1
|
Zhang Q, Hu S, Jin Z, Wang S, Zhang B, Zhao L. Mechanism of traditional Chinese medicine in elderly diabetes mellitus and a systematic review of its clinical application. Front Pharmacol 2024; 15:1339148. [PMID: 38510656 PMCID: PMC10953506 DOI: 10.3389/fphar.2024.1339148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/31/2024] [Indexed: 03/22/2024] Open
Abstract
Objective: Affected by aging, the elderly diabetes patients have many pathological characteristics different from the young people, including more complications, vascular aging, cognitive impairment, osteoporosis, and sarcopenia. This article will explore their pathogenesis and the mechanism of Traditional Chinese medicine (TCM) intervention, and use the method of systematic review to evaluate the clinical application of TCM in elderly diabetes. Method: Searching for randomized controlled trials (RCTs) published from January 2000 to November 2023 in the following databases: Web of Science, Pubmed, Embase, Cochrane Library, Sinomed, China National Knowledge Internet, Wanfang and VIP. They were evaluated by three subgroups of Traditional Chinese Prescription, Traditional Chinese patent medicines and Traditional Chinese medicine extracts for their common prescriptions, drugs, adverse reactions and the quality of them. Results and Conclusion: TCM has the advantages of multi-target and synergistic treatment in the treatment of elderly diabetes. However, current clinical researches have shortcomings including the inclusion of age criteria and diagnosis of subjects are unclear, imprecise research design, non-standard intervention measures, and its safety needs further exploration. In the future, the diagnosis of elderly people with diabetes needs to be further clarified. Traditional Chinese patent medicines included in the pharmacopoeia can be used to conduct more rigorous RCTs, and then gradually standardize the traditional Chinese medicine prescriptions and traditional Chinese medicine extracts, providing higher level evidence for the treatment of elderly diabetes with traditional Chinese medicine.
Collapse
Affiliation(s)
- Qiqi Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shiwan Hu
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Sicheng Wang
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Kurt I, Kulhan M, AlAshqar A, Borahay MA. Uterine Collagen Cross-Linking: Biology, Role in Disorders, and Therapeutic Implications. Reprod Sci 2024; 31:645-660. [PMID: 37907804 DOI: 10.1007/s43032-023-01386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Collagen is an essential constituent of the uterine extracellular matrix that provides biomechanical strength, resilience, structural integrity, and the tensile properties necessary for the normal functioning of the uterus. Cross-linking is a fundamental step in collagen biosynthesis and is critical for its normal biophysical properties. This step occurs enzymatically via lysyl oxidase (LOX) or non-enzymatically with the production of advanced glycation end-products (AGEs). Cross-links found in uterine tissue include the reducible dehydro-dihydroxylysinonorleucine (deH-DHLNL), dehydro-hydroxylysinonorleucine (deH-HLNL), and histidinohydroxymerodesmosine (HHMD); and the non-reducible pyridinoline (PYD), deoxy-pyridinoline (DPD); and a trace of pentosidine (PEN). Collagen cross-links are instrumental for uterine tissue integrity and the continuation of a healthy pregnancy. Decreased cervical cross-link density is observed in preterm birth, whereas increased tissue stiffness caused by increased cross-link density is a pathogenic feature of uterine fibroids. AGEs disrupt embryo development, decidualization, implantation, and trophoblast invasion. Uterine collagen cross-linking regulators include steroid hormones, such as progesterone and estrogen, prostaglandins, proteoglycans, metalloproteinases, lysyl oxidases, nitric oxide, nicotine, and vitamin D. Thus, uterine collagen cross-linking presents an opportunity to design therapeutic targets and warrants further investigation in common uterine disorders, such as uterine fibroids, cervical insufficiency, preterm birth, dystocia, endometriosis, and adenomyosis.
Collapse
Affiliation(s)
- Irem Kurt
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Selcuk University Faculty of Medicine, 42000, Konya, Turkey
| | - Mehmet Kulhan
- Department of Gynecology and Obstetrics, Selcuk University Faculty of Medicine, 42000, Konya, Turkey
| | - Abdelrahman AlAshqar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Xiao Y, Vazquez-Padron RI, Martinez L, Singer HA, Woltmann D, Salman LH. Role of platelet factor 4 in arteriovenous fistula maturation failure: What do we know so far? J Vasc Access 2024; 25:390-406. [PMID: 35751379 PMCID: PMC9974241 DOI: 10.1177/11297298221085458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The rate of arteriovenous fistula (AVF) maturation failure remains unacceptably high despite continuous efforts on technique improvement and careful pre-surgery planning. In fact, half of all newly created AVFs are unable to be used for hemodialysis (HD) without a salvage procedure. While vascular stenosis in the venous limb of the access is the culprit, the underlying factors leading to vascular narrowing and AVF maturation failure are yet to be determined. We have recently demonstrated that AVF non-maturation is associated with post-operative medial fibrosis and fibrotic stenosis, and post-operative intimal hyperplasia (IH) exacerbates the situation. Multiple pathological processes and signaling pathways are underlying the stenotic remodeling of the AVF. Our group has recently indicated that a pro-inflammatory cytokine platelet factor 4 (PF4/CXCL4) is upregulated in veins that fail to mature after AVF creation. Platelet factor 4 is a fibrosis marker and can be detected in vascular stenosis tissue, suggesting that it may contribute to AVF maturation failure through stimulation of fibrosis and development of fibrotic stenosis. Here, we present an overview of the how PF4-mediated fibrosis determines AVF maturation failure.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Daniel Woltmann
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Loay H Salman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
4
|
Hui WH, Chen YL, Chang SW. Effects of aging and diabetes on the deformation mechanisms and molecular structural characteristics of collagen fibrils under daily activity. Int J Biol Macromol 2024; 254:127603. [PMID: 37871726 DOI: 10.1016/j.ijbiomac.2023.127603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Crosslinking plays an important role in collagen-based tissues since it affects mechanical behavior and tissue metabolism. Aging and diabetes affect the type and density of crosslinking, effectively altering tissue properties. However, most studies focus on these effects under large stress rather than daily activities. We focus on the deformation mechanisms and structural change at the binding sites for integrins, proteoglycans, and collagenase in collagen fibrils using a fully atomistic model. We show that high-connectivity enzymatic crosslinking (our "HC" model, representing normal tissues) and advanced-glycation end-products (our "Glucosepane" model, which increase in diabetes) result in uniform deformation under daily activity, but low-connectivity enzymatic crosslinking (our "LC" model, representing aging tissues) does not. In particular, the HC model displays more sliding, which may explain the ability of healthy tissues to absorb more strain energy. In contrast, AGEs induce instability in the structures near the binding sites, which would affect the tissue metabolism of the collagen molecule. Our results provide important insights into the molecular mechanisms of collagen and a possible explanation for the role of crosslinking in tissues undergoing daily activity.
Collapse
Affiliation(s)
- Wei-Han Hui
- Department of Civil Engineering, National Taiwan University, Taipei City, Taiwan
| | - Yen-Lin Chen
- Department of Civil Engineering, National Taiwan University, Taipei City, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei City, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
5
|
Wei L, Ji L, Miao Y, Han X, Li Y, Wang Z, Fu J, Guo L, Su Y, Zhang Y. Constipation in DM are associated with both poor glycemic control and diabetic complications: Current status and future directions. Biomed Pharmacother 2023; 165:115202. [PMID: 37506579 DOI: 10.1016/j.biopha.2023.115202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Constipation is a major complications of diabetes mellitus. With the accelerating prevalence of diabetes worldwide and an aging population, there is considerable research interest regarding the altered function and structure of the gastrointestinal tract in diabetic patients. Despite current advances in hyperglycemic treatment strategies, the specific pathogenesis of diabetic constipation remains unknown. Patients with constipation, may be reluctant to eat regularly, which may worsen glycemic control and thus worsen symptoms associated with underlying diabetic bowel disease. This paper presents a review of the complex relationship between diabetes and constipation, exploring the morphological alterations and biomechanical remodeling associated with intestinal motility dysfunction, as well as alterations in intestinal neurons, cellular signaling pathways, and oxidative stress. Further studies focusing on new targets that may play a role in the pathogenesis of diabetic constipation may, provide new ideas for the development of novel therapies to treat or even prevent diabetic constipation.
Collapse
Affiliation(s)
- Luge Wei
- Tianjin University of Traditional Chinese Medicine, China.
| | - Lanqi Ji
- Tianjin University of Traditional Chinese Medicine, China
| | - Yulu Miao
- Tianjin University of Traditional Chinese Medicine, China
| | - Xu Han
- Tianjin University of Traditional Chinese Medicine, China
| | - Ying Li
- Tianjin University of Traditional Chinese Medicine, China
| | - Zhe Wang
- Tianjin University of Traditional Chinese Medicine, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, China
| | - Liuli Guo
- Tianjin University of Traditional Chinese Medicine, China
| | - Yuanyuan Su
- Tianjin University of Traditional Chinese Medicine, China
| | - Yanjun Zhang
- Tianjin University of Traditional Chinese Medicine, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
6
|
Li Y, Zheng X, Guo J, Samura M, Ge Y, Zhao S, Li G, Chen X, Shoji T, Ikezoe T, Miyata M, Xu B, Dalman RL. Treatment With Small Molecule Inhibitors of Advanced Glycation End-Products Formation and Advanced Glycation End-Products-Mediated Collagen Cross-Linking Promotes Experimental Aortic Aneurysm Progression in Diabetic Mice. J Am Heart Assoc 2023; 12:e028081. [PMID: 37158066 PMCID: PMC10227285 DOI: 10.1161/jaha.122.028081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
Background Although diabetes attenuates abdominal aortic aneurysms (AAAs), the mechanisms by which diabetes suppresses AAAs remain incompletely understood. Accumulation of advanced glycation end- (AGEs) reduces extracellular matrix (ECM) degradation in diabetes. Because ECM degradation is critical for AAA pathogenesis, we investigated whether AGEs mediate experimental AAA suppression in diabetes by blocking AGE formation or disrupting AGE-ECM cross-linking using small molecule inhibitors. Methods and Results Male C57BL/6J mice were treated with streptozotocin and intra-aortic elastase infusion to induce diabetes and experimental AAAs, respectively. Aminoguanidine (AGE formation inhibitor, 200 mg/kg), alagebrium (AGE-ECM cross-linking disrupter, 20 mg/kg), or vehicle was administered daily to mice from the last day following streptozotocin injection. AAAs were assessed via serial aortic diameter measurements, histopathology, and in vitro medial elastolysis assays. Treatment with aminoguanidine, not alagebrium, diminished AGEs in diabetic AAAs. Treatment with both inhibitors enhanced aortic enlargement in diabetic mice as compared with vehicle treatment. Neither enhanced AAA enlargement in nondiabetic mice. AAA enhancement in diabetic mice by aminoguanidine or alagebrium treatment promoted elastin degradation, smooth muscle cell depletion, mural macrophage accumulation, and neoangiogenesis without affecting matrix metalloproteinases, C-C motif chemokine ligand 2, or serum glucose concentration. Additionally, treatment with both inhibitors reversed suppression of diabetic aortic medial elastolysis by porcine pancreatic elastase in vitro. Conclusions Inhibiting AGE formation or AGE-ECM cross-linking enhances experimental AAAs in diabetes. These findings support the hypothesis that AGEs attenuate experimental AAAs in diabetes. These findings underscore the potential translational value of enhanced ECM cross-linking as an inhibitory strategy for early AAA disease.
