1
|
Zhou L, Zhang C, Xie Z, Yu Q, Wang J, Gong Y, Zhao J, Bai S, Yang L, Deng D, Zhang R, Shi Y. Neural Circuit Mechanisms of Sinisan formula for the Treatment of adolescent Depression: prefrontal cortex to dorsal raphe nucleus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118529. [PMID: 38972528 DOI: 10.1016/j.jep.2024.118529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sinisan formula (SNSF), documented in the classic books Shanghan Lun, is known for its ability to regulate liver-qi and treat depression. However, its underlying mechanism, particularly its effects on dynamic real-time neuron activity and circuits remains to be fully elucidated. AIM OF THE STUDY This study aimed to investigate the antidepressant effect of SNSF and its central nervous system mechanism on depression-like behaviors, focusing on the prefrontal cortex (PFC) to dorsal raphe nucleus (DRN) neural circuit in a stress-induced adolescent animal model. MATERIALS AND METHODS SNSF comprised four herbs, the root of Bupleurum chinense DC., the root of Paeonia lactiflora Pall., the fruit of Citrus aurantium L., the rhizome of Glycyrrhiza uralensis Fisch., in equal propotions. The adolescent depression animal model was induced by maternal separation (MS) and chronic restraint stress (CRS). In-vivo multichannel physiological electrodes were implanted into the PFC on PND 28 and animals were recorded 5 times during PND 35-46. From PND 47, the behavioral tests were performed to evaluate the antidepressant efficacy of SNSF. Subsequently, brain tissue was collected for Western blot and immunofluorescence staining analysis. Retro virus was injected into the DRN to explore sources of projections received by serotonergic (5-HTergic) neurons. And the PFC-to-DRN circuit was activated or inhibited through chemogenetic techniques to investigate the effects of SNSF on depression-like behaviors. RESULTS Administration of SNSF for 18 days effectively alleviated depression-like behaviors in MS&CRS adolescent mice. The PFC emerged as the primary glutamatergic projection source of the DRN5-HT neurons. Following SNSF administration for 13/15/18 days, there was an increase in the firing rate of excitatory neurons and excitatory/inhibitory (E/I) ratio in the PFC. MS&CRS stress let to a reduction in the density of 5-HT+ and CaMKII + neurons in the DRN, accompanied by an increase in the density of GAD + neurons in the DRN, while SNSF administration reversed the alterations. Chemogenetic activation of the PFC-to-DRN circuit rescued the depression-like behaviors induced by MS&CRS, whereas suppression of this circuit attenuated the antidepressant effect of SNSF. CONCLUSIONS SNSF significantly mitigated depression-like behaviors in MS&CRS mice. SNSF exerts its antidepressant effects by increasing the E/I ratio in the PFC and enhancing glutamatergic projections from the PFC to the DRN.
Collapse
Affiliation(s)
- Liuchang Zhou
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caixia Zhang
- Outpatient Department, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zedan Xie
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qingying Yu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Junjie Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuwen Gong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinlan Zhao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shasha Bai
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lei Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Di Deng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Rong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Spring MG, Nautiyal KM. Striatal Serotonin Release Signals Reward Value. J Neurosci 2024; 44:e0602242024. [PMID: 39117457 PMCID: PMC11466065 DOI: 10.1523/jneurosci.0602-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Serotonin modulates diverse phenotypes and functions including depressive, aggressive, impulsive, and feeding behaviors, all of which have reward-related components. To date, research has focused on understanding these effects by measuring and manipulating dorsal raphe serotonin neurons and using single-receptor approaches. These studies have led to a better understanding of the heterogeneity of serotonin actions on behavior; however, they leave open many questions about the timing and location of serotonin's actions modulating the neural circuits that drive these behaviors. Recent advances in genetically encoded fluorescent biosensors, including the GPCR activation-based sensor for serotonin (GRAB-5-HT), enable the measurement of serotonin release in mice on a timescale compatible with a single rewarding event without corelease confounds. Given substantial evidence from slice electrophysiology experiments showing that serotonin influences neural activity of the striatal circuitry, and the known role of the dorsal medial striatal (DMS) in reward-directed behavior, we focused on understanding the parameters and timing that govern serotonin release in the DMS in the context of reward consumption, external reward value, internal state, and cued reward. Overall, we found that serotonin release is associated with each of these and encodes reward anticipation, value, approach, and consumption in the DMS.
Collapse
Affiliation(s)
- Mitchell G Spring
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Katherine M Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
3
|
Wang W, Wang D, Zhao D, Xu L, Jiang S, Zhang Y, Cui M, Liu J, Meng F, Liu C, Liu D, Li W, Li C. Dorsal raphe dopaminergic neurons target CaMKII + neurons in dorsal bed nucleus of the stria terminalis for mediating depression-related behaviors. Transl Psychiatry 2024; 14:408. [PMID: 39358336 PMCID: PMC11447211 DOI: 10.1038/s41398-024-03093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Dopamine (DA) neurons play a crucial role in the development and manifestation of depression, as well as in response to antidepressant treatments. While the function of the predominantly distributed DA neurons in the ventral tegmental area (VTA) is well established, the contribution of a small fraction of DA neurons in the dorsal raphe nucleus (DRN) during depression remains unclear. In this study, we found that chronic unpredictable stress (CUS) induces depression-related behaviors and decreases spontaneous firing rates, excitatory and inhibitory postsynaptic currents of DA neurons in the DRN associated with reduced excitatory synaptic transmission in male and female mice. The chemogenetic inhibition of DA neurons in the DRN produces depressive phenotypes. Conversely, their activation completely reversed the anhedonic and despair behaviors induced by CUS. Furthermore, we showed that a DRN dopaminergic projecting to the dorsal bed nucleus of the stria terminalis (dBNST) selectively controls depressive behaviors by influencing the neural activity and N-methyl-D-aspartate receptor (NMDAR) mediating EPSC of calcium/calmodulin-dependent protein kinase II+ (CaMKII+) target neurons by regulating dopamine neurotransmitter and dopamine receptor 2 (DR2) in the dBNST. Overall, these findings highlight the essential role of the DRNDA → dBNSTCaMKII+ neural circuit in bi-directionally mediating stress-induced depression-related behaviors. Our findings indicate that DRN DA neurons are a key component of the neural circuitry involved in regulating depression-related behaviors, making them a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Di Zhao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lihong Xu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Yu Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Nursing, Binzhou Medical University, Yantai, Shandong, China
| | - Minghu Cui
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dunjiang Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Chen Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
4
|
Zhang H, Li L, Zhang X, Ru G, Zang W. Role of the Dorsal Raphe Nucleus in Pain Processing. Brain Sci 2024; 14:982. [PMID: 39451996 PMCID: PMC11506261 DOI: 10.3390/brainsci14100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The dorsal raphe nucleus (DRN) has gained attention owing to its involvement in various physiological functions, such as sleep-awake, feeding, and emotion, with its analgesic role being particularly significant. It is described as the "pain inhibitory nucleus" in the brain. The DRN has diverse projections from hypothalamus, midbrain, and pons. In turn, the DRN is a major source of projections to diverse cortex, limbic forebrain thalamus, and the midbrain and contains highly heterogeneous neuronal subtypes. The activation of DRN neurons in mice prevents the establishment of neuropathic, chronic pain symptoms. Chemogenetic or optogenetic inhibition neurons in the DRN are sufficient to establish pain phenotypes, including long-lasting tactile allodynia, that scale with the extent of stimulation, thereby promoting nociplastic pain. Recent progress has been made in identifying the neural circuits and cellular mechanisms in the DRN that are responsible for sensory modulation. However, there is still a lack of comprehensive review addressing the specific neuron types in the DRN involved in pain modulation. This review summarizes the function of specific cell types within DRN in the pain regulation, and aims to improve understanding of the mechanisms underlying pain regulation in the DRN, ultimately offering insights for further exploration.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| | - Lei Li
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| | - Xujie Zhang
- Department of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Guanqi Ru
- Department of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Weidong Zang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (H.Z.); (L.L.)
| |
Collapse
|
5
|
Jing S, Geng C, Liu P, Wang D, Li Q, Li A. Serotonergic input from the dorsal raphe nucleus shapes learning-associated odor responses in the olfactory bulb. Acta Physiol (Oxf) 2024; 240:e14198. [PMID: 38958443 DOI: 10.1111/apha.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
AIM Neural activity in the olfactory bulb (OB) can represent odor information during different brain and behavioral states. For example, the odor responses of mitral/tufted (M/T) cells in the OB change during learning of odor-discrimination tasks and, at the network level, beta power increases and the high gamma (HG) power decreases during odor presentation in such tasks. However, the neural mechanisms underlying these observations remain poorly understood. Here, we investigate whether serotonergic modulation from the dorsal raphe nucleus (DRN) to the OB is involved in shaping activity during the learning process in a go/no-go task in mice. METHODS Fiber photometry was used to record the population activity of DRN serotonergic neurons during a go/no-go task. In vivo electrophysiology was used to record neural activity (single units and local field potentials) in the OB during the go/no-go task. Real-time place preference (RTPP) and intracranial light administration in a specific subarea (iClass) tests were used to assess the ability of mice to encoding reward information. RESULTS Odor-evoked population activity in serotonergic neurons in the DRN was shaped during the learning process in a go/no-go task. In the OB, neural activity from oscillations to single cells showed complex, learning-associated changes and ability to encode information during an odor discrimination task. However, these properties were not observed after ablation of DRN serotonergic neurons. CONCLUSION The activity of neural networks and single cells in the OB, and their ability to encode information about odor value, are shaped by serotonergic projections from the DRN.
Collapse
Affiliation(s)
- Siqi Jing
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Qun Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Bosulu J, Pezzulo G, Hétu S. Needing: An Active Inference Process for Physiological Motivation. J Cogn Neurosci 2024; 36:2011-2028. [PMID: 38940737 DOI: 10.1162/jocn_a_02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Need states are internal states that arise from deprivation of crucial biological stimuli. They direct motivation, independently of external learning. Despite their separate origin, they interact with reward processing systems that respond to external stimuli. This article aims to illuminate the functioning of the needing system through the lens of active inference, a framework for understanding brain and cognition. We propose that need states exert a pervasive influence on the organism, which in active inference terms translates to a "pervasive surprise"-a measure of the distance from the organism's preferred state. Crucially, we define needing as an active inference process that seeks to reduce this pervasive surprise. Through a series of simulations, we demonstrate that our proposal successfully captures key aspects of the phenomenology and neurobiology of needing. We show that as need states increase, the tendency to occupy preferred states strengthens, independently of external reward prediction. Furthermore, need states increase the precision of states (stimuli and actions) leading to preferred states, suggesting their ability to amplify the value of reward cues and rewards themselves. Collectively, our model and simulations provide valuable insights into the directional and underlying influence of need states, revealing how this influence amplifies the wanting or liking associated with relevant stimuli.
Collapse
Affiliation(s)
- Juvenal Bosulu
- Université de Montréal
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, Québec, Canada
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies (ISTC-CNR), Rome, Italy
| | - Sébastien Hétu
- Université de Montréal
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, Québec, Canada
| |
Collapse
|
7
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep 2024; 43:114341. [PMID: 38878290 DOI: 10.1016/j.celrep.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when confronting reward uncertainty. However, it has been unclear whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider these attributes to make a choice. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes, and this population tended to integrate the attributes in a manner that reflected monkeys' preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how the DRN participates in value computations, guiding theories about the role of the DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Washington University Pain Center, Washington University, St. Louis, MO, USA; Department of Neurosurgery, Washington University, St. Louis, MO, USA; Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
8
|
Casanova AF, Ort A, Smallridge JW, Preller KH, Seifritz E, Vollenweider FX. The influence of psilocybin on subconscious and conscious emotional learning. iScience 2024; 27:110034. [PMID: 38883812 PMCID: PMC11177198 DOI: 10.1016/j.isci.2024.110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Serotonergic psychedelics hold promise as a treatment modality for various psychiatric disorders and are currently applied in psychedelic-assisted psychotherapy. We investigated the learning effects of the serotonin receptor agonist psilocybin in a probabilistic cue-reward task with emotional cues in the form of neutral or fearful faces, presented either consciously or subconsciously. This study represents the first investigation into reinforcement learning with psilocybin. Across different dosages, psilocybin preserved learning effects and was statistically noninferior compared to placebo, while suggesting a higher exploratory behavior. Notably, the 20 mg group exhibited significantly better learning rates against the placebo group. Psilocybin induced inferior results with subconscious cues compared to placebo, and better results with conscious neutral cues in some conditions. These findings suggest that modulating serotonin signaling in the brain with psilocybin sufficiently preservers reinforcement learning.
Collapse
Affiliation(s)
- Andrea F Casanova
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Andres Ort
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - John W Smallridge
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Katrin H Preller
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Franz X Vollenweider
- Neurophenomenology of Consciousness Lab, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Alonso L, Peeva P, Fernández-del Valle Alquicira T, Erdelyi N, Gil Nolskog Á, Bader M, Winter Y, Alenina N, Rivalan M. Poor Decision Making and Sociability Impairment Following Central Serotonin Reduction in Inducible TPH2-Knockdown Rats. Int J Mol Sci 2024; 25:5003. [PMID: 38732220 PMCID: PMC11084943 DOI: 10.3390/ijms25095003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Serotonin is an essential neuromodulator for mental health and animals' socio-cognitive abilities. However, we previously found that a constitutive depletion of central serotonin did not impair rat cognitive abilities in stand-alone tests. Here, we investigated how a mild and acute decrease in brain serotonin would affect rats' cognitive abilities. Using a novel rat model of inducible serotonin depletion via the genetic knockdown of tryptophan hydroxylase 2 (TPH2), we achieved a 20% decrease in serotonin levels in the hypothalamus after three weeks of non-invasive oral doxycycline administration. Decision making, cognitive flexibility, and social recognition memory were tested in low-serotonin (Tph2-kd) and control rats. Our results showed that the Tph2-kd rats were more prone to choose disadvantageously in the long term (poor decision making) in the Rat Gambling Task and that only the low-serotonin poor decision makers were more sensitive to probabilistic discounting and had poorer social recognition memory than other low-serotonin and control individuals. Flexibility was unaffected by the acute brain serotonin reduction. Poor social recognition memory was the most central characteristic of the behavioral network of low-serotonin poor decision makers, suggesting a key role of social recognition in the expression of their profile. The acute decrease in brain serotonin appeared to specifically amplify the cognitive impairments of the subgroup of individuals also identified as poor decision makers in the population. This study highlights the great opportunity the Tph2-kd rat model offers to study inter-individual susceptibilities to develop cognitive impairment following mild variations of brain serotonin in otherwise healthy individuals. These transgenic and differential approaches together could be critical for the identification of translational markers and vulnerabilities in the development of mental disorders.
Collapse
Affiliation(s)
- Lucille Alonso
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Polina Peeva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Tania Fernández-del Valle Alquicira
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
| | - Narda Erdelyi
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
| | - Ángel Gil Nolskog
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
| | - Michael Bader
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Institute for Biology, University of Lübeck, 23562 Lübeck, Germany
| | - York Winter
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Marion Rivalan
- Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; (L.A.); (T.F.-d.V.A.); (Y.W.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany (M.B.)
- NeuroPSI—Paris-Saclay Institute of Neuroscience, CNRS—Université Paris-Saclay, F-91400 Saclay, France
| |
Collapse
|
10
|
He W, Song H, Yang Z, Zhao S, Min J, Jiang Y. Beneficial effect of GABA-rich fermented milk whey on nervous system and intestinal microenvironment of aging mice induced by D-galactose. Microbiol Res 2024; 278:127547. [PMID: 37976737 DOI: 10.1016/j.micres.2023.127547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
This study aims to investigate the protective effect of a freeze-dried powder prepared from a fermentation milk whey containing a high-yield GABA strain (FDH-GABA) against D-galactose-induced brain injury and gut microbiota imbalances in mice by probing changes to the PI3K/AKT/mTOR signaling pathway. A prematurely aged mouse model was established by performing the subcutaneous injection of D-galactose. Subsequently, the effects of FDH-GABA on the nervous system and intestinal microenvironment of the mice were explored by measuring their antioxidant activities, anti-inflammatory state, autophagy, pathway-related target protein expression levels, and intestinal microorganisms. Compared to the D-gal group, FDH-GABA improved the levels of SOD, T-AOC, IL-10, and neurotransmitters, while it reduced the contents of MDA and TNF-α. FDH-GABA also promoted autophagy and inhibited the PI3K/AKT/mTOR signaling pathway in the brains of the aged mice. Moreover, FDH-GABA restored the diversity of their intestinal flora. Pathological observations indicated that FDH-GABA was protective against damage to the brain and intestine of D-galactose-induced aging mice. These results reveal that FDH-GABA not only improved antioxidant stress, attenuated inflammation, restored the neurotransmitter content, and protected the tissue structure of the intestine and brain, but also effectively improved their intestinal microenvironment. The ameliorative effect of FDH-GABA on premature aging showed a clear dose-response relationship, and at the same time, the changes of intestinal microorganisms showed a certain correlation with the relevant indexes of nervous system. These findings provide insight into the effect of the FDH-GABA intervention on aging, providing a novel means for alleviating detrimental neurodegenerative changes in the aging population.
Collapse
Affiliation(s)
- Wei He
- School of Public Health, Dali University, China
| | - He Song
- School of Public Health, Dali University, China
| | | | | | - Juan Min
- School of Public Health, Dali University, China
| | - Yan Jiang
- School of Public Health, Dali University, China.
| |
Collapse
|
11
|
He J, Zhu Y, Wu C, Wu J, Chen Y, Yuan M, Cheng Z, Zeng L, Ji X. Transcranial ultrasound neuromodulation facilitates isoflurane-induced general anesthesia recovery and improves cognition in mice. ULTRASONICS 2023; 135:107132. [PMID: 37604030 DOI: 10.1016/j.ultras.2023.107132] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023]
Abstract
Delayed arousal and cognitive dysfunction are common, especially in older patients after general anesthesia (GA). Elevating central nervous system serotonin (5-HT) levels can promote recovery from GA and increase synaptic plasticity to improve cognition. Ultrasound neuromodulation has become a noninvasive physical intervention therapy with high spatial resolution and penetration depth, which can modulate neuronal excitability to treat psychiatric and neurodegenerative diseases. This study aims to use ultrasound to noninvasively modulate the brain 5-HT levels of mice to promote recovery from GA and improve cognition in mice. The dorsal raphe nucleus (DRN) of mice during GA was stimulated by the 1.1 MHz ultrasound with a negative pressure of 356 kPa, and the liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) method was used to measure the DRN 5-HT concentrations. The mice's recovery time from GA was assessed, and the cognition was evaluated through spontaneous alternation Y-maze and novel object recognition (NOR) tests. After ultrasound stimulation, the mice's DRN 5-HT levels were significantly increased (control: 554.0 ± 103.2 ng/g, anesthesia + US: 664.2 ± 84.1 ng/g, *p = 0.0389); the GA recovery time (return of the righting reflex (RORR) emergence latency time) of mice was significantly reduced (anesthesia: 331.6 ± 70 s, anesthesia + US: 223.2 ± 67.7 s, *p = 0.0215); the spontaneous rotation behavior score of mice was significantly increased (anesthesia: 59.46 ± 5.26 %, anesthesia + US: 68.55 ± 5.24 %; *p = 0.0126); the recognition index was significantly increased (anesthesia: 55.02 ± 6.23 %, anesthesia + US: 78.52 ± 12.21 %; ***p = 0.0009). This study indicates that ultrasound stimulation of DRN increases serotonin levels, accelerates recovery from anesthesia, and improves cognition, which could be an important strategy for treating delayed arousal, postoperative delirium, or even lasting cognitive dysfunction after GA.
Collapse
Affiliation(s)
- Jiaru He
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyue Zhu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Canwen Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Junwei Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Maodan Yuan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhongwen Cheng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Lvming Zeng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
12
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons signal integrated value during multi-attribute decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553745. [PMID: 37662243 PMCID: PMC10473596 DOI: 10.1101/2023.08.17.553745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when grappling with reward uncertainty. However, whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider all these attributes to make a choice, is unclear. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes. Remarkably, these neurons commonly integrated offer attributes in a manner that reflected monkeys' overall preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how DRN participates in integrated value computations, guiding theories of DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | | | - Ilya E. Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Washington University Pain Center, Washington University, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University, St. Louis, Missouri, USA
- Department of Electrical Engineering, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Harkin EF, Lynn MB, Payeur A, Boucher JF, Caya-Bissonnette L, Cyr D, Stewart C, Longtin A, Naud R, Béïque JC. Temporal derivative computation in the dorsal raphe network revealed by an experimentally driven augmented integrate-and-fire modeling framework. eLife 2023; 12:72951. [PMID: 36655738 PMCID: PMC9977298 DOI: 10.7554/elife.72951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
By means of an expansive innervation, the serotonin (5-HT) neurons of the dorsal raphe nucleus (DRN) are positioned to enact coordinated modulation of circuits distributed across the entire brain in order to adaptively regulate behavior. Yet the network computations that emerge from the excitability and connectivity features of the DRN are still poorly understood. To gain insight into these computations, we began by carrying out a detailed electrophysiological characterization of genetically identified mouse 5-HT and somatostatin (SOM) neurons. We next developed a single-neuron modeling framework that combines the realism of Hodgkin-Huxley models with the simplicity and predictive power of generalized integrate-and-fire models. We found that feedforward inhibition of 5-HT neurons by heterogeneous SOM neurons implemented divisive inhibition, while endocannabinoid-mediated modulation of excitatory drive to the DRN increased the gain of 5-HT output. Our most striking finding was that the output of the DRN encodes a mixture of the intensity and temporal derivative of its input, and that the temporal derivative component dominates this mixture precisely when the input is increasing rapidly. This network computation primarily emerged from prominent adaptation mechanisms found in 5-HT neurons, including a previously undescribed dynamic threshold. By applying a bottom-up neural network modeling approach, our results suggest that the DRN is particularly apt to encode input changes over short timescales, reflecting one of the salient emerging computations that dominate its output to regulate behavior.
Collapse
Affiliation(s)
- Emerson F Harkin
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Michael B Lynn
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Alexandre Payeur
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Jean-François Boucher
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Léa Caya-Bissonnette
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Dominic Cyr
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Chloe Stewart
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - André Longtin
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Richard Naud
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Jean-Claude Béïque
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| |
Collapse
|
14
|
Janet R, Ligneul R, Losecaat-Vermeer AB, Philippe R, Bellucci G, Derrington E, Park SQ, Dreher JC. Regulation of social hierarchy learning by serotonin transporter availability. Neuropsychopharmacology 2022; 47:2205-2212. [PMID: 35945275 PMCID: PMC9630526 DOI: 10.1038/s41386-022-01378-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Learning one's status in a group is a fundamental process in building social hierarchies. Although animal studies suggest that serotonin (5-HT) signaling modulates learning social hierarchies, direct evidence in humans is lacking. Here we determined the relationship between serotonin transporter (SERT) availability and brain systems engaged in learning social ranks combining computational approaches with simultaneous PET-fMRI acquisition in healthy males. We also investigated the link between SERT availability and brain activity in a non-social control condition involving learning the payoffs of slot machines. Learning social ranks was modulated by the dorsal raphe nucleus (DRN) 5-HT function. BOLD ventral striatal response, tracking the rank of opponents, decreased with DRN SERT levels. Moreover, this link was specific to the social learning task. These findings demonstrate that 5-HT plays an influence on the computations required to learn social ranks.
Collapse
Affiliation(s)
- Remi Janet
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Romain Ligneul
- grid.421010.60000 0004 0453 9636Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Annabel B. Losecaat-Vermeer
- grid.10420.370000 0001 2286 1424Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria ,grid.7468.d0000 0001 2248 7639Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Remi Philippe
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Gabriele Bellucci
- grid.419501.80000 0001 2183 0052Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Edmund Derrington
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Soyoung Q. Park
- grid.7468.d0000 0001 2248 7639Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany ,grid.418213.d0000 0004 0390 0098Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Nuthetal, Germany
| | - Jean-Claude Dreher
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France.
| |
Collapse
|
15
|
Wu GR, Baeken C. Brainstem glucose metabolism predicts reward dependence scores in treatment-resistant major depression. Psychol Med 2022; 52:3260-3266. [PMID: 33504370 PMCID: PMC9693681 DOI: 10.1017/s0033291720005425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/22/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND It has been suggested that individual differences in temperament could be involved in the (non-)response to antidepressant (AD) treatment. However, how neurobiological processes such as brain glucose metabolism may relate to personality features in the treatment-resistant depressed (TRD) state remains largely unclear. METHODS To examine how brainstem metabolism in the TRD state may predict Cloninger's temperament dimensions Harm Avoidance (HA), Novelty Seeking (NS), and Reward Dependence (RD), we collected 18fluorodeoxyglucose positron emission tomography (18FDG PET) scans in 40 AD-free TRD patients. All participants were assessed with the Temperament and Character Inventory (TCI). We applied a multiple kernel learning (MKL) regression to predict the HA, NS, and RD from brainstem metabolic activity, the origin of respectively serotonergic, dopaminergic, and noradrenergic neurotransmitter (NT) systems. RESULTS The MKL model was able to significantly predict RD but not HA and NS from the brainstem metabolic activity. The MKL pattern regression model identified increased metabolic activity in the pontine nuclei and locus coeruleus, the medial reticular formation, the dorsal/median raphe, and the ventral tegmental area that contributed to the predictions of RD. CONCLUSIONS The MKL algorithm identified a likely metabolic marker in the brainstem for RD in major depression. Although 18FDG PET does not investigate specific NT systems, the predictive value of brainstem glucose metabolism on RD scores however indicates that this temperament dimension in the TRD state could be mediated by different monoaminergic systems, all involved in higher order reward-related behavior.
Collapse
Affiliation(s)
- Guo-Rong Wu
- Faculty of Psychology, Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Chris Baeken
- Department of Psychiatry University Hospital (UZBrussel), Brussels, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
- Department of Head and Skin, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
16
|
Involvement of DR→mPFC 5-HTergic neural projections in changes of social exploration behaviors caused by adult chronic social isolation in mice. Brain Res Bull 2022; 186:16-26. [DOI: 10.1016/j.brainresbull.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022]
|
17
|
Shen L, Zhang GW, Tao C, Seo MB, Zhang NK, Huang JJ, Zhang LI, Tao HW. A bottom-up reward pathway mediated by somatostatin neurons in the medial septum complex underlying appetitive learning. Nat Commun 2022; 13:1194. [PMID: 35256596 PMCID: PMC8901785 DOI: 10.1038/s41467-022-28854-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Valence detection and processing are essential for the survival of animals and their life quality in complex environments. Neural circuits underlying the transformation of external sensory signals into positive valence coding to generate appropriate behavioral responses remain not well-studied. Here, we report that somatostatin (SOM) subtype of GABAergic neurons in the mouse medial septum complex (MS), but not parvalbumin subtype or glutamatergic neurons, specifically encode reward signals and positive valence. Through an ascending pathway from the nucleus of solitary tract and then parabrachial nucleus, the MS SOM neurons receive rewarding taste signals and suppress the lateral habenula. They contribute essentially to appetitive associative learning via their projections to the lateral habenula: learning enhances their responses to reward-predictive sensory cues, and suppressing their responses to either conditioned or unconditioned stimulus impairs acquisition of reward learning. Thus, MS serves as a critical hub for transforming bottom-up sensory signals to mediate appetitive behaviors.
Collapse
Affiliation(s)
- Li Shen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Can Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Michelle B Seo
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nicole K Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.,Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA. .,Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA. .,Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.
| |
Collapse
|
18
|
Yee DM, Leng X, Shenhav A, Braver TS. Aversive motivation and cognitive control. Neurosci Biobehav Rev 2022; 133:104493. [PMID: 34910931 PMCID: PMC8792354 DOI: 10.1016/j.neubiorev.2021.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Aversive motivation plays a prominent role in driving individuals to exert cognitive control. However, the complexity of behavioral responses attributed to aversive incentives creates significant challenges for developing a clear understanding of the neural mechanisms of this motivation-control interaction. We review the animal learning, systems neuroscience, and computational literatures to highlight the importance of experimental paradigms that incorporate both motivational context manipulations and mixed motivational components (e.g., bundling of appetitive and aversive incentives). Specifically, we postulate that to understand aversive incentive effects on cognitive control allocation, a critical contextual factor is whether such incentives are associated with negative reinforcement or punishment. We further illustrate how the inclusion of mixed motivational components in experimental paradigms enables increased precision in the measurement of aversive influences on cognitive control. A sharpened experimental and theoretical focus regarding the manipulation and assessment of distinct motivational dimensions promises to advance understanding of the neural, monoaminergic, and computational mechanisms that underlie the interaction of motivation and cognitive control.
Collapse
Affiliation(s)
- Debbie M Yee
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA; Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA.
| | - Xiamin Leng
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Amitai Shenhav
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA
| |
Collapse
|
19
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
|
21
|
Salman T, Afroz R, Nawaz S, Mahmood K, Haleem DJ, Zarina S. Differential effects of memory enhancing and impairing doses of methylphenidate on serotonin metabolism and 5-HT1A, GABA, glutamate receptor expression in the rat prefrontal cortex. Biochimie 2021; 191:51-61. [PMID: 34454977 DOI: 10.1016/j.biochi.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/28/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
Methylphenidate (MPD), a psychostimulant, is a prescription medicine for treating attention deficit hyperactivity disorder (ADHD). Previously we have shown that moderate doses of MPD enhanced learning and memory while higher doses impaired it. To understand neurochemical mechanisms and receptors involved in memory enhancing and impairing effects of MPD, the present study concerns the effects of these doses of MPD on serotonin, 5-HT1A, GABA, and NMDA receptor mRNA expression in the prefrontal cortex (PFC). We found that low doses (2.5 mg/kg) of MPD improved performance in the water-maze test but higher doses (5 mg/kg) impaired memory retention. Animals showing improved performance had high 5-HT metabolism in the PFC while these levels were not affected in the group treated with higher MPD doses and exhibiting impaired memory. There was downregulation of 5-HT1A receptors in the PFC of rats treated with higher dose MPD, which didn't occur in low dose of MPD treated animals. Further, a decrease in GABAAreceptor mRNA expression occurred in low doses of MPD treated animals and GluN2A expression was reduced in higher doses of MPD treated animals. The findings suggest that memory enhancing doses of MPD increase 5-HT and reduce GABAA receptor mRNA expression in the PFC to release excitatory glutamate neurons from the inhibitory influence of GABA. Conversely, higher dose of MPD downregulates 5-HT1A receptor mRNA expression to enhance inhibitory GABA influence on glutamate neurons and impair cognitive performance. The findings show an important role of 5-HT1A heteroreceptors in the PFC for improving therapeutic use of MPD and developing novel cognitive enhancers.
Collapse
Affiliation(s)
- Tabinda Salman
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| | - Rushda Afroz
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shazia Nawaz
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Khalid Mahmood
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Darakhshan J Haleem
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shamshad Zarina
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
22
|
Modulation of Noradrenergic and Serotonergic Systems by Cannabinoids: Electrophysiological, Neurochemical and Behavioral Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:111-132. [PMID: 33537940 DOI: 10.1007/978-3-030-61663-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The main noradrenergic and serotonergic nuclei in the central nervous system (CNS) are the locus coeruleus (LC) and the dorsal raphe nucleus (DRN). These brain areas, located in the brainstem, play a pivotal role in the control of various functions and behaviors that are altered by cannabinoids (i.e., pain, arousal, mood, anxiety, or sleep-wake cycle). Anatomical, neurochemical, and functional data suggest that cannabinoids regulate both central noradrenergic and serotonergic neurotransmission. Thus, strong evidence has shown that the firing activity of LC and DRN monoamine neurons or the synthesis/release of noradrenaline (NA) and serotonin (5-HT) in the projection areas are all affected by cannabinoid administration. Herein, we propose that interaction between the endocannabinoid system and the noradrenergic-serotonergic systems could account for some of the anxiolytic, antidepressant, and antinociceptive effects of cannabinoids or the disruption of attention/sleep induced by these drugs.
Collapse
|
23
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Ge R, Dai Y. Three-Week Treadmill Exercise Enhances Persistent Inward Currents, Facilitates Dendritic Plasticity, and Upregulates the Excitability of Dorsal Raphe Serotonin Neurons in ePet-EYFP Mice. Front Cell Neurosci 2020; 14:575626. [PMID: 33177992 PMCID: PMC7595958 DOI: 10.3389/fncel.2020.575626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Exercise plays a key role in preventing or treating mental or motor disorders caused by dysfunction of the serotonergic system. However, the electrophysiological and ionic channel mechanisms underlying these effects remain unclear. In this study, we investigated the effects of 3-week treadmill exercise on the electrophysiological and channel properties of dorsal raphe nucleus (DRN). Serotonin (5-HT) neurons in ePet-EYFP mice, using whole-cell patch clamp recording. Treadmill exercise was induced in ePet-EYFP mice of P21–24 for 3 weeks, and whole-cell patch clamp recording was performed on EYFP-positive 5-HT neurons from DRN slices of P42–45 mice. Experiment data showed that 5-HT neurons in the DRN were a heterogeneous population with multiple firing patterns (single firing, phasic firing, and tonic firing). Persistent inward currents (PICs) with multiple patterns were expressed in 5-HT neurons and composed of Cav1.3 (Ca-PIC) and sodium (Na-PIC) components. Exercise hyperpolarized the voltage threshold for action potential (AP) by 3.1 ± 1.0 mV (control: n = 14, exercise: n = 18, p = 0.005) and increased the AP amplitude by 6.7 ± 3.0 mV (p = 0.031) and firing frequency by more than 22% especially within a range of current stimulation stronger than 70 pA. A 3-week treadmill exercise was sufficient to hyperpolarize PIC onset by 2.6 ± 1.3 mV (control: −53.4 ± 4.7 mV, n = 28; exercise: −56.0 ± 4.7 mV, n = 25, p = 0.050) and increase the PIC amplitude by 28% (control: 193.6 ± 81.8 pA; exercise: 248.5 ± 105.4 pA, p = 0.038). Furthermore, exercise hyperpolarized Na-PIC onset by 3.8 ± 1.8 mV (control: n = 8, exercise: n = 9, p = 0.049) and increased the Ca-PIC amplitude by 23% (p = 0.013). The exercise-induced enhancement of the PIC amplitude was mainly mediated by Ca-PIC and hyperpolarization of PIC onset by Na-PIC. Moreover, exercise facilitated dendritic plasticity, which was shown as the increased number of branch points by 1.5 ± 0.5 (p = 0.009) and dendritic branches by 2.1 ± 0.6 (n = 20, p = 0.001) and length by 732.0 ± 100.1 μm (p < 0.001) especially within the range of 50–200 μm from the soma. Functional analysis suggested that treadmill exercise enhanced Na-PIC for facilitation of spike initiation and Ca-PIC for regulation of repetitive firing. We concluded that PICs broadly existed in DRN 5-HT neurons and could influence serotonergic neurotransmission in juvenile mice and that 3-week treadmill exercise induced synaptic adaptations, enhanced PICs, and thus upregulated the excitability of the 5-HT neurons.
Collapse
Affiliation(s)
- Renkai Ge
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.,School of Physical Education and Health Care, East China Jiaotong University, Nanchang, China
| | - Yue Dai
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China
| |
Collapse
|
25
|
Abstract
The brain serotonin systems participate in numerous aspects of reward processing, although it remains elusive how exactly serotonin signals regulate neural computation and reward-related behavior. The application of optogenetics and imaging techniques during the last decade has provided many insights. Here, we review recent progress on the organization and physiology of the dorsal raphe serotonin neurons and the relationships between their activity and behavioral functions in the context of reward processing. We also discuss several interesting theories on serotonin's function and how these theories may be reconciled by the possibility that serotonin, acting in synergy with coreleased glutamate, tracks and calculates the so-called beneficialness of the current state to guide an animal's behavior in dynamic environments.
Collapse
Affiliation(s)
- Zhixiang Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Tsinghua University, Beijing 100081, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
26
|
Sizemore TR, Hurley LM, Dacks AM. Serotonergic modulation across sensory modalities. J Neurophysiol 2020; 123:2406-2425. [PMID: 32401124 PMCID: PMC7311732 DOI: 10.1152/jn.00034.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
The serotonergic system has been widely studied across animal taxa and different functional networks. This modulatory system is therefore well positioned to compare the consequences of neuromodulation for sensory processing across species and modalities at multiple levels of sensory organization. Serotonergic neurons that innervate sensory networks often bidirectionally exchange information with these networks but also receive input representative of motor events or motivational state. This convergence of information supports serotonin's capacity for contextualizing sensory information according to the animal's physiological state and external events. At the level of sensory circuitry, serotonin can have variable effects due to differential projections across specific sensory subregions, as well as differential serotonin receptor type expression within those subregions. Functionally, this infrastructure may gate or filter sensory inputs to emphasize specific stimulus features or select among different streams of information. The near-ubiquitous presence of serotonin and other neuromodulators within sensory regions, coupled with their strong effects on stimulus representation, suggests that these signaling pathways should be considered integral components of sensory systems.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, West Virginia
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
27
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
28
|
Michely J, Eldar E, Martin IM, Dolan RJ. A mechanistic account of serotonin's impact on mood. Nat Commun 2020; 11:2335. [PMID: 32393738 PMCID: PMC7214430 DOI: 10.1038/s41467-020-16090-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/08/2020] [Indexed: 01/31/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) constitute a first-line antidepressant intervention, though the precise cognitive and computational mechanisms that explain treatment response remain elusive. Using week-long SSRI treatment in healthy volunteer participants, we show serotonin enhances the impact of experimentally induced positive affect on learning of novel, and reconsolidation of previously learned, reward associations. Computational modelling indicated these effects are best accounted for by a boost in subjective reward perception during learning, following a positive, but not negative, mood induction. Thus, instead of influencing affect or reward sensitivity directly, SSRIs might amplify an interaction between the two, giving rise to a delayed mood response. We suggest this modulation of affect-learning dynamics may explain the evolution of a gradual mood improvement seen with these agents and provides a novel candidate mechanism for the unfolding of serotonin’s antidepressant effects over time. The cognitive computational mechanisms underlying the antidepressant treatment response of SSRIs is not well understood. Here the authors show that SSRI treatment in healthy subjects for a week manifests as an amplification of the perception of positive outcomes when learning occurs in a positive mood setting.
Collapse
Affiliation(s)
- Jochen Michely
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK. .,Wellcome Centre for Human Neuroimaging, University College London, London, UK. .,Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Eran Eldar
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Psychology and Cognitive Sciences Departments, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ingrid M Martin
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
29
|
Retinal functioning and reward processing in schizophrenia. Schizophr Res 2020; 219:25-33. [PMID: 31280976 DOI: 10.1016/j.schres.2019.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 11/21/2022]
Abstract
Retinal responses to light, as measured by electroretinography (ERG), have been shown to be reduced in schizophrenia. Data from a prior ERG study in healthy humans indicated that activity of a retinal cell type affected in schizophrenia can be modified by the presence of a food reward. Therefore, we aimed to determine whether ERG amplitudes would be sensitive to the well-documented reward processing impairment in schizophrenia. Flash ERG data from 15 clinically stable people with schizophrenia or schizoaffective disorder and 15 healthy controls were collected under three conditions: baseline, anticipation of a food reward, and immediately after consuming the food reward. At the group level, data indicated that controls' ERG responses varied as a function of salience of the food reward (baseline vs. anticipation vs. consumption) whereas patients' ERG responses did not vary significantly across conditions. Correlations between ERG amplitudes and scores on measures of hedonic capacity (including motivation and pleasure negative symptom ratings for patients) indicated consistent relationships. These data suggest that flash ERG amplitudes may be a sensitive indicator of the integrity of reward processing mechanisms. However, several differences in the direction of findings between this and a prior study in controls point to the need for further investigation of the contributions of a number of key variables to the observed effects.
Collapse
|
30
|
Cruz-Corchado J, Ooi FK, Das S, Prahlad V. Global Transcriptome Changes That Accompany Alterations in Serotonin Levels in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:1225-1246. [PMID: 31996358 PMCID: PMC7144078 DOI: 10.1534/g3.120.401088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/25/2020] [Indexed: 11/18/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT), is a phylogenetically ancient molecule best characterized as a neurotransmitter that modulates multiple aspects of mood and social cognition. The roles that 5-HT plays in normal and abnormal behavior are not fully understood but have been posited to be due to its common function as a 'defense signal'. However, 5-HT levels also systemically impact cell physiology, modulating cell division, migration, apoptosis, mitochondrial biogenesis, cellular metabolism and differentiation. Whether these diverse cellular effects of 5-HT also share a common basis is unclear. C. elegans provides an ideal system to interrogate the systemic effects of 5-HT, since lacking a blood-brain barrier, 5-HT synthesized and released by neurons permeates the organism to modulate neuronal as well as non-neuronal cells throughout the body. Here we used RNA-Seq to characterize the systemic changes in gene expression that occur in C. elegans upon altering 5-HT levels, and compared the transcriptomes to published datasets. We find that an acute increase in 5-HT is accompanied by a global decrease in gene expression levels, upregulation of genes involved in stress pathways, changes that significantly correlate with the published transcriptomes of animals that have activated defense and immune responses, and an increase in levels of phosphorylated eukaryotic initiation factor, eIF2α. In 5-HT deficient animals lacking tryptophan hydroxylase (tph-1(mg280)II) there is a net increase in gene expression, with an overrepresentation of genes related to development and chromatin. Surprisingly, the transcriptomes of animals with acute increases in 5-HT levels, and 5-HT deficiency do not overlap with transcriptomes of mutants with whom they share striking physiological resemblance. These studies are the first to catalog systemic transcriptome changes that occur upon alterations in 5-HT levels. They further show that in C. elegans changes in gene expression upon altering 5-HT levels, and changes in physiology, are not directly correlated.
Collapse
Affiliation(s)
- Johnny Cruz-Corchado
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| |
Collapse
|
31
|
Abstract
Neurons that synthesize and release 5-hydroxytryptamine (5-HT; serotonin) express a core set of genes that establish and maintain this neurotransmitter phenotype and distinguish these neurons from other brain cells. Beyond a shared 5-HTergic phenotype, these neurons display divergent cellular properties in relation to anatomy, morphology, hodology, electrophysiology and gene expression, including differential expression of molecules supporting co-transmission of additional neurotransmitters. This diversity suggests that functionally heterogeneous subtypes of 5-HT neurons exist, but linking subsets of these neurons to particular functions has been technically challenging. We discuss recent data from molecular genetic, genomic and functional methods that, when coupled with classical findings, yield a reframing of the 5-HT neuronal system as a conglomeration of diverse subsystems with potential to inspire novel, more targeted therapies for clinically distinct 5-HT-related disorders.
Collapse
|
32
|
Liu P, Cao T, Xu J, Mao X, Wang D, Li A. Plasticity of Sniffing Pattern and Neural Activity in the Olfactory Bulb of Behaving Mice During Odor Sampling, Anticipation, and Reward. Neurosci Bull 2020; 36:598-610. [PMID: 31989425 DOI: 10.1007/s12264-019-00463-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
The olfactory bulb (OB) is the first relay station in the olfactory system. In the OB, mitral/tufted cells (M/Ts), which are the main output neurons, play important roles in the processing and representation of odor information. Recent studies focusing on the function of M/Ts at the single-cell level in awake behaving mice have demonstrated that odor-evoked firing of single M/Ts displays transient/long-term plasticity during learning. Here, we tested whether the neural activity of M/Ts and sniffing patterns are dependent on anticipation and reward in awake behaving mice. We used an odor discrimination task combined with in vivo electrophysiological recordings in awake, head-fixed mice, and found that, while learning induced plasticity of spikes and beta oscillations during odor sampling, we also found plasticity of spikes, beta oscillation, sniffing pattern, and coherence between sniffing and theta oscillations during the periods of anticipation and/or reward. These results indicate that the activity of M/Ts plays important roles not only in odor representation but also in salience-related events such as anticipation and reward.
Collapse
Affiliation(s)
- Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tiantian Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jinshan Xu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xingfeng Mao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
33
|
Li A, Rao X, Zhou Y, Restrepo D. Complex neural representation of odour information in the olfactory bulb. Acta Physiol (Oxf) 2020; 228:e13333. [PMID: 31188539 PMCID: PMC7900671 DOI: 10.1111/apha.13333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
The most important task of the olfactory system is to generate a precise representation of odour information under different brain and behavioural states. As the first processing stage in the olfactory system and a crucial hub, the olfactory bulb plays a key role in the neural representation of odours, encoding odour identity, intensity and timing. Although the neural circuits and coding strategies used by the olfactory bulb for odour representation were initially identified in anaesthetized animals, a large number of recent studies focused on neural representation of odorants in the olfactory bulb in awake behaving animals. In this review, we discuss these recent findings, covering (a) the neural circuits for odour representation both within the olfactory bulb and the functional connections between the olfactory bulb and the higher order processing centres; (b) how related factors such as sniffing affect and shape the representation; (c) how the representation changes under different states; and (d) recent progress on the processing of temporal aspects of odour presentation in awake, behaving rodents. We highlight discussion of the current views and emerging proposals on the neural representation of odorants in the olfactory bulb.
Collapse
Affiliation(s)
- Anan Li
- Jiangsu Key laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaoping Rao
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological systems, Wuhan institute of Physics and Mathematics, Chinese Academy of Science, Wuhan, 430072, China
| | - Yang Zhou
- Jiangsu Key laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
34
|
Karel P, Van der Toorn A, Vanderschuren L, Guo C, Sadighi Alvandi M, Reneman L, Dijkhuizen R, Verheij MMM, Homberg JR. Ultrahigh-resolution MRI reveals structural brain differences in serotonin transporter knockout rats after sucrose and cocaine self-administration. Addict Biol 2020; 25:e12722. [PMID: 30748070 PMCID: PMC6916608 DOI: 10.1111/adb.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
Abstract
Excessive use of cocaine is known to induce changes in brain white and gray matter. It is unknown whether the extent of these changes is related to individual differences in vulnerability to cocaine addiction. One factor increasing vulnerability involves reduced expression of the serotonin transporter (5-HTT). Human studies have shown that inherited 5-HTT downregulation is associated with structural changes in the brain. These genotype-related structural changes may contribute to risk for cocaine addiction. Here, we tested this idea by using ultrahigh-resolution structural magnetic resonance imaging (MRI) on postmortem tissue of 5-HTT-/- and wild-type (5-HTT+/+ ) rats with a history of long access to cocaine or sucrose (control) self-administration. We found that 5-HTT-/- rats, compared with wild-type control animals, self-administered more cocaine, but not sucrose, under long-access conditions. Ultrahigh-resolution structural MRI subsequently revealed that, independent of sucrose or cocaine self-administration, 5-HTT-/- rats had a smaller amygdala. Moreover, we found an interaction between genotype and type of reward for dorsal raphe nucleus volume. The data point to an important but differential role of the amygdala and dorsal raphe nucleus in 5-HTT genotype-dependent vulnerability to cocaine addiction.
Collapse
Affiliation(s)
- Peter Karel
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboudumcNijmegenThe Netherlands
| | - Annette Van der Toorn
- Biomedical MR Imaging and Spectroscopy Group, Center for Image SciencesUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Louk Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Chao Guo
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboudumcNijmegenThe Netherlands
| | - Mina Sadighi Alvandi
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboudumcNijmegenThe Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Brain and CognitionUniversity of AmsterdamAmsterdamThe Netherlands
| | - Rick Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image SciencesUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboudumcNijmegenThe Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboudumcNijmegenThe Netherlands
| |
Collapse
|
35
|
Liu C, Meng Z, Wiggin TD, Yu J, Reed ML, Guo F, Zhang Y, Rosbash M, Griffith LC. A Serotonin-Modulated Circuit Controls Sleep Architecture to Regulate Cognitive Function Independent of Total Sleep in Drosophila. Curr Biol 2019; 29:3635-3646.e5. [PMID: 31668619 DOI: 10.1016/j.cub.2019.08.079] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
Both the structure and the amount of sleep are important for brain function. Entry into deep, restorative stages of sleep is time dependent; short sleep bouts selectively eliminate these states. Fragmentation-induced cognitive dysfunction is a feature of many common human sleep pathologies. Whether sleep structure is normally regulated independent of the amount of sleep is unknown. Here, we show that in Drosophila melanogaster, activation of a subset of serotonergic neurons fragments sleep without major changes in the total amount of sleep, dramatically reducing long episodes that may correspond to deep sleep states. Disruption of sleep structure results in learning deficits that can be rescued by pharmacologically or genetically consolidating sleep. We identify two reciprocally connected sets of ellipsoid body neurons that form the heart of a serotonin-modulated circuit that controls sleep architecture. Taken together, these findings define a circuit essential for controlling the structure of sleep independent of its amount.
Collapse
Affiliation(s)
- Chang Liu
- Complex Systems, Brandeis University, Waltham, MA 02454, USA; Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Zhiqiang Meng
- Complex Systems, Brandeis University, Waltham, MA 02454, USA; Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | | | - Junwei Yu
- Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Martha L Reed
- Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Fang Guo
- Complex Systems, Brandeis University, Waltham, MA 02454, USA; Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA; Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang province 310058, China
| | - Yunpeng Zhang
- Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Michael Rosbash
- Complex Systems, Brandeis University, Waltham, MA 02454, USA; Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
36
|
Carbone C, Lo Russo SLM, Lacivita E, Frank A, Alleva E, Stark H, Saso L, Leopoldo M, Adriani W. Prior Activation of 5-HT7 Receptors Modulates the Conditioned Place Preference With Methylphenidate. Front Behav Neurosci 2019; 13:208. [PMID: 31619973 PMCID: PMC6759476 DOI: 10.3389/fnbeh.2019.00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
The serotonin receptor subtype 7 (5-HT7R) is clearly involved in behavioral functions such as learning/memory, mood regulation and circadian rhythm. Recent discoveries proposed modulatory physiological roles for serotonergic systems in reward-guided behavior. However, the interplay between serotonin (5-HT) and dopamine (DA) in reward-related behavioral adaptations needs to be further assessed. TP-22 is a recently developed arylpiperazine-based 5-HT7R agonist, which is also showing high affinity and selectivity towards D1 receptors. Here, we report that TP-22 displays D1 receptor antagonist activity. Moreover, we describe the first in vivo tests with TP-22: first, a pilot experiment (assessing dosage and timing of action) identified the 0.25 mg/kg i.v. dosage for locomotor stimulation of rats. Then, a conditioned place preference (CPP) test with the DA-releasing psychostimulant drug, methylphenidate (MPH), involved three rat groups: prior i.v. administration of TP-22 (0.25 mg/kg), or vehicle (VEH), 90 min before MPH (5 mg/kg), was intended for modulation of conditioning to the white chamber (saline associated to the black chamber); control group (SAL) was conditioned with saline in both chambers. Prior TP-22 further increased the stimulant effect of MPH on locomotor activity. During the place-conditioning test, drug-free activity of TP-22+MPH subjects remained steadily elevated, while VEH+MPH subjects showed a decline. Finally, after a priming injection of TP-22 in MPH-free conditions, rats showed a high preference for the MPH-associated white chamber, which conversely had vanished in VEH-primed MPH-conditioned subjects. Overall, the interaction between MPH and pre-treatment with TP-22 seems to improve both locomotor stimulation and the conditioning of motivational drives to environmental cues. Together with recent studies, a main modulatory role of 5-HT7R for the processing of rewards can be suggested. In the present study, TP-22 proved to be a useful psychoactive tool to better elucidate the role of 5-HT7R and its interplay with DA in reward-related behavior.
Collapse
Affiliation(s)
- Cristiana Carbone
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Enrico Alleva
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Luciano Saso
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, Rome, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari, Bari, Italy.,BIOFORDRUG s.r.l., Università degli Studi di Bari, Bari, Italy
| | - Walter Adriani
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
37
|
Wen P, Rao X, Xu L, Zhang Z, Jia F, He X, Xu F. Cortical Organization of Centrifugal Afferents to the Olfactory Bulb: Mono- and Trans-synaptic Tracing with Recombinant Neurotropic Viral Tracers. Neurosci Bull 2019; 35:709-723. [PMID: 31069620 DOI: 10.1007/s12264-019-00385-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/14/2018] [Indexed: 01/14/2023] Open
Abstract
Sensory processing is strongly modulated by different brain and behavioral states, and this is based on the top-down modulation. In the olfactory system, local neural circuits in the olfactory bulb (OB) are innervated by centrifugal afferents in order to regulate the processing of olfactory information in the OB under different behavioral states. The purpose of the present study was to explore the organization of neural networks in olfactory-related cortices and modulatory nuclei that give rise to direct and indirect innervations to the glomerular layer (GL) of the OB at the whole-brain scale. Injection of different recombinant attenuated neurotropic viruses into the GL showed that it received direct inputs from each layer in the OB, centrifugal inputs from the ipsilateralanterior olfactory nucleus (AON), anterior piriform cortex (Pir), and horizontal limb of diagonal band of Broca (HDB), and various indirect inputs from bilateral cortical neurons in the AON, Pir, amygdala, entorhinal cortex, hippocampus, HDB, dorsal raphe, median raphe and locus coeruleus. These results provide a circuitry basis that will help further understand the mechanism by which olfactory information-processing in the OB is regulated.
Collapse
Affiliation(s)
- Pengjie Wen
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoping Rao
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liuying Xu
- College of Life Science, Wuhan University, Wuhan, 430072, China
| | - Zhijian Zhang
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fan Jia
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaobin He
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fuqiang Xu
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Divisions of Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China.
| |
Collapse
|
38
|
Cohen K, Weizman A, Weinstein A. Modulatory effects of cannabinoids on brain neurotransmission. Eur J Neurosci 2019; 50:2322-2345. [DOI: 10.1111/ejn.14407] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Koby Cohen
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| | | | - Aviv Weinstein
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| |
Collapse
|
39
|
Kroes MCW, Henckens MJAG, Homberg JR. How serotonin transporter gene variance affects defensive behaviours along the threat imminence continuum. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Social brain, social dysfunction and social withdrawal. Neurosci Biobehav Rev 2019; 97:10-33. [DOI: 10.1016/j.neubiorev.2018.09.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/31/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
|
41
|
Wang HL, Zhang S, Qi J, Wang H, Cachope R, Mejias-Aponte CA, Gomez JA, Mateo-Semidey GE, Beaudoin GMJ, Paladini CA, Cheer JF, Morales M. Dorsal Raphe Dual Serotonin-Glutamate Neurons Drive Reward by Establishing Excitatory Synapses on VTA Mesoaccumbens Dopamine Neurons. Cell Rep 2019; 26:1128-1142.e7. [PMID: 30699344 PMCID: PMC6489450 DOI: 10.1016/j.celrep.2019.01.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/12/2018] [Accepted: 01/03/2019] [Indexed: 11/26/2022] Open
Abstract
Dorsal raphe (DR) serotonin neurons provide a major input to the ventral tegmental area (VTA). Here, we show that DR serotonin transporter (SERT) neurons establish both asymmetric and symmetric synapses on VTA dopamine neurons, but most of these synapses are asymmetric. Moreover, the DR-SERT terminals making asymmetric synapses on VTA dopamine neurons coexpress vesicular glutamate transporter 3 (VGluT3; transporter for accumulation of glutamate for its synaptic release), suggesting the excitatory nature of these synapses. VTA photoactivation of DR-SERT fibers promotes conditioned place preference, elicits excitatory currents on mesoaccumbens dopamine neurons, increases their firing, and evokes dopamine release in nucleus accumbens. These effects are blocked by VTA inactivation of glutamate and serotonin receptors, supporting the idea of glutamate release in VTA from dual DR SERT-VGluT3 inputs. Our findings suggest a path-specific input from DR serotonergic neurons to VTA that promotes reward by the release of glutamate and activation of mesoaccumbens dopamine neurons.
Collapse
Affiliation(s)
- Hui-Ling Wang
- National Institute on Drug Abuse, Neuronal Networks Section, NIH, Baltimore, MD, USA
| | - Shiliang Zhang
- National Institute on Drug Abuse, Electron Microscopy Core, NIH, Baltimore, MD, USA
| | - Jia Qi
- National Institute on Drug Abuse, Neuronal Networks Section, NIH, Baltimore, MD, USA
| | - Huikun Wang
- National Institute on Drug Abuse, Neuronal Networks Section, NIH, Baltimore, MD, USA
| | - Roger Cachope
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jorge A Gomez
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Gerard M J Beaudoin
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Carlos A Paladini
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marisela Morales
- National Institute on Drug Abuse, Neuronal Networks Section, NIH, Baltimore, MD, USA.
| |
Collapse
|
42
|
Lloyd K, Dayan P. Pavlovian-instrumental interactions in active avoidance: The bark of neutral trials. Brain Res 2018; 1713:52-61. [PMID: 30308188 DOI: 10.1016/j.brainres.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Accepted: 10/05/2018] [Indexed: 02/02/2023]
Abstract
In active avoidance tasks, subjects have to learn to execute particular actions in order to avoid an aversive stimulus, such as a shock. Such paradigms pose a number of psychological and neural enigmas, and so have attracted substantial computational interest. However, the ratio of conjecture to confirmation remains high. Here, we perform a theoretical inquiry into a recent experiment by Gentry, Lee, and Roesch ('Phasic dopamine release in the rat nucleus accumbens predicts approach and avoidance performance', Nat. Commun., 7:13154) who measured phasic dopamine concentrations in the nucleus accumbens core of rats whilst they avoided shocks, acquired food, or acted to gain no programmed outcome. These last, neutral, trials turned out to be a perfect probe for the workings of avoidance, partly because of the substantial differences between subjects and sessions revealed in the experiment. We suggest a way to interpret this probe, gaining support for opponency-, safety-, and Pavlovian-influenced treatments of avoidance.
Collapse
Affiliation(s)
- Kevin Lloyd
- Princeton Neuroscience Institute, Princeton University, United States.
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, United Kingdom
| |
Collapse
|
43
|
Hamed A, Kursa MB. Inter-individual differences in serotonin and glutamate co-transmission reflect differentiation in context-induced conditioned 50-kHz USVs response after morphine withdrawal. Brain Struct Funct 2018; 223:3149-3167. [PMID: 29774428 PMCID: PMC6132671 DOI: 10.1007/s00429-018-1683-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
A growing body of research provides compelling evidence that in rats 50-kHz USVs are a form of expression of positive emotions. Context-induced 50-kHz USVs emission is variable among rats, indicating individual differences in contextual response bound up with pharmacological reward. The aims of this study were to: extract the most important neurotransmitters related to context-induced conditioned 50-kHz USVs response; find biological basis of existing inter-individual differences in context-induced conditioned 50-kHz USVs response; create a model of all-to-all neurotransmitters correlations. The data collected here confirms that re-exposure to the context of morphine administration after the withdrawal period increases the level of 50-kHz USVs and this contextual response is associated with elevated serotonin concentrations in amygdala, hippocampus and mPFC and with increased Glu/Gln ratio in nucleus accumbens. The concentration of serotonin increases simultaneously in amygdala, nucleus accumbens and hippocampus. Moreover, 5-HT concentration in amygdala is bound up with glutamate level in this structure as well as in hippocampus. Furthermore, Glu/Gln ratio in nucleus accumbens has strong associations with Glu/Gln ratio simultaneously in VTA, amygdala, striatum and hippocampus. All-to-all-analysis indicate that concentration of glutamate in hippocampus is proportional to glutamate in VTA and GABA concentration in the hippocampus. We have also demonstrated that Glu/GABA ratio in VTA and amygdala was elevated after post withdrawal re-exposure to the pharmacological reward paired context. Presented analysis indicates a strong correlation between serotonergic and glutamatergic systems in context-induced conditioned response. The strength of this co-transmission correlates with the number of 50-kHz USVs emitted in response to morphine-paired context.
Collapse
Affiliation(s)
- Adam Hamed
- Laboratory of Spatial Memory, Department of Cellular and Molecular Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Miron Bartosz Kursa
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106, Warsaw, Poland
| |
Collapse
|
44
|
Iigaya K, Fonseca MS, Murakami M, Mainen ZF, Dayan P. An effect of serotonergic stimulation on learning rates for rewards apparent after long intertrial intervals. Nat Commun 2018; 9:2477. [PMID: 29946069 PMCID: PMC6018802 DOI: 10.1038/s41467-018-04840-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/22/2018] [Indexed: 12/02/2022] Open
Abstract
Serotonin has widespread, but computationally obscure, modulatory effects on learning and cognition. Here, we studied the impact of optogenetic stimulation of dorsal raphe serotonin neurons in mice performing a non-stationary, reward-driven decision-making task. Animals showed two distinct choice strategies. Choices after short inter-trial-intervals (ITIs) depended only on the last trial outcome and followed a win-stay-lose-switch pattern. In contrast, choices after long ITIs reflected outcome history over multiple trials, as described by reinforcement learning models. We found that optogenetic stimulation during a trial significantly boosted the rate of learning that occurred due to the outcome of that trial, but these effects were only exhibited on choices after long ITIs. This suggests that serotonin neurons modulate reinforcement learning rates, and that this influence is masked by alternate, unaffected, decision mechanisms. These results provide insight into the role of serotonin in treating psychiatric disorders, particularly its modulation of neural plasticity and learning. Serotonin (5-HT) plays many important roles in reward, punishment, patience and beyond, and optogenetic stimulation of 5-HT neurons has not crisply parsed them. The authors report a novel analysis of a reward-based decision-making experiment, and show that 5-HT stimulation increases the learning rate, but only on a select subset of choices.
Collapse
Affiliation(s)
- Kiyohito Iigaya
- Gatsby Computational Neuroscience Unit, University College London, 25 Howland Street, London, W1T 4JG, UK. .,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Russell Square House, 10-12 Russell Square, London, WC1B 5EH, UK. .,Division of Humanities and Social Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA.
| | - Madalena S Fonseca
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Masayoshi Murakami
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Zachary F Mainen
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, 25 Howland Street, London, W1T 4JG, UK.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Russell Square House, 10-12 Russell Square, London, WC1B 5EH, UK
| |
Collapse
|
45
|
Zhang L, Hernández VS, Swinny JD, Verma AK, Giesecke T, Emery AC, Mutig K, Garcia-Segura LM, Eiden LE. A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling. Transl Psychiatry 2018; 8:50. [PMID: 29479060 PMCID: PMC5865187 DOI: 10.1038/s41398-018-0099-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
The lateral habenula (LHb) has a key role in integrating a variety of neural circuits associated with reward and aversive behaviors. There is limited information about how the different cell types and neuronal circuits within the LHb coordinate physiological and motivational states. Here, we report a cell type in the medial division of the LHb (LHbM) in male rats that is distinguished by: (1) a molecular signature for GABAergic neurotransmission (Slc32a1/VGAT) and estrogen receptor (Esr1/ERα) expression, at both mRNA and protein levels, as well as the mRNA for vesicular glutamate transporter Slc17a6/VGLUT2, which we term the GABAergic estrogen-receptive neuron (GERN); (2) its axonal projection patterns, identified by in vivo juxtacellular labeling, to both local LHb and to midbrain modulatory systems; and (3) its somatic expression of receptors for vasopressin, serotonin and dopamine, and mRNA for orexin receptor 2. This cell type is anatomically located to receive afferents from midbrain reward (dopamine and serotonin) and hypothalamic water and energy homeostasis (vasopressin and orexin) circuits. These afferents shared the expression of estrogen synthase (aromatase) and VGLUT2, both in their somata and axon terminals. We demonstrate dynamic changes in LHbM VGAT+ cell density, dependent upon gonadal functional status, that closely correlate with motivational behavior in response to predator and forced swim stressors. The findings suggest that the homeostasis and reward-related glutamatergic convergent projecting pathways to LHbMC employ a localized neurosteroid signaling mechanism via axonal expression of aromatase, to act as a switch for GERN excitation/inhibition output prevalence, influencing depressive or motivated behavior.
Collapse
Affiliation(s)
- Limei Zhang
- Departmento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico. .,Section on Molecular Neuroscience, National Institute of Mental Health (NIH), Bethesda, USA.
| | - Vito S. Hernández
- 0000 0001 2159 0001grid.9486.3Departmento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jerome D. Swinny
- 0000 0001 0728 6636grid.4701.2Institute for Biomedical and Biomolecular Sciences, School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Anil K. Verma
- 0000 0001 2159 0001grid.9486.3Departmento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Torsten Giesecke
- 0000 0001 2218 4662grid.6363.0Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrew C. Emery
- 0000 0004 0464 0574grid.416868.5Section on Molecular Neuroscience, National Institute of Mental Health (NIH), Bethesda, USA
| | - Kerim Mutig
- 0000 0001 2218 4662grid.6363.0Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luis M. Garcia-Segura
- 0000 0001 2177 5516grid.419043.bInstituto Cajal, C.S.I.C., Madrid, Spain ,0000 0000 9314 1427grid.413448.eCIBERFES, Instituto de Salud Carlos III, Madrid, Spain
| | - Lee E. Eiden
- 0000 0004 0464 0574grid.416868.5Section on Molecular Neuroscience, National Institute of Mental Health (NIH), Bethesda, USA
| |
Collapse
|
46
|
Lizbinski KM, Dacks AM. Intrinsic and Extrinsic Neuromodulation of Olfactory Processing. Front Cell Neurosci 2018; 11:424. [PMID: 29375314 PMCID: PMC5767172 DOI: 10.3389/fncel.2017.00424] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/18/2017] [Indexed: 12/03/2022] Open
Abstract
Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a “memory” by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform.
Collapse
Affiliation(s)
- Kristyn M Lizbinski
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
47
|
Regulation of noradrenergic and serotonergic systems by cannabinoids: relevance to cannabinoid-induced effects. Life Sci 2018; 192:115-127. [DOI: 10.1016/j.lfs.2017.11.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
|
48
|
Fischer AG, Ullsperger M. An Update on the Role of Serotonin and its Interplay with Dopamine for Reward. Front Hum Neurosci 2017; 11:484. [PMID: 29075184 PMCID: PMC5641585 DOI: 10.3389/fnhum.2017.00484] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 01/02/2023] Open
Abstract
The specific role of serotonin and its interplay with dopamine (DA) in adaptive, reward guided behavior as well as drug dependance, still remains elusive. Recently, novel methods allowed cell type specific anatomical, functional and interventional analyses of serotonergic and dopaminergic circuits, promising significant advancement in understanding their functional roles. Furthermore, it is increasingly recognized that co-release of neurotransmitters is functionally relevant, understanding of which is required in order to interpret results of pharmacological studies and their relationship to neural recordings. Here, we review recent animal studies employing such techniques with the aim to connect their results to effects observed in human pharmacological studies and subjective effects of drugs. It appears that the additive effect of serotonin and DA conveys significant reward related information and is subjectively highly euphorizing. Neither DA nor serotonin alone have such an effect. This coincides with optogenetically targeted recordings in mice, where the dopaminergic system codes reward prediction errors (PE), and the serotonergic system mainly unsigned PE. Overall, this pattern of results indicates that joint activity between both systems carries essential reward information and invites parallel investigation of both neurotransmitter systems.
Collapse
Affiliation(s)
- Adrian G Fischer
- Department of Neuropsychology, Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Markus Ullsperger
- Department of Neuropsychology, Institute of Psychology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
49
|
Xu S, Das G, Hueske E, Tonegawa S. Dorsal Raphe Serotonergic Neurons Control Intertemporal Choice under Trade-off. Curr Biol 2017; 27:3111-3119.e3. [PMID: 28988863 PMCID: PMC5691357 DOI: 10.1016/j.cub.2017.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/11/2017] [Accepted: 09/06/2017] [Indexed: 11/28/2022]
Abstract
Appropriate choice about delayed reward is fundamental to the survival of animals. Although animals tend to prefer immediate reward, delaying gratification is often advantageous. The dorsal raphe (DR) serotonergic neurons have long been implicated in the processing of delayed reward, but it has been unclear whether or when their activity causally directs choice. Here, we transiently augmented or reduced the activity of DR serotonergic neurons, while mice decided between differently delayed rewards as they performed a novel odor-guided intertemporal choice task. We found that these manipulations, precisely targeted at the decision point, were sufficient to bidirectionally influence impulsive choice. The manipulation specifically affected choices with more difficult trade-off. Similar effects were observed when we manipulated the serotonergic projections to the nucleus accumbens (NAc). We propose that DR serotonergic neurons preempt reward delays at the decision point and play a critical role in suppressing impulsive choice by regulating decision trade-off.
Collapse
Affiliation(s)
- Sangyu Xu
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Agency for Science, Technology and Research, Singapore 138632, Singapore.
| | - Gishnu Das
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily Hueske
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susumu Tonegawa
- RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
50
|
Learning and Stress Shape the Reward Response Patterns of Serotonin Neