1
|
Getsy PM, Coffee GA, Bates JN, Baby SM, Seckler JM, Palmer LA, Lewis SJ. Functional evidence that S-nitroso-L-cysteine may be a candidate carotid body neurotransmitter. Neuropharmacology 2025; 265:110229. [PMID: 39577762 DOI: 10.1016/j.neuropharm.2024.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
The primary objective of the present study is to provide further evidence that the endogenous S-nitrosothiol, S-nitroso-L-cysteine (L-CSNO), plays an essential role in signaling the hypoxic ventilatory response (HVR) in rodents. Key findings were that (1) injection of L-CSNO (50 nmol/kg, IV) caused a pronounced increase in frequency of breathing (Freq), tidal volume (TV) and minute ventilation (MV) in naïve C57BL/6 mice, whereas injection of D-CSNO (50 nmol/kg, IV) elicited minimal responses; (2) L-CSNO elicited minor responses in (a) C57BL/6 mice with bilateral carotid sinus nerve transection (CSNX), (b) C57BL/6 mice treated neonatally with capsaicin (CAP) to eliminate small-diameter C-fibers, and (c) C57BL/6 mice receiving continuous infusion of L-CSNO receptor antagonists, S-methyl-L-cysteine and S-ethyl-L-cysteine (L-SMC + L-SEC, both at 5 μmol/kg/min, IV); and (3) injection of S-nitroso-L-glutathione (L-GSNO, 50 nmol/kg, IV) elicited pronounced ventilatory responses that were not inhibited by L-SMC + L-SEC. Subsequent exposure of naïve C57BL/6 mice to a hypoxic gas challenge (HXC; 10% O2, 90% N2) elicited pronounced increases in Freq, TV and MV that were subject to roll-off. These HXC responses were markedly reduced in CSNX, CAP, and L-SMC + L-SEC-infused C57BL/6 mice. Subsequent exposure of all C57BL/6 mice (naïve, CSNX, CAP, and L-SMC + L-SEC) to a hypercapnic gas challenge (5% CO2, 21% O2, 74% N2) elicited similar robust increases in Freq, TV and MV. Taken together, these findings provide evidence that an endogenous factor with pharmacodynamic properties similar to those of L-CSNO, rather than L-GSNO, mediates the HVR in male C57BL/6 mice.
Collapse
Affiliation(s)
- Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| | - Gregory A Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - James N Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Santhosh M Baby
- Section of Biology, Galleon Pharmaceuticals, Inc, Horsham, PA, USA
| | - James M Seckler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Lisa A Palmer
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Varga AG, Reid BT, Maletz SN, Dossat AM, Levitt ES. Opposing control of the respiratory brainstem on multiple timescales achieved by transmitter co-release from the locus coeruleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639476. [PMID: 40027822 PMCID: PMC11870594 DOI: 10.1101/2025.02.21.639476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The locus coeruleus (LC) provides widespread noradrenergic (NAergic) modulation throughout the brain to influence a wide range of functions, including breathing. Although both anatomical and physiological evidence supports the involvement of the LC in both the upstream integration and the downstream modulation of breathing, the circuitry behind the latter is unknown. Here, we show that NAergic LC neurons send projections to the Kӧlliker-Fuse nucleus (KF), a critical site in the control of breathing. Long duration activation of NAergic LC neuron terminals in pontine slices induces persistent inhibitory and excitatory NA currents or increases firing rate in postsynaptic KF neurons. Short stimulation on the other hand leads to the VGluT2-dependent release of glutamate that may be co-released with NA in a monosynaptic circuit. Together these results demonstrate that LC neurons can exert flexible, opposing effects on different timescales via glutamatergic and NAergic signaling onto a key respiratory brainstem nucleus.
Collapse
|
3
|
Moreira TS, Burgraff NJ, Takakura AC, Oliveira LM, Araujo EV, Guan S, Ramirez JM. Functional Modulation of Retrotrapezoid Neurons Drives Fentanyl-Induced Respiratory Depression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635295. [PMID: 39975139 PMCID: PMC11838384 DOI: 10.1101/2025.01.28.635295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The primary cause of death from opioid overdose is opioid-induced respiratory depression (OIRD), characterized by severe suppression of respiratory rate, destabilized breathing patterns, hypercapnia, and heightened risk of apnea. The retrotrapezoid nucleus (RTN), a critical chemosensitive brainstem region in the rostral ventrolateral medullary reticular formation contains Phox2b + /Neuromedin-B ( Nmb ) propriobulbar neurons. These neurons, stimulated by CO 2 /H + , regulate breathing to prevent respiratory acidosis. Since the RTN shows limited expression of opioid-receptors, we expected that opioid-induced hypoventilation should activate these neurons to restore ventilation and stabilize arterial blood gases. However, the ability of the RTN to stimulate ventilation during OIRD has never been tested. We used optogenetic and pharmacogenetic approaches, to activate and inhibit RTN Phox2B + / Nmb + neurons before and after fentanyl administration. As expected, fentanyl (500 µg/kg, ip) suppressed respiratory rate and destabilized breathing. Before fentanyl, optogenetic stimulation of Phox2b + / Nmb + or chemogenetic inhibition of Nmb + cells increased and decreased breathing activity, respectively. Surprisingly, optogenetic stimulation after fentanyl administration caused a significantly greater increase in breathing activity compared to pre-fentanyl levels. By contrast chemogenetic ablation of RTN Nmb neurons caused profound hypoventilation and breathing instability after fentanyl. The results suggest that fentanyl does not inhibit the ability of Phox2b + / Nmb + cells within the RTN region to stimulate breathing. Thus, this study highlights the potential of stimulating RTN neurons as a therapeutic approach to restore respiratory function in cases of OIRD.
Collapse
|
4
|
Walling I, Baumgartner S, Patel M, Crone SA. Electrical stimulation of the sciatic nerve restores inspiratory diaphragm function in mice after spinal cord injury. Front Neural Circuits 2025; 18:1480291. [PMID: 39911754 PMCID: PMC11794311 DOI: 10.3389/fncir.2024.1480291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Spinal cord injury in the high cervical cord can impair breathing due to disruption of pathways between brainstem respiratory centers and respiratory motor neurons in the spinal cord. Electrical stimulation of limb afferents can increase ventilation in healthy humans and animals, but it is not known if limb afferent stimulation can improve breathing following a cervical injury. Methods We stimulated the sciatic nerve while using electromyography to measure diaphragm function in anesthetized mice following a cervical (C2) hemisection spinal cord injury, as well as in uninjured controls. The amplitude and frequency of inspiratory bursts was analyzed over a range of stimulation thresholds. Results We show that electrical stimulation (at sufficient current thresholds) of either the left or right sciatic nerve could restore inspiratory activity to the previously paralyzed diaphragm ipsilateral to a C2 hemisection injury at either acute (1 day) or chronic (2 months) stages after injury. We also show that sciatic nerve stimulation can increase the frequency and amplitude of diaphragm inspiratory bursts in uninjured mice. Discussion Our findings indicate that therapies targeting limb afferents could potentially be used to improve breathing in patients with cervical spinal cord injury and provide an experimental model to further investigate the neural pathways by which limb afferents can increase respiratory muscle activity.
Collapse
Affiliation(s)
- Ian Walling
- Neuroscience Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| | - Sarah Baumgartner
- Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Mitesh Patel
- Neurobiology Program, University of Cincinnati, College of Arts and Sciences, Cincinnati, OH, United States
| | - Steven A. Crone
- Division of Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Neurosurgery, University of Cincinnati, College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
5
|
Lin M, Calabrese GB, Incognito AV, Moore MT, Agarwal A, Wilson RJ, Zagoraiou L, Sharples SA, Miles GB, Philippidou P. A cholinergic spinal pathway for the adaptive control of breathing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633641. [PMID: 39896653 PMCID: PMC11785070 DOI: 10.1101/2025.01.20.633641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The ability to amplify motor neuron (MN) output is essential for generating high intensity motor actions. This is critical for breathing that must be rapidly adjusted to accommodate changing metabolic demands. While brainstem circuits generate the breathing rhythm, the pathways that directly augment respiratory MN output are not well understood. Here, we mapped first-order inputs to phrenic motor neurons (PMNs), a key respiratory MN population that initiates diaphragm contraction to drive breathing. We identified a predominant spinal input from a distinct subset of genetically-defined V0C cholinergic interneurons. We found that these interneurons receive phasic excitation from brainstem respiratory centers, augment phrenic output through M2 muscarinic receptors, and are highly activated under a hypercapnia challenge. Specifically silencing cholinergic interneuron neurotransmission impairs the breathing response to hypercapnia. Collectively, our findings identify a novel spinal pathway that amplifies breathing, presenting a potential target for promoting recovery of breathing following spinal cord injury.
Collapse
Affiliation(s)
- Minshan Lin
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - Anthony V. Incognito
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Matthew T. Moore
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Aambar Agarwal
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Richard J.A. Wilson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Laskaro Zagoraiou
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Simon A. Sharples
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Gareth B. Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Polyxeni Philippidou
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Perchiazzi G, Kawati R, Pellegrini M, Liangpansakul J, Colella R, Bollella P, Rangaiah P, Cannone A, Venkataramana DH, Perez M, Stramaglia S, Torsi L, Bellotti R, Augustine R. Imitating the respiratory activity of the brain stem by using artificial neural networks: exploratory study on an animal model of lactic acidosis and proof of concept. J Clin Monit Comput 2024; 38:1269-1280. [PMID: 39162839 PMCID: PMC11604730 DOI: 10.1007/s10877-024-01208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Artificial neural networks (ANNs) are versatile tools capable of learning without prior knowledge. This study aims to evaluate whether ANN can calculate minute volume during spontaneous breathing after being trained using data from an animal model of metabolic acidosis. Data was collected from ten anesthetized, spontaneously breathing pigs divided randomly into two groups, one without dead space and the other with dead space at the beginning of the experiment. Each group underwent two equal sequences of pH lowering with pre-defined targets by continuous infusion of lactic acid. The inputs to ANNs were pH, ΔPaCO2 (variation of the arterial partial pressure of CO2), PaO2, and blood temperature which were sampled from the animal model. The output was the delta minute volume (ΔVM), (the change of minute volume as compared to the minute volume the animal had at the beginning of the experiment). The ANN performance was analyzed using mean squared error (MSE), linear regression, and the Bland-Altman (B-A) method. The animal experiment provided the necessary data to train the ANN. The best architecture of ANN had 17 intermediate neurons; the best performance of the finally trained ANN had a linear regression with R2 of 0.99, an MSE of 0.001 [L/min], a B-A analysis with bias ± standard deviation of 0.006 ± 0.039 [L/min]. ANNs can accurately estimate ΔVM using the same information that arrives at the respiratory centers. This performance makes them a promising component for the future development of closed-loop artificial ventilators.
Collapse
Affiliation(s)
- Gaetano Perchiazzi
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
- Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden.
- Hedenstierna Laboratoriet, Akademiska sjukhuset ing 40 3 tr, Uppsala, 75185, Sweden.
| | - Rafael Kawati
- Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Mariangela Pellegrini
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Anesthesia, Operation and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | - Jasmine Liangpansakul
- The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Paolo Bollella
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| | - Pramod Rangaiah
- Department of Electrical Engineering, Solid-State Electronics, Uppsala University, Uppsala, Sweden
| | - Annamaria Cannone
- Department of Anaesthesia and Intensive Care, "Madonna delle Grazie" Hospital, Matera, Italy
| | | | - Mauricio Perez
- Department of Electrical Engineering, Solid-State Electronics, Uppsala University, Uppsala, Sweden
| | - Sebastiano Stramaglia
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, Rome, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
| | - Luisa Torsi
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| | - Roberto Bellotti
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, Rome, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
| | - Robin Augustine
- Department of Electrical Engineering, Solid-State Electronics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Khurram OU, Kantor-Gerber MJ, Mantilla CB, Sieck GC. Hypercapnia impacts neural drive and timing of diaphragm neuromotor control. J Neurophysiol 2024; 132:1966-1976. [PMID: 39548981 PMCID: PMC11687830 DOI: 10.1152/jn.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
The neuromotor control of the diaphragm muscle (DIAm) involves motor unit recruitment, sustained activity (incrementing and decrementing), and motor unit derecruitment, phases that may be modified to maintain ventilation across conditions. The primary goal of the present study was to investigate the effects of hypercapnia, which increases respiratory rate and tidal volume, on DIAm neuromotor control in awake rats. We recorded DIAm electromyography (EMG) with implanted chronic fine-wire electrodes in nine Sprague-Dawley rats during normocapnia and hypercapnia (7% CO2). The durations of motor unit recruitment/derecruitment were estimated by evaluating stationarity of DIAm EMG activity during normocapnia and hypercapnia; the motor unit recruitment/derecruitment durations were used to evaluate root mean square (RMS) EMG recruitment/derecruitment amplitudes. Overall, hypercapnia reduced the burst duration by ∼40% and increased respiratory rate by ∼50%. The change in the burst duration was primarily attributable to a 57% decrease in the peak-to-offset duration of the DIAm RMS EMG signal, suggesting a suppression of postinspiratory activity. Although neither the recruitment duration nor the onset-to-peak duration changed with hypercapnia, both the recruitment and peak amplitudes increased, by 11% and 23%, respectively. Therefore, although hypercapnia increases the number of motor units being recruited and their discharge rates, ventilation is primarily increased by increasing respiratory rate. Additionally, hypercapnia eliminated the decrementing sustained activity phase and consequently increased derecruitment amplitude by 171%. The results of the present study reveal that respiratory rate is increased chiefly by reducing the decrementing (i.e. "postinspiratory") phase of DIAm EMG activity.NEW & NOTEWORTHY The neuromotor control of the diaphragm muscle (DIAm) in response to hypercapnia is not well understood. We show that both the number of motor units recruited and their discharge rates increase with hypercapnia, consistent with increased respiratory drive during hypercapnia. Potentially in response to this increased drive, the greatest effect of hypercapnia is on during the postinspiratory (descending) ramp of DIAm EMG activity, which shortens to facilitate higher respiratory rates.