Collapse
Affiliation(s)
- Yankui Li
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
- Department of Vascular SurgeryTianjin Medical University Second HospitalTianjinChina
| | - Xiaoya Zheng
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
- Department of EndocrinologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jia Guo
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
| | - Makoto Samura
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
| | - Yingbin Ge
- Department of PhysiologyNanjing Medical UniversityNanjingChina
| | - Sihai Zhao
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
| | - Gang Li
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
| | - Xiaofeng Chen
- Department of Radiation OncologyIndiana University School of MedicineIndianapolisINUSA
| | - Takahiro Shoji
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
| | - Toru Ikezoe
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
| | - Masaaki Miyata
- School of Health SciencesKagoshima University Faculty of MedicineKagoshimaJapan
| | - Baohui Xu
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
| | - Ronald L. Dalman
- Department of SurgeryStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
7
|
Purushothaman A, Mohajeri M, Lele TP. The role of glycans in the mechanobiology of cancer. J Biol Chem 2023; 299:102935. [PMID: 36693448 PMCID: PMC9930169 DOI: 10.1016/j.jbc.2023.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix also commonly occur in cancer. Cancer cells sense and respond to extracellular matrix stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer-associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA.
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA.
| |
Collapse
|
8
|
Qrareya AN, Wise NS, Hodges ER, Mahdi F, Stewart JA, Paris JJ. HIV-1 Tat Upregulates the Receptor for Advanced Glycation End Products and Superoxide Dismutase-2 in the Heart of Transgenic Mice. Viruses 2022; 14:v14102191. [PMID: 36298745 PMCID: PMC9607872 DOI: 10.3390/v14102191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disorder (CVD) is a common comorbidity in people living with HIV (PLWH). Although the underlying mechanisms are unknown, virotoxic HIV proteins, such as the trans-activator of transcription (Tat), likely contribute to CVD pathogenesis. Tat expression in mouse myocardium has been found to induce cardiac dysfunction and increase markers of endothelial toxicity. However, the role that Tat may play in the development of CVD pathogenesis is unclear. The capacity for Tat to impact cardiac function was assessed using AC16 human cardiomyocyte cells and adult male and female transgenic mice that conditionally expressed Tat [Tat(+)], or did not [Tat(-)]. In AC16 cardiomyocytes, Tat increased intracellular calcium. In Tat(+) mice, Tat expression was detected in both atrial and ventricular heart tissue. Tat(+) mice demonstrated an increased expression of the receptor for advanced glycation end products and superoxide dismutase-2 (SOD-2) in ventricular tissues compared to Tat(-) controls. No changes in SOD-1 or α-smooth muscle actin were observed. Despite Tat-mediated changes at the cellular level, no changes in echocardiographic measures were detected. Tat(+) mice had a greater proportion of ventricular mast cells and collagen; however, doxycycline exposure offset the latter effect. These data suggest that Tat exposure promotes cellular changes that can precede progression to CVD.
Collapse
Affiliation(s)
- Alaa N. Qrareya
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Nason S. Wise
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Emmanuel R. Hodges
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - James A. Stewart
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: (J.A.S.J.); (J.J.P.); Tel.: +1-662-915-2309 (J.A.S.J.); +1-662-915-3096 (J.J.P.)
| | - Jason J. Paris
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: (J.A.S.J.); (J.J.P.); Tel.: +1-662-915-2309 (J.A.S.J.); +1-662-915-3096 (J.J.P.)
| |
Collapse
|
9
|
van Soldt BJ, Wang T, Filogonio R, Danielsen CC. The mechanical and morphological properties of systemic and pulmonary arteries differ in the earth boa, a snake without ventricular pressure separation. J Exp Biol 2022; 225:275580. [PMID: 35642934 DOI: 10.1242/jeb.244419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022]
Abstract
The walls of the mammalian aorta and pulmonary artery are characterized by diverging morphologies and mechanical properties, which has been correlated with high systemic and low pulmonary blood pressures, as a result of intraventricular pressure separation. However, the relation between intraventricular pressure separation and diverging aortic and pulmonary artery wall morphologies and mechanical characteristics is not understood. The snake cardiovascular system poses a unique model for the study of this question, since representatives both with and without intraventricular pressure separation exist. In this study we perform uniaxial tensile testing on vessel samples taken from the aortas and pulmonary arteries of the earth boa, Acrantophis madagascariensis, a species without intraventricular pressure separation. We then compare these morphological and mechanical characteristics with samples from the ball python, Python regius, and the yellow anaconda, Eunectes notaeus, species with and without intraventricular pressure separation, respectively. Our data suggest that although the aortas and pulmonary arteries of A. madagascariensis respond similarly to the same intramural blood pressures, they diverge in morphology, and that this attribute extends to E. notaeus. In contrast, P. regius aortas and pulmonary arteries diverge both morphologically and in terms of their mechanical properties. Our data indicate that intraventricular pressure separation cannot fully explain diverging aortic and pulmonary artery morphologies. Following the Law of Laplace, we propose that pulmonary arteries of small luminal diameter represent a mechanism to protect the fragile pulmonary vasculature by reducing the blood volume that passes through, to which genetic factors may contribute more strongly than physiological parameters.
Collapse
Affiliation(s)
- Benjamin J van Soldt
- Gladstone Institute of Cardiovascular Disease, J. David Gladstone Institutes, 1650 Owns St, San Francisco, CA, 94158, USA
| | - Tobias Wang
- Aarhus Institute of Advanced Sciences (AIAS), Aarhus University, 8000 Aarhus C, Denmark
| | - Renato Filogonio
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | | |
Collapse
|
10
|
赫 小, 孙 志, 马 凯, 梅 英. [1-deoxynojirimycin alleviates liver fibrosis induced by type 2 diabetes in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1342-1349. [PMID: 34658348 PMCID: PMC8526323 DOI: 10.12122/j.issn.1673-4254.2021.09.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of 1-deoxynojirimycin (DNJ) for improving diabetic liver fibrosis and explore the underlying mechanism. METHODS Mouse models of type 2 diabetes were established in 10 Kunming mice by high-fat diet feeding for 8 weeks and intraperitoneal injection of STZ, with 5 mice receiving intraperitoneal injection of citrate buffer solution with normal feeding as the control group. The mouse models were randomized into two groups (n=5) for further highfat feeding (model group) and additional treatment with 10% DNJ in drinking water (200 mg · kg-1 per day; DNJ group) for 8 weeks. The mice were monitored for changes in body weight (BW), blood glucose, serum total cholesterol (TC), triglyceride (TG) and superoxide dismutase (SOD) levels. The pathological changes in the liver tissue were observed using HE and Sirius Red staining, and the solubility of collagens in the liver tissues was determined. The expression levels of MCP-1, TNF-α, IL-1β and TGF-β1 mRNA were detected with real-time PCR, and the protein expressions of α-SMA and collagen2 (ColA2) were determined with Western blotting. In the in vitro experiment, mouse fibroblasts L929 cells were pretreated with DNJ (10 μg/ mL) or PBS for 30 min followed by culture in high-glucose medium for 24 h, and the level of ROS production was measured using dihydroethidium (DHE) staining. RESULTS In the mouse model of type 2 diabetes, DNJ treatment significantly lowered serum level of glucose, TC, and TG (P < 0.05) and increased serum SOD activity (P < 0.05). DNJ obviously attenuated liver fibrosis in the diabetic mice, as shown by alleviated cross-linking of collagens and reduced contents of pepsin-solubilized collagen (PSC) and total collagen (P < 0.05). DNJ treatment also significantly reduced the overexpression of the proinflammatory cytokines and fibrosis-related cytokines induced by diabetes (P < 0.05). In L929 cells exposed to high glucose, pretreatment with DNJ significantly lowered the intensity of red fluorescence in DHE staining. CONCLUSION DNJ can attenuate type 2 diabetes-induced liver fibrosis in mice through its hypoglycemic, anti-inflammatory and anti-oxidative effects.
Collapse
Affiliation(s)
- 小乔 赫
- 郑州大学基础医学院,河南 郑州 450001School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - 志远 孙
- 郑州大学口腔医学院,河南 郑州 450052School of Stomatology, Zhengzhou University, Zhengzhou 450052, China
| | - 凯元 马
- 郑州大学基础医学院,河南 郑州 450001School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - 英武 梅
- 郑州大学基础医学院生物化学与分子生物学系,河南 郑州 450001Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Failure Properties of Healthy and Diabetic Rabbit Thoracic Aortas and Their Potential Correlation with Mass Fractions of Collagen. Cardiovasc Eng Technol 2021; 13:69-79. [PMID: 34142313 DOI: 10.1007/s13239-021-00554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Diabetes Mellitus (DM) plays an important role in aortic remodeling and alters the wall mechanics. The purpose of this study is to investigate and compare multi-directional failure properties of healthy and diabetic thoracic aortas. METHODS Thirty adult rabbits (1.6-2.2 kg) were collected and type 1 diabetic rabbit model was induced by injection of alloxan. A total of 10 control and 20 diabetic (with different time exposure to diabetic condition) rabbit descending thoracic aortas were harvested. Uniaxial tensile (UT) and radial tension (RT) tests were performed to determine circumferential, axial and radial failure stresses of the control and diabetic aortas, which were further correlated with mass fractions (MFs) of collagen. RESULTS Throughout the UT test, there was a clear indication of anisotropic mechanical responses for some diabetic aorta specimens in the high loading domain. There was a trend towards an increase in the mean circumferential and axial failure stresses for the diabetic aortas when compared to the control aortas. However, differences were not statistically significant. The quantified failure stresses in the circumferential direction were, in general, higher than the stress values in the axial direction for both control and diabetic groups. For the RT test, the radial failure stresses of the diabetic aortas (in 8 weeks) were significantly higher than those of the control aortas (95 ± 17 vs. 63 ± 15 kPa, p = 0.01). Strong correlations were identified between the circumferential failure stresses and the MFs of collagen for both control and diabetic aortas. Nevertheless, this correlation was not present in the axial and radial directions. CONCLUSION The results suggest that there is a lower propensity of radial tear occurrence within the diabetic aortic wall. More importantly, time exposure to diabetic condition is not a factor that may change failure properties of the rabbit descending thoracic aortas in the circumferential and axial directions.
