collapse
Affiliation(s)
- Ingrid Rivera-Iñiguez
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
- Department of Human Reproduction Clinics, Infant Growth and Development, Institute of Human Nutrition, Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Claudia Hunot-Alexander
- Department of Human Reproduction Clinics, Infant Growth and Development, Institute of Human Nutrition, Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Maricruz Sepúlveda-Villegas
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Liliana Campos-Medina
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
- Doctoral Program in Molecular Biology in Medicine, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
21
|
Liu H, Liu Z, Wong HK, Xu N, Liu Q, Li Y, Liu Y, Wong H, Burt ME, Jossy SV, Han J, He Y. Therapeutic Strategies Against Metabolic Imbalance in a Male Mouse Model With 5-HT2CR Loss-of-Function. Endocrinology 2024; 165:bqae063. [PMID: 38815086 DOI: 10.1210/endocr/bqae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
The serotonin 2C receptor (5-HT2CR)-melanocortin pathway plays well-established roles in the regulation of feeding behavior and body weight homeostasis. Dysfunctions in this system, such as loss-of-function mutations in the Htr2c gene, can lead to hyperphagia and obesity. In this study, we aimed to investigate the potential therapeutic strategies for ameliorating hyperphagia, hyperglycemia, and obesity associated with a loss-of-function mutation in the Htr2c gene (Htr2cF327L/Y). We demonstrated that reexpressing functional 5-HT2CR solely in hypothalamic pro-opiomelanocortin (POMC) neurons is sufficient to reduce food intake and body weight in Htr2cF327L/Y mice subjected to a high-fat diet (HFD). In addition, 5-HT2CR expression restores the responsiveness of POMC neurons to lorcaserin, a selective agonist for 5-HT2CR. Similarly, administration of melanotan II, an agonist of the melanocortin receptor 4 (MC4R), effectively suppresses feeding and weight gain in Htr2cF327L/Y mice. Strikingly, promoting wheel-running activity in Htr2cF327L/Y mice results in a decrease in HFD consumption and improved glucose homeostasis. Together, our findings underscore the crucial role of the melanocortin system in alleviating hyperphagia and obesity related to dysfunctions of the 5-HT2CR, and further suggest that MC4R agonists and lifestyle interventions might hold promise in counteracting hyperphagia, hyperglycemia, and obesity in individuals carrying rare variants of the Htr2c gene.
Collapse
MESH Headings
- Animals
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptor, Serotonin, 5-HT2C/genetics
- Male
- Mice
- Hyperphagia/metabolism
- Hyperphagia/genetics
- Pro-Opiomelanocortin/metabolism
- Pro-Opiomelanocortin/genetics
- Diet, High-Fat
- Obesity/metabolism
- Obesity/genetics
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Receptor, Melanocortin, Type 4/agonists
- alpha-MSH/pharmacology
- alpha-MSH/analogs & derivatives
- Loss of Function Mutation
- Hypothalamus/metabolism
- Body Weight/drug effects
- Eating/drug effects
- Eating/physiology
- Eating/genetics
- Neurons/metabolism
- Neurons/drug effects
- Disease Models, Animal
- Hyperglycemia/metabolism
- Hyperglycemia/genetics
- Mice, Inbred C57BL
- Benzazepines
- Peptides, Cyclic
Collapse
Affiliation(s)
- Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhaoxun Liu
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - HueyXian Kelly Wong
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan Xu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qingzhuo Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongxiang Li
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yao Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - HueyZhong Wong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan E Burt
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanika V Jossy
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junying Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang He
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Plessow F, Kerem L, Wronski ML, Asanza E, O'Donoghue ML, Stanford FC, Eddy KT, Holmes TM, Misra M, Thomas JJ, Galbiati F, Muhammed M, Sella AC, Hauser K, Smith SE, Holman K, Gydus J, Aulinas A, Vangel M, Healy B, Kheterpal A, Torriani M, Holsen LM, Bredella MA, Lawson EA. Intranasal Oxytocin for Obesity. NEJM EVIDENCE 2024; 3:EVIDoa2300349. [PMID: 38815173 PMCID: PMC11427243 DOI: 10.1056/evidoa2300349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND Accumulating preclinical and preliminary translational evidence shows that the hypothalamic peptide oxytocin reduces food intake, increases energy expenditure, and promotes weight loss. It is currently unknown whether oxytocin administration is effective in treating human obesity. METHODS In this randomized, double-blind, placebo-controlled trial, we randomly assigned adults with obesity 1:1 (stratified by sex and obesity class) to receive intranasal oxytocin (24 IU) or placebo four times daily for 8 weeks. The primary end point was change in body weight (kg) from baseline to week 8. Key secondary end points included change in body composition (total fat mass [g], abdominal visceral adipose tissue [cm2], and liver fat fraction [proportion; range, 0 to 1; higher values indicate a higher proportion of fat]), and resting energy expenditure (kcal/day; adjusted for lean mass) from baseline to week 8 and caloric intake (kcal) at an experimental test meal from baseline to week 6. RESULTS Sixty-one participants (54% women; mean age ± standard deviation, 33.6 ± 6.2 years; body-mass index [the weight in kilograms divided by the square of the height in meters], 36.9 ± 4.9) were randomly assigned. There was no difference in body weight change from baseline to week 8 between oxytocin and placebo groups (0.20 vs. 0.26 kg; P=0.934). Oxytocin (vs. placebo) was not associated with beneficial effects on body composition or resting energy expenditure from baseline to week 8 (total fat: difference [95% confidence interval], 196.0 g [-1036 to 1428]; visceral fat: 3.1 cm2 [-11.0 to 17.2]; liver fat: -0.01 [-0.03 to 0.01]; resting energy expenditure: -64.0 kcal/day [-129.3 to 1.4]). Oxytocin compared with placebo was associated with reduced caloric intake at the test meal (-31.4 vs. 120.6 kcal; difference [95% confidence interval], -152.0 kcal [-302.3 to -1.7]). There were no serious adverse events. Incidence and severity of adverse events did not differ between groups. CONCLUSIONS In this randomized, placebo-controlled trial in adults with obesity, intranasal oxytocin administered four times daily for 8 weeks did not reduce body weight. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others; ClinicalTrials.gov number, NCT03043053.).
Collapse
Affiliation(s)
- Franziska Plessow
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Liya Kerem
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- Division of Pediatric Endocrinology, Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem
| | - Marie-Louis Wronski
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Elisa Asanza
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Michelle L O'Donoghue
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston
| | - Fatima C Stanford
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Tara M Holmes
- Translational and Clinical Research Centers, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Madhusmita Misra
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- Division of Pediatric Endocrinology, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Jennifer J Thomas
- Eating Disorders Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Francesca Galbiati
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Maged Muhammed
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Aluma Chovel Sella
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- The Jesse Z. and Sara Lea Shafer Institute of Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Kristine Hauser
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Sarah E Smith
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Katherine Holman
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Julia Gydus
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Anna Aulinas
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona
| | - Mark Vangel
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Brian Healy
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Arvin Kheterpal
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Martin Torriani
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Laura M Holsen
- Division of Women's Health, Department of Medicine and Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston
| | - Miriam A Bredella
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
23
|
Richards JR, Khalsa SS. Highway to the danger zone? A cautionary account that GLP-1 receptor agonists may be too effective for unmonitored weight loss. Obes Rev 2024; 25:e13709. [PMID: 38320760 PMCID: PMC11144546 DOI: 10.1111/obr.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 04/18/2024]
Abstract
Glucagon-like peptide 1 (GLP-1) receptor agonists are revolutionizing obesity and type 2 diabetes treatment, delivering remarkable weight loss outcomes. These medications, leveraging the effects of the insulin-regulating hormone GLP-1 via actions on peripheral and central nervous system targets, have raised hopes with their bariatric surgery-rivaling results. However, questions remain about their long-term safety and efficacy. Drawing from our expertise in obesity medicine and psychiatry, we reflect upon our experiences with the clinical use of these medications and delve into the nuanced challenges and risks they pose, particularly for those prone to disordered eating or those diagnosed with rare genetic diseases of obesity. We contend that effectively managing weight loss within this "danger zone" necessitates (1) proactive screening and continuous monitoring for disordered eating, (2) vigilant monitoring for appetite-related maladaptive responses, including food aversion and dehydration, and (3) ongoing assessment for broader health impacts. A multifaceted, interdisciplinary approach that melds medical, psychological, dietary, and behavioral strategies is crucial to delivering tailored and thorough care to each patient.