Collapse
Affiliation(s)
- Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | | | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
8
|
Hass RM, Benarroch EE. What Are the Central Mechanisms of Cough and Their Neurologic Implications? Neurology 2024; 103:e210064. [PMID: 39509665 DOI: 10.1212/wnl.0000000000210064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
|
9
|
El Hamamy A, Iqbal Z, Le NM, Ranjan A, Zhang Y, Lin HW, Tan C, Sumani D, Patrizz A, McCullough LD, Li J. Targeted TGF-βR2 Silencing in the Retrotrapezoid Nucleus Mitigates Respiratory Dysfunction and Cognitive Decline in a Mouse Model of Cerebral Amyloid Angiopathy with and without Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01306-0. [PMID: 39543011 DOI: 10.1007/s12975-024-01306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid-beta peptides within cerebral blood vessels, leading to neurovascular complications. Ischemic strokes result from acute disruptions in cerebral blood flow, triggering metabolic disturbances and neurodegeneration. Both conditions often co-occur and are associated with respiratory dysfunctions. The retrotrapezoid nucleus (RTN), which is crucial for CO2 sensing and breathing regulation in the brainstem, may play a key role in breathing disorders seen in these conditions. This study aims to investigate the role of Transforming Growth Factor Beta (TGF-β) signaling in the RTN on respiratory and cognitive functions in CAA, both with and without concurrent ischemic stroke. Adult male Tg-SwDI (CAA model) mice and C57BL/6 wild-type controls underwent stereotaxic injections of lentivirus targeting TGF-βR2 in the RTN. Stroke was induced by middle cerebral artery occlusion using a monofilament. Respiratory functions were assessed using whole-body plethysmography, while cognitive functions were evaluated through the Barnes Maze and Novel Object Recognition Test (NORT). Immunohistochemical analysis was conducted to measure TGF-βR2 and GFAP expressions in the RTN. CAA mice exhibited significant respiratory dysfunctions, including reduced respiratory rates and increased apnea frequency, as well as impaired cognitive performance. TGF-βR2 silencing in the RTN improved respiratory functions and cognitive outcomes in CAA mice. In CAA mice with concurrent stroke, TGF-βR2 silencing similarly enhanced respiratory and cognitive functions. Immunohistochemistry confirmed reduced TGF-βR2 and GFAP expressions in the RTN following silencing. Our findings demonstrate that increased TGF-β signaling and gliosis in the RTN contribute to respiratory and cognitive dysfunctions in CAA and CAA with stroke. Targeting TGF-βR2 signaling in the RTN offers a promising therapeutic strategy to mitigate these impairments. This study is the first to report a causal link between brainstem gliosis and both respiratory and cognitive dysfunctions in CAA and stroke models.
Collapse
Affiliation(s)
- Ahmad El Hamamy
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zahid Iqbal
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ngoc Mai Le
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arya Ranjan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - YuXing Zhang
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hung Wen Lin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Destiny Sumani
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anthony Patrizz
- Department of Neurological Surgery and Brain Repair, University of South Florida at Tampa, Tampa, FL, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jun Li
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
10
|
Antonaglia C, Citton GM, Soave S, Salton F, Ruaro B, Confalonieri P, Confalonieri M. Deciphering loop gain complexity: a primer for understanding a pathophysiological trait of obstructive sleep apnea patients. Respir Med 2024; 234:107820. [PMID: 39332779 DOI: 10.1016/j.rmed.2024.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Loop Gain (LG), a concept borrowed from engineering used to describe the stability of electrical circuits under negative feedback, has emerged as a crucial pathophysiological trait in sleep respiratory disorders. In simple terms, LG measures how the respiratory control system reacts to changes in breathing. A high LG suggests that minor disturbances in breathing prompt exaggerated responses, potentially leading to instability and oscillations in respiratory patterns. Conversely, a low LG implies that the system responds more gently to disturbances, resulting in stable and well-regulated breathing. However, understanding the concept of loop gain presents challenges due to its dynamic nature across various sleep respiratory disorders, sleep stages, positions, and interactions with other pathophysiological traits. Recent efforts have aimed to identify a non-invasive method for assessing LG, with some evidence suggesting that information regarding pathophysiological traits can be extracted from polysomnography. There exists a clinical imperative for physician to unravel the intricacies of LG when managing Obstructive Sleep Apnea (OSA) patients, because LG abnormalities delineate a distinct pathophysiological phenotype of OSA. Specifically, certain patients exhibit a high LG as the primary factor driving sleep apnea, influencing treatment outcomes. For instance, individuals with high LG may respond differently to therapies such as continuous positive airway pressure (CPAP) or oral appliances compared to those with normal LG, or they can be treated with specific drugs or combination therapies. Thus, understanding LG becomes paramount for precise assessment of OSA patients and is fundamental for optimizing a personalized and effective treatment approach.
Collapse
Affiliation(s)
- Caterina Antonaglia
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy.
| | - Gloria Maria Citton
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Sara Soave
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Francesco Salton
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Barbara Ruaro
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Paola Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| | - Marco Confalonieri
- Pulmonology Unit, Department of Medical Surgical and Health Sciences, Hospital of Cattinara, University of Trieste, 34149, Trieste, Italy
| |
Collapse
|
11
|
Moreira TS, Mulkey DK, Takakura AC. Update on vascular control of central chemoreceptors. Exp Physiol 2024; 109:1837-1843. [PMID: 38153366 PMCID: PMC11522829 DOI: 10.1113/ep091329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
At least four mechanisms have been proposed to elucidate how neurons in the retrotrapezoid (RTN) region sense changes in CO2/H+ to regulate breathing (i.e., function as respiratory chemosensors). These mechanisms include: (1) intrinsic neuronal sensitivity to H+ mediated by TASK-2 and GPR4; (2) paracrine activation of RTN neurons by CO2-responsive astrocytes (via a purinergic mechanism); (3) enhanced excitatory synaptic input or disinhibition; and (4) CO2-induced vascular contraction. Although blood flow can influence tissue CO2/H+ levels, there is limited understanding of how control of vascular tone in central CO2 chemosensitive regions might contribute to respiratory output. In this review, we focus on recent evidence that CO2/H+-induced purinergic-dependent vasoconstriction in the ventral parafacial region near RTN neurons supports respiratory chemoreception. This mechanism appears to be unique to the ventral parafacial region and opposite to other brain regions, including medullary chemosensor regions, where CO2/H+ elicits vasodilatation. We speculate that this mechanism helps to maintain CO2/H+ levels in the vicinity of RTN neurons, thereby maintaining the drive to breathe. Important next steps include determining whether disruption of CO2/H+ vascular reactivity contributes to or can be targeted to improve breathing problems in disease states, such as Parkinson's disease.
Collapse
Affiliation(s)
- Thiago S. Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias BiomedicasUniversidade de Sao PauloSao PauloBrazil
| | - Daniel K. Mulkey
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Ana C. Takakura
- Department of Pharmacology, Instituto de Ciencias BiomedicasUniversidade de Sao PauloSão PauloBrazil
| |
Collapse
|
12
|
Oliveira LM, Huff A, Wei A, Miranda NC, Wu G, Xu X, Ramirez JM. Afferent and Efferent Connections of the Postinspiratory Complex (PiCo) Revealed by AAV and Monosynaptic Rabies Viral Tracing. J Comp Neurol 2024; 532:e25683. [PMID: 39494735 DOI: 10.1002/cne.25683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/01/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
The control of the respiratory rhythm and airway motor activity is essential for life. Accumulating evidence indicates that the postinspiratory complex (PiCo) is crucial for generating behaviors that occur during the postinspiratory phase, including expiratory laryngeal activity and swallowing. Located in the ventromedial medulla, PiCo is defined by neurons co-expressing two neurotransmitter markers (ChAT and Vglut2/Slc17a6). Here, we mapped the input-output connections of these neurons using viral tracers and intersectional viral-genetic tools. PiCo neurons were specifically targeted by focal injection of a doubly conditional Cre- and FlpO-dependent AAV8 viral marker (AAV8-Con/Fon-TVA-mCherry) into the left PiCo of adult ChatCre/wt: Vglut2FlpO/wt mice, for anterograde axonal tracing. These experiments revealed projections to various brain regions, including the Cu, nucleus of the solitary tract (NTS), Amb, X, XII, Sp5, RMg, intermediate reticular nucleus (IRt), lateral reticular nucleus (LRt), pre-Bötzinger complex (preBötC), contralateral PiCo, laterodorsal tegmental nucleus (LDTg), pedunculopontine tegmental nucleus (PPTg), periaqueductal gray matter (PAG), Kölliker-Fuse (KF), PB, and external cortex of the inferior colliculus (ECIC). A rabies virus (RV) retrograde transsynaptic approach was taken with EnvA-pseudotyped G-deleted (RV-SAD-G-GFP) to similarly target PiCo neurons in ChatCre/wt: Vglut2FlpO/wt mice, following prior injections of helper AAVs (a mixture of AAV-Ef1a-Con/Fon oG and viral vector AAV8-Con/Fon-TVA-mCherry). This combined approach revealed prominent synaptic inputs to PiCo neurons from NTS, IRt, and A1/C1. Although PiCo neurons project axons to the contralateral PiCo area, this approach did not detect direct contralateral connections. We suggest that PiCo serves as a critical integration site, projecting and receiving neuronal connections implicated in breathing, arousal, swallowing, and autonomic regulation.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Aguan Wei
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nicole C Miranda
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ginny Wu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, USA
- Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, California, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Ahmed SS, Yu J, Ding W, Ghosh S, Brumels D, Tan S, Jaishi LR, Amjad A, Xian X. A Metal-Organic Framework-Based Colorimetric Sensor Array for Transcutaneous CO 2 Monitoring via Lensless Imaging. BIOSENSORS 2024; 14:516. [PMID: 39589975 PMCID: PMC11591676 DOI: 10.3390/bios14110516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Transcutaneous carbon dioxide (TcPCO2) monitoring provides a non-invasive alternative to measuring arterial carbon dioxide (PaCO2), making it valuable for various applications, such as sleep diagnostics and neonatal care. However, traditional transcutaneous monitors are bulky, expensive, and pose risks such as skin burns. To address these limitations, we have introduced a compact, cost-effective CMOS imager-based sensor for TcPCO2 detection by utilizing colorimetric reactions with metal-organic framework (MOF)-based nano-hybrid materials. The sensor, with a colorimetric sensing array fabricated on an ultrathin PDMS membrane and then adhered to the CMOS imager surface, can record real-time sensing data through image processing without the need for additional optical components, which significantly reduces the sensor's size. Our system shows impressive sensitivity and selectivity, with a low detection limit of 26 ppm, a broad detection range of 0-2% CO2, and strong resistance to interference from common skin gases. Feasibility tests on human subjects demonstrate the potential of this MOF-CMOS imager-based colorimetric sensor for clinical applications. Additionally, its compact design and responsiveness make it suitable for sports and exercise settings, offering valuable insights into respiratory function and performance. The sensing system's compact size, low cost, and reversible and highly sensitive TcPCO2 monitoring capability make it ideal for integration into wearable devices for remote health tracking.