Collapse
|
12
|
Onursal C, Dick E, Angelidis I, Schiller HB, Staab-Weijnitz CA. Collagen Biosynthesis, Processing, and Maturation in Lung Ageing. Front Med (Lausanne) 2021; 8:593874. [PMID: 34095157 PMCID: PMC8172798 DOI: 10.3389/fmed.2021.593874] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing a macromolecular scaffold, the extracellular matrix (ECM) is a critical regulator of cell function by virtue of specific physical, biochemical, and mechanical properties. Collagen is the main ECM component and hence plays an essential role in the pathogenesis and progression of chronic lung disease. It is well-established that many chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) primarily manifest in the elderly, suggesting increased susceptibility of the aged lung or accumulated alterations in lung structure over time that favour disease. Here, we review the main steps of collagen biosynthesis, processing, and turnover and summarise what is currently known about alterations upon lung ageing, including changes in collagen composition, modification, and crosslinking. Recent proteomic data on mouse lung ageing indicates that, while the ER-resident machinery of collagen biosynthesis, modification and triple helix formation appears largely unchanged, there are specific changes in levels of type IV and type VI as well as the two fibril-associated collagens with interrupted triple helices (FACIT), namely type XIV and type XVI collagens. In addition, levels of the extracellular collagen crosslinking enzyme lysyl oxidase are decreased, indicating less enzymatically mediated collagen crosslinking upon ageing. The latter contrasts with the ageing-associated increase in collagen crosslinking by advanced glycation endproducts (AGEs), a result of spontaneous reactions of protein amino groups with reactive carbonyls, e.g., from monosaccharides or reactive dicarbonyls like methylglyoxal. Given the slow turnover of extracellular collagen such modifications accumulate even more in ageing tissues. In summary, the collective evidence points mainly toward age-induced alterations in collagen composition and drastic changes in the molecular nature of collagen crosslinks. Future work addressing the consequences of these changes may provide important clues for prevention of lung disease and for lung bioengineering and ultimately pave the way to novel targeted approaches in lung regenerative medicine.
Collapse
Affiliation(s)
- Ceylan Onursal
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Elisabeth Dick
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Claudia A Staab-Weijnitz
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
13
|
Schellinger IN, Wagenhäuser M, Chodisetti G, Mattern K, Dannert A, Petzold A, Jakubizka-Smorag J, Emrich F, Haunschild J, Schuster A, Schwob E, Schulz K, Maegdefessel L, Spin JM, Stumvoll M, Hasenfuß G, Tsao PS, Raaz U. MicroRNA miR-29b regulates diabetic aortic remodeling and stiffening. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:188-199. [PMID: 33767915 PMCID: PMC7957025 DOI: 10.1016/j.omtn.2021.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
Patients with type 2 diabetes (T2D) are threatened by excessive cardiovascular morbidity and mortality. While accelerated arterial stiffening may represent a critical mechanistic factor driving cardiovascular risk in T2D, specific therapies to contain the underlying diabetic arterial remodeling have been elusive. The present translational study investigates the role of microRNA-29b (miR-29b) as a driver and therapeutic target of diabetic aortic remodeling and stiffening. Using a murine model (db/db mice), as well as human aortic tissue samples, we find that diabetic aortic remodeling and stiffening is associated with medial fibrosis, as well as fragmentation of aortic elastic layers. miR-29b is significantly downregulated in T2D and miR-29b repression is sufficient to induce both aortic medial fibrosis and elastin breakdown through upregulation of its direct target genes COL1A1 and MMP2 thereby increasing aortic stiffness. Moreover, antioxidant treatment restores aortic miR-29b levels and counteracts diabetic aortic remodeling. Concluding, we identify miR-29b as a comprehensive—and therefore powerful—regulator of aortic remodeling and stiffening in T2D that moreover qualifies as a (redox-sensitive) target for therapeutic intervention.
Collapse
Affiliation(s)
- Isabel N Schellinger
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK) e.V., Partner site Göttingen, Göttingen, Germany.,Department for Endocrinology, Nephrology and Rheumatology, University Medical Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Markus Wagenhäuser
- Department of Vascular and Endovascular Surgery, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Giriprakash Chodisetti
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany
| | - Karin Mattern
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany
| | - Angelika Dannert
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany
| | - Anne Petzold
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany
| | - Joanna Jakubizka-Smorag
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany
| | - Fabian Emrich
- Department of Cardiothoracic and Vascular Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany.,Department of Cardiac Surgery, Heart Center Leipzig, Leipzig, Germany
| | | | - Andreas Schuster
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK) e.V., Partner site Göttingen, Göttingen, Germany
| | - Elisabeth Schwob
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Kei Schulz
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.,Karolinska Institute, Department of Medicine, Stockholm, Sweden
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.,VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Michael Stumvoll
- Department for Endocrinology, Nephrology and Rheumatology, University Medical Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK) e.V., Partner site Göttingen, Göttingen, Germany
| | - Philip S Tsao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.,VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Uwe Raaz
- Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK) e.V., Partner site Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Abdominal aorta diameter as a novel marker of diabetes incidence risk in elderly women. Sci Rep 2020; 10:13734. [PMID: 32792565 PMCID: PMC7426865 DOI: 10.1038/s41598-020-70736-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
The prevalence of diabetes mellitus is increasing worldwide, including the nation of Poland. The aim of this prospective and observational study was to determine risk factors and the predictors of diabetes incidence in elderly women, and to calculate the diabetes incidence ratio in this population. Two-hundred women, aged 65–74, who were non-diabetic at baseline in 2012 were followed for 6.5 years. All women were checked for incident diabetes. In non-diabetic subjects, diagnostic procedures for diabetes were performed according to Poland’s Diabetes recommendations. Between April 2012 and September 2018, 25 women developed diabetes and the next 11 cases were diagnosed based on FPG or oral glucose tolerance test. Women with incident diabetes had significantly higher baseline FPG, triglycerides (TG), TG/HDL cholesterol ratio and visceral adiposity index (VAI) score, and lower abdominal aorta diameter (AAD), HDL cholesterol and eGFR. In the Cox proportional hazard regression analysis, only AAD < 18 mm and VAI score ≥ 3.8 were independently associated with diabetes risk, hazard ratio (HR) 2.47 (95% confidence interval 1.21–5.02), P = 0.013 and HR 2.83 (1.35–5.94), P = 0.006 respectively. In the backward stepwise regression analysis including all variables, diabetes incidence could be predicted from a linear combination of the independent variables: AAD < 18 mm (P = 0.002), VAI score ≥ 3.8 (P < 0.001) and FPG ≥ 5.6 mmol/L (P = 0.011). The calculated incidence of diabetes was 2769.2 new cases/100,000 persons per year. AAD below 18 mm seem to be a novel, independent marker of diabetes risk in elderly women, and AAD assessment during routine abdomen ultrasound may be helpful in identifying females at early elderliness with high risk of diabetes incidence.
Collapse
|
15
|
Hofmann B, Gerull KA, Bloch K, Riemer M, Erbs C, Fröhlich A, Richter S, Ehrhardt M, Zitterbart C, Bartel FF, Siegel P, Wienke A, Silber RE, Simm A. It's all in our skin-Skin autofluorescence-A promising outcome predictor in cardiac surgery: A single centre cohort study. PLoS One 2020; 15:e0234847. [PMID: 32598375 PMCID: PMC7323943 DOI: 10.1371/journal.pone.0234847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The optimum risk score determining perioperative mortality and morbidity in cardiac surgery remains debated. Advanced glycation end products (AGEs) derived from glycaemic and oxidative stress accumulate to a comparable amount in skin and the cardiovascular system leading to a decline in organ function. We aimed to study the association between AGE accumulation measured as skin autofluorescence (sAF) and the outcome of cardiac surgery patients. METHODS Between April 2008 and November 2016, data from 758 consecutive patients undergoing coronary artery bypass grafting, aortic valve replacement or a combined procedure were analyzed. Skin autofluorescence was measured using an autofluorescence reader. Beside mortality, for the combined categorical morbidity outcome of each patient failure of the cardiac-, pulmonary-, renal- and cerebral system, as well as reoperation and wound healing disorders were counted. Patients without or with only one of the outcomes were assigned zero points whereas more than one outcome failure resulted in one point. Odds ratios (ORs) were estimated in multivariable logistic regression analysis with other preoperative parameters and the established cardiac surgery risk score systems EuroSCORE II and STS score. RESULTS Skin autofluorescence as non-invasive marker of tissue glycation provided the best prognostic value in identifying patients with major morbidity risks after cardiac surgery (OR = 3.13; 95%CI 2.16-4.54). With respect to mortality prediction the STS score (OR = 1.24; 95%CI 1.03-1.5) was superior compared to the EuroSCORE II (OR = 1.17: 95%CI 0.96-1.43), but not superior when compared to sAF (OR = 6.04; 95%CI 2.44-14.95). CONCLUSION This finding suggests that skin autofluorescence is a good biomarker candidate to assess the perioperative risk of patients in cardiac surgery. Since the EuroSCORE does not contain a morbidity component, in our view further sAF measurement is an option.
Collapse
Affiliation(s)
- Britt Hofmann
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Kristin Anja Gerull
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Katja Bloch
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Marcus Riemer
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
- Department of Gynecology, St. Elisabeth and St. Barbara Hospital Halle (Saale), Halle, Germany
| | - Christian Erbs
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
- Department of Surgery, Hospital Aarberg, Spital Netz Bern, Aarberg, Switzerland
| | - Anna Fröhlich
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Sissy Richter
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Martin Ehrhardt
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Christopher Zitterbart
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Friederike Fee Bartel
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Pauline Siegel
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics and Informatics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Rolf-Edgar Silber
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Mid-German Heart Center, University Hospital Halle (Saale), Halle, Germany
- * E-mail:
| |
Collapse
|
16
|
McCallinhart PE, Cho Y, Sun Z, Ghadiali S, Meininger GA, Trask AJ. Reduced stiffness and augmented traction force in type 2 diabetic coronary microvascular smooth muscle. Am J Physiol Heart Circ Physiol 2020; 318:H1410-H1419. [PMID: 32357115 DOI: 10.1152/ajpheart.00542.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Type 2 diabetic (T2DM) coronary resistance microvessels (CRMs) undergo inward hypertrophic remodeling associated with reduced stiffness and reduced coronary blood flow in both mice and pig models. Since reduced stiffness does not appear to be due to functional changes in the extracellular matrix, this study tested the hypothesis that decreased CRM stiffness in T2DM is due to reduced vascular smooth muscle cell (VSMC) stiffness, which impacts the traction force generated by VSMCs. Atomic force microscopy (AFM) and traction force microscopy (TFM) were conducted on primary low-passage CRM VSMCs from normal Db/db and T2DM db/db mice in addition to low-passage normal and T2DM deidentified human coronary VSMCs. Elastic modulus was reduced in T2DM mouse and human coronary VSMCs compared with normal (mouse: Db/db 6.84 ± 0.34 kPa vs. db/db 4.70 ± 0.19 kPa, P < 0.0001; human: normal 3.59 ± 0.38 kPa vs. T2DM 2.61 ± 0.35 kPa, P = 0.05). Both mouse and human T2DM coronary microvascular VSMCs were less adhesive to fibronectin compared with normal. T2DM db/db coronary VSMCs generated enhanced traction force by TFM (control 692 ± 67 Pa vs. db/db 1,507 ± 207 Pa; P < 0.01). Immunoblot analysis showed that T2DM human coronary VSMCs expressed reduced β1-integrin and elevated β3-integrin (control 1.00 ± 0.06 vs. T2DM 0.62 ± 0.14, P < 0.05 and control 1.00 ± 0.49 vs. T2DM 3.39 ± 1.05, P = 0.06, respectively). These data show that T2DM coronary VSMCs are less stiff and less adhesive to fibronectin but are able to generate enhanced force, corroborating previously published computational findings that decreasing cellular stiffness increases the cells' ability to generate higher traction force.NEW & NOTEWORTHY We show here that a potential causative factor for reduced diabetic coronary microvascular stiffness is the direct reduction in coronary vascular smooth muscle cell stiffness. These cells were also able to generate enhanced traction force, validating previously published computational models. Collectively, these data show that smooth muscle cell stiffness can be a contributor to overall tissue stiffness in the coronary microcirculation, and this may be a novel area of interest for therapeutic targets.