Collapse
Affiliation(s)
- Jesse R. Richards
- Department of Internal Medicine, University of Oklahoma at Tulsa, Tulsa, Oklahoma, USA
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma, USA
| |
Collapse
|
24
|
Carneiro L, Bernasconi R, Bernini A, Repond C, Pellerin L. Elevation of hypothalamic ketone bodies induces a decrease in energy expenditures and an increase risk of metabolic disorder. Mol Metab 2024; 83:101926. [PMID: 38553002 PMCID: PMC10999683 DOI: 10.1016/j.molmet.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Ketone bodies (such as β-hydroxybutyrate or BHB) have been recently proposed as signals involved in brain regulation of energy homeostasis and obesity development. However, the precise role of ketone bodies sensing by the brain, and its impact on metabolic disorder development remains unclear. Nevertheless, partial deletion of the ubiquitous ketone bodies transporter MCT1 in mice (HE mice) results in diet-induced obesity resistance, while there is no alteration under normal chow diet. These results suggest that ketone bodies produced during the high fat diet would be important signals involved in obesity onset. METHODS In the present study we used a specific BHB infusion of the hypothalamus and analyzed the energy homeostasis of WT or HE mice fed a normal chow diet. RESULTS Our results indicate that high BHB levels sensed by the hypothalamus disrupt the brain regulation of energy homeostasis. This brain control dysregulation leads to peripheral alterations of energy expenditure mechanisms. CONCLUSIONS Altogether, the changes induced by high ketone bodies levels sensed by the brain increase the risk of obesity onset in mice.
Collapse
Affiliation(s)
- Lionel Carneiro
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Rocco Bernasconi
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Adriano Bernini
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Cendrine Repond
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland; University and CHU of Poitiers, INSERM U1313, Poitiers, France.
| |
Collapse
|
25
|
Fansa S, Acosta A. The melanocortin-4 receptor pathway and the emergence of precision medicine in obesity management. Diabetes Obes Metab 2024; 26 Suppl 2:46-63. [PMID: 38504134 DOI: 10.1111/dom.15555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Over the past few decades, there has been a global surge in the prevalence of obesity, rendering it a globally recognized epidemic. Contrary to simply being a medical condition, obesity is an intricate disease with a multifactorial aetiology. Understanding the precise cause of obesity remains a challenge; nevertheless, there seems to be a complex interplay among biological, psychosocial and behavioural factors. Studies on the genetic factors of obesity have revealed several pathways in the brain that play a crucial role in food intake regulation. The best characterized pathway, thus far, is the leptin-melanocortin pathway, from which disruptions are responsible for the majority of monogenic obesity disorders. The effectiveness of conservative lifestyle interventions in addressing monogenic obesity has been limited. Therefore, it is crucial to complement the management strategy with pharmacological and surgical options. Emphasis has been placed on developing drugs aimed at replacing the absent signals, with the goal of restoring the pathway. In both monogenic and polygenic forms of obesity, outcomes differ across various interventions, likely due to the multifaceted nature of the disease. This underscores the need to explore alternative therapeutic strategies that can mitigate this heterogeneity. Precision medicine can be regarded as a powerful tool that can address this concern, as it values the understanding of the underlying abnormality triggering the disease and provides a tailored treatment accordingly. This would assist in optimizing outcomes of the current therapeutic approaches and even aid in the development of novel treatments capable of more effectively managing the global obesity epidemic.
Collapse
Affiliation(s)
- Sima Fansa
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
26
|
Allard C, Miralpeix C, López-Gambero AJ, Cota D. mTORC1 in energy expenditure: consequences for obesity. Nat Rev Endocrinol 2024; 20:239-251. [PMID: 38225400 DOI: 10.1038/s41574-023-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
In eukaryotic cells, the mammalian target of rapamycin complex 1 (sometimes referred to as the mechanistic target of rapamycin complex 1; mTORC1) orchestrates cellular metabolism in response to environmental energy availability. As a result, at the organismal level, mTORC1 signalling regulates the intake, storage and use of energy by acting as a hub for the actions of nutrients and hormones, such as leptin and insulin, in different cell types. It is therefore unsurprising that deregulated mTORC1 signalling is associated with obesity. Strategies that increase energy expenditure offer therapeutic promise for the treatment of obesity. Here we review current evidence illustrating the critical role of mTORC1 signalling in the regulation of energy expenditure and adaptive thermogenesis through its various effects in neuronal circuits, adipose tissue and skeletal muscle. Understanding how mTORC1 signalling in one organ and cell type affects responses in other organs and cell types could be key to developing better, safer treatments targeting this pathway in obesity.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | | | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France.
| |
Collapse
|
27
|
Mainieri F, La Bella S, Rinaldi M, Chiarelli F. Rare genetic forms of obesity in childhood and adolescence: A narrative review of the main treatment options with a focus on innovative pharmacological therapies. Eur J Pediatr 2024; 183:1499-1508. [PMID: 38227053 DOI: 10.1007/s00431-024-05427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The prevalence of obesity in children and adolescents is increasing, and it is recognised as a complex disorder that often begins in early childhood and persists throughout life. Both polygenic and monogenic obesity are influenced by a combination of genetic predisposition and environmental factors. Rare genetic obesity forms are caused by specific pathogenic variants in single genes that have a significant impact on weight regulation, particularly genes involved in the leptin-melanocortin pathway. Genetic testing is recommended for patients who exhibit rapid weight gain in infancy and show additional clinical features suggestive of monogenic obesity as an early identification allows for appropriate treatment, preventing the development of obesity-related complications, avoiding the failure of traditional treatment approaches. In the past, the primary recommendations for managing obesity in children and teenagers have been focused on making multiple lifestyle changes that address diet, physical activity, and behaviour, with the goal of maintaining these changes long-term. However, achieving substantial and lasting weight loss and improvements in body mass index (BMI) through lifestyle interventions alone is rare. Recently the progress made in genetic analysis has paved the way for innovative pharmacological treatments for different forms of genetic obesity. By understanding the molecular pathways that contribute to the development of obesity, it is now feasible to identify specific patients who can benefit from targeted treatments based on their unique genetic mechanisms. Conclusion: However, additional preclinical research and studies in the paediatric population are required, both to develop more personalised prevention and therapeutic programs, particularly for the early implementation of innovative and beneficial management options, and to enable the translation of these novel therapy approaches into clinical practice. What is Known: • The prevalence of obesity in the paediatric population is increasing, and it is considered as a multifaceted condition that often begins in early childhood and persists in the adult life. Particularly, rare genetic forms of obesity are influenced by a combination of genetic predisposition and environmental factors and are caused by specific pathogenic variants in single genes showing a remarkable impact on weight regulation, particularly genes involved in the leptin-melanocortin pathway. • Patients who present with rapid weight gain in infancy and show additional clinical characteristics indicative of monogenic obesity should undergo genetic testing, which, by enabling a correct diagnosis, can prevent the development of obesity-related consequences through the identification for appropriate treatment. What is New: • In recent years, advances made in genetic analysis has made it possible to develop innovative pharmacological treatments for various forms of genetic obesity. In fact, it is now achievable to identify specific patients who can benefit from targeted treatments based on their unique genetic mechanisms by understanding the molecular pathways involved in the development of obesity. • As demonstrated over the last years, two drugs, setmelanotide and metreleptin, have been identified as potentially effective interventions in the treatment of certain rare forms of monogenic obesity caused by loss-of-function mutations in genes involved in the leptin-melanocortin pathway. Recent advancements have led to the development of novel treatments, including liraglutide, semaglutide and retatrutide, that have the potential to prevent the progression of metabolic abnormalities and improve the prognosis of individuals with these rare and severe forms of obesity. However, extensive preclinical research and, specifically, additional studies in the paediatric population are necessary to facilitate the translation of these innovative treatment techniques into clinical practice.
Collapse
Affiliation(s)
| | | | - Marta Rinaldi
- Paediatric Department, Stoke Mandeville Hospital - Thames Valley Deanery, Oxford, UK
| | | |
Collapse
|
28
|
Roth CL, McCormack SE. Acquired hypothalamic obesity: A clinical overview and update. Diabetes Obes Metab 2024; 26 Suppl 2:34-45. [PMID: 38450938 DOI: 10.1111/dom.15530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
Hypothalamic obesity (HO) is a rare and complex disorder that confers substantial morbidity and excess mortality. HO is a unique subtype of obesity characterized by impairment in the key brain pathways that regulate energy intake and expenditure, autonomic nervous system function, and peripheral hormonal signalling. HO often occurs in the context of hypothalamic syndrome, a constellation of symptoms that follow from disruption of hypothalamic functions, for example, temperature regulation, sleep-wake circadian control, and energy balance. Genetic forms of HO, including the monogenic obesity syndromes, often impact central leptin-melanocortin pathways. Acquired forms of HO occur as a result of tumours impacting the hypothalamus, such as craniopharyngioma, surgery or radiation to treat those tumours, or other forms of hypothalamic damage, such as brain injury impacting the region. Risk for severe obesity following hypothalamic injury is increased with larger extent of hypothalamic damage or lesions that contain the medial and posterior hypothalamic nuclei that support melanocortin signalling pathways. Structural damage in these hypothalamic nuclei often leads to hyperphagia, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue, the collective effect of which is rapid weight gain. Individuals with hyperphagia are perpetually hungry. They do not experience fullness at the end of a meal, nor do they feel satiated after meals, leading them to consume larger and more frequent meals. To date, most efforts to treat HO have been disappointing and met with limited, if any, long-term success. However, new treatments based on the distinct pathophysiology of disturbed energy homeostasis in acquired HO may hold promise for the future.
Collapse
Affiliation(s)
- Christian L Roth
- Centre for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, DC, USA
- Department of Paediatrics, University of Washington, School of Medicine, Seattle, Washington, DC, USA
| | - Shana E McCormack
- Neuroendocrine Centre, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Paediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Regmi P, Young M, Minigo G, Milic N, Gyawali P. Photoperiod and metabolic health: evidence, mechanism, and implications. Metabolism 2024; 152:155770. [PMID: 38160935 DOI: 10.1016/j.metabol.2023.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Circadian rhythms are evolutionarily programmed biological rhythms that are primarily entrained by the light cycle. Disruption of circadian rhythms is an important risk factor for several metabolic disorders. Photoperiod is defined as total duration of light exposure in a day. With the extended use of indoor/outdoor light, smartphones, television, computers, and social jetlag people are exposed to excessive artificial light at night increasing their photoperiod. Importantly long photoperiod is not limited to any geographical region, season, age, or socioeconomic group, it is pervasive. Long photoperiod is an established disrupter of the circadian rhythm and can induce a range of chronic health conditions including adiposity, altered hormonal signaling and metabolism, premature ageing, and poor psychological health. This review discusses the impact of exposure to long photoperiod on circadian rhythms, metabolic and mental health, hormonal signaling, and ageing and provides a perspective on possible preventive and therapeutic approaches for this pervasive challenge.
Collapse
Affiliation(s)
- Prashant Regmi
- Faculty of Health, Charles Darwin University, Australia.
| | - Morag Young
- Cardiovascular Endocrinology Laboratory, Baker IDI Heart and Diabetes Institute, Australia
| | | | - Natalie Milic
- Faculty of Health, Charles Darwin University, Australia
| | - Prajwal Gyawali
- Centre of Health Research and School of Health and Medical Sciences, University of Southern Queensland, Australia
| |
Collapse
|
30
|
Bachor TP, Hwang E, Yulyaningsih E, Attal K, Mifsud F, Pham V, Vagena E, Huarcaya R, Valdearcos M, Vaisse C, Williams KW, Emmerson PJ, Xu AW. Identification of AgRP cells in the murine hindbrain that drive feeding. Mol Metab 2024; 80:101886. [PMID: 38246589 PMCID: PMC10844855 DOI: 10.1016/j.molmet.2024.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
OBJECTIVE The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding. Here we characterized a previously unknown population of AgRP cells in the mouse hindbrain. METHODS Expression of AgRP in the hindbrain was investigated using gene expression analysis, single-cell RNA sequencing, immunofluorescent analysis and multiple transgenic mice with reporter expressions. Activation of AgRP neurons was achieved by Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and by transcranial focal photo-stimulation using a step-function opsin with ultra-high light sensitivity (SOUL). RESULTS AgRP expressing cells were present in the area postrema (AP) and the adjacent subpostrema area (SubP) and commissural nucleus of the solitary tract (cNTS) of the mouse hindbrain (termed AgRPHind herein). AgRPHind cells consisted of locally projecting neurons as well as tanycyte-like cells. Food deprivation stimulated hindbrain Agrp expression as well as neuronal activity of subsets of AgRPHind cells. In adult mice that lacked hypothalamic AgRP neurons, chemogenetic activation of AgRP neurons resulted in hyperphagia and weight gain. In addition, transcranial focal photo-stimulation of hindbrain AgRP cells increased food intake in adult mice with or without hypothalamic AgRP neurons. CONCLUSIONS Our study indicates that the central melanocortin system in the hindbrain possesses an orexigenic component, and that AgRPHind neurons stimulate feeding independently of hypothalamic AgRP neurons.
Collapse
Affiliation(s)
- Tomas P Bachor
- Diabetes Center and Department of Anatomy, University of California, San Francisco, California, USA
| | - Eunsang Hwang
- Center for Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Ernie Yulyaningsih
- Diabetes Center and Department of Anatomy, University of California, San Francisco, California, USA
| | - Kush Attal
- Diabetes Center and Department of Anatomy, University of California, San Francisco, California, USA
| | - Francois Mifsud
- Diabetes Center and Department of Anatomy, University of California, San Francisco, California, USA
| | - Viana Pham
- Diabetes Center and Department of Anatomy, University of California, San Francisco, California, USA
| | - Eirini Vagena
- Diabetes Center and Department of Anatomy, University of California, San Francisco, California, USA
| | - Renzo Huarcaya
- Diabetes Center and Department of Anatomy, University of California, San Francisco, California, USA
| | - Martin Valdearcos
- Diabetes Center and Department of Anatomy, University of California, San Francisco, California, USA
| | - Christian Vaisse
- Diabetes Center and Department of Anatomy, University of California, San Francisco, California, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Paul J Emmerson
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly & Company, Indianapolis, IN, USA
| | - Allison W Xu
- Diabetes Center and Department of Anatomy, University of California, San Francisco, California, USA.
| |
Collapse
|
31
|
Michetti F, Di Sante G, Clementi ME, Valeriani F, Mandarano M, Ria F, Di Liddo R, Rende M, Romano Spica V. The Multifaceted S100B Protein: A Role in Obesity and Diabetes? Int J Mol Sci 2024; 25:776. [PMID: 38255850 PMCID: PMC10815019 DOI: 10.3390/ijms25020776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The S100B protein is abundant in the nervous system, mainly in astrocytes, and is also present in other districts. Among these, the adipose tissue is a site of concentration for the protein. In the light of consistent research showing some associations between S100B and adipose tissue in the context of obesity, metabolic disorders, and diabetes, this review tunes the possible role of S100B in the pathogenic processes of these disorders, which are known to involve the adipose tissue. The reported data suggest a role for adipose S100B in obesity/diabetes processes, thus putatively re-proposing the role played by astrocytic S100B in neuroinflammatory/neurodegenerative processes.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR, L.go F. Vito 1, 00168 Rome, Italy;
- Department of Neuroscience, Catholic University of the Sacred Heart, L.go F. Vito 1, 00168 Rome, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy; (G.D.S.); (M.R.)
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR, L.go F. Vito 1, 00168 Rome, Italy;
| | - Federica Valeriani
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.V.); (V.R.S.)
| | - Martina Mandarano
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, Medical School, University of Perugia, 06132 Perugia, Italy;
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy; (G.D.S.); (M.R.)
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.V.); (V.R.S.)
| |
Collapse
|
32
|
Pocai A. G protein-coupled receptors and obesity. Front Endocrinol (Lausanne) 2023; 14:1301017. [PMID: 38161982 PMCID: PMC10757641 DOI: 10.3389/fendo.2023.1301017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity and diabetes. Obesity is a complex chronic disease that requires long term management predisposing to type 2 diabetes, heart disease, and some cancers. The therapeutic landscape for GPCR as targets of anti-obesity medications has undergone significant changes with the approval of semaglutide, the first peptide glucagon like peptide 1 receptor agonist (GLP-1RA) achieving double digit weight loss (≥10%) and cardiovascular benefits. The enhanced weight loss, with the expected beneficial effect on obesity-related complications and reduction of major adverse cardiovascular events (MACE), has propelled the commercial opportunity for the obesity market leading to new players entering the space. Significant progress has been made on approaches targeting GPCRs such as single peptides that simultaneously activate GIP and/or GCGR in addition to GLP1, oral tablet formulation of GLP-1, small molecules nonpeptidic oral GLP1R and fixed-dose combination as well as add-on therapy for patients already treated with a GLP-1 agonist.
Collapse
Affiliation(s)
- Alessandro Pocai
- Cardiovascular and Metabolic Disease, Johnson & Johnson Innovative Medicine Research & Development, Spring House, PA, United States
| |
Collapse
|
33
|
Doan KV, Tran LT, Yang DJ, Ha TTA, Mai TD, Kim SK, DePinho RA, Shin DM, Choi YH, Kim KW. Astrocytic FoxO1 in the hypothalamus regulates metabolic homeostasis by coordinating neuropeptide Y neuron activity. Glia 2023; 71:2735-2752. [PMID: 37655904 DOI: 10.1002/glia.24448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
The forkhead box transcription factor O1 (FoxO1) is expressed ubiquitously throughout the central nervous system, including in astrocytes, the most prevalent glial cell type in the brain. While the role of FoxO1 in hypothalamic neurons in controlling food intake and energy balance is well-established, the contribution of astrocytic FoxO1 in regulating energy homeostasis has not yet been determined. In the current study, we demonstrate the essential role of hypothalamic astrocytic FoxO1 in maintaining normal neuronal activity in the hypothalamus and whole-body glucose metabolism. Inhibition of FoxO1 function in hypothalamic astrocytes shifts the cellular metabolism from glycolysis to oxidative phosphorylation, enhancing astrocyte ATP production and release meanwhile decreasing astrocytic export of lactate. As a result, specific deletion of astrocytic FoxO1, particularly in the hypothalamus, causes a hyperactivation of hypothalamic neuropeptide Y neurons, which leads to an increase in acute feeding and impaired glucose regulation and ultimately results in diet-induced obesity and systemic glucose dyshomeostasis.
Collapse
Affiliation(s)
- Khanh Van Doan
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Le Trung Tran
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Dong Joo Yang
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Thu Thi Anh Ha
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Thi Dang Mai
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Seul Ki Kim
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dong-Min Shin
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yun-Hee Choi
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ki Woo Kim
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
34
|
Xu DM, He S, Liang XF, Wu JQ, Wang QL, Jia XD. Regulatory effect of NK homeobox 1 (NKX2.1) on melanocortin 4 receptor (Mc4r) promoter in Mandarin fish. J Cell Physiol 2023; 238:2867-2878. [PMID: 37850660 DOI: 10.1002/jcp.31139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
The melanocortin 4 receptor (MC4R) is a G protein-coupled transporter that mediates the regulation of thyroid hormones and leptin on energy balance and food intake. However, the mechanisms of transcriptional regulation of Mc4r by thyroid hormone and leptin in fish have been rarely reported. The messenger RNA expression of Mc4r gene was significantly higher in brain than those in other tissues of mandarin fish. We analyzed the structure and function of a 2029 bp sequence of Mc4r promoter. Meanwhile, overexpression of NKX2.1 and incubation with leptin significantly increased Mc4r promoter activity, but triiodothyronine showed the opposite effect. In addition, mutations in the NKX2.1 binding site abolished not only the activation of Mc4r promoter activity by leptin but also the inhibitory effect of thyroid hormones on Mc4r promoter activity. In summary, these results suggested that thyroid hormones and leptin might regulate the transcriptional expression of Mc4r through NKX2.1.
Collapse
Affiliation(s)
- Di-Mei Xu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Jia-Qi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Qiu-Ling Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xiao-Dan Jia
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
35
|
Yu H, Yu H, Zhang R, Peng D, Yan D, Gu Y, Bao Y, Jia W, Zhang H, Hu C. Targeted gene panel provides advantages over whole-exome sequencing for diagnosing obesity and diabetes mellitus. J Mol Cell Biol 2023; 15:mjad040. [PMID: 37327085 PMCID: PMC10847719 DOI: 10.1093/jmcb/mjad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/12/2023] [Accepted: 06/15/2023] [Indexed: 06/18/2023] Open
Abstract
A small fraction of patients diagnosed with obesity or diabetes mellitus has an underlying monogenic cause. Here, we constructed a targeted gene panel consisting of 83 genes reported to be causative for monogenic obesity or diabetes. We performed this panel in 481 patients to detect causative variants and compared these results with whole-exome sequencing (WES) data available for 146 of these patients. The coverage of targeted gene panel sequencing was significantly higher than that of WES. The diagnostic yield in patients sequenced by the panel was 32.9% with subsequent WES leading to three additional diagnoses with two novel genes. In total, 178 variants in 83 genes were detected in 146 patients by targeted sequencing. Three of the 178 variants were missed by WES, although the WES-only approach had a similar diagnostic yield. For the 335 samples only receiving targeted sequencing, the diagnostic yield was 32.2%. In conclusion, taking into account the lower costs, shorter turnaround time, and higher quality of data, targeted sequencing is a more effective screening method for monogenic obesity and diabetes compared to WES. Therefore, this approach could be routinely established and used as a first-tier test in clinical practice for specific patients.
Collapse
Affiliation(s)
- Hairong Yu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Haoyong Yu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Danfeng Peng
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dandan Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yunjuan Gu
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuqian Bao
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China
| |
Collapse
|
36
|
Duckett K, Williamson A, Kincaid JWR, Rainbow K, Corbin LJ, Martin HC, Eberhardt RY, Huang QQ, Hurles ME, He W, Brauner R, Delaney A, Dunkel L, Grinspon RP, Hall JE, Hirschhorn JN, Howard SR, Latronico AC, Jorge AAL, McElreavey K, Mericq V, Merino PM, Palmert MR, Plummer L, Rey RA, Rezende RC, Seminara SB, Salnikov K, Banerjee I, Lam BYH, Perry JRB, Timpson NJ, Clayton P, Chan YM, Ong KK, O’Rahilly S. Prevalence of Deleterious Variants in MC3R in Patients With Constitutional Delay of Growth and Puberty. J Clin Endocrinol Metab 2023; 108:e1580-e1587. [PMID: 37339320 PMCID: PMC10655545 DOI: 10.1210/clinem/dgad373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
CONTEXT The melanocortin 3 receptor (MC3R) has recently emerged as a critical regulator of pubertal timing, linear growth, and the acquisition of lean mass in humans and mice. In population-based studies, heterozygous carriers of deleterious variants in MC3R report a later onset of puberty than noncarriers. However, the frequency of such variants in patients who present with clinical disorders of pubertal development is currently unknown. OBJECTIVE This work aimed to determine whether deleterious MC3R variants are more frequently found in patients clinically presenting with constitutional delay of growth and puberty (CDGP) or normosmic idiopathic hypogonadotropic hypogonadism (nIHH). METHODS We examined the sequence of MC3R in 362 adolescents with a clinical diagnosis of CDGP and 657 patients with nIHH, experimentally characterized the signaling properties of all nonsynonymous variants found and compared their frequency to that in 5774 controls from a population-based cohort. Additionally, we established the relative frequency of predicted deleterious variants in individuals with self-reported delayed vs normally timed menarche/voice-breaking in the UK Biobank cohort. RESULTS MC3R loss-of-function variants were infrequent but overrepresented in patients with CDGP (8/362 [2.2%]; OR = 4.17; P = .001). There was no strong evidence of overrepresentation in patients with nIHH (4/657 [0.6%]; OR = 1.15; P = .779). In 246 328 women from the UK Biobank, predicted deleterious variants were more frequently found in those self-reporting delayed (aged ≥16 years) vs normal age at menarche (OR = 1.66; P = 3.90E-07). CONCLUSION We have found evidence that functionally damaging variants in MC3R are overrepresented in individuals with CDGP but are not a common cause of this phenotype.
Collapse
Affiliation(s)
- Katie Duckett
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Alice Williamson
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - John W R Kincaid
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Kara Rainbow
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Laura J Corbin
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Hilary C Martin
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ruth Y Eberhardt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Qin Qin Huang
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Wen He
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Raja Brauner
- Pediatric Endocrinology Unit, Hôpital Fondation Adolphe de Rothschild and Université Paris Cité, 25 rue Manin, 75019 Paris, France
| | - Angela Delaney
- Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children’s Research Hospital, 262 Danny Thomas Place MS 737, Memphis, TN 38105, USA
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London Medical School, Charterhouse Square, London EC1M 6BQ, UK
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinolègicas “Dr. César Bergadá” (CEDIE), CONICET–FEI–Divisièn de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Buenos Aires, Argentina
| | - Janet E Hall
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Science, National Institute of Health, 111 TW Alexander Dr, Bldg 101 – A222, Research Triangle Park, NC 27709, USA
| | - Joel N Hirschhorn
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ana C Latronico
- Departamento de Clínica Médica, Av. Dr. Arnaldo, 455 - Cerqueira César, 01246903 São Paulo - SP, Brazil
| | - Alexander A L Jorge
- Departamento de Clínica Médica, Av. Dr. Arnaldo, 455 - Cerqueira César, 01246903 São Paulo - SP, Brazil
| | - Ken McElreavey
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, F-75015 Paris, France
| | - Verónica Mericq
- Institute of Maternal and Child Research, Faculty of Medicine, University of Chile, Santa Rosa 1234, 2° piso, Santiago 8320000, Chile
| | - Paulina M Merino
- Institute of Maternal and Child Research, Faculty of Medicine, University of Chile, Santa Rosa 1234, 2° piso, Santiago 8320000, Chile
| | - Mark R Palmert
- Division of Endocrinology, The Hospital for Sick Children and Departments of Pediatrics and Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Lacey Plummer
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Bartlett Hall Extension, 5th Floor, 55 Fruit Street, Boston, MA 02114, USA
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinolègicas “Dr. César Bergadá” (CEDIE), CONICET–FEI–Divisièn de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Buenos Aires, Argentina
| | - Raíssa C Rezende
- Departamento de Clínica Médica, Av. Dr. Arnaldo, 455 - Cerqueira César, 01246903 São Paulo - SP, Brazil
| | - Stephanie B Seminara
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Bartlett Hall Extension, 5th Floor, 55 Fruit Street, Boston, MA 02114, USA
| | - Kathryn Salnikov
- Massachusetts General Hospital Harvard Center for Reproductive Medicine and Reproductive Endocrine Unit, Massachusetts General Hospital, Bartlett Hall Extension, 5th Floor, 55 Fruit Street, Boston, MA 02114, USA
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
| | - Brian Y H Lam
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - John R B Perry
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Peter Clayton
- Paediatric Endocrinology, Royal Manchester Children’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus Box 285, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stephen O’Rahilly
- Wellcome-MRC Institute of Metabolic Science, Box 289, Level 4, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
37
|
Mainieri F, La Bella S, Rinaldi M, Chiarelli F. Rare genetic forms of obesity in childhood and adolescence, a comprehensive review of their molecular mechanisms and diagnostic approach. Eur J Pediatr 2023; 182:4781-4793. [PMID: 37607976 DOI: 10.1007/s00431-023-05159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Obesity represents a major health problem in the pediatric population with an increasing prevalence worldwide, associated with cardiovascular and metabolic disorders, and due to both genetic and environmental factors. Rare forms of obesity are mostly monogenic, and less frequently due to polygenic influence. Polygenic form of obesity is usually the common obesity with single gene variations exerting smaller impact on weight and is commonly non-syndromic.Non-syndromic monogenic obesity is associated with variants in single genes typically related to the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation, thus body weight control. Patients with these genetic defects usually present with hyperphagia and early-onset severe obesity. Significant progress in genetic diagnostic testing has recently made for early identification of patients with genetic obesity, which guarantees prompt intervention in terms of therapeutic management of the disease. What is Known: • Obesity represents a major health problem among children and adolescents, with an increasing prevalence worldwide, associated with cardiovascular disease and metabolic abnormalities, and it can be due to both genetic and environmental factors. • Non-syndromic monogenic obesity is linked to modifications in single genes usually involved in the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation. What is New: • The increasing understanding of rare forms of monogenic obesity has provided significant insights into the genetic causes of pediatric obesity, and our current knowledge of the various genes associated with childhood obesity is rapidly expanding. • A useful diagnostic algorithm for early identification of genetic obesity has been proposed, which can ensure a prompt intervention in terms of therapeutic management of the disease and an early prevention of the development of associated metabolic conditions.
Collapse
Affiliation(s)
| | | | - Marta Rinaldi
- Paediatric Department, Stoke Mandeville Hospital, Thames Valley Deanery, Oxford, UK
| | | |
Collapse
|
38
|
Szczerbinski L, Florez JC. Precision medicine of obesity as an integral part of type 2 diabetes management - past, present, and future. Lancet Diabetes Endocrinol 2023; 11:861-878. [PMID: 37804854 DOI: 10.1016/s2213-8587(23)00232-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 10/09/2023]
Abstract
Obesity is a complex and heterogeneous condition that leads to various metabolic complications, including type 2 diabetes. Unfortunately, for some, treatment options to date for obesity are insufficient, with many people not reaching sustained weight loss or having improvements in metabolic health. In this Review, we discuss advances in the genetics of obesity from the past decade-with emphasis on developments from the past 5 years-with a focus on metabolic consequences, and their potential implications for precision management of the disease. We also provide an overview of the potential role of genetics in guiding weight loss strategies. Finally, we propose a vision for the future of precision obesity management that includes developing an obesity-centred multidisease management algorithm that targets both obesity and its comorbidities. However, further collaborative efforts and research are necessary to fully realise its potential and improve metabolic health outcomes.
Collapse
Affiliation(s)
- Lukasz Szczerbinski
- Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Jose C Florez
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Chermon D, Birk R. Predisposition of the Common MC4R rs17782313 Female Carriers to Elevated Obesity and Interaction with Eating Habits. Genes (Basel) 2023; 14:1996. [PMID: 38002939 PMCID: PMC10671328 DOI: 10.3390/genes14111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The global rise in obesity is attributed to genetic predisposition interaction with an obesogenic environment. Melanocortin 4 receptor (MC4R) rs17782313 polymorphism has been linked to common obesity with varying influence across different populations. MC4R is a crucial player in the leptin proopiomelanocortin pathway that regulates weight hemostasis. We aimed to study MC4R rs17782313 and its interaction with eating behaviors on obesity predisposition in the Israeli population. Adults' (n = 5785, >18 y) genotype and anthropometric and demographic data were analyzed using logistic regression models adjusting for age, sex, T1DM, and T2DM. MC4R rs17782313 significantly predisposes to elevated obesity risk under the recessive and additive models (OR = 1.38, 95% CI: 1.1-1.72, p = 0.005 and OR = 1.1, 95% CI: 1.01-1.2, p = 0.03, respectively) adjusted for confounders (age, sex, T1DM, and T2DM). Stratification by sex demonstrated that carrying the common MC4R rs17782313 is significantly associated with an elevated predisposition to obesity under the recessive model among females only (OR = 1.41, 95% CI: 1.09-1.82, p = 0.01), with an average of 0.85 BMI increment compared with wild type and one risk allele carriers. MC4R rs17782313 significantly interacted with several eating behaviors to enhance the risk of obesity. Our findings demonstrate that MC4R rs17782313 homozygous female carriers are significantly predisposed to obesity amplified by eating behaviors.
Collapse
Affiliation(s)
| | - Ruth Birk
- Nutrition Department, Health Sciences Faculty, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
40
|
Al-Humadi AW, Alabduljabbar K, Alsaqaaby MS, Talaee H, le Roux CW. Obesity Characteristics Are Poor Predictors of Genetic Mutations Associated with Obesity. J Clin Med 2023; 12:6396. [PMID: 37835041 PMCID: PMC10573901 DOI: 10.3390/jcm12196396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The genetic contribution to obesity is substantial and may underpin the altered pathophysiology. One such pathway involves melanocortin signaling in the hypothalamus. Genetic variants can cause dysregulation in the central melanocortin pathway that can result in early onset of hyperphagia and obesity. Clinically identifying patients who are at risk of known genetic mutations is challenging. The main purpose of this study was to identify associations between the clinico-demographical characteristics and the presence of a genetic mutation associated with obesity. METHODS We tested samples from 238 adult patients with class III obesity between October 2021 to February 2023 using next-generation sequencing (NGS) (Illumina, NovaSeq 6000 Sequencing System). The results were classified as "no variant identified" or "variant identified". RESULTS 107 patients (45%) had one or more gene mutation in the leptin-melanocortin pathway. All variants were heterozygous. The patients with a gene mutation had a BMI of 48.4 ± 0.8 kg/m2 (mean ± SEM), and those without a gene mutation had a BMI of 49.4 ± 0.7 kg/m2 (p = 0.4). The mean age of onset of obesity in patients with a gene mutation was 13.9 ± 1.3 years and for those without gene mutations was 11.5 ± 0.9 years (p = 0.1). The incidence of hyperphagia as a child was also not predictive (p = 0.4). CONCLUSIONS Gene mutations associated with obesity in patients with a BMI > 40 kg/m2 are common. However, a patient's BMI, age of onset of obesity, or age of onset of hyperphagia did not help to differentiate which patients may be more likely to have genetic mutations associated with obesity.
Collapse
Affiliation(s)
- Ahmed W. Al-Humadi
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, D04V1W8 Dublin, Ireland; (A.W.A.-H.); (K.A.); (M.S.A.); (H.T.)
- Department of Dentistry, Hilla University College, Babylon 510001, Iraq
| | - Khaled Alabduljabbar
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, D04V1W8 Dublin, Ireland; (A.W.A.-H.); (K.A.); (M.S.A.); (H.T.)
- Department of Family Medicine and Polyclinics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Moath S. Alsaqaaby
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, D04V1W8 Dublin, Ireland; (A.W.A.-H.); (K.A.); (M.S.A.); (H.T.)
- Obesity, Endocrine and Metabolism Centre, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Hani Talaee
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, D04V1W8 Dublin, Ireland; (A.W.A.-H.); (K.A.); (M.S.A.); (H.T.)
| | - Carel W. le Roux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, D04V1W8 Dublin, Ireland; (A.W.A.-H.); (K.A.); (M.S.A.); (H.T.)
| |
Collapse
|
41
|
Roth CL, Zenno A. Treatment of hypothalamic obesity in people with hypothalamic injury: new drugs are on the horizon. Front Endocrinol (Lausanne) 2023; 14:1256514. [PMID: 37780616 PMCID: PMC10533996 DOI: 10.3389/fendo.2023.1256514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Hypothalamic obesity (HO) is a complex and rare disorder affecting multiple regulatory pathways of energy intake and expenditure in the brain as well as the regulation of the autonomic nervous system and peripheral hormonal signaling. It can be related to monogenic obesity syndromes which often affect the central leptin-melanocortin pathways or due to injury of the hypothalamus from pituitary and hypothalamic tumors, such as craniopharyngioma, surgery, trauma, or radiation to the hypothalamus. Traditional treatments of obesity, such as lifestyle intervention and specific diets, are still a therapeutic cornerstone, but often fail to result in meaningful and sustained reduction of body mass index. This review will give an update on pharmacotherapies of HO related to hypothalamic injury. Recent obesity drug developments are promising for successful obesity intervention outcomes.
Collapse
Affiliation(s)
- Christian L. Roth
- Seattle Children’s Research Institute, Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Anna Zenno
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
42
|
Feng W, Zhou Q, Chen X, Dai A, Cai X, Liu X, Zhao F, Chen Y, Ye C, Xu Y, Cong Z, Li H, Lin S, Yang D, Wang MW. Structural insights into ligand recognition and subtype selectivity of the human melanocortin-3 and melanocortin-5 receptors. Cell Discov 2023; 9:81. [PMID: 37524700 PMCID: PMC10390531 DOI: 10.1038/s41421-023-00586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Members of the melanocortin receptor (MCR) family that recognize different melanocortin peptides mediate a broad spectrum of cellular processes including energy homeostasis, inflammation and skin pigmentation through five MCR subtypes (MC1R-MC5R). The structural basis of subtype selectivity of the endogenous agonist γ-MSH and non-selectivity of agonist α-MSH remains elusive, as the two agonists are highly similar with a conserved HFRW motif. Here, we report three cryo-electron microscopy structures of MC3R-Gs in complex with γ-MSH and MC5R-Gs in the presence of α-MSH or a potent synthetic agonist PG-901. The structures reveal that α-MSH and γ-MSH adopt a "U-shape" conformation, penetrate into the wide-open orthosteric pocket and form massive common contacts with MCRs via the HFRW motif. The C-terminus of γ-MSH occupies an MC3R-specific complementary binding groove likely conferring subtype selectivity, whereas that of α-MSH distances itself from the receptor with neglectable contacts. PG-901 achieves the same potency as α-MSH with a shorter length by rebalancing the recognition site and mimicking the intra-peptide salt bridge in α-MSH by cyclization. Solid density confirmed the calcium ion binding in MC3R and MC5R, and the distinct modulation effects of divalent ions were demonstrated. Our results provide insights into ligand recognition and subtype selectivity among MCRs, and expand the knowledge of signal transduction among MCR family members.
Collapse
Affiliation(s)
- Wenbo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xianyue Chen
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Antao Dai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Cai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fenghui Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenyu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingna Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaotong Cong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Li
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Dehua Yang
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
43
|
Kim SK, Tran LT, NamKoong C, Choi HJ, Chun HJ, Lee YH, Cheon M, Chung C, Hwang J, Lim HH, Shin DM, Choi YH, Kim KW. Mitochondria-derived peptide SHLP2 regulates energy homeostasis through the activation of hypothalamic neurons. Nat Commun 2023; 14:4321. [PMID: 37468558 PMCID: PMC10356901 DOI: 10.1038/s41467-023-40082-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Small humanin-like peptide 2 (SHLP2) is a mitochondrial-derived peptide implicated in several biological processes such as aging and oxidative stress. However, its functional role in the regulation of energy homeostasis remains unclear, and its corresponding receptor is not identified. Hereby, we demonstrate that both systemic and intracerebroventricular (ICV) administrations of SHLP2 protected the male mice from high-fat diet (HFD)-induced obesity and improved insulin sensitivity. In addition, the activation of pro-opiomelanocortin (POMC) neurons by SHLP2 in the arcuate nucleus of the hypothalamus (ARC) is involved in the suppression of food intake and the promotion of thermogenesis. Through high-throughput structural complementation screening, we discovered that SHLP2 binds to and activates chemokine receptor 7 (CXCR7). Taken together, our study not only reveals the therapeutic potential of SHLP2 in metabolic disorders but also provides important mechanistic insights into how it exerts its effects on energy homeostasis.
Collapse
Affiliation(s)
- Seul Ki Kim
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Le Trung Tran
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Cherl NamKoong
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hyung Jin Choi
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hye Jin Chun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - MyungHyun Cheon
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Korea
| | - Junmo Hwang
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, 41068, Korea
| | - Hyun-Ho Lim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, 41068, Korea
| | - Dong Min Shin
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Yun-Hee Choi
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Ki Woo Kim
- Division of Physiology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea.
- Department of Applied Life Science, BK21 FOUR, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| |
Collapse
|
44
|
Gravina AG, Pellegrino R, Durante T, Palladino G, Imperio G, D'Amico G, Trotta MC, Dallio M, Romeo M, D'Amico M, Federico A. The Melanocortin System in Inflammatory Bowel Diseases: Insights into Its Mechanisms and Therapeutic Potentials. Cells 2023; 12:1889. [PMID: 37508552 PMCID: PMC10378568 DOI: 10.3390/cells12141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The melanocortin system is a complex set of molecular mediators and receptors involved in many physiological and homeostatic processes. These include the regulation of melanogenesis, steroidogenesis, neuromodulation and the modulation of inflammatory processes. In the latter context, the system has assumed importance in conditions of chronic digestive inflammation, such as inflammatory bowel diseases (IBD), in which numerous experiences have been accumulated in mouse models of colitis. Indeed, information on how such a system can counteract colitis inflammation and intervene in the complex cytokine imbalance in the intestinal microenvironment affected by chronic inflammatory damage has emerged. This review summarises the evidence acquired so far and highlights that molecules interfering with the melanocortin system could represent new drugs for treating IBD.
Collapse
Affiliation(s)
- Antonietta Gerarda Gravina
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Pellegrino
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Tommaso Durante
- Mental Health Department, S. Pio Hospital, Via dell'Angelo, 82100 Benevento, Italy
| | - Giovanna Palladino
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Giuseppe Imperio
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcello Dallio
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Mario Romeo
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
45
|
Liu L, Wess J. Adipocyte G Protein-Coupled Receptors as Potential Targets for Novel Antidiabetic Drugs. Diabetes 2023; 72:825-834. [PMID: 37339353 PMCID: PMC10281224 DOI: 10.2337/db23-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 06/22/2023]
Abstract
The functional state of adipocytes plays a central role in regulating numerous important metabolic functions, including energy and glucose homeostasis. While white adipocytes store excess calories as fat (triglycerides) and release free fatty acids as a fuel source in times of need, brown and beige adipocytes (so-called thermogenic adipocytes) convert chemical energy stored in substrates (e.g., fatty acids or glucose) into heat, thus promoting energy expenditure. Like all other cell types, adipocytes express many G protein-coupled receptors (GPCRs) that are linked to four major functional classes of heterotrimeric G proteins (Gs, Gi/o, Gq/11, and G12/13). During the past few years, novel experimental approaches, including the use of chemogenetic strategies, have led to a series of important new findings regarding the metabolic consequences of activating or inhibiting distinct GPCR/G protein signaling pathways in white, brown, and beige adipocytes. This novel information should guide the development of novel drugs capable of modulating the activity of specific adipocyte GPCR signaling pathways for the treatment of obesity, type 2 diabetes, and related metabolic disorders.
Collapse
Affiliation(s)
- Liu Liu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| |
Collapse
|
46
|
Scorrano G, La Bella S, Matricardi S, Chiarelli F, Giannini C. Neuroendocrine Effects on the Risk of Metabolic Syndrome in Children. Metabolites 2023; 13:810. [PMID: 37512517 PMCID: PMC10383317 DOI: 10.3390/metabo13070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The endocrine and nervous systems reciprocally interact to manage physiological individual functions and homeostasis. The nervous system modulates hormone release through the hypothalamus, the main cerebrally specialized structure of the neuroendocrine system. The hypothalamus is involved in various metabolic processes, administering hormone and neuropeptide release at different levels. This complex activity is affected by the neurons of various cerebral areas, environmental factors, peripheral organs, and mediators through feedback mechanisms. Therefore, neuroendocrine pathways play a key role in metabolic homeostasis control, and their abnormalities are associated with the development of metabolic syndrome (MetS) in children. The impaired functioning of the genes, hormones, and neuropeptides of various neuroendocrine pathways involved in several metabolic processes is related to an increased risk of dyslipidaemia, visceral obesity, insulin resistance, type 2 diabetes mellitus, and hypertension. This review examines the neuroendocrine effects on the risk of MetS in children, identifying and underlying several conditions associated with neuroendocrine pathway disruption. Neuroendocrine systems should be considered in the complex pathophysiology of MetS, and, when genetic or epigenetic mutations in "hot" pathways occur, they could be studied for new potential target therapies in severe and drug-resistant paediatric forms of MetS.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Saverio La Bella
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
47
|
Cuciureanu M, Caratașu CC, Gabrielian L, Frăsinariu OE, Checheriță LE, Trandafir LM, Stanciu GD, Szilagyi A, Pogonea I, Bordeianu G, Soroceanu RP, Andrițoiu CV, Anghel MM, Munteanu D, Cernescu IT, Tamba BI. 360-Degree Perspectives on Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1119. [PMID: 37374323 PMCID: PMC10304508 DOI: 10.3390/medicina59061119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Alarming statistics show that the number of people affected by excessive weight has surpassed 2 billion, representing approximately 30% of the world's population. The aim of this review is to provide a comprehensive overview of one of the most serious public health problems, considering that obesity requires an integrative approach that takes into account its complex etiology, including genetic, environmental, and lifestyle factors. Only an understanding of the connections between the many contributors to obesity and the synergy between treatment interventions can ensure satisfactory outcomes in reducing obesity. Mechanisms such as oxidative stress, chronic inflammation, and dysbiosis play a crucial role in the pathogenesis of obesity and its associated complications. Compounding factors such as the deleterious effects of stress, the novel challenge posed by the obesogenic digital (food) environment, and the stigma associated with obesity should not be overlooked. Preclinical research in animal models has been instrumental in elucidating these mechanisms, and translation into clinical practice has provided promising therapeutic options, including epigenetic approaches, pharmacotherapy, and bariatric surgery. However, more studies are necessary to discover new compounds that target key metabolic pathways, innovative ways to deliver the drugs, the optimal combinations of lifestyle interventions with allopathic treatments, and, last but not least, emerging biological markers for effective monitoring. With each passing day, the obesity crisis tightens its grip, threatening not only individual lives but also burdening healthcare systems and societies at large. It is high time we took action as we confront the urgent imperative to address this escalating global health challenge head-on.
Collapse
Affiliation(s)
- Magdalena Cuciureanu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Cătălin-Cezar Caratașu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Levon Gabrielian
- Department of Anatomy and Pathology, The University of Adelaide, Adelaide 5000, Australia;
| | - Otilia Elena Frăsinariu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Laura Elisabeta Checheriță
- 2nd Dental Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Andrei Szilagyi
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Ina Pogonea
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Gabriela Bordeianu
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Radu Petru Soroceanu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Specialization of Nutrition and Dietetics, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Maria Mihalache Anghel
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Diana Munteanu
- Institute of Mother and Child, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2062 Chisinau, Moldova;
| | - Irina Teodora Cernescu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Bogdan Ionel Tamba
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| |
Collapse
|
48
|
Abdel-Malek M, Yang L, Miras AD. Pharmacotherapy for chronic obesity management: a look into the future. Intern Emerg Med 2023; 18:1019-1030. [PMID: 37249754 PMCID: PMC10326094 DOI: 10.1007/s11739-023-03237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/17/2023] [Indexed: 05/31/2023]
Abstract
Substantial leaps have been made in the drug discovery front in tackling the growing pandemic of obesity and its metabolic co-morbidities. Greater mechanistic insight and understanding of the gut-brain molecular pathways at play have enabled the pursuit of novel therapeutic agents that possess increasingly efficacious weight-lowering potential whilst remaining safe and tolerable for clinical use. In the wake of glucagon-like peptide 1 (GLP-1) based therapy, we look at recent advances in gut hormone biology that have fermented the development of next generation pharmacotherapy in diabesity that harness synergistic potential. In this paper, we review the latest data from the SURPASS and SURMOUNT clinical trials for the novel 'twincretin', known as Tirzepatide, which has demonstrated sizeable body weight reduction as well as glycaemic efficacy. We also provide an overview of amylin-based combination strategies and other emerging therapies in the pipeline that are similarly providing great promise for the future of chronic management of obesity.
Collapse
Affiliation(s)
| | - Lisa Yang
- Imperial College Healthcare NHS Trust, London, UK
| | - Alexander Dimitri Miras
- School of Medicine, Ulster University, Derry~Londonderry, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
49
|
Park S, Belfoul AM, Rastelli M, Jang A, Monnoye M, Bae H, Kamitakahara A, Giavalisco P, Sun S, Barelle PY, Plows J, Jang C, Fodor A, Goran MI, Bouret SG. Maternal low-calorie sweetener consumption rewires hypothalamic melanocortin circuits via a gut microbial co-metabolite pathway. JCI Insight 2023; 8:e156397. [PMID: 37014702 PMCID: PMC10322686 DOI: 10.1172/jci.insight.156397] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The prevalence of obesity and type 2 diabetes is growing at an alarming rate, including among pregnant women. Low-calorie sweeteners (LCSs) have increasingly been used as an alternative to sugar to deliver a sweet taste without the excessive caloric load. However, there is little evidence regarding their biological effects, particularly during development. Here, we used a mouse model of maternal LCS consumption to explore the impact of perinatal LCS exposure on the development of neural systems involved in metabolic regulation. We report that adult male, but not female, offspring from both aspartame- and rebaudioside A-exposed dams displayed increased adiposity and developed glucose intolerance. Moreover, maternal LCS consumption reorganized hypothalamic melanocortin circuits and disrupted parasympathetic innervation of pancreatic islets in male offspring. We then identified phenylacetylglycine (PAG) as a unique metabolite that was upregulated in the milk of LCS-fed dams and the serum of their pups. Furthermore, maternal PAG treatment recapitulated some of the key metabolic and neurodevelopmental abnormalities associated with maternal LCS consumption. Together, our data indicate that maternal LCS consumption has enduring consequences on the offspring's metabolism and neural development and that these effects are likely to be mediated through the gut microbial co-metabolite PAG.
Collapse
Affiliation(s)
- Soyoung Park
- The Saban Research Institute, Developmental Neuroscience Program, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Amine M. Belfoul
- University Lille, Inserm, CHU Lille, Laboratory of development and plasticity of the Neuroendocrine brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, Lille, France
| | - Marialetizia Rastelli
- University Lille, Inserm, CHU Lille, Laboratory of development and plasticity of the Neuroendocrine brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, Lille, France
| | - Alice Jang
- The Saban Research Institute, Developmental Neuroscience Program, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hosung Bae
- Department of Biological Chemistry, School of Medicine, University of California at Irvine, Irvine, California, USA
| | - Anna Kamitakahara
- The Saban Research Institute, Developmental Neuroscience Program, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Patrick Giavalisco
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Shan Sun
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina Charlotte, Charlotte, North Carolina, USA
| | - Pierre-Yves Barelle
- University Lille, Inserm, CHU Lille, Laboratory of development and plasticity of the Neuroendocrine brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, Lille, France
| | - Jasmine Plows
- Center for Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, School of Medicine, University of California at Irvine, Irvine, California, USA
| | - Anthony Fodor
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina Charlotte, Charlotte, North Carolina, USA
| | - Michael I. Goran
- Center for Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Sebastien G. Bouret
- University Lille, Inserm, CHU Lille, Laboratory of development and plasticity of the Neuroendocrine brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, Lille, France
| |
Collapse
|
50
|
Kovács DK, Eitmann S, Berta G, Kormos V, Gaszner B, Pétervári E, Balaskó M. Aging Changes the Efficacy of Central Urocortin 2 to Induce Weight Loss in Rats. Int J Mol Sci 2023; 24:8992. [PMID: 37240340 PMCID: PMC10219457 DOI: 10.3390/ijms24108992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Middle-aged obesity and aging cachexia present healthcare challenges. Central responsiveness to body-weight-reducing mediators, e.g., to leptin, changes during aging in a way, which may promote middle-aged obesity and aging cachexia. Leptin is connected to urocortin 2 (Ucn2), an anorexigenic and hypermetabolic member of the corticotropin family. We aimed to study the role of Ucn2 in middle-aged obesity and aging cachexia. The food intake, body weight and hypermetabolic responses (oxygen consumption, core temperature) of male Wistar rats (3, 6, 12 and 18 months) were tested following intracerebroventricular injections of Ucn2. Following one central injection, Ucn2-induced anorexia lasted for 9 days in the 3-month, 14 days in the 6-month and 2 days in the 18-month group. Middle-aged 12-month rats failed to show anorexia or weight loss. Weight loss was transient (4 days) in the 3-month, 14 days in the 6-month and slight but long-lasting in the 18-month rats. Ucn2-induced hypermetabolism and hyperthermia increased with aging. The age-dependent changes in the mRNA expression of Ucn2 detected by RNAscope in the paraventricular nucleus correlated with the anorexigenic responsiveness. Our results show that age-dependent changes in Ucn2 may contribute to middle-aged obesity and aging cachexia. Ucn2 shows potential in the prevention of middle-aged obesity.
Collapse
Affiliation(s)
- Dóra K. Kovács
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Szimonetta Eitmann
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Gergely Berta
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Erika Pétervári
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| | - Márta Balaskó
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624 Pecs, Hungary
| |
Collapse
|