Collapse
Affiliation(s)
- Syed Saad Ahmed
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA; (S.S.A.); (J.Y.)
| | - Jingjing Yu
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA; (S.S.A.); (J.Y.)
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China
| | - Wei Ding
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA; (S.S.A.); (J.Y.)
| | - Sabyasachi Ghosh
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA; (S.S.A.); (J.Y.)
| | - David Brumels
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA; (S.S.A.); (J.Y.)
| | - Songxin Tan
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA; (S.S.A.); (J.Y.)
| | - Laxmi Raj Jaishi
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA; (S.S.A.); (J.Y.)
| | - Amirhossein Amjad
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA; (S.S.A.); (J.Y.)
| | - Xiaojun Xian
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD 57007, USA; (S.S.A.); (J.Y.)
| |
Collapse
|
14
|
Flor KC, Maia OAC, Takakura AC, Moreira TS. The pontine Kölliker-Fuse nucleus is important for reduced postinspiratory airflow elicited by stimulation of the ventral respiratory parafacial region. Am J Physiol Lung Cell Mol Physiol 2024; 327:L452-L463. [PMID: 39104318 DOI: 10.1152/ajplung.00155.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
Considering that the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) would be an important center in the central nervous system involved in the maintenance and modulation of respiratory activity, we hypothesized that neurons in this nucleus would also be involved in the postinspiratory (post-I) phase of the respiratory cycle through a connection with the pontine Kölliker-Fuse (KF) region. Here, we performed pharmacogenetic manipulation (AAV-hM3D(Gq)-mCherry or AAV-hM4D(Gi)-mCherry) in VGlut2-cre, Ai6 conscious mice to evaluate breathing parameters through whole body plethysmography under baseline conditions (normoxia: [Formula: see text] = 0.21) or under hypercapnia or hypoxia challenges ([Formula: see text] = 0.07 or [Formula: see text] = 0.08). Under normoxia, selective stimulation of RTN/pFRG resulted in a smaller increase in V̇e (1,272 ± 102.5, vs. RTN/pFRG stimulation: 1,878 ± 122.1 mL/kg/min), due to a smaller increase in VT (5.4 ± 0.35, vs. RTN/pFRG stimulation: 7.77 ± 0.21 mL/kg) without changing fR in a condition of KF inhibition. However, inhibition of the VGlut2 neurons in the KF did affect the TE1 produced by selective activation of RTN/pFRG (119.9 ± 2.53, vs. RTN/pFRG stimulation: 104 ± 2.46 ms). Both the hypercapnia and hypoxia ventilatory response were reduced after inhibition of VGlut2-expressing KF neurons. Therefore, consistent with anatomical projections RTN/pFRG neurons regulate lung ventilation by controlling all aspects of breathing, i.e., breathing frequency, inspiration, postinspiration, and active expiration. All the modulation seems to be dependent on the integrity of the glutamatergic neurons in the KF region.NEW & NOTEWORTHY Our research reveals specific roles and interactions between the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) and the pontine Kölliker-Fuse (KF) region in controlling respiratory phases. RTN/pFRG neurons are key in regulating all aspects of breathing, including frequency, inspiration, postinspiration, and active expiration. This regulation depends on the functional integrity of glutamatergic neurons in the KF region, aligning with anatomical projections.
Collapse
Affiliation(s)
- Karine C Flor
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Octavio A C Maia
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Eslami-Behroozi M, Shahsavar P, Vali R, Raoufy MR. Breathing pattern alteration from weanling to old age in male Sprague-Dawley rats. Respir Physiol Neurobiol 2024; 331:104357. [PMID: 39362510 DOI: 10.1016/j.resp.2024.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Respiratory patterns were investigated in male Sprague-Dawley rats throughout their lifespan, from weanling (1 month) to old age (24 months), under natural conditions. Both inter-breath interval (IBI) and respiratory volume (RV) were examined. Sample entropy suggested increasing irregularity in IBI but decreasing irregularity in RV until 12 months. According to detrended fluctuation analysis, alpha exponent of the IBI showed a bimodal pattern around the value 0.7. From 1-15 months, the alpha exponent for RV generally decreased to the value 0.5, but it increased again as the animals neared the end of their lifespan. Cross-sample entropy revealed increasing synchronization between IBI and RV until 12 months, then plateauing. Many measures demonstrated a transition around 12 months, potentially reflecting maturation of respiratory control mechanisms. The findings characterize complex dynamics of respiratory patterns across the rat lifespan, providing a normative foundation to identify deviations indicative of dysfunction or disease.
Collapse
Affiliation(s)
- Mehdi Eslami-Behroozi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Payam Shahsavar
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reyhaneh Vali
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Le-Bert CR, Mitchell GS, Reznikov LR. Cardiopulmonary adaptations of a diving marine mammal, the bottlenose dolphin: Physiology during anesthesia. Physiol Rep 2024; 12:e16183. [PMID: 39245795 PMCID: PMC11381195 DOI: 10.14814/phy2.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Diving marine mammals are a diverse group of semi- to completely aquatic species. Some species are targets of conservation and rehabilitation efforts; other populations are permanently housed under human care and may contribute to clinical and biomedical investigations. Veterinary medical care for species under human care, at times, may necessitate the use of general anesthesia for diagnostic and surgical indications. However, the unique physiologic and anatomic adaptations of one representative diving marine mammal, the bottlenose dolphin, present several challenges in providing ventilatory and cardiovascular support to maintain adequate organ perfusion under general anesthesia. The goal of this review is to highlight the unique cardiopulmonary adaptations of the completely aquatic bottlenose dolphin (Tursiops truncatus), and to identify knowledge gaps in our understanding of how those adaptations influence their physiology and pose potential challenges for sedation and anesthesia of these mammals.
Collapse
Affiliation(s)
- Carolina R Le-Bert
- Department of Physiology & Aging, College of Medicine, University of Florida, Gainesville, Florida, USA
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, California, USA
| | - Gordon S Mitchell
- Department of Physical Therapy, College of Public Human and Health Professionals, University of Florida, Gainesville, Florida, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
17
|
Matteoli G, Alvente S, Bastianini S, Berteotti C, Ciani E, Cinelli E, Lo Martire V, Medici G, Mello T, Miglioranza E, Silvani A, Mutolo D, Zoccoli G. Characterisation of sleep apneas and respiratory circuitry in mice lacking CDKL5. J Sleep Res 2024:e14295. [PMID: 39049436 DOI: 10.1111/jsr.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
CDKL5 deficiency disorder is a rare genetic disease caused by mutations in the CDKL5 gene. Central apneas during wakefulness have been reported in patients with CDKL5 deficiency disorder. Studies on CDKL5-knockout mice, a CDKL5 deficiency disorder model, reported sleep apneas, but it is still unclear whether these events are central (central sleep apnea) or obstructive (obstructive sleep apnea) and may be related to alterations of brain circuits that modulate breathing rhythm. This study aimed to discriminate central sleep apnea and obstructive sleep apnea in CDKL5-knockout mice, and explore changes in the somatostatin neurons expressing high levels of neurokinin-1 receptors within the preBötzinger complex. Ten adult male wild-type and 12 CDKL5-knockout mice underwent electrode implantation for sleep stage discrimination and diaphragmatic activity recording, and were studied using whole-body plethysmography for 7 hr during the light (resting) period. Sleep apneas were categorised as central sleep apnea or obstructive sleep apnea based on the recorded signals. The number of somatostatin neurons in the preBötzinger complex and their neurokinin-1 receptors expression were assessed through immunohistochemistry in a sub-group of animals. CDKL5-knockout mice exhibited a higher apnea occurrence rate and a greater prevalence of obstructive sleep apnea during rapid eye movement sleep, compared with wild-type, whereas no significant difference was observed for central sleep apnea. Moreover, CDKL5-knockout mice showed a reduced number of somatostatin neurons in the preBötzinger complex, and these neurons expressed a lower level of neurokinin-1 receptors compared with wild-type controls. These findings underscore the pivotal role of CDKL5 in regulating normal breathing, suggesting its potential involvement in shaping preBötzinger complex neural circuitry and controlling respiratory muscles during sleep.
Collapse
Affiliation(s)
- Gabriele Matteoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sara Alvente
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elenia Cinelli
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, Florence, Italy
| | - Viviana Lo Martire
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elena Miglioranza
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Donatella Mutolo
- Department of Experimental and Clinical Medicine, Section of Physiology, University of Florence, Florence, Italy
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Stoupi NA, Weijs ML, Imbach L, Lenggenhager B. Heartbeat-evoked potentials following voluntary hyperventilation in epilepsy patients: respiratory influences on cardiac interoception. Front Neurosci 2024; 18:1391437. [PMID: 39035777 PMCID: PMC11259972 DOI: 10.3389/fnins.2024.1391437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Current evidence indicates a modulating role of respiratory processes in cardiac interoception, yet whether altered breathing patterns influence heartbeat-evoked potentials (HEP) remains inconclusive. Methods Here, we examined the effects of voluntary hyperventilation (VH) as part of a clinical routine examination on scalp-recorded HEPs in epilepsy patients (N = 80). Results Using cluster-based permutation analyses, HEP amplitudes were compared across pre-VH and post-VH conditions within young and elderly subgroups, as well as for the total sample. No differences in the HEP were detected for younger participants or across the full sample, while an increased late HEP during pre-VH compared to post-VH was fond in the senior group, denoting decreased cardiac interoceptive processing after hyperventilation. Discussion The present study, thus, provides initial evidence of breathing-related HEP modulations in elderly epilepsy patients, emphasizing the potential of HEP as an interoceptive neural marker that could partially extend to the representation of pulmonary signaling. We speculate that aberrant CO2-chemosensing, coupled with disturbances in autonomic regulation, might constitute the underlying pathophysiological mechanism behind the obtained effect. Available databases involving patient records of routine VH assessment may constitute a valuable asset in disentangling the interplay of cardiac and ventilatory interoceptive information in various patient groups, providing thorough clinical data to parse, as well as increased statistical power and estimates of effects with higher precision through large-scale studies.
Collapse
Affiliation(s)
- Niovi A Stoupi
- Department of Psychology, University of Zurich, Zürich, Switzerland
| | - Marieke L Weijs
- Department of Psychology, University of Zurich, Zürich, Switzerland
| | - Lukas Imbach
- Department of Neurology, University Hospital of Zurich, Zürich, Switzerland
- Swiss Epilepsy Center, Klinik Lengg, Zürich, Switzerland
- Zurich Neuroscience Center, University of Zurich and ETH Zurich, Zürich, Switzerland
| | | |
Collapse
|
19
|
Cui K, Xia Y, Patnaik A, Salivara A, Lowenstein ED, Isik EG, Knorz AL, Airaghi L, Crotti M, Garratt AN, Meng F, Schmitz D, Studer M, Rijli FM, Nothwang HG, Rost BR, Strauß U, Hernandez-Miranda LR. Genetic identification of medullary neurons underlying congenital hypoventilation. SCIENCE ADVANCES 2024; 10:eadj0720. [PMID: 38896627 PMCID: PMC11186509 DOI: 10.1126/sciadv.adj0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Mutations in the transcription factors encoded by PHOX2B or LBX1 correlate with congenital central hypoventilation disorders. These conditions are typically characterized by pronounced hypoventilation, central apnea, and diminished chemoreflexes, particularly to abnormally high levels of arterial PCO2. The dysfunctional neurons causing these respiratory disorders are largely unknown. Here, we show that distinct, and previously undescribed, sets of medullary neurons coexpressing both transcription factors (dB2 neurons) account for specific respiratory functions and phenotypes seen in congenital hypoventilation. By combining intersectional chemogenetics, intersectional labeling, lineage tracing, and conditional mutagenesis, we uncovered subgroups of dB2 neurons with key functions in (i) respiratory tidal volumes, (ii) the hypercarbic reflex, (iii) neonatal respiratory stability, and (iv) neonatal survival. These data provide functional evidence for the critical role of distinct medullary dB2 neurons in neonatal respiratory physiology. In summary, our work identifies distinct subgroups of dB2 neurons regulating breathing homeostasis, dysfunction of which causes respiratory phenotypes associated with congenital hypoventilation.
Collapse
Affiliation(s)
- Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Abhisarika Patnaik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aikaterini Salivara
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Eser G. Isik
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrian L. Knorz
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Airaghi
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michela Crotti
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alistair N. Garratt
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fanqi Meng
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michèle Studer
- Université Côte d'Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Filippo M. Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hans G. Nothwang
- Division of Neurogenetics, Cluster of Excellence Hearing4all, Carl von Ossietzky University, Oldenburg, Germany
| | - Benjamin R. Rost
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulf Strauß
- Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Vu LY, Luo D, Johnson K, Denehy ED, Songrady JC, Martin J, Trivedi R, Alsum AR, Shaykin JD, Chaudhary CL, Woloshin EJ, Kornberger L, Bhuiyan N, Parkin S, Jiang Q, Che T, Alilain W, Turner JR, Bardo MT, Prisinzano TE. Searching for Synthetic Opioid Rescue Agents: Identification of a Potent Opioid Agonist with Reduced Respiratory Depression. J Med Chem 2024; 67:9173-9193. [PMID: 38810170 DOI: 10.1021/acs.jmedchem.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While in the process of designing more effective synthetic opioid rescue agents, we serendipitously identified a new chemotype of potent synthetic opioid. Here, we report that conformational constraint of a piperazine ring converts a mu opioid receptor (MOR) antagonist into a potent MOR agonist. The prototype of the series, which we have termed atoxifent (2), possesses potent in vitro agonist activity. In mice, atoxifent displayed long-lasting antinociception that was reversible with naltrexone. Repeated dosing of atoxifent produced antinociceptive tolerance and a level of withdrawal like that of fentanyl. In rats, while atoxifent produced complete loss of locomotor activity like fentanyl, it failed to produce deep respiratory depression associated with fentanyl-induced lethality. Assessment of brain biodistribution demonstrated ample distribution of atoxifent into the brain with a Tmax of approximately 0.25 h. These results indicate enhanced safety for atoxifent-like molecules compared to fentanyl.
Collapse
Affiliation(s)
- Loan Y Vu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Dan Luo
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Kai Johnson
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Emily D Denehy
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Judy C Songrady
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jocelyn Martin
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Riya Trivedi
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Alexia R Alsum
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Chhabi Lal Chaudhary
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Eric J Woloshin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Lindsay Kornberger
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Nazmul Bhuiyan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Qianru Jiang
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Warren Alilain
- Spinal Cord and Brain Injury Research Center (SCoBIRC), College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
21
|
O'Croinin BR, Young DA, Maier LE, van Diepen S, Day TA, Steinback CD. Influence of hypercapnia and hypercapnic hypoxia on the heart rate response to apnea. Physiol Rep 2024; 12:e16054. [PMID: 38872580 PMCID: PMC11176737 DOI: 10.14814/phy2.16054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
We aimed to determine the relative contribution of hypercapnia and hypoxia to the bradycardic response to apneas. We hypothesized that apneas with hypercapnia would cause greater bradycardia than normoxia, similar to the response seen with hypoxia, and that apneas with hypercapnic hypoxia would induce greater bradycardia than hypoxia or hypercapnia alone. Twenty-six healthy participants (12 females; 23 ± 2 years; BMI 24 ± 3 kg/m2) underwent three gas challenges: hypercapnia (+5 torr end tidal partial pressure of CO2 [PETCO2]), hypoxia (50 torr end tidal partial pressure of O2 [PETO2]), and hypercapnic hypoxia (combined hypercapnia and hypoxia), with each condition interspersed with normocapnic normoxia. Heart rate and rhythm, blood pressure, PETCO2, PETO2, and oxygen saturation were measured continuously. Hypercapnic hypoxic apneas induced larger bradycardia (-19 ± 16 bpm) than normocapnic normoxic apneas (-11 ± 15 bpm; p = 0.002), but had a comparable response to hypoxic (-19 ± 15 bpm; p = 0.999) and hypercapnic apneas (-14 ± 14 bpm; p = 0.059). Hypercapnic apneas were not different from normocapnic normoxic apneas (p = 0.134). After removal of the normocapnic normoxic heart rate response, the change in heart rate during hypercapnic hypoxia (-11 ± 16 bpm) was similar to the summed change during hypercapnia+hypoxia (-9 ± 10 bpm; p = 0.485). Only hypoxia contributed to this bradycardic response. Under apneic conditions, the cardiac response is driven by hypoxia.
Collapse
Affiliation(s)
- Benjamin R O'Croinin
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Desmond A Young
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Lauren E Maier
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Sean van Diepen
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Locke BW, Brown JP, Sundar KM. The Role of Obstructive Sleep Apnea in Hypercapnic Respiratory Failure Identified in Critical Care, Inpatient, and Outpatient Settings. Sleep Med Clin 2024; 19:339-356. [PMID: 38692757 PMCID: PMC11068091 DOI: 10.1016/j.jsmc.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
An emerging body of literature describes the prevalence and consequences of hypercapnic respiratory failure. While device qualifications, documentation practices, and previously performed clinical studies often encourage conceptualizing patients as having a single "cause" of hypercapnia, many patients encountered in practice have several contributing conditions. Physiologic and epidemiologic data suggest that sleep-disordered breathing-particularly obstructive sleep apnea (OSA)-often contributes to the development of hypercapnia. In this review, the authors summarize the frequency of contributing conditions to hypercapnic respiratory failure among patients identified in critical care, emergency, and inpatient settings with an aim toward understanding the contribution of OSA to the development of hypercapnia.
Collapse
Affiliation(s)
- Brian W Locke
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Jeanette P Brown
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Krishna M Sundar
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Jin H, Li M, Jeong E, Castro-Martinez F, Zuker CS. A body-brain circuit that regulates body inflammatory responses. Nature 2024; 630:695-703. [PMID: 38692285 PMCID: PMC11186780 DOI: 10.1038/s41586-024-07469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
The body-brain axis is emerging as a principal conductor of organismal physiology. It senses and controls organ function1,2, metabolism3 and nutritional state4-6. Here we show that a peripheral immune insult strongly activates the body-brain axis to regulate immune responses. We demonstrate that pro-inflammatory and anti-inflammatory cytokines communicate with distinct populations of vagal neurons to inform the brain of an emerging inflammatory response. In turn, the brain tightly modulates the course of the peripheral immune response. Genetic silencing of this body-brain circuit produced unregulated and out-of-control inflammatory responses. By contrast, activating, rather than silencing, this circuit affords neural control of immune responses. We used single-cell RNA sequencing, combined with functional imaging, to identify the circuit components of this neuroimmune axis, and showed that its selective manipulation can effectively suppress the pro-inflammatory response while enhancing an anti-inflammatory state. The brain-evoked transformation of the course of an immune response offers new possibilities in the modulation of a wide range of immune disorders, from autoimmune diseases to cytokine storm and shock.
Collapse
Affiliation(s)
- Hao Jin
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | - Mengtong Li
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Eric Jeong
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | - Charles S Zuker
- Zuckerman Mind Brain Behavior Institute, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
- Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
24
|
El Hamamy A, Iqbal Z, Mai Le N, Ranjan A, Zhang Y, Lin HW, Tan C, Patrizz A, McCullough LD, Li J. Targeted TGF-βR2 Knockdown in the Retrotrapezoid Nucleus Mitigates Respiratory Dysfunction and Cognitive Decline in a Mouse Model of Cerebral Amyloid Angiopathy with and without Stroke. RESEARCH SQUARE 2024:rs.3.rs-4438544. [PMID: 38854014 PMCID: PMC11160887 DOI: 10.21203/rs.3.rs-4438544/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Introduction Cerebral amyloid angiopathy (CAA) is characterized by the deposition of amyloid-beta peptides within cerebral blood vessels, leading to neurovascular complications. Ischemic strokes result from acute disruptions in cerebral blood flow, triggering metabolic disturbances and neurodegeneration. Both conditions often co-occur and are associated with respiratory dysfunctions. The retrotrapezoid nucleus (RTN), which is crucial for CO2 sensing and breathing regulation in the brainstem, may play a key role in breathing disorders seen in these conditions. This study aims to investigate the role of Transforming Growth Factor Beta (TGF-β) signaling in the RTN on respiratory and cognitive functions in CAA, both with and without concurrent ischemic stroke. Methods Adult male Tg-SwDI (CAA model) mice and C57BL/6 wild-type controls underwent stereotaxic injections of lentivirus targeting TGF-β2R2 in the RTN. Stroke was induced by middle cerebral artery occlusion using a monofilament. Respiratory functions were assessed using whole-body plethysmography, while cognitive functions were evaluated through the Barnes Maze and Novel Object Recognition Test (NORT). Immunohistochemical analysis was conducted to measure TGF-βR2 and GFAP expressions in the RTN. Results CAA mice exhibited significant respiratory dysfunctions, including reduced respiratory rates and increased apnea frequency, as well as impaired cognitive performance. TGF-βR2 knockdown in the RTN improved respiratory functions and cognitive outcomes in CAA mice. In CAA mice with concurrent stroke, TGF-βR2 knockdown similarly enhanced respiratory and cognitive functions. Immunohistochemistry confirmed reduced TGF-βR2 and GFAP expressions in the RTN following knockdown. Conclusions Our findings demonstrate that increased TGF-β signaling and gliosis in the RTN contribute to respiratory and cognitive dysfunctions in CAA and CAA with stroke. Targeting TGF-βR2 signaling in the RTN offers a promising therapeutic strategy to mitigate these impairments. This study is the first to report a causal link between brainstem gliosis and both respiratory and cognitive dysfunctions in CAA and stroke models.
Collapse
Affiliation(s)
| | - Zahid Iqbal
- University of Texas Health Science Center at Houston
| | - Ngoc Mai Le
- University of Texas Health Science Center at Houston
| | - Arya Ranjan
- University of Texas Health Science Center at Houston
| | - YuXing Zhang
- University of Texas Health Science Center at Houston
| | - Hung Wen Lin
- University of Texas Health Science Center at Houston
| | - Chunfeng Tan
- University of Texas Health Science Center at Houston
| | | | | | - Jun Li
- University of Texas Health Science Center at Houston
| |
Collapse
|
25
|
Georgopoulos D, Bolaki M, Stamatopoulou V, Akoumianaki E. Respiratory drive: a journey from health to disease. J Intensive Care 2024; 12:15. [PMID: 38650047 PMCID: PMC11636889 DOI: 10.1186/s40560-024-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Respiratory drive is defined as the intensity of respiratory centers output during the breath and is primarily affected by cortical and chemical feedback mechanisms. During the involuntary act of breathing, chemical feedback, primarily mediated through CO2, is the main determinant of respiratory drive. Respiratory drive travels through neural pathways to respiratory muscles, which execute the breathing process and generate inspiratory flow (inspiratory flow-generation pathway). In a healthy state, inspiratory flow-generation pathway is intact, and thus respiratory drive is satisfied by the rate of volume increase, expressed by mean inspiratory flow, which in turn determines tidal volume. In this review, we will explain the pathophysiology of altered respiratory drive by analyzing the respiratory centers response to arterial partial pressure of CO2 (PaCO2) changes. Both high and low respiratory drive have been associated with several adverse effects in critically ill patients. Hence, it is crucial to understand what alters the respiratory drive. Changes in respiratory drive can be explained by simultaneously considering the (1) ventilatory demands, as dictated by respiratory centers activity to CO2 (brain curve); (2) actual ventilatory response to CO2 (ventilation curve); and (3) metabolic hyperbola. During critical illness, multiple mechanisms affect the brain and ventilation curves, as well as metabolic hyperbola, leading to considerable alterations in respiratory drive. In critically ill patients the inspiratory flow-generation pathway is invariably compromised at various levels. Consequently, mean inspiratory flow and tidal volume do not correspond to respiratory drive, and at a given PaCO2, the actual ventilation is less than ventilatory demands, creating a dissociation between brain and ventilation curves. Since the metabolic hyperbola is one of the two variables that determine PaCO2 (the other being the ventilation curve), its upward or downward movements increase or decrease respiratory drive, respectively. Mechanical ventilation indirectly influences respiratory drive by modifying PaCO2 levels through alterations in various parameters of the ventilation curve and metabolic hyperbola. Understanding the diverse factors that modulate respiratory drive at the bedside could enhance clinical assessment and the management of both the patient and the ventilator.
Collapse
Affiliation(s)
| | - Maria Bolaki
- Department of Intensive Care Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Vaia Stamatopoulou
- Department of Pulmonary Medicine, University Hospital of Heraklion, Heraklion , Crete, Greece
| | - Evangelia Akoumianaki
- Medical School, University of Crete, Heraklion, Crete, Greece
- Department of Intensive Care Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| |
Collapse
|
26
|
Getsy PM, Coffee GA, May WJ, Baby SM, Bates JN, Lewis SJ. The Reducing Agent Dithiothreitol Modulates the Ventilatory Responses That Occur in Freely Moving Rats during and following a Hypoxic-Hypercapnic Challenge. Antioxidants (Basel) 2024; 13:498. [PMID: 38671945 PMCID: PMC11047747 DOI: 10.3390/antiox13040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The present study examined the hypothesis that changes in the oxidation-reduction state of thiol residues in functional proteins play a major role in the expression of the ventilatory responses in conscious rats that occur during a hypoxic-hypercapnic (HH) gas challenge and upon return to room air. A HH gas challenge in vehicle-treated rats elicited robust and sustained increases in minute volume (via increases in frequency of breathing and tidal volume), peak inspiratory and expiratory flows, and inspiratory and expiratory drives while minimally affecting the non-eupneic breathing index (NEBI). The HH-induced increases in these parameters, except for frequency of breathing, were substantially diminished in rats pre-treated with the potent and lipophilic disulfide-reducing agent, L,D-dithiothreitol (100 µmol/kg, IV). The ventilatory responses that occurred upon return to room air were also substantially different in dithiothreitol-treated rats. In contrast, pre-treatment with a substantially higher dose (500 µmol/kg, IV) of the lipophilic congener of the monosulfide, N-acetyl-L-cysteine methyl ester (L-NACme), only minimally affected the expression of the above-mentioned ventilatory responses that occurred during the HH gas challenge or upon return to room air. The effectiveness of dithiothreitol suggests that the oxidation of thiol residues occurs during exposure to a HH gas challenge and that this process plays an essential role in allowing for the expression of the post-HH excitatory phase in breathing. However, this interpretation is contradicted by the lack of effects of L-NACme. This apparent conundrum may be explained by the disulfide structure affording unique functional properties to dithiothreitol in comparison to monosulfides. More specifically, the disulfide structure may give dithiothreitol the ability to alter the conformational state of functional proteins while transferring electrons. It is also possible that dithiothreitol is simply a more efficient reducing agent following systemic injection, although one interpretation of the data is that the effects of dithiothreitol are not due to its reducing ability.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.G.); (G.A.C.)
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.G.); (G.A.C.)
| | - Walter J. May
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22903, USA;
| | - Santhosh M. Baby
- Galleon Pharmaceuticals, Inc., 213 Witmer Road, Horsham, PA 19044, USA;
| | - James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa, IA 52242, USA;
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA; (P.M.G.); (G.A.C.)
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
27
|
Janes TA, Cardani S, Saini JK, Pagliardini S. Etonogestrel promotes respiratory recovery in an in vivo rat model of central chemoreflex impairment. Acta Physiol (Oxf) 2024; 240:e14093. [PMID: 38258900 DOI: 10.1111/apha.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
AIM The central CO2 chemoreflex is a vital component of respiratory control networks, providing excitatory drive during resting conditions and challenges to blood gas homeostasis. The retrotrapezoid nucleus is a crucial hub for CO2 chemosensitivity; its ablation or inhibition attenuates CO2 chemoreflexes and diminishes restful breathing. Similar phenotypes characterize certain hypoventilation syndromes, suggesting underlying retrotrapezoid nucleus impairment in these disorders. Progesterone stimulates restful breathing and CO2 chemoreflexes. However, its mechanisms and sites of actions remain unknown and the experimental use of synthetic progestins in patients and animal models have been met with mixed respiratory outcomes. METHODS We investigated whether acute or chronic administration of the progestinic drug, etonogestrel, could rescue respiratory chemoreflexes following selective lesion of the retrotrapezoid nucleus with saporin toxin. Adult female Sprague Dawley rats were grouped based on lesion size determined by the number of surviving chemosensitive neurons, and ventilatory responses were measured by whole body plethysmography. RESULTS Ventilatory responses to hypercapnia (but not hypoxia) were compromised in a lesion-dependent manner. Chronic etonogestrel treatment improved CO2 chemosensitivity selectively in rats with moderate lesion, suggesting that a residual number of chemosensitive neurons are required for etonogestrel-induced CO2 chemoreflex recovery. CONCLUSION This study provides new evidence for the use of progestins as respiratory stimulants under conditions of central hypoventilation and provides a new testable model for assessing the mechanism of action of progestins in the respiratory network.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jasmeen K Saini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Hofmann GC, Gama de Barcellos Filho P, Khodadadi F, Ostrowski D, Kline DD, Hasser EM. Vagotomy blunts cardiorespiratory responses to vagal afferent stimulation via pre- and postsynaptic effects in the nucleus tractus solitarii. J Physiol 2024; 602:1147-1174. [PMID: 38377124 DOI: 10.1113/jp285854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Viscerosensory information travels to the brain via vagal afferents, where it is first integrated within the brainstem nucleus tractus solitarii (nTS), a critical contributor to cardiorespiratory function and site of neuroplasticity. We have shown that decreasing input to the nTS via unilateral vagus nerve transection (vagotomy) induces morphological changes in nTS glia and reduces sighs during hypoxia. The mechanisms behind post-vagotomy changes are not well understood. We hypothesized that chronic vagotomy alters cardiorespiratory responses to vagal afferent stimulation via blunted nTS neuronal activity. Male Sprague-Dawley rats (6 weeks old) underwent right cervical vagotomy caudal to the nodose ganglion, or sham surgery. After 1 week, rats were anaesthetized, ventilated and instrumented to measure mean arterial pressure (MAP), heart rate (HR), and splanchnic sympathetic and phrenic nerve activity (SSNA and PhrNA, respectively). Vagal afferent stimulation (2-50 Hz) decreased cardiorespiratory parameters and increased neuronal Ca2+ measured by in vivo photometry and in vitro slice imaging of nTS GCaMP8m. Vagotomy attenuated both these reflex and neuronal Ca2+ responses compared to shams. Vagotomy also reduced presynaptic Ca2+ responses to stimulation (Cal-520 imaging) in the nTS slice. The decrease in HR, SSNA and PhrNA due to nTS nanoinjection of exogenous glutamate also was tempered following vagotomy. This effect was not restored by blocking excitatory amino acid transporters. However, the blunted responses were mimicked by NMDA, not AMPA, nanoinjection and were associated with reduced NR1 subunits in the nTS. Altogether, these results demonstrate that vagotomy induces multiple changes within the nTS tripartite synapse that influence cardiorespiratory reflex responses to afferent stimulation. KEY POINTS: Multiple mechanisms within the nucleus tractus solitarii (nTS) contribute to functional changes following vagal nerve transection. Vagotomy results in reduced cardiorespiratory reflex responses to vagal afferent stimulation and nTS glutamate nanoinjection. Blunted responses occur via reduced presynaptic Ca2+ activation and attenuated NMDA receptor expression and function, leading to a reduction in nTS neuronal activation. These results provide insight into the control of autonomic and respiratory function, as well as the plasticity that can occur in response to nerve damage and cardiorespiratory disease.
Collapse
Affiliation(s)
- Gabrielle C Hofmann
- Comparative Medicine, University of Missouri, Columbia, Missouri, USA
- Area Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Procopio Gama de Barcellos Filho
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Fateme Khodadadi
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Daniela Ostrowski
- Department of Pharmacology, A.T. Still University, Kirksville, Missouri, USA
| | - David D Kline
- Area Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Eileen M Hasser
- Area Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
29
|
Schappe MS, Brinn PA, Joshi NR, Greenberg RS, Min S, Alabi AA, Zhang C, Liberles SD. A vagal reflex evoked by airway closure. Nature 2024; 627:830-838. [PMID: 38448588 PMCID: PMC10972749 DOI: 10.1038/s41586-024-07144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Airway integrity must be continuously maintained throughout life. Sensory neurons guard against airway obstruction and, on a moment-by-moment basis, enact vital reflexes to maintain respiratory function1,2. Decreased lung capacity is common and life-threatening across many respiratory diseases, and lung collapse can be acutely evoked by chest wall trauma, pneumothorax or airway compression. Here we characterize a neuronal reflex of the vagus nerve evoked by airway closure that leads to gasping. In vivo vagal ganglion imaging revealed dedicated sensory neurons that detect airway compression but not airway stretch. Vagal neurons expressing PVALB mediate airway closure responses and innervate clusters of lung epithelial cells called neuroepithelial bodies (NEBs). Stimulating NEBs or vagal PVALB neurons evoked gasping in the absence of airway threats, whereas ablating NEBs or vagal PVALB neurons eliminated gasping in response to airway closure. Single-cell RNA sequencing revealed that NEBs uniformly express the mechanoreceptor PIEZO2, and targeted knockout of Piezo2 in NEBs eliminated responses to airway closure. NEBs were dispensable for the Hering-Breuer inspiratory reflex, which indicated that discrete terminal structures detect airway closure and inflation. Similar to the involvement of Merkel cells in touch sensation3,4, NEBs are PIEZO2-expressing epithelial cells and, moreover, are crucial for an aspect of lung mechanosensation. These findings expand our understanding of neuronal diversity in the airways and reveal a dedicated vagal pathway that detects airway closure to help preserve respiratory function.
Collapse
Affiliation(s)
- Michael S Schappe
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Philip A Brinn
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Narendra R Joshi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Rachel S Greenberg
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Soohong Min
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - AbdulRasheed A Alabi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Chuchu Zhang
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Stephen D Liberles
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Wang RL, Chang RB. The Coding Logic of Interoception. Annu Rev Physiol 2024; 86:301-327. [PMID: 38061018 PMCID: PMC11103614 DOI: 10.1146/annurev-physiol-042222-023455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Interoception, the ability to precisely and timely sense internal body signals, is critical for life. The interoceptive system monitors a large variety of mechanical, chemical, hormonal, and pathological cues using specialized organ cells, organ innervating neurons, and brain sensory neurons. It is important for maintaining body homeostasis, providing motivational drives, and regulating autonomic, cognitive, and behavioral functions. However, compared to external sensory systems, our knowledge about how diverse body signals are coded at a system level is quite limited. In this review, we focus on the unique features of interoceptive signals and the organization of the interoceptive system, with the goal of better understanding the coding logic of interoception.
Collapse
Affiliation(s)
- Ruiqi L Wang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Rui B Chang
- Department of Neuroscience and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
31
|
Bush NE, Ramirez JM. Latent neural population dynamics underlying breathing, opioid-induced respiratory depression and gasping. Nat Neurosci 2024; 27:259-271. [PMID: 38182835 PMCID: PMC10849970 DOI: 10.1038/s41593-023-01520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/06/2023] [Indexed: 01/07/2024]
Abstract
Breathing is vital and must be concurrently robust and flexible. This rhythmic behavior is generated and maintained within a rostrocaudally aligned set of medullary nuclei called the ventral respiratory column (VRC). The rhythmic properties of individual VRC nuclei are well known, yet technical challenges have limited the interrogation of the entire VRC population simultaneously. Here we characterize over 15,000 medullary units using high-density electrophysiology, opto-tagging and histological reconstruction. Population dynamics analysis reveals consistent rotational trajectories through a low-dimensional neural manifold. These rotations are robust and maintained even during opioid-induced respiratory depression. During severe hypoxia-induced gasping, the low-dimensional dynamics of the VRC reconfigure from rotational to all-or-none, ballistic efforts. Thus, latent dynamics provide a unifying lens onto the activities of large, heterogeneous populations of neurons involved in the simple, yet vital, behavior of breathing, and well describe how these populations respond to a variety of perturbations.
Collapse
Affiliation(s)
- Nicholas Edward Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|
32
|
Díaz-Jara E, Pereyra K, Vicencio S, Olesen MA, Schwarz KG, Toledo C, Díaz HS, Quintanilla RA, Del Rio R. Superoxide dismutase 2 deficiency is associated with enhanced central chemoreception in mice: Implications for breathing regulation. Redox Biol 2024; 69:102992. [PMID: 38142585 PMCID: PMC10788617 DOI: 10.1016/j.redox.2023.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023] Open
Abstract
AIMS In mammals, central chemoreception plays a crucial role in the regulation of breathing function in both health and disease conditions. Recently, a correlation between high levels of superoxide anion (O2.-) in the Retrotrapezoid nucleus (RTN), a main brain chemoreceptor area, and enhanced central chemoreception has been found in rodents. Interestingly, deficiency in superoxide dismutase 2 (SOD2) expression, a pivotal antioxidant enzyme, has been linked to the development/progression of several diseases. Despite, the contribution of SOD2 on O2.- regulation on central chemoreceptor function is unknown. Accordingly, we sought to determine the impact of partial deletion of SOD2 expression on i) O2.-accumulation in the RTN, ii) central ventilatory chemoreflex function, and iii) disordered-breathing. Finally, we study cellular localization of SOD2 in the RTN of healthy mice. METHODS Central chemoreflex drive and breathing function were assessed in freely moving heterozygous SOD2 knockout mice (SOD2+/- mice) and age-matched control wild type (WT) mice by whole-body plethysmography. O2.- levels were determined in RTN brainstem sections and brain isolated mitochondria, while SOD2 protein expression and tissue localization were determined by immunoblot, RNAseq and immunofluorescent staining, respectively. RESULTS Our results showed that SOD2+/- mice displayed reductions in SOD2 levels and high O2.- formation and mitochondrial dysfunction within the RTN compared to WT. Additionally, SOD2+/- mice displayed a heightened ventilatory response to hypercapnia and exhibited overt signs of altered breathing patterns. Both, RNAseq analysis and immunofluorescence co-localization studies showed that SOD2 expression was confined to RTN astrocytes but not to RTN chemoreceptor neurons. Finally, we found that SOD2+/- mice displayed alterations in RTN astrocyte morphology compared to RTN astrocytes from WT mice. INNOVATION & CONCLUSION These findings provide first evidence of the role of SOD2 in the regulation of O2.- levels in the RTN and its potential contribution on the regulation of central chemoreflex function. Our results suggest that reductions in the expression of SOD2 in the brain may contribute to increase O2.- levels in the RTN being the outcome a chronic surge in central chemoreflex drive and the development/maintenance of altered breathing patterns. Overall, dysregulation of SOD2 and the resulting increase in O2.- levels in brainstem respiratory areas can disrupt normal respiratory control mechanisms and contribute to breathing dysfunction seen in certain disease conditions characterized by high oxidative stress.
Collapse
Affiliation(s)
- Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Katherine Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sinay Vicencio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute of Physiology, Universidad Austral de Chile, Valdivia, Chile.
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile; Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
33
|
Chapp AD, Shan Z, Chen QH. Acetic Acid: An Underestimated Metabolite in Ethanol-Induced Changes in Regulating Cardiovascular Function. Antioxidants (Basel) 2024; 13:139. [PMID: 38397737 PMCID: PMC10886048 DOI: 10.3390/antiox13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Acetic acid is a bioactive short-chain fatty acid produced in large quantities from ethanol metabolism. In this review, we describe how acetic acid/acetate generates oxidative stress, alters the function of pre-sympathetic neurons, and can potentially influence cardiovascular function in both humans and rodents after ethanol consumption. Our recent findings from in vivo and in vitro studies support the notion that administration of acetic acid/acetate generates oxidative stress and increases sympathetic outflow, leading to alterations in arterial blood pressure. Real-time investigation of how ethanol and acetic acid/acetate modulate neural control of cardiovascular function can be conducted by microinjecting compounds into autonomic control centers of the brain and measuring changes in peripheral sympathetic nerve activity and blood pressure in response to these compounds.
Collapse
Affiliation(s)
- Andrew D. Chapp
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhiying Shan
- Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931, USA;
| | - Qing-Hui Chen
- Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931, USA;
| |
Collapse
|
34
|
Lu S, Qian CS, Grueber WB. Mechanisms of gas sensing by internal sensory neurons in Drosophila larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576342. [PMID: 38293088 PMCID: PMC10827222 DOI: 10.1101/2024.01.20.576342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Internal sensory neurons monitor the chemical and physical state of the body, providing critical information to the central nervous system for maintaining homeostasis and survival. A population of larval Drosophila sensory neurons, tracheal dendrite (td) neurons, elaborate dendrites along respiratory organs and may serve as a model for elucidating the cellular and molecular basis of chemosensation by internal neurons. We find that td neurons respond to decreases in O2 levels and increases in CO2 levels. We assessed the roles of atypical soluble guanylyl cyclases (Gycs) and a gustatory receptor (Gr) in mediating these responses. We found that Gyc88E/Gyc89Db were necessary for responses to hypoxia, and that Gr28b was necessary for responses to CO2. Targeted expression of Gr28b isoform c in td neurons rescued responses to CO2 in mutant larvae and also induced ectopic sensitivity to CO2 in the td network. Gas-sensitive td neurons were activated when larvae burrowed for a prolonged duration, demonstrating a natural-like feeding condition in which td neurons are activated. Together, our work identifies two gaseous stimuli that are detected by partially overlapping subsets of internal sensory neurons, and establishes roles for Gyc88E/Gyc89Db in the detection of hypoxia, and Gr28b in the detection of CO2.
Collapse
Affiliation(s)
- Shan Lu
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Biological Sciences, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| | - Cheng Sam Qian
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| | - Wesley B. Grueber
- Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Physiology and Cellular Biophysics, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
- Department of Neuroscience, Jerome L. Greene Science Center, 3227 Broadway, L9-007, Columbia University, New York, NY 10027
| |
Collapse
|
35
|
Pongpanit K, Laosiripisan J, Songsorn P, Charususin N, Yuenyongchaiwat K. Neural respiratory drive assessment and its correlation with inspiratory muscle strength in patients undergoing open-heart surgery: A cross-sectional study. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2024; 29:e2073. [PMID: 38284467 DOI: 10.1002/pri.2073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND AND PURPOSE Pulmonary dysfunction and inspiratory muscle weakness are frequently observed after cardiac surgery. Understanding the load on and capacity of respiratory muscles can provide valuable insights into the overall respiratory mechanics and neural regulation of breathing. This study aimed to assess the extent of neural respiratory drive (NRD) and determine whether admission-to-discharge differences in NRD were associated with inspiratory muscle strength changes among patients undergoing open-heart surgery. METHODS This cross-sectional study was conducted on 45 patients scheduled for coronary artery bypass graft or heart valve surgery. NRD was measured using a surface parasternal intercostal electromyogram during resting breathing (sEMGpara tidal) and maximal inspiratory effort (sEMGpara max). Maximal inspiratory pressure (MIP) was used to determine inspiratory muscle strength. Evaluations were performed on the day of admission and discharge. RESULTS There was a significant increase in sEMGpara tidal (6.9 ± 3.6 μV, p < 0.001), sEMGpara %max (13.7 ± 11.2%, p = 0.008), and neural respiratory drive index (NRDI, the product of EMGpara %max and respiratory rate) (337.7 ± 286.8%.breaths/min, p < 0.001), while sEMGpara max (-43.6 ± 20.4 μV, p < 0.01) and MIP (-24.4 ± 10.7, p < 0.001) significantly decreased during the discharge period. Differences in sEMGpara tidal (r = -0.369, p = 0.045), sEMGpara %max (r = -0.646, p = 0.001), and NRDI (r = -0.639, p = 0.001) were significantly associated with a reduction in MIP. DISCUSSION The findings indicate that NRD increases after open-heart surgery, which corresponds to a decrease in inspiratory muscle strength.
Collapse
Affiliation(s)
- Karan Pongpanit
- Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
| | - Jitanan Laosiripisan
- Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
| | - Preeyaphorn Songsorn
- Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
- Research Unit of Physical Therapy in Respiratory and Cardiovascular Systems, Thammasat University, Pathum Thani, Thailand
| | - Noppawan Charususin
- Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
- Research Unit of Physical Therapy in Respiratory and Cardiovascular Systems, Thammasat University, Pathum Thani, Thailand
| | - Kornanong Yuenyongchaiwat
- Department of Physical Therapy, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand
- Research Unit of Physical Therapy in Respiratory and Cardiovascular Systems, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
36
|
Andrade DC, Arce‐Álvarez A, Salazar‐Ardiles C, Toledo C, Guerrero‐Henriquez J, Alvarez C, Vasquez‐Muñoz M, Izquierdo M, Millet GP. Hypoxic peripheral chemoreflex stimulation-dependent cardiorespiratory coupling is decreased in swimmer athletes. Physiol Rep 2024; 12:e15890. [PMID: 38195247 PMCID: PMC10776339 DOI: 10.14814/phy2.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024] Open
Abstract
Swimmer athletes showed a decreased ventilatory response and reduced sympathetic activation during peripheral hypoxic chemoreflex stimulation. Based on these observations, we hypothesized that swimmers develop a diminished cardiorespiratory coupling due to their decreased hypoxic peripheral response. To resolve this hypothesis, we conducted a study using coherence time-varying analysis to assess the cardiorespiratory coupling in swimmer athletes. We recruited 12 trained swimmers and 12 control subjects for our research. We employed wavelet time-varying spectral coherence analysis to examine the relationship between the respiratory frequency (Rf ) and the heart rate (HR) time series during normoxia and acute chemoreflex activation induced by five consecutive inhalations of 100% N2 . Comparing swimmers to control subjects, we observed a significant reduction in the hypoxic ventilatory responses to N2 in swimmers (0.012 ± 0.001 vs. 0.015 ± 0.001 ΔVE /ΔVO2 , and 0.365 ± 0.266 vs. 1.430 ± 0.961 ΔVE /ΔVCO2 /ΔSpO2 , both p < 0.001, swimmers vs. control, respectively). Furthermore, the coherence at the LF cutoff during hypoxia was significantly lower in swimmers compared to control subjects (20.118 ± 3.502 vs. 24.935 ± 3.832 area under curve [AUC], p < 0.012, respectively). Our findings strongly indicate that due to their diminished chemoreflex control, swimmers exhibited a substantial decrease in cardiorespiratory coupling during hypoxic stimulation.
Collapse
Affiliation(s)
- David C. Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomedico, Facultad de Ciencias de la SaludUniversidad de AntofagastaAntofagastaChile
| | - Alexis Arce‐Álvarez
- Escuela de Kinesiología, Facultad de Odontología y Ciencias de la RehabilitaciónUniversidad San SebastiánSantiagoChile
| | - Camila Salazar‐Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomedico, Facultad de Ciencias de la SaludUniversidad de AntofagastaAntofagastaChile
- NavarrabiomedHospital Universitario de Navarra (UHN), Universidad Pública de Navarra (UPNA), IdiSNAPamplonaNavarraSpain
| | - Camilo Toledo
- Laboratory of Cardiorespiratory and Sleep Physiology. Institute of Physiology. Faculty of MedicineUniversidad Austral de ChileValdiviaChile
| | - Juan Guerrero‐Henriquez
- Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento de Ciencias de la Rehabilitación y el Movimiento Humano, Facultad de Ciencias de la SaludUniversidad de AntofagastaAntofagastaChile
| | - Cristian Alvarez
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation SciencesUniversidad Andres BelloSantiagoChile
| | - Manuel Vasquez‐Muñoz
- Dirección de Docencia de Especialidades Médicas, Dirección de Postgrado, Facultad de Medicina y Ciencias de la SaludUniversidad MayorSantiagoChile
| | - Mikel Izquierdo
- NavarrabiomedHospital Universitario de Navarra (UHN), Universidad Pública de Navarra (UPNA), IdiSNAPamplonaNavarraSpain
| | | |
Collapse
|
37
|
Hao X, Yang Y, Liu J, Zhang D, Ou M, Ke B, Zhu T, Zhou C. The Modulation by Anesthetics and Analgesics of Respiratory Rhythm in the Nervous System. Curr Neuropharmacol 2024; 22:217-240. [PMID: 37563812 PMCID: PMC10788885 DOI: 10.2174/1570159x21666230810110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/27/2023] [Accepted: 02/28/2023] [Indexed: 08/12/2023] Open
Abstract
Rhythmic eupneic breathing in mammals depends on the coordinated activities of the neural system that sends cranial and spinal motor outputs to respiratory muscles. These outputs modulate lung ventilation and adjust respiratory airflow, which depends on the upper airway patency and ventilatory musculature. Anesthetics are widely used in clinical practice worldwide. In addition to clinically necessary pharmacological effects, respiratory depression is a critical side effect induced by most general anesthetics. Therefore, understanding how general anesthetics modulate the respiratory system is important for the development of safer general anesthetics. Currently used volatile anesthetics and most intravenous anesthetics induce inhibitory effects on respiratory outputs. Various general anesthetics produce differential effects on respiratory characteristics, including the respiratory rate, tidal volume, airway resistance, and ventilatory response. At the cellular and molecular levels, the mechanisms underlying anesthetic-induced breathing depression mainly include modulation of synaptic transmission of ligand-gated ionotropic receptors (e.g., γ-aminobutyric acid, N-methyl-D-aspartate, and nicotinic acetylcholine receptors) and ion channels (e.g., voltage-gated sodium, calcium, and potassium channels, two-pore domain potassium channels, and sodium leak channels), which affect neuronal firing in brainstem respiratory and peripheral chemoreceptor areas. The present review comprehensively summarizes the modulation of the respiratory system by clinically used general anesthetics, including the effects at the molecular, cellular, anatomic, and behavioral levels. Specifically, analgesics, such as opioids, which cause respiratory depression and the "opioid crisis", are discussed. Finally, underlying strategies of respiratory stimulation that target general anesthetics and/or analgesics are summarized.
Collapse
Affiliation(s)
- Xuechao Hao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yaoxin Yang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mengchan Ou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| |
Collapse
|
38
|
Amorim MR, Wang X, Aung O, Bevans-Fonti S, Anokye-Danso F, Ribeiro C, Escobar J, Freire C, Pho H, Dergacheva O, Branco LGS, Ahima RS, Mendelowitz D, Polotsky VY. Leptin signaling in the dorsomedial hypothalamus couples breathing and metabolism in obesity. Cell Rep 2023; 42:113512. [PMID: 38039129 PMCID: PMC10804286 DOI: 10.1016/j.celrep.2023.113512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Mismatch between CO2 production (Vco2) and respiration underlies the pathogenesis of obesity hypoventilation. Leptin-mediated CNS pathways stimulate both metabolism and breathing, but interactions between these functions remain elusive. We hypothesized that LEPRb+ neurons of the dorsomedial hypothalamus (DMH) regulate metabolism and breathing in obesity. In diet-induced obese LeprbCre mice, chemogenetic activation of LEPRb+ DMH neurons increases minute ventilation (Ve) during sleep, the hypercapnic ventilatory response, Vco2, and Ve/Vco2, indicating that breathing is stimulated out of proportion to metabolism. The effects of chemogenetic activation are abolished by a serotonin blocker. Optogenetic stimulation of the LEPRb+ DMH neurons evokes excitatory postsynaptic currents in downstream serotonergic neurons of the dorsal raphe (DR). Administration of retrograde AAV harboring Cre-dependent caspase to the DR deletes LEPRb+ DMH neurons and abolishes metabolic and respiratory responses to leptin. These findings indicate that LEPRb+ DMH neurons match breathing to metabolism through serotonergic pathways to prevent obesity-induced hypoventilation.
Collapse
Affiliation(s)
- Mateus R Amorim
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA.
| | - Xin Wang
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - O Aung
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Shannon Bevans-Fonti
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA
| | | | - Caitlin Ribeiro
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Joan Escobar
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Carla Freire
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Huy Pho
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Luiz G S Branco
- University of São Paulo, Ribeirão Preto, São Paulo 14040-904, Brazil
| | - Rexford S Ahima
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Vsevolod Y Polotsky
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA; Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
39
|
Conde SV, Polotsky VY, Joseph V, Kinkead R. On the origins of sleep disordered breathing, cardiorespiratory and metabolic dysfunction: which came first, the chicken or the egg? J Physiol 2023; 601:5509-5525. [PMID: 36988138 PMCID: PMC10539476 DOI: 10.1113/jp284113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Sleep disordered breathing (SDB) is a complex, sex specific and highly heterogeneous group of respiratory disorders. Nevertheless, sleep fragmentation and repeated fluctuations of arterial blood gases for several hours per night are at the core of the problem; together, they impose significant stress to the organism with deleterious consequences on physical and mental health. SDB increases the risk of obesity, diabetes, depression and anxiety disorders; however, the same health issues are risk factors for SDB. So, which came first, the chicken or the egg? What causes the appearance of the first significant apnoeic events during sleep? These are important questions because although moderate to severe SDB affects ∼500 million adults globally, we still have a poor understanding of the origins of the disease, and the main treatments (and animal models) focus on the symptoms rather than the cause. Because obesity, metabolic dysfunction and stress-related neurological disorders generally appear progressively, we discuss how the development of these diseases can lead to specific anatomical and non-anatomical traits of SDB in males and females while considering the impacts of sex steroids. In light of the growing evidence indicating that the carotid bodies are important sensors of key metabolic and endocrine signals associated with stress and dysmetabolism, we propose that these organs play a key role in the process.
Collapse
Affiliation(s)
- Silvia V. Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Vsevolod Y Polotsky
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vincent Joseph
- Département de Pédiatrie, Université Laval & Research Center of the Québec Heart and Lung Institute, Québec, QC. Canada
| | - Richard Kinkead
- Département de Pédiatrie, Université Laval & Research Center of the Québec Heart and Lung Institute, Québec, QC. Canada
| |
Collapse
|
40
|
Fincham GW, Kartar A, Uthaug MV, Anderson B, Hall L, Nagai Y, Critchley H, Colasanti A. High ventilation breathwork practices: An overview of their effects, mechanisms, and considerations for clinical applications. Neurosci Biobehav Rev 2023; 155:105453. [PMID: 37923236 DOI: 10.1016/j.neubiorev.2023.105453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
High Ventilation Breathwork (HVB) refers to practices employing specific volitional manipulation of breathing, with a long history of use to relieve various forms of psychological distress. This paper seeks to offer a consolidative insight into potential clinical application of HVB as a treatment of psychiatric disorders. We thus review the characteristic phenomenological and neurophysiological effects of these practices to inform their mechanism of therapeutic action, safety profiles and future clinical applications. Clinical observations and data from neurophysiological studies indicate that HVB is associated with extraordinary changes in subjective experience, as well as with profound effects on central and autonomic nervous systems functions through modulation of neurometabolic parameters and interoceptive sensory systems. This growing evidence base may guide how the phenomenological effects of HVB can be understood, and potentially harnessed in the context of such volitional perturbation of psychophysiological state. Reports of putative beneficial effects for trauma-related, affective, and somatic disorders invite further research to obtain detailed mechanistic knowledge, and rigorous clinical testing of these potential therapeutic uses.
Collapse
Affiliation(s)
- Guy W Fincham
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK; University of Sussex, School of Psychology, Brighton, UK.
| | - Amy Kartar
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK
| | - Malin V Uthaug
- The Centre for Psychedelic Research, Division of Psychiatry, Imperial College London, UK; Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, The Netherlands
| | - Brittany Anderson
- University of Wisconsin School of Medicine & Public Health, Department of Psychiatry, University of Wisconsin-Madison, USA
| | - Lottie Hall
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK
| | - Yoko Nagai
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK
| | - Hugo Critchley
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK
| | - Alessandro Colasanti
- Brighton & Sussex Medical School, Department of Neuroscience, University of Sussex, UK; Sussex Partnership NHS Foundation Trust.
| |
Collapse
|
41
|
Harmata GI, Rhone AE, Kovach CK, Kumar S, Mowla MR, Sainju RK, Nagahama Y, Oya H, Gehlbach BK, Ciliberto MA, Mueller RN, Kawasaki H, Pattinson KT, Simonyan K, Davenport PW, Howard MA, Steinschneider M, Chan AC, Richerson GB, Wemmie JA, Dlouhy BJ. Failure to breathe persists without air hunger or alarm following amygdala seizures. JCI Insight 2023; 8:e172423. [PMID: 37788112 PMCID: PMC10721319 DOI: 10.1172/jci.insight.172423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Postictal apnea is thought to be a major cause of sudden unexpected death in epilepsy (SUDEP). However, the mechanisms underlying postictal apnea are unknown. To understand causes of postictal apnea, we used a multimodal approach to study brain mechanisms of breathing control in 20 patients (ranging from pediatric to adult) undergoing intracranial electroencephalography for intractable epilepsy. Our results indicate that amygdala seizures can cause postictal apnea. Moreover, we identified a distinct region within the amygdala where electrical stimulation was sufficient to reproduce prolonged breathing loss persisting well beyond the end of stimulation. The persistent apnea was resistant to rising CO2 levels, and air hunger failed to occur, suggesting impaired CO2 chemosensitivity. Using es-fMRI, a potentially novel approach combining electrical stimulation with functional MRI, we found that amygdala stimulation altered blood oxygen level-dependent (BOLD) activity in the pons/medulla and ventral insula. Together, these findings suggest that seizure activity in a focal subregion of the amygdala is sufficient to suppress breathing and air hunger for prolonged periods of time in the postictal period, likely via brainstem and insula sites involved in chemosensation and interoception. They further provide insights into SUDEP, may help identify those at greatest risk, and may lead to treatments to prevent SUDEP.
Collapse
Affiliation(s)
- Gail I.S. Harmata
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Pharmacological Sciences Training Program
- Department of Psychiatry
| | | | | | | | | | | | | | - Hiroyuki Oya
- Department of Neurosurgery
- Iowa Neuroscience Institute
| | | | | | - Rashmi N. Mueller
- Department of Neurosurgery
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, USA
| | | | - Kyle T.S. Pattinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Kristina Simonyan
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul W. Davenport
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Matthew A. Howard
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| | | | | | - George B. Richerson
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Neurology
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - John A. Wemmie
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Psychiatry
- Department of Internal Medicine
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Brian J. Dlouhy
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| |
Collapse
|
42
|
Phillips RS, Baertsch NA. Interdependence of cellular and network properties in respiratory rhythmogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564834. [PMID: 37961254 PMCID: PMC10634953 DOI: 10.1101/2023.10.30.564834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
How breathing is generated by the preBötzinger Complex (preBötC) remains divided between two ideological frameworks, and the persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or "pacemaker" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from "pre-inspiratory" spiking activity driven by feed-forward network interactions. Using computational modeling, we discover that changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and pre-inspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or pre-inspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.
Collapse
Affiliation(s)
- Ryan S Phillips
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle WA, USA
- Pulmonary, Critical Care and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle WA, USA
| |
Collapse
|
43
|
Ahmadzadeh E, Polglase GR, Stojanovska V, Herlenius E, Walker DW, Miller SL, Allison BJ. Does fetal growth restriction induce neuropathology within the developing brainstem? J Physiol 2023; 601:4667-4689. [PMID: 37589339 PMCID: PMC10953350 DOI: 10.1113/jp284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Graeme R. Polglase
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Vanesa Stojanovska
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Eric Herlenius
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children´s HospitalKarolinska University Hospital StockholmSolnaSweden
| | - David W. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical SciencesRoyal Melbourne Institute of Technology (RMIT)MelbourneVictoriaAustralia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Beth J. Allison
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
44
|
Battaglia M, Rossignol O, Lorenzo LE, Deguire J, Godin AG, D’Amato FR, De Koninck Y. Enhanced harm detection following maternal separation: Transgenerational transmission and reversibility by inhaled amiloride. SCIENCE ADVANCES 2023; 9:eadi8750. [PMID: 37792939 PMCID: PMC10550232 DOI: 10.1126/sciadv.adi8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Early-life adversities are associated with altered defensive responses. Here, we demonstrate that the repeated cross-fostering (RCF) paradigm of early maternal separation is associated with enhancements of distinct homeostatic reactions: hyperventilation in response to hypercapnia and nociceptive sensitivity, among the first generation of RCF-exposed animals, as well as among two successive generations of their normally reared offspring, through matrilineal transmission. Parallel enhancements of acid-sensing ion channel 1 (ASIC1), ASIC2, and ASIC3 messenger RNA transcripts were detected transgenerationally in central neurons, in the medulla oblongata, and in periaqueductal gray matter of RCF-lineage animals. A single, nebulized dose of the ASIC-antagonist amiloride renormalized respiratory and nociceptive responsiveness across the entire RCF lineage. These findings reveal how, following an early-life adversity, a biological memory reducible to a molecular sensor unfolds, shaping adaptation mechanisms over three generations. Our findings are entwined with multiple correlates of human anxiety and pain conditions and suggest nebulized amiloride as a therapeutic avenue.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Child Youth and Emerging Adult Programme, Centre for Addiction and Mental Health, Toronto, ON, Canada
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Orlane Rossignol
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Jasmin Deguire
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Antoine G. Godin
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Francesca R. D’Amato
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| |
Collapse
|
45
|
Xie Y, Zhang L, Guo S, Peng R, Gong H, Yang M. Changes in respiratory structure and function after traumatic cervical spinal cord injury: observations from spinal cord and brain. Front Neurol 2023; 14:1251833. [PMID: 37869136 PMCID: PMC10587692 DOI: 10.3389/fneur.2023.1251833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Respiratory difficulties and mortality following severe cervical spinal cord injury (CSCI) result primarily from malfunctions of respiratory pathways and the paralyzed diaphragm. Nonetheless, individuals with CSCI can experience partial recovery of respiratory function through respiratory neuroplasticity. For decades, researchers have revealed the potential mechanism of respiratory nerve plasticity after CSCI, and have made progress in tissue healing and functional recovery. While most existing studies on respiratory plasticity after spinal cord injuries have focused on the cervical spinal cord, there is a paucity of research on respiratory-related brain structures following such injuries. Given the interconnectedness of the spinal cord and the brain, traumatic changes to the former can also impact the latter. Consequently, are there other potential therapeutic targets to consider? This review introduces the anatomy and physiology of typical respiratory centers, explores alterations in respiratory function following spinal cord injuries, and delves into the structural foundations of modified respiratory function in patients with CSCI. Additionally, we propose that magnetic resonance neuroimaging holds promise in the study of respiratory function post-CSCI. By studying respiratory plasticity in the brain and spinal cord after CSCI, we hope to guide future clinical work.
Collapse
Affiliation(s)
- Yongqi Xie
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Liang Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Shuang Guo
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Run Peng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Huiming Gong
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
46
|
Adar O, Hollander A, Ilan Y. The Constrained Disorder Principle Accounts for the Variability That Characterizes Breathing: A Method for Treating Chronic Respiratory Diseases and Improving Mechanical Ventilation. Adv Respir Med 2023; 91:350-367. [PMID: 37736974 PMCID: PMC10514877 DOI: 10.3390/arm91050028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Variability characterizes breathing, cellular respiration, and the underlying quantum effects. Variability serves as a mechanism for coping with changing environments; however, this hypothesis does not explain why many of the variable phenomena of respiration manifest randomness. According to the constrained disorder principle (CDP), living organisms are defined by their inherent disorder bounded by variable boundaries. The present paper describes the mechanisms of breathing and cellular respiration, focusing on their inherent variability. It defines how the CDP accounts for the variability and randomness in breathing and respiration. It also provides a scheme for the potential role of respiration variability in the energy balance in biological systems. The paper describes the option of using CDP-based artificial intelligence platforms to augment the respiratory process's efficiency, correct malfunctions, and treat disorders associated with the respiratory system.
Collapse
Affiliation(s)
- Ofek Adar
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| | - Adi Hollander
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 1200, Israel; (O.A.); (A.H.)
- Department of Medicine, Hadassah Medical Center, Jerusalem P.O. Box 1200, Israel
| |
Collapse
|
47
|
Amaral-Silva L, Santin JM. Molecular profiling of CO 2/pH-sensitive neurons in the locus coeruleus of bullfrogs reveals overlapping noradrenergic and glutamatergic cell identity. Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111453. [PMID: 37230318 PMCID: PMC10492231 DOI: 10.1016/j.cbpa.2023.111453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Locus coeruleus (LC) neurons regulate breathing by sensing CO2/pH. Neurons within the vertebrate LC are the main source of norepinephrine within the brain. However, they also use glutamate and GABA for fast neurotransmission. Although the amphibian LC is recognized as a site involved in central chemoreception for the control of breathing, the neurotransmitter phenotype of these neurons is unknown. To address this question, we combined electrophysiology and single-cell quantitative PCR to detect mRNA transcripts that define norepinephrinergic, glutamatergic, and GABAergic phenotypes in LC neurons activated by hypercapnic acidosis (HA) in American bullfrogs. Most LC neurons activated by HA had overlapping expression of noradrenergic and glutamatergic markers but did not show strong support for GABAergic transmission. Genes that encode the pH-sensitive K+ channel, TASK2, and acid-sensing cation channel, ASIC2, were most abundant, while Kir5.1 was present in 1/3 of LC neurons. The abundance of transcripts related to norepinephrine biosynthesis linearly correlated with those involved in pH sensing. These results suggest that noradrenergic neurons in the amphibian LC also use glutamate as a neurotransmitter and that CO2/pH sensitivity may be linkedto the noradrenergic cell identity.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA. https://twitter.com/amaralsilva_l
| | - Joseph M Santin
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
48
|
Sun L, Zhu M, Wang M, Hao Y, Hao Y, Jing X, Yu H, Shi Y, Zhang X, Wang S, Yuan F, Yuan XS. Whole-brain monosynaptic inputs and outputs of leptin receptor b neurons of the nucleus tractus solitarii in mice. Brain Res Bull 2023; 201:110693. [PMID: 37348822 DOI: 10.1016/j.brainresbull.2023.110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
The nucleus tractus solitarii (NTS) is the primary central station that integrates visceral afferent information and regulates respiratory, gastrointestinal, cardiovascular, and other physiological functions. Leptin receptor b (LepRb)-expressing neurons of the NTS (NTSLepRb neurons) are implicated in central respiration regulation, respiratory facilitation, and respiratory drive enhancement. Furthermore, LepRb dysfunction is involved in obesity, insulin resistance, and sleep-disordered breathing. However, the monosynaptic inputs and outputs of NTSLepRb neurons in whole-brain mapping remain to be elucidated. Therefore, the exploration of its whole-brain connection system may provide strong support for comprehensively understanding the physiological and pathological functions of NTSLepRb neurons. In the present study, we used a cell type-specific, modified rabies virus and adeno-associated virus with the Cre-loxp system to map monosynaptic inputs and outputs of NTSLepRb neurons in LepRb-Cre mice. The results showed that NTSLepRb neurons received inputs from 48 nuclei in the whole brain from five brain regions, including especially the medulla. We found that NTSLepRb neurons received inputs from nuclei associated with respiration, such as the pre-Bötzinger complex, ambiguus nucleus, and parabrachial nucleus. Interestingly, some brain areas related to cardiovascular regulation-i.e., the ventrolateral periaqueductal gray and locus coeruleus-also sent a small number of inputs to NTSLepRb neurons. In addition, anterograde tracing results demonstrated that NTSLepRb neurons sent efferent projections to 15 nuclei, including the dorsomedial hypothalamic nucleus and arcuate hypothalamic nucleus, which are involved in regulation of energy metabolism and feeding behaviors. Quantitative statistical analysis revealed that the inputs of the whole brain to NTSLepRb neurons were significantly greater than the outputs. Our study comprehensively revealed neuronal connections of NTSLepRb neurons in the whole brain and provided a neuroanatomical basis for further research on physiological and pathological functions of NTSLepRb neurons.
Collapse
Affiliation(s)
- Lu Sun
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mengchu Zhu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Yinchao Hao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Yaxin Hao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Xinyi Jing
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Hongxiao Yu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, Hebei Province, China
| | - Yishuo Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Xiang Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, Hebei Province, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, Hebei Province, China.
| | - Xiang Shan Yuan
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
49
|
Li K, Gonye EC, Stornetta RL, Bayliss CB, Yi G, Stornetta DS, Baca SM, Abbott SB, Guyenet PG, Bayliss DA. The astrocytic Na + -HCO 3 - cotransporter, NBCe1, is dispensable for respiratory chemosensitivity. J Physiol 2023; 601:3667-3686. [PMID: 37384821 PMCID: PMC10528273 DOI: 10.1113/jp284960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
The interoceptive homeostatic mechanism that controls breathing, blood gases and acid-base balance in response to changes in CO2 /H+ is exquisitely sensitive, with convergent roles proposed for chemosensory brainstem neurons in the retrotrapezoid nucleus (RTN) and their supporting glial cells. For astrocytes, a central role for NBCe1, a Na+ -HCO3 - cotransporter encoded by Slc4a4, has been envisaged in multiple mechanistic models (i.e. underlying enhanced CO2 -induced local extracellular acidification or purinergic signalling). We tested these NBCe1-centric models by using conditional knockout mice in which Slc4a4 was deleted from astrocytes. In GFAP-Cre;Slc4a4fl/fl mice we found diminished expression of Slc4a4 in RTN astrocytes by comparison to control littermates, and a concomitant reduction in NBCe1-mediated current. Despite disrupted NBCe1 function in RTN-adjacent astrocytes from these conditional knockout mice, CO2 -induced activation of RTN neurons or astrocytes in vitro and in vivo, and CO2 -stimulated breathing, were indistinguishable from NBCe1-intact littermates; hypoxia-stimulated breathing and sighs were likewise unaffected. We obtained a more widespread deletion of NBCe1 in brainstem astrocytes by using tamoxifen-treated Aldh1l1-Cre/ERT2;Slc4a4fl/fl mice. Again, there was no difference in effects of CO2 or hypoxia on breathing or on neuron/astrocyte activation in NBCe1-deleted mice. These data indicate that astrocytic NBCe1 is not required for the respiratory responses to these chemoreceptor stimuli in mice, and that any physiologically relevant astrocytic contributions must involve NBCe1-independent mechanisms. KEY POINTS: The electrogenic NBCe1 transporter is proposed to mediate local astrocytic CO2 /H+ sensing that enables excitatory modulation of nearby retrotrapezoid nucleus (RTN) neurons to support chemosensory control of breathing. We used two different Cre mouse lines for cell-specific and/or temporally regulated deletion of the NBCe1 gene (Slc4a4) in astrocytes to test this hypothesis. In both mouse lines, Slc4a4 was depleted from RTN-associated astrocytes but CO2 -induced Fos expression (i.e. cell activation) in RTN neurons and local astrocytes was intact. Likewise, respiratory chemoreflexes evoked by changes in CO2 or O2 were unaffected by loss of astrocytic Slc4a4. These data do not support the previously proposed role for NBCe1 in respiratory chemosensitivity mediated by astrocytes.
Collapse
Affiliation(s)
- Keyong Li
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | | | - Grace Yi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Daniel S. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Serapio M. Baca
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Stephen B.G. Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| | - Douglas A. Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA, 22908
| |
Collapse
|
50
|
Stewart JM, Medow MS. Anticipatory central command on standing decreases cerebral blood velocity causing hypocapnia in hyperpneic postural tachycardia syndrome. J Appl Physiol (1985) 2023; 135:26-34. [PMID: 37227184 PMCID: PMC10281786 DOI: 10.1152/japplphysiol.00016.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
Fifty percent of patients with postural tachycardia syndrome (POTS) are hypocapnic during orthostasis related to initial orthostatic hypotension (iOH). We determined whether iOH drives hypocapnia in POTS by low BP or decreased cerebral blood velocity (CBv). We studied three groups; healthy volunteers (n = 32, 18 ± 3 yr) were compared with POTS, grouped by presence [POTS-low end-tidal CO2 (↓ETCO2), n = 26, 19 ± 2 yr] or absence [POTS-normal upright end-tidal carbon dioxide (nlCO2), n = 28, 19 ± 3 yr] of standing hypocapnia defined by end-tidal CO2 (ETCO2) ≤ 30 mmHg at steady-state, measuring middle cerebral artery CBv, heart rate (HR), and beat-to-beat blood pressure (BP). After 30 min supine, subjects stood for 5 min. Quantities were measured prestanding, at minimum CBv, minimum BP, peak HR, CBv recovery, BP recovery, minimum HR, steady-state, and 5 min. Baroreflex gain was estimated by α index. iOH occurred with similar frequency and minimum BP in POTS-↓ETCO2 and POTS-nlCO2. Minimum CBv was reduced significantly (P < 0.05) in POTS-↓ETCO2 (48 ± 3 cm/s) preceding hypocapnia compared with POTS-nlCO2 (61 ± 3 cm/s) or Control (60 ± 2 cm/s). The anticipatory increased BP was significantly larger (P < 0.05) in POTS (8 ± 1 mmHg vs. 2 ± 1) and began ∼8 s prestanding. HR increased in all subjects, CBv increased significantly (P < 0.05) in both POTS-nlCO2 (76 ± 2 to 85 ± 2 cm/s) and Control (75 ± 2 to 80 ± 2 cm/s) consistent with central command. CBv decreased in POTS-↓ETCO2 (76 ± 3 to 64 ± 3 cm/s) correlating with decreased baroreflex gain. Cerebral conductance [meanCBv/mean arterial blood pressure (MAP)] was reduced in POTS-↓ETCO2 throughout. Data support the hypothesis that excessively reduced CBv during iOH may intermittently reduce carotid body blood flow, sensitizing that organ and producing postural hyperventilation in POTS-↓ETCO2. Excessive fall in CBv occurs in part during prestanding central command and is a facet of defective parasympathetic regulation in POTS.NEW & NOTEWORTHY Dyspnea is frequent in postural tachycardia syndrome (POTS) and is associated with upright hyperpnea and hypocapnia that drives sinus tachycardia. It is initiated by an exaggerated reduction in cerebral conductance and decreased cerebral blood flow (CBF) that precedes the act of standing. This is a form of autonomically mediated "central command." Cerebral blood flow is further reduced by initial orthostatic hypotension common in POTS. Hypocapnia is maintained during the standing response and might account for persistent postural tachycardia.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, New York, United States
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Marvin S Medow
- Department of Pediatrics, New York Medical College, Valhalla, New York, United States
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| |
Collapse
|