Collapse
Affiliation(s)
- Patricia E McCallinhart
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Youjin Cho
- Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Samir Ghadiali
- Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
17
|
Effect of diabetes mellitus on the dissection properties of the rabbit descending thoracic aortas. J Biomech 2019; 100:109592. [PMID: 31911049 DOI: 10.1016/j.jbiomech.2019.109592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023]
Abstract
Effect of diabetes mellitus (DM) on the dissection properties of thoracic aortas remains largely unclear and relevant biomechanical analysis is lacking. In the present study forty adult rabbits (1.6-2.2 kg) were collected and type 1 diabetic rabbit model was induced by injection of alloxan. A total of 10 control and 30 diabetic (with different time exposure to diabetic condition) rabbit descending thoracic aortas were harvested. Peeling tests were performed to quantitatively determine force/width values and dissection energy in the control and diabetic aortas. Histological and mass fraction analyses were performed to characterize the dissected morphology and to quantify dry weight percentages of elastin and collagen. The resisting force/width values were significantly higher for the diabetic thoracic aortas (in 8 weeks) than those of the control thoracic aortas (axial: 26.1 ± 4.0 vs. 20.5 ± 3.1 mN/mm, p = 0.04; circ: 19.7 ± 2.8 vs. 15.3 ± 1.9 mN/mm, p = 0.03). There was a higher resistance to the dissection in both axial and circumferential directions for the diabetic aortas. The dissection energy generated by axial and circumferential peeling of the diabetic aortas (in 6 and 8 weeks) was statistically significantly higher than that of the control aortas (axial: 5.6 ± 0.7 vs. 4.3 ± 0.5 mJ/cm2, p = 0.02; circ: 3.9 ± 0.3 vs. 3.2 ± 0.3 mJ/cm2, p = 0.02). Histology showed that dissection mainly occurred in the aortic media and the dissected surfaces were close to external elastic lamina for some specimens. The mass fractions of collagen within the diabetic aortas increased significantly as compared to the control aortas, whereas no significant change was found for that of elastin. Our data suggest that the experimentally induced DM may lead to a lower propensity of dissection for the rabbit thoracic aortas. The dissection properties of the rabbit thoracic aortas vary with time exposed to diabetic condition.
Collapse
|
18
|
Barão FTDF, Barão VHP, Gornati VC, Silvestre GCR, Silva AQ, Lacchini S, de Castro MM, De Luccia N, da Silva ES. Study of the Biomechanical and Histological Properties of the Abdominal Aorta of Diabetic Rats Exposed to Cigarette Smoke. J Vasc Res 2019; 56:255-266. [PMID: 31533112 DOI: 10.1159/000502688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 08/13/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION In spite of the great relevance of abdominal aortic aneurysm, its etiopathogenesis is not fully understood. The biomechanical and histological study of the aortic wall may contribute to this elucidation. METHODS Seventy-five male Wistar rats were divided into 4 groups: control (CG), smoker (SG), diabetic (DG), and diabetic + smoker (DSG). The SG and DSG rats were exposed to cigarette smoke for 30 min/day, 5 days a week. Diabetes was induced by the intravenous injection of streptozotocin. After 16 weeks, the abdominal aorta was collected for biomechanical, histological, and matrix metalloproteinase 2 (MMP-2) activity analyses. RESULTS The valid biomechanical tests of 52 specimens were analyzed: 11 in the CG, 10 in the DG, 16 in the SG, and 15 in the DSG. The biomechanical analysis of the fragments showed no differences between the control, DG, SG, and DSG. Collagen deposition also did not present a significant difference between the studied groups. The total count of elastic fibers was higher in diabetic rats (DG and DSG) than in the SG. The inflammatory response observed in all experimental groups was significantly more intense than in the CG. Compared to the DSG, MMP-2 activity showed a significant decrease in the DG. CONCLUSIONS Resistance and elasticity did not present a difference between the CG and the DG, SG, and DSG. Compared to the CG, the total count of elastic fibers, fragmentation of the elastic lamina, pericellular matrix deposition, and cell loss/substitution in the tunica media showed significant alterations in the aortic walls of the DG, SG, and DSG. MMP-2 activity was lower in the DG aorta than in the DSG aorta.
Collapse
Affiliation(s)
- Felipe Trajano de Freitas Barão
- Vascular and Endovascular Division and Surgical Technique Division, Department of Surgery, University of São Paulo Medical School, São Paulo, Brazil,
| | - Vivian Helena Pedroso Barão
- Vascular and Endovascular Division and Surgical Technique Division, Department of Surgery, University of São Paulo Medical School, São Paulo, Brazil
| | - Vitor Cervantes Gornati
- Vascular and Endovascular Division and Surgical Technique Division, Department of Surgery, University of São Paulo Medical School, São Paulo, Brazil
| | - Gina Camillo Rocha Silvestre
- Vascular and Endovascular Division and Surgical Technique Division, Department of Surgery, University of São Paulo Medical School, São Paulo, Brazil
| | - Alexandre Queiroz Silva
- Vascular and Endovascular Division and Surgical Technique Division, Department of Surgery, University of São Paulo Medical School, São Paulo, Brazil
| | - Silvia Lacchini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo Medical School, São Paulo, Brazil
| | - Michele Mazzaron de Castro
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Nelson De Luccia
- Vascular and Endovascular Division and Surgical Technique Division, Department of Surgery, University of São Paulo Medical School, São Paulo, Brazil
| | - Erasmo Simão da Silva
- Vascular and Endovascular Division and Surgical Technique Division, Department of Surgery, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
19
|
Glycation-induced modification of tissue-specific ECM proteins: A pathophysiological mechanism in degenerative diseases. Biochim Biophys Acta Gen Subj 2019; 1863:129411. [PMID: 31400438 DOI: 10.1016/j.bbagen.2019.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glycation driven generation of advanced glycation end products (AGEs) and their patho-physiological role in human degenerative diseases has remained one of the thrust areas in the mainstream of disease biology. Glycation of extracellular matrix (ECM) proteins have deleterious effect on the mechanical and functional properties of tissues. Owing to the adverse pathophysiological concerns of glycation, there is a need to decipher the underlying mechanisms. SCOPE OF REVIEW AGE-modified ECM proteins affect the cell in the vicinity by altering protein structure-function, matrix-matrix or matrix-cell interaction and by activating signalling pathway through receptor for AGE. This review is intended for addressing the AGE-induced modification of tissue-specific ECM proteins and its implication in the pathogenesis of various organ-specific human ailments. MAJOR CONCLUSIONS The glycation affects the canonical cell behaviour due to alteration in the interaction of glycated ECM with receptors like integrins and discodin domain, and the signalling cues generated subsequently affect the downstream signalling pathways. Consequently, the variation of structural and functional properties of tissues due to matrix glycation helps in the initiation or progression of the disease condition. GENERAL SIGNIFICANCE This review offers comprehensive knowledge about the remodelling of glycation induced ECM and tissue-specific pathological concerns. As glycation of ECM affects the normal tissues and cell behaviour, the scientific discourse may also provide cues for developing candidate drugs that may help in attenuating the adverse effects of AGEs and perhaps open a research window of tailoring novel strategies for the management of glycation induced human degenerative diseases.
Collapse
|
20
|
Jiang H, Zhao J, Liao D, Wang G, Gregersen H. Esophageal stress softening recovery is altered in STZ-induced diabetic rats. J Biomech 2019; 92:126-136. [DOI: 10.1016/j.jbiomech.2019.05.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/29/2022]
|
21
|
Review of the Effect of Natural Compounds and Extracts on Neurodegeneration in Animal Models of Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20102533. [PMID: 31126031 PMCID: PMC6566911 DOI: 10.3390/ijms20102533] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic disease with a high prevalence in the Western population. It is characterized by pancreas failure to produce insulin, which involves high blood glucose levels. The two main forms of diabetes are type 1 and type 2 diabetes, which correspond with >85% of the cases. Diabetes shows several associated alterations including vascular dysfunction, neuropathies as well as central complications. Brain alterations in diabetes are widely studied; however, the mechanisms implicated have not been completely elucidated. Diabetic brain shows a wide profile of micro and macrostructural changes, such as neurovascular deterioration or neuroinflammation leading to neurodegeneration and progressive cognition dysfunction. Natural compounds (single isolated compounds and/or natural extracts) have been widely assessed in metabolic disorders and many of them have also shown antioxidant, antiinflamatory and neuroprotective properties at central level. This work reviews natural compounds with brain neuroprotective activities, taking into account several therapeutic targets: Inflammation and oxidative stress, vascular damage, neuronal loss or cognitive impairment. Altogether, a wide range of natural extracts and compounds contribute to limit neurodegeneration and cognitive dysfunction under diabetic state. Therefore, they could broaden therapeutic alternatives to reduce or slow down complications associated with diabetes at central level.
Collapse
|
22
|
Dandia H, Makkad K, Tayalia P. Glycated collagen – a 3D matrix system to study pathological cell behavior. Biomater Sci 2019; 7:3480-3488. [DOI: 10.1039/c9bm00184k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anin vitro3D glycated matrix system to study the interplay of diabetes and cancer.
Collapse
Affiliation(s)
- Hiren Dandia
- Department of Biosciences & Bioengineering
- Indian Institute of Technology Bombay
- Mumbai
- India
| | - Khushi Makkad
- Department of Biosciences & Bioengineering
- Indian Institute of Technology Bombay
- Mumbai
- India
| | - Prakriti Tayalia
- Department of Biosciences & Bioengineering
- Indian Institute of Technology Bombay
- Mumbai
- India
| |
Collapse
|
23
|
Bose P, Eyckmans J, Nguyen TD, Chen CS, Reich DH. Effects of Geometry on the Mechanics and Alignment of Three-Dimensional Engineered Microtissues. ACS Biomater Sci Eng 2018; 5:3843-3855. [DOI: 10.1021/acsbiomaterials.8b01183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Prasenjit Bose
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeroen Eyckmans
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Thao D. Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christopher S. Chen
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Daniel H. Reich
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
24
|
Climie RE, Schultz MG, Fell JW, Romero L, Otahal P, Sharman JE. Central-to-brachial blood pressure amplification in type 2 diabetes: a systematic review and meta-analysis. J Hum Hypertens 2018; 33:94-105. [DOI: 10.1038/s41371-018-0124-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 11/09/2022]
|
25
|
James BD, Allen JB. Vascular Endothelial Cell Behavior in Complex Mechanical Microenvironments. ACS Biomater Sci Eng 2018; 4:3818-3842. [PMID: 33429612 DOI: 10.1021/acsbiomaterials.8b00628] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vascular mechanical microenvironment consists of a mixture of spatially and temporally changing mechanical forces. This exposes vascular endothelial cells to both hemodynamic forces (fluid flow, cyclic stretching, lateral pressure) and vessel forces (basement membrane mechanical and topographical properties). The vascular mechanical microenvironment is "complex" because these forces are dynamic and interrelated. Endothelial cells sense these forces through mechanosensory structures and transduce them into functional responses via mechanotransduction pathways, culminating in behavior directly affecting vascular health. Recent in vitro studies have shown that endothelial cells respond in nuanced and unique ways to combinations of hemodynamic and vessel forces as compared to any single mechanical force. Understanding the interactive effects of the complex mechanical microenvironment on vascular endothelial behavior offers the opportunity to design future biomaterials and biomedical devices from the bottom-up by engineering for the cellular response. This review describes and defines (1) the blood vessel structure, (2) the complex mechanical microenvironment of the vascular endothelium, (3) the process in which vascular endothelial cells sense mechanical forces, and (4) the effect of mechanical forces on vascular endothelial cells with specific attention to recent works investigating the influence of combinations of mechanical forces. We conclude this review by providing our perspective on how the field can move forward to elucidate the effects of the complex mechanical microenvironment on vascular endothelial cell behavior.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Computational Engineering, University of Florida, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| | - Josephine B Allen
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Cell and Tissue Science and Engineering, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| |
Collapse
|
26
|
McCallinhart PE, Sunyecz IL, Trask AJ. Coronary Microvascular Remodeling in Type 2 Diabetes: Synonymous With Early Aging? Front Physiol 2018; 9:1463. [PMID: 30374313 PMCID: PMC6196247 DOI: 10.3389/fphys.2018.01463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/27/2018] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is suggested to cause an "early vascular aging" phenomenon that is associated with vascular dysfunction, remodeling, and adverse alterations in vascular stiffness. Given that both T2DM and aging are prominent risk factors for cardiovascular disease, the aim of this study was to test the hypothesis that coronary resistance microvessel (CRM) remodeling and impairments in flow occur in the compound setting of T2DM and aging. Normal heterozygous Db/db controls and homozygous db/db mice were aged to 16 (young) or 36 (aged) weeks for all experiments and passive pressure myography and echocardiography were used to assess vascular mechanics, and structure. CRM wall thickness was significantly increased at each pressure in aged control mice compared to young control mice (9.4 ± 0.6 vs. 6.8 ± 0.2 μm, respectively, p < 0.001); however, there were no significant differences in CRM wall thickness of aged db/db mice vs. young db/db mice. Aged control mice had a higher medial CSA compared to young control mice (3847 ± 303 vs. 2715 ± 170 μm2, p < 0.01); however, there were no significant differences in medial CSA of aged db/db mice vs. young db/db mice. Elastic modulus was lower in aged control CRMs vs. young control CRMs (3.5x106± 0.7 × 106 vs. 8.7 × 106± 0.6 × 106, p < 0.0001). Elastic modulus remained the same in young db/db mice vs. aged db/db mice. These data show that the diabetic CRMs undergo adverse remodeling at an early age, similar to normal aged CRMs, that persists toward senescence, and it further suggests that diabetic CRMs are subject to an early aging phenomenon.
Collapse
Affiliation(s)
- Patricia E McCallinhart
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Ian L Sunyecz
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Aaron J Trask
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
27
|
Nrf2 in aging - Focus on the cardiovascular system. Vascul Pharmacol 2018; 112:42-53. [PMID: 30170173 DOI: 10.1016/j.vph.2018.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
Aging is the most critical risk factor for the development of cardiovascular diseases and their complications. Therefore, the fine-tuning of cellular response to getting older is an essential target for prospective therapies in cardiovascular medicine. One of the most promising targets might be the transcription factor Nrf2, which drives the expression of cytoprotective and antioxidative genes. Importantly, Nrf2 expression correlates with potential lifespan in rodents. However, the effect of Nrf2 activity in vascular diseases might be ambiguous and strongly depend on the cell type. On the one hand, the Nrf2 activity may protect cells from oxidative stress and senescence, on the other hand, total lack of Nrf2 is protective against atherosclerosis development. Therefore, this review aims to discuss the current knowledge on the role played by the transcription factor Nrf2 in cardiovascular diseases and its potential effects on aging.
Collapse
|
28
|
Hwang AR, Nam JO, Kang YJ. Fluvastatin inhibits advanced glycation end products-induced proliferation, migration, and extracellular matrix accumulation in vascular smooth muscle cells by targeting connective tissue growth factor. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018. [PMID: 29520172 PMCID: PMC5840078 DOI: 10.4196/kjpp.2018.22.2.193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Connective tissue growth factor (CTGF) is a novel fibrotic mediator, which is considered to mediate fibrosis through extracellular matrix (ECM) synthesis in diabetic cardiovascular complications. Statins have significant immunomodulatory effects and reduce vascular injury. We therefore examined whether fluvastatin has anti-fibrotic effects in vascular smooth muscle cells (VSMCs) and elucidated its putative transduction signals. We show that advanced glycation end products (AGEs) stimulated CTGF mRNA and protein expression in a time-dependent manner. AGE-induced CTGF expression was mediated via ERK1/2, JNK, and Egr-1 pathways, but not p38; consequently, cell proliferation and migration and ECM accumulation were regulated by CTGF signaling pathway. AGE-stimulated VSMC proliferation, migration, and ECM accumulation were blocked by fluvastatin. However, the inhibitory effect of fluvastatin was restored by administration of CTGF recombinant protein. AGE-induced VSMC proliferation was dependent on cell cycle arrest, thereby increasing G1/G0 phase. Fluvastatin repressed cell cycle regulatory genes cyclin D1 and Cdk4 and augmented cyclin-dependent kinase inhibitors p27 and p21 in AGE-induced VSMCs. Taken together, fluvastatin suppressed AGE-induced VSMC proliferation, migration, and ECM accumulation by targeting CTGF signaling mechanism. These findings might be evidence for CTGF as a potential therapeutic target in diabetic vasculature complication.
Collapse
Affiliation(s)
- Ae-Rang Hwang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Ju-Ock Nam
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 42415, Korea
| |
Collapse
|
29
|
Senatus LM, Schmidt AM. The AGE-RAGE Axis: Implications for Age-Associated Arterial Diseases. Front Genet 2017; 8:187. [PMID: 29259621 PMCID: PMC5723304 DOI: 10.3389/fgene.2017.00187] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022] Open
Abstract
The process of advanced glycation leads to the generation and accumulation of an heterogeneous class of molecules called advanced glycation endproducts, or AGEs. AGEs are produced to accelerated degrees in disorders such as diabetes, renal failure, inflammation, neurodegeneration, and in aging. Further, AGEs are present in foods and in tobacco products. Hence, through both endogenous production and exogenous consumption, AGEs perturb vascular homeostasis by a number of means; in the first case, AGEs can cause cross-linking of long-lived molecules in the basement membranes such as collagens, thereby leading to “vascular stiffening” and processes that lead to hyperpermeability and loss of structural integrity. Second, AGEs interaction with their major cell surface signal transduction receptor for AGE or RAGE sets off a cascade of events leading to modulation of gene expression and loss of vascular and tissue homeostasis, processes that contribute to cardiovascular disease. In addition, it has been shown that an enzyme, which plays key roles in the detoxification of pre-AGE species, glyoxalase 1 (GLO1), is reduced in aged and diabetic tissues. In the diabetic kidney devoid of Ager (gene encoding RAGE), higher levels of Glo1 mRNA and GLO1 protein and activity were observed, suggesting that in conditions of high AGE accumulation, natural defenses may be mitigated, at least in part through RAGE. AGEs are a marker of arterial aging and may be detected by both biochemical means, as well as measurement of “skin autofluorescence.” In this review, we will detail the pathobiology of the AGE-RAGE axis and the consequences of its activation in the vasculature and conclude with potential avenues for therapeutic interruption of the AGE-RAGE ligand-RAGE pathways as means to forestall the deleterious consequences of AGE accumulation and signaling via RAGE.
Collapse
Affiliation(s)
- Laura M Senatus
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
30
|
Iulita MF, Noriega de la Colina A, Girouard H. Arterial stiffness, cognitive impairment and dementia: confounding factor or real risk? J Neurochem 2017; 144:527-548. [PMID: 28991365 DOI: 10.1111/jnc.14235] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Abstract
Large artery stiffness is a frequent condition that arises with ageing, and is accelerated by the presence of co-morbidities like hypertension, obesity and diabetes. Although epidemiological studies have indicated an association between arterial stiffness, cognitive impairment and dementia, the precise effects of stiff arteries on the brain remains obscure. This is because, in humans, arterial stiffness is often accompanied by other factors such as age, high blood pressure, atherosclerosis and inflammation, which could themselves damage the brain independently of stiffness. Therefore, the question remains: is arterial stiffness a true risk for cognitive decline? Or, is it a confounding factor? In this review, we provide an overview of arterial stiffness and its impact on brain function based on human and animal studies. We summarize the evidence linking arterial stiffness to cognitive dysfunction and dementia, and discuss the role of new animal models to better understand the mechanisms by which arterial stiffness affects the brain. We close with an overview of treatments to correct stiffness and discuss the challenges to translate them to real patient care. This article is part of the Special Issue "Vascular Dementia".
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, 2900, Edouard-Montpetit, Canada
| | - Adrián Noriega de la Colina
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, 4545, Chemin Queen Mary, Canada
| | - Hélène Girouard
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, 2900, Edouard-Montpetit, Canada
| |
Collapse
|
31
|
Tong J, Yang F, Li X, Xu X, Wang GX. Mechanical Characterization and Material Modeling of Diabetic Aortas in a Rabbit Model. Ann Biomed Eng 2017; 46:429-442. [PMID: 29124551 DOI: 10.1007/s10439-017-1955-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 12/21/2022]
Abstract
Diabetes has been recognized as a major risk factor to cause macrovascular diseases and plays a key role in aortic wall remodeling. However, the effects of diabetes on elastic properties of aortas remain largely unknown and quantitative mechanical data are lacking. Thirty adult rabbits (1.6-2.2 kg) were collected and the type 1 diabetic rabbit model was induced by injection of alloxan. A total of 15 control and 15 diabetic rabbit (abdominal) aortas were harvested. Uniaxial and biaxial tensile tests were performed to measure ultimate tensile strength and to characterize biaxial mechanical behaviors of the aortas. A material model was fitted to the biaxial experimental data to obtain constitutive parameters. Histological and mass fraction analyses were performed to investigate the underlying microstructure and dry weight percentages of elastin and collagen in the control and the diabetic aortas. No statistically significant difference was found in ultimate tensile strength between the control and the diabetic aortas. Regarding biaxial mechanical responses, the diabetic aortas exhibited significantly lower extensibility and significantly higher tissue stiffness than the control aortas. Notably, tissue stiffening occurred in both circumferential and axial directions for the diabetic aortas; however, mechanical anisotropy does not change significantly. The material model was able to fit biaxial experimental data very well. Histology showed that a number of isolated foam cells were embedded in the diabetic aortas and hyperplasia of collagen was identified. The dry weight percentages of collagen within the diabetic aortas increased significantly as compared to the control aortas, whereas no significant change was found for that of elastin. Our data suggest that the diabetes impairs elastic properties and alters microstructure of the aortas and consequently, these changes may further contribute to complex aortic wall remodeling.
Collapse
Affiliation(s)
- Jianhua Tong
- Shanghai East Hospital, Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Chifeng Road 67, Shanghai, 200092, People's Republic of China.
| | - F Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, People's Republic of China
| | - X Li
- Shanghai East Hospital, Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Chifeng Road 67, Shanghai, 200092, People's Republic of China
| | - X Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - G X Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing, People's Republic of China
- State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
32
|
Navarrete Santos A, Jacobs K, Simm A, Glaubitz N, Horstkorte R, Hofmann B. Dicarbonyls induce senescence of human vascular endothelial cells. Mech Ageing Dev 2017; 166:24-32. [DOI: 10.1016/j.mad.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
|
33
|
Kozakova M, Morizzo C, Fraser AG, Palombo C. Impact of glycemic control on aortic stiffness, left ventricular mass and diastolic longitudinal function in type 2 diabetes mellitus. Cardiovasc Diabetol 2017; 16:78. [PMID: 28623932 PMCID: PMC5473965 DOI: 10.1186/s12933-017-0557-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/02/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Poor glycemic control is associated with impaired left ventricular (LV) diastolic function in patients with type 2 diabetes mellitus (T2DM). Inappropriate LV mass increase and accelerated aortic stiffening were suggested to participate on deterioration of diastolic function. The present study investigated the inter-relationships between glycemic control, early diastolic and systolic longitudinal velocity of mitral annulus, LV mass and aortic stiffness in T2DM patients free of cardiovascular disease and with preserved LV ejection fraction, and compared them with those observed in healthy volunteers of similar age and sex distribution. METHODS 125 T2DM patients and 101 healthy volunteers underwent noninvasive measurement of systolic (s') and early diastolic (e') velocities of mitral annulus, LV mass, carotid-femoral pulse wave velocity (cfPWV) and local carotid blood pressure (BP). RESULTS Forty-four (35.2%) T2DM patients had e' velocity lower than that expected for age (against 7.9% in healthy volunteers; P < 0.0001), 34 (27.2%) had cfPWV higher than that expected for age and mean BP (against 5.9% in healthy volunteers; P < 0.0001), and 71 (56.8%) had LV mass higher than that expected for body size and stroke work (against 17.6% in healthy volunteers; P < 0.0001). Carotid systolic BP was higher in T2DM patients (124 ± 14 vs 111 ± 11 mmHg; P < 0.0001). In multivariate analysis, e' velocity was independently related to age, carotid BP and s' velocity in healthy volunteers, and to male sex, age, carotid BP, heart rate and LV mass in T2DM. Glycosylated hemoglobin (HbA1c) was independently related to cfPWV and LV mass in T2DM patients. T2DM patients with HbA1c ≥6.5% (N = 85) had higher cfPWV (P < 0.05), central BP (P = 0.01), prevalence of LV hypertrophy (P = 0.01) and lower e' and s' velocity (P = 0.001 and <0.05, respectively) as compared to those with HbA1c <6.5%. CONCLUSIONS One-third of T2DM patients with preserved LV ejection fraction has sign of subclinical LV diastolic dysfunction. HbA1c levels are positively associated with LV mass and aortic stiffness, both of which show a negative independent impact on early diastolic velocity e', the latter through an increase in afterload. T2DM patients with suboptimal glycemic control (HbA1c ≥ 6.5%) have lower diastolic and systolic LV longitudinal performance, together with increased aortic stiffness and a higher prevalence of LV hypertrophy.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Case-Control Studies
- Chi-Square Distribution
- Cross-Sectional Studies
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/drug therapy
- Diabetic Angiopathies/diagnosis
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/physiopathology
- Diabetic Cardiomyopathies/diagnosis
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/physiopathology
- Diastole
- Echocardiography, Doppler, Color
- Echocardiography, Doppler, Pulsed
- Female
- Glycated Hemoglobin/metabolism
- Humans
- Hypertrophy, Left Ventricular/diagnosis
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/physiopathology
- Hypoglycemic Agents/therapeutic use
- Linear Models
- Male
- Middle Aged
- Mitral Valve/physiopathology
- Multivariate Analysis
- Pulse Wave Analysis
- Risk Factors
- Stroke Volume
- Time Factors
- Treatment Outcome
- Vascular Stiffness
- Ventricular Dysfunction, Left/diagnosis
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
Collapse
Affiliation(s)
- Michaela Kozakova
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Esaote SpA, Genoa, Italy
| | - Carmela Morizzo
- School of Medicine, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Alan G. Fraser
- Department of Cardiology, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW UK
| | - Carlo Palombo
- School of Medicine, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| |
Collapse
|
34
|
Zhao M, Liao D, Zhao J. Diabetes-induced mechanophysiological changes in the small intestine and colon. World J Diabetes 2017; 8:249-269. [PMID: 28694926 PMCID: PMC5483424 DOI: 10.4239/wjd.v8.i6.249] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/05/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
The disorders of gastrointestinal (GI) tract including intestine and colon are common in the patients with diabetes mellitus (DM). DM induced intestinal and colonic structural and biomechanical remodeling in animals and humans. The remodeling is closely related to motor-sensory abnormalities of the intestine and colon which are associated with the symptoms frequently encountered in patients with DM such as diarrhea and constipation. In this review, firstly we review DM-induced histomorphological and biomechanical remodeling of intestine and colon. Secondly we review motor-sensory dysfunction and how they relate to intestinal and colonic abnormalities. Finally the clinical consequences of DM-induced changes in the intestine and colon including diarrhea, constipation, gut microbiota change and colon cancer are discussed. The final goal is to increase the understanding of DM-induced changes in the gut and the subsequent clinical consequences in order to provide the clinicians with a better understanding of the GI disorders in diabetic patients and facilitates treatments tailored to these patients.
Collapse
|
35
|
Hsu CN, Lee PY, Tuan-Mu HY, Li CY, Hu JJ. Fabrication of a mechanically anisotropic poly(glycerol sebacate) membrane for tissue engineering. J Biomed Mater Res B Appl Biomater 2017; 106:760-770. [DOI: 10.1002/jbm.b.33876] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/03/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Chi-Nung Hsu
- Department of Biomedical Engineering; National Cheng Kung University; Tainan Taiwan
| | - Pei-Yuan Lee
- Department of Biomedical Engineering; National Cheng Kung University; Tainan Taiwan
- Orthopedic Department; Showchwan Memorial Hospital; Changhua Taiwan
| | - Ho-Yi Tuan-Mu
- Department of Biomedical Engineering; National Cheng Kung University; Tainan Taiwan
| | - Chen-Yu Li
- Department of Biomedical Engineering; National Cheng Kung University; Tainan Taiwan
| | - Jin-Jia Hu
- Department of Biomedical Engineering; National Cheng Kung University; Tainan Taiwan
- Medical Device Innovation Center, National Cheng Kung University; Tainan Taiwan
| |
Collapse
|
36
|
Hamed SA. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev Clin Pharmacol 2017; 10:409-428. [PMID: 28276776 DOI: 10.1080/17512433.2017.1293521] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sherifa A. Hamed
- Department of Neurology and Psychiatry, Assiut University Hospital , Assiut, Egypt
| |
Collapse
|
37
|
Zhao J, Gregersen H. Diabetes-induced mechanophysiological changes in the esophagus. Ann N Y Acad Sci 2016; 1380:139-154. [PMID: 27495976 DOI: 10.1111/nyas.13180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022]
Abstract
Esophageal disorders are common in diabetes mellitus (DM) patients. DM induces mechanostructural remodeling in the esophagus of humans and animal models. The remodeling is related to esophageal sensorimotor abnormalities and to symptoms frequently encountered by DM patients. For example, gastroesophageal reflux disease (GERD) is a common disorder associated with DM. This review addresses diabetic remodeling of esophageal properties and function in light of the Esophagiome, a scientifically based modeling effort to describe the physiological dynamics of the normal, intact esophagus built upon interdisciplinary approaches with applications for esophageal disease. Unraveling the structural, biomechanical, and sensory remodeling of the esophagus in DM must be based on a multidisciplinary approach that can bridge the knowledge from a variety of scientific disciplines. The first focus of this review is DM-induced morphodynamic and biomechanical remodeling in the esophagus. Second, we review the sensorimotor dysfunction in DM and how it relates to esophageal remodeling. Finally, we discuss the clinical consequences of DM-induced esophageal remodeling, especially in relation to GERD. The ultimate aim is to increase the understanding of DM-induced remodeling of esophageal structure and sensorimotor function in order to assist clinicians to better understand the esophageal disorders induced by DM and to develop better treatments for those patients.
Collapse
Affiliation(s)
- Jingbo Zhao
- Giome Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Hans Gregersen
- GIOME, Department of Surgery, Prince of Wales Hospital and Chinese University of Hong Kong, Shatin, Hong Kong SAR.,GIOME, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
38
|
Palko JR, Morris HJ, Pan X, Harman CD, Koehl KL, Gelatt KN, Plummer CE, Komáromy AM, Liu J. Influence of Age on Ocular Biomechanical Properties in a Canine Glaucoma Model with ADAMTS10 Mutation. PLoS One 2016; 11:e0156466. [PMID: 27271467 PMCID: PMC4894564 DOI: 10.1371/journal.pone.0156466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/13/2016] [Indexed: 11/29/2022] Open
Abstract
Soft tissue often displays marked age-associated stiffening. This study aims to investigate how age affects scleral biomechanical properties in a canine glaucoma model with ADAMTS10 mutation, whose extracellular matrix is concomitantly influenced by the mutation and an increased mechanical load from an early age. Biomechanical data was acquired from ADAMTS10-mutant dogs (n = 10, 21 to 131 months) and normal dogs (n = 5, 69 to 113 months). Infusion testing was first performed in the whole globes to measure ocular rigidity. After infusion experiments, the corneas were immediately trephined to prepare scleral shells that were mounted on a pressurization chamber to measure strains in the posterior sclera using an inflation testing protocol. Dynamic viscoelastic mechanical testing was then performed on dissected posterior scleral strips and the data were combined with those reported earlier by our group from the same animal model (Palko et al, IOVS 2013). The association between age and scleral biomechanical properties was evaluated using multivariate linear regression. The relationships between scleral properties and the mean and last measured intraocular pressure (IOP) were also evaluated. Our results showed that age was positively associated with complex modulus (p<0.001) and negatively associated with loss tangent (p<0.001) in both the affected and the normal groups, suggesting an increased stiffness and decreased mechanical damping with age. The regression slopes were not different between the groups, although the complex modulus was significantly lower in the affected group (p = 0.041). The posterior circumferential tangential strain was negatively correlated with complex modulus (R = -0.744, p = 0.006) showing consistent mechanical evaluation between the testing methods. Normalized ocular rigidity was negatively correlated with the last IOP in the affected group (p = 0.003). Despite a mutation that affects the extracellular matrix and a chronic IOP elevation in the affected dogs, age-associated scleral stiffening and loss of mechanical damping were still prominent and had a similar rate of change as in the normal dogs.
Collapse
Affiliation(s)
- Joel R. Palko
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States of America
- Department of Ophthalmology, Washington University, St. Louis, Missouri, United States of America
| | - Hugh J. Morris
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Xueliang Pan
- Center for Biostatistics, Ohio State University, Columbus, OH, United States of America
| | - Christine D. Harman
- Department of Small Animal Clinical Sciences, Michigan State University, Lansing, Michigan, United States of America
| | - Kristin L. Koehl
- Department of Small Animal Clinical Sciences, Michigan State University, Lansing, Michigan, United States of America
| | - Kirk N. Gelatt
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Caryn E. Plummer
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, United States of America
| | - András M. Komáromy
- Department of Small Animal Clinical Sciences, Michigan State University, Lansing, Michigan, United States of America
- Department of Small Animal Clinical Sciences, University of Florida, Gainesville, Florida, United States of America
- Department of Clinical Studies, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (JL); (AMK)
| | - Jun Liu
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States of America
- Department of Ophthalmology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (JL); (AMK)
| |
Collapse
|
39
|
Kim SA, Park SH, Jo SH, Park KH, Kim HS, Han SJ, Park WJ, Ha JW. Alterations of carotid arterial mechanics preceding the wall thickening in patients with hypertension. Atherosclerosis 2016; 248:84-90. [PMID: 26990725 DOI: 10.1016/j.atherosclerosis.2016.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/10/2016] [Accepted: 02/13/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Carotid intima-media thickness (cIMT) is an established surrogate marker of atherosclerosis. However, cIMT may not reflect the whole arterial changes occurring in various pathologic conditions, such as hypertension. The aim of this study was to evaluate whether vascular properties of carotid artery (CA) in patients with hypertension differ from those of patients with diabetes and controls before the progression of cIMT. METHODS Vascular properties of CA were assessed in 402 consecutive asymptomatic subjects who have normal cIMT (131 with hypertension, 151 with diabetes mellitus, and 120 controls). Conventional carotid stiffness indices calculated from vessel diameter and blood pressure, and parameters from velocity-vector imaging (VVI), including vessel area, fractional area change (FAC), radial velocity, circumferential strain, and strain rate were measured to assess the differences between the groups. RESULTS In univariate analysis, both patients with hypertension and diabetes showed higher elastic modulus, lower distensibility coefficients and FAC of VVI than those of controls. However, when adjusting for baseline covariates, only FAC (odds ratio [OR] = 0.82, 95% confidence interval [CI] = 0.70-0.97, p = 0.025) and vessel area (OR = 2.84, 95% CI = 1.64-4.91, p < 0.001) discriminated CA of patients with hypertension from those of controls. Also, patients with hypertension showed larger vessel area than diabetes (OR = 2.58, 95% CI = 1.75-3.80, p < 0.001) independent of baseline covariates. No significant vascular parameter was found to discriminate patients with diabetes from controls after adjustments. CONCLUSION Despite normal cIMT, the CA of hypertensive patients was stiffer than those of controls and positive remodeling preceded the wall thickening independent of baseline covariates.
Collapse
Affiliation(s)
- Sung-Ai Kim
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Sun-Hee Park
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Sang-Ho Jo
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Kyoung-Ha Park
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Hyun-Sook Kim
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Sang-Jin Han
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Woo-Jung Park
- Division of Cardiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Jong-Won Ha
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
40
|
Cells and extracellular matrix interplay in cardiac valve disease: because age matters. Basic Res Cardiol 2016; 111:16. [PMID: 26830603 DOI: 10.1007/s00395-016-0534-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/27/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022]
Abstract
Cardiovascular aging is a physiological process affecting all components of the heart. Despite the interest and experimental effort lavished on aging of cardiac cells, increasing evidence is pointing at the pivotal role of extracellular matrix (ECM) in cardiac aging. Structural and molecular changes in ECM composition during aging are at the root of significant functional modifications at the level of cardiac valve apparatus. Indeed, calcification or myxomatous degeneration of cardiac valves and their functional impairment can all be explained in light of age-related ECM alterations and the reciprocal interplay between altered ECM and cellular elements populating the leaflet, namely valvular interstitial cells and valvular endothelial cells, is additionally affecting valve function with striking reflexes on the clinical scenario. The initial experimental findings on this argument are underlining the need for a more comprehensive understanding on the biological mechanisms underlying ECM aging and remodeling as potentially constituting a pharmacological therapeutic target or a basis to improve existing prosthetic devices and treatment options. Given the lack of systematic knowledge on this topic, this review will focus on the ECM changes that occur during aging and on their clinical translational relevance and implications in the bedside scenario.
Collapse
|
41
|
Hofmann B, Jacobs K, Navarrete Santos A, Wienke A, Silber R, Simm A. Relationship between cardiac tissue glycation and skin autofluorescence in patients with coronary artery disease. DIABETES & METABOLISM 2015; 41:410-5. [DOI: 10.1016/j.diabet.2014.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 12/22/2022]
|
42
|
Panwar P, Lamour G, Mackenzie NCW, Yang H, Ko F, Li H, Brömme D. Changes in Structural-Mechanical Properties and Degradability of Collagen during Aging-associated Modifications. J Biol Chem 2015. [PMID: 26224630 DOI: 10.1074/jbc.m115.644310] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During aging, changes occur in the collagen network that contribute to various pathological phenotypes in the skeletal, vascular, and pulmonary systems. The aim of this study was to investigate the consequences of age-related modifications on the mechanical stability and in vitro proteolytic degradation of type I collagen. Analyzing mouse tail and bovine bone collagen, we found that collagen at both fibril and fiber levels varies in rigidity and Young's modulus due to different physiological changes, which correlate with changes in cathepsin K (CatK)-mediated degradation. A decreased susceptibility to CatK-mediated hydrolysis of fibrillar collagen was observed following mineralization and advanced glycation end product-associated modification. However, aging of bone increased CatK-mediated osteoclastic resorption by ∼27%, and negligible resorption was observed when osteoclasts were cultured on mineral-deficient bone. We observed significant differences in the excavations generated by osteoclasts and C-terminal telopeptide release during bone resorption under distinct conditions. Our data indicate that modification of collagen compromises its biomechanical integrity and affects CatK-mediated degradation both in bone and tissue, thus contributing to our understanding of extracellular matrix aging.
Collapse
Affiliation(s)
- Preety Panwar
- From the Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Center for Blood Research
| | - Guillaume Lamour
- the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Neil C W Mackenzie
- From the Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Center for Blood Research
| | | | - Frank Ko
- Department of Mechanical Engineering, and
| | - Hongbin Li
- the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Dieter Brömme
- From the Department of Oral Biological and Medical Sciences, Faculty of Dentistry, Center for Blood Research, the Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia 6T 1Z3 and
| |
Collapse
|
43
|
Raaz U, Schellinger IN, Chernogubova E, Warnecke C, Kayama Y, Penov K, Hennigs JK, Salomons F, Eken S, Emrich FC, Zheng WH, Adam M, Jagger A, Nakagami F, Toh R, Toyama K, Deng A, Buerke M, Maegdefessel L, Hasenfuß G, Spin JM, Tsao PS. Transcription Factor Runx2 Promotes Aortic Fibrosis and Stiffness in Type 2 Diabetes Mellitus. Circ Res 2015. [PMID: 26208651 DOI: 10.1161/circresaha.115.306341] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RATIONALE Accelerated arterial stiffening is a major complication of diabetes mellitus with no specific therapy available to date. OBJECTIVE The present study investigates the role of the osteogenic transcription factor runt-related transcription factor 2 (Runx2) as a potential mediator and therapeutic target of aortic fibrosis and aortic stiffening in diabetes mellitus. METHODS AND RESULTS Using a murine model of type 2 diabetes mellitus (db/db mice), we identify progressive structural aortic stiffening that precedes the onset of arterial hypertension. At the same time, Runx2 is aberrantly upregulated in the medial layer of db/db aortae, as well as in thoracic aortic samples from patients with type 2 diabetes mellitus. Vascular smooth muscle cell-specific overexpression of Runx2 in transgenic mice increases expression of its target genes, Col1a1 and Col1a2, leading to medial fibrosis and aortic stiffening. Interestingly, increased Runx2 expression per se is not sufficient to induce aortic calcification. Using in vivo and in vitro approaches, we further demonstrate that expression of Runx2 in diabetes mellitus is regulated via a redox-sensitive pathway that involves a direct interaction of NF-κB with the Runx2 promoter. CONCLUSIONS In conclusion, this study highlights Runx2 as a previously unrecognized inducer of vascular fibrosis in the setting of diabetes mellitus, promoting arterial stiffness irrespective of calcification.
Collapse
Affiliation(s)
- Uwe Raaz
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Isabel N Schellinger
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Ekaterina Chernogubova
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Christina Warnecke
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Yosuke Kayama
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Kiril Penov
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Jan K Hennigs
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Florian Salomons
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Suzanne Eken
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Fabian C Emrich
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Wei H Zheng
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Matti Adam
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Ann Jagger
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Futoshi Nakagami
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Ryuji Toh
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Kensuke Toyama
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Alicia Deng
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Michael Buerke
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Lars Maegdefessel
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Gerd Hasenfuß
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Joshua M Spin
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.)
| | - Philip S Tsao
- From the Division of Cardiovascular Medicine (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., F.N., R.T., K.T., A.D., J.M.S., P.S.T.), and Cardiovascular Institute (U.R., Y.K., K.P., J.K.H., F.C.E., M.A., A.J., F.N., K.T., J.M.S., P.S.T.), Stanford University School of Medicine, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA (U.R., I.N.S., Y.K., W.H.Z., M.A., A.J., K.T., A.D., J.M.S., P.S.T.); Heart Center, Georg-August-University Göttingen, Göttingen, Germany (U.R., G.H.); Departments of Medicine (E.C., S.E., L.M.) and Cell and Molecular Biology (F.S.), Karolinska Institute, Stockholm, Sweden; Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (C.W.); and Division of Cardiovascular Medicine and Intensive Care Medicine, Saint Mary's Hospital, Siegen, Germany (M.B.).
| |
Collapse
|
44
|
Sun F, Song Y, Liu J, Ma LJ, Shen Y, Huang J, Zhou YL. Efficacy of losartan for improving insulin resistance and vascular remodeling in hemodialysis patients. Hemodial Int 2015; 20:22-30. [PMID: 26104969 DOI: 10.1111/hdi.12327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insulin resistance and vascular remodeling are prevalent and predict cardiovascular mortality in hemodialysis patients. Angiotensin II (Ang II) may be involved in both pathogenesis. In the present study, we investigated the effects of the Ang II receptor blocker losartan on insulin resistance, arterial stiffness, and carotid artery structure in hemodialysis patients. Seventy-two hemodialysis patients were randomly assigned to receive either losartan 50 mg qd (n = 36) or β-blocker bisoprolol 5 mg qd (n = 36). At the start and at month 12, ambulatory blood pressure (BP) monitoring, aortic pulse wave velocity (PWV) measurements, and carotid artery ultrasound were performed, and homeostasis model assessment index of insulin resistance (HOMA-IR) was determined. During the study period, bioimpedance method was used to evaluate volume status every 3 months. Home-monitored BPs were measured at least monthly. Ambulatory BP decreased significantly and similarly by either losartan or bisoprolol. Decreases in PWVs in losartan group at the end of month 12 were significantly greater than changes in PWV in bisoprolol group (0.9 ± 0.3 vs. 0.4 ± 0.5 m/s, P = 0.021). Common carotid artery intima-media cross-sectional area decreased significantly only in patients treated with losartan (20.3 ± 4.9 vs. 19.1 ± 5.1 mm(2) , P = 0.001), and HOMA-IR was also reduced in losartan group only (1.9 ± 1.0 vs. 1.7 ± 0.8, P = 0.003). Multiple regression analysis showed significant correlations between changes in PWV and changes in HOMA-IR. With comparable BP-lowering efficacy, losartan achieved better improvement in insulin sensitivity, arterial stiffness, and carotid artery hypertrophy in hemodialysis patients. The regression of arterial stiffness may be in part through attenuation in insulin resistance.
Collapse
Affiliation(s)
- Fang Sun
- Department of Nephrology, Institute of Uro-nephrology, Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yan Song
- Department of Nephrology, The First Affiliated Hospital, Chinese PLA General Hospital, Beijing, China
| | - Jing Liu
- Department of Nephrology, Institute of Uro-nephrology, Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li-Jie Ma
- Department of Nephrology, Institute of Uro-nephrology, Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yang Shen
- Department of Nephrology, Institute of Uro-nephrology, Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jing Huang
- Department of Nephrology, Institute of Uro-nephrology, Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yi-Lun Zhou
- Department of Nephrology, Institute of Uro-nephrology, Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Coudrillier B, Pijanka J, Jefferys J, Sorensen T, Quigley HA, Boote C, Nguyen TD. Effects of age and diabetes on scleral stiffness. J Biomech Eng 2015; 137:2196535. [PMID: 25751456 DOI: 10.1115/1.4029986] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Indexed: 02/05/2023]
Abstract
The effects of diabetes on the collagen structure and material properties of the sclera are unknown but may be important to elucidate whether diabetes is a risk factor for major ocular diseases such as glaucoma. This study provides a quantitative assessment of the changes in scleral stiffness and collagen fiber alignment associated with diabetes. Posterior scleral shells from five diabetic donors and seven non-diabetic donors were pressurized to 30 mm Hg. Three-dimensional surface displacements were calculated during inflation testing using digital image correlation (DIC). After testing, each specimen was subjected to wide-angle X-ray scattering (WAXS) measurements of its collagen organization. Specimen-specific finite element models of the posterior scleras were generated from the experimentally measured geometry. An inverse finite element analysis was developed to determine the material properties of the specimens, i.e., matrix and fiber stiffness, by matching DIC-measured and finite element predicted displacement fields. Effects of age and diabetes on the degree of fiber alignment, matrix and collagen fiber stiffness, and mechanical anisotropy were estimated using mixed effects models accounting for spatial autocorrelation. Older age was associated with a lower degree of fiber alignment and larger matrix stiffness for both diabetic and non-diabetic scleras. However, the age-related increase in matrix stiffness was 87% larger in diabetic specimens compared to non-diabetic controls and diabetic scleras had a significantly larger matrix stiffness (p = 0.01). Older age was associated with a nearly significant increase in collagen fiber stiffness for diabetic specimens only (p = 0.06), as well as a decrease in mechanical anisotropy for non-diabetic scleras only (p = 0.04). The interaction between age and diabetes was not significant for all outcomes. This study suggests that the age-related increase in scleral stiffness is accelerated in eyes with diabetes, which may have important implications in glaucoma.
Collapse
|
46
|
Cyron CJ, Wilson JS, Humphrey JD. Mechanobiological stability: a new paradigm to understand the enlargement of aneurysms? J R Soc Interface 2015; 11:20140680. [PMID: 25209402 DOI: 10.1098/rsif.2014.0680] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Static and dynamic mechanical instabilities were previously suggested, and then rejected, as mediators of aneurysmal development, which leaves open the question of the underlying mechanism. In this paper, we suggest as a new paradigm the interpretation of aneurysms as mechanobiological instabilities. For illustrative purposes, we compare analytical calculations with computational simulations of the growth and remodelling of idealized fusiform abdominal aortic aneurysms and experimental and clinical findings. We show that the concept of mechanobiological stability is consistent with the impact of risk factors such as age, smoking or diabetes on the initiation and enlargement of these lesions as well as adaptive processes in the healthy abdominal aorta such as dilatation during ageing or in hypertension. In general, high stiffness, an increased capacity for stress-mediated matrix production, and slow matrix turnover all improve the mechanobiological stability of blood vessels. This theoretical understanding may help guide prognosis and the development of future therapies for aneurysms as it enables systematic ways to attenuate enlargement.
Collapse
Affiliation(s)
- C J Cyron
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - J S Wilson
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
47
|
Hatami-Marbini H, Rahimi A. Collagen cross-linking treatment effects on corneal dynamic biomechanical properties. Exp Eye Res 2015; 135:88-92. [PMID: 25887295 DOI: 10.1016/j.exer.2015.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/10/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
Cornea is a soft tissue with the principal function of transmitting and refracting light rays. The objective of the current study was to characterize possible effects of the riboflavin/UVA collagen cross-linking on corneal dynamic properties. The original corneal cross-linking protocol was used to induce cross-links in the anterior portion of the bovine cornea. A DMA machine was used to conduct mechanical tensile experiments at different levels of tensile strains. The samples were divided into a control group (n = 5) and a treated group (n = 5). All specimens were first stretched to a strain of 5% and allowed to relax for twenty minutes. After completion of the stress-relaxation experiment, a frequency sweep test with oscillations ranging from 0.01 to 10 Hz was performed. The same procedure was repeated to obtain the stress-relaxation and dynamic properties at 10% strain. It was observed that the collagen cross-linking therapy significantly increased the immediate and equilibrium tensile behavior of the bovine cornea (P < 0.05). Furthermore, for all samples in control and treated groups and throughout the whole range of frequencies, a significantly larger tensile storage modulus was measured at an axial strain of 10% compared to what was obtained at a tensile strain of 5%. Finally, it was noted that although this treatment procedure resulted in a significant increase in the storage and loss modulus at any axial strain and frequency (P < 0.05), it significantly reduced the ratio of the dissipated and stored energy during a single cycle of deformation. Therefore, it was concluded that while the riboflavin/UVA collagen cross-linking increased significantly corneal stiffness, it decreased significantly its damping capability and deformability. This reduced damping ability might adversely interfere with corneal mechanical performance.
Collapse
Affiliation(s)
- Hamed Hatami-Marbini
- Computational Biomechanics Laboratory, School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, USA.
| | - Abdolrasol Rahimi
- Computational Biomechanics Laboratory, School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
48
|
Semba RD, Sun K, Schwartz AV, Varadhan R, Harris TB, Satterfield S, Garcia M, Ferrucci L, Newman AB. Serum carboxymethyl-lysine, an advanced glycation end product, is associated with arterial stiffness in older adults. J Hypertens 2015; 33:797-803; discussion 803. [PMID: 25915884 PMCID: PMC4458067 DOI: 10.1097/hjh.0000000000000460] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The objective of this study is to examine the relationship of serum carboxymethyl-lysine (CML), an advanced glycation end product (AGE), with pulse pressure (PP), aortic pulse wave velocity (aPWV) and hypertension in older adults. BACKGROUND AGEs are bioactive molecules that accumulate in tissues with ageing and can both cross-link collagen and induce inflammation in model systems. The relationship of AGEs with arterial stiffness and hypertension has not been well characterized in community-dwelling older adults. METHODS We measured serum CML and blood pressure in 3044 adults, aged 70-79 years, who participated in the Health, Aging and Body Composition Study, a population-based study of ageing in Pittsburgh, Pennsylvania and Memphis, Tennessee. aPWV was measured in 2468 participants. RESULTS Participants in the highest tertile of serum CML had higher PP (highest tertile: beta = 2.85, SE = 0.82, P = 0.0005; middle tertile: beta = 0.60, SE = 0.80, P = 0.45), and higher aPWV (highest tertile: beta = 51.4, SE = 20.1, P = 0.01; middle tertile: beta = 3.2, SE = 19.8, P = 0.87) than those in the lowest tertile in multivariable linear regression models adjusting for age, sex, race, education, BMI, smoking, alcohol use, total cholesterol, high-density lipoprotein (HDL) cholesterol, diabetes, cardiovascular disease and chronic kidney disease. Participants in the highest and middle tertiles of serum CML had higher odds of hypertension [odds ratio (OR) 1.32, 95% confidence interval (95% CI) 1.06-1.60, P = 0.005; OR 1.27, 95% CI 1.05-1.53, P = 0.01, respectively] than those in the lowest tertile in a multivariable logistic regression model adjusting for the same covariates. CONCLUSION Elevated serum CML was associated with arterial stiffness, as reflected by higher PP and aPWV, in older, community-dwelling adults.
Collapse
Affiliation(s)
- Richard D Semba
- aDepartment of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland bDepartment of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California cDivision of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore dLaboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Rockville, Maryland eDepartment of Preventive Medicine, University of Tennessee, Memphis, Tennessee fNational Institute on Aging, Baltimore, Maryland gDepartment of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Localized micro- and nano-scale remodelling in the diabetic aorta. Acta Biomater 2014; 10:4843-4851. [PMID: 25014552 PMCID: PMC4199142 DOI: 10.1016/j.actbio.2014.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/22/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022]
Abstract
Diabetes is strongly associated with cardiovascular disease, but the mechanisms, structural and biomechanical consequences of aberrant blood vessel remodelling remain poorly defined. Using an experimental (streptozotocin, STZ) rat model of diabetes, we hypothesized that diabetes enhances extracellular protease activity in the aorta and induces morphological, compositional and localized micromechanical tissue remodelling. We found that the medial aortic layer underwent significant thickening in diabetic animals but without significant changes in collagen or elastin (abundance). Scanning acoustic microscopy demonstrated that such tissue remodelling was associated with a significant decrease in acoustic wave speed (an indicator of reduced material stiffness) in the inter-lamellar spaces of the vessel wall. This index of decreased stiffness was also linked to increased extracellular protease activity (assessed by semi-quantitative in situ gelatin zymography). Such a proteolytically active environment may affect the macromolecular structure of long-lived extracellular matrix molecules. To test this hypothesis, we also characterized the effects of diabetes on the ultrastructure of an important elastic fibre component: the fibrillin microfibril. Using size exclusion chromatography and atomic force microscopy, we isolated and imaged microfibrils from both healthy and diabetic aortas. Microfibrils derived from diabetic tissues were fragmented, morphologically disrupted and weakened (as assessed following molecular combing). These structural and functional abnormalities were not replicated by in vitro glycation. Our data suggest that proteolysis may be a key driver of localized mechanical change in the inter-lamellar space of diabetic rat aortas and that structural proteins (such as fibrillin microfbrils) may be biomarkers of diabetes induced damage.
Collapse
|
50
|
Chantler PD, Frisbee JC. Arterial function in cardio-metabolic diseases: from the microcirculation to the large conduits. Prog Cardiovasc Dis 2014; 57:489-96. [PMID: 25220256 DOI: 10.1016/j.pcad.2014.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The metabolic syndrome (MetS) is characterized as a constellation of metabolic risk factors such as obesity, hypertension, dyslipidemia, and hyperglycemia that co-occur within a given individual. This consultation of risk factors exposes MetS to a 3-fold increased risk of cardiovascular disease and an even higher risk of developing type 2 diabetes compared to healthy individuals. The pathophysiological mechanisms underlying this increased cardiovascular risk are incompletely understood but likely include alterations to macro- and micro-vasculature. The vasculature plays an important role not only in delivery and adjusting the quantity of blood delivered to the tissues, but the dynamic changes in structure and compliance significantly alter the hemodynamic stress imposed on the heart and end-organs. This review will give an overview of the pathophysiological changes to the vasculature that accompany MetS in both human and animal models, as well as the possible mechanistic pathways.
Collapse
Affiliation(s)
- Paul D Chantler
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, WV, USA; Center for Cardiovascular and Respiratory Sciences, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jefferson C Frisbee
- Center for Cardiovascular and Respiratory Sciences, School of Medicine, West Virginia University, Morgantown, WV, USA; Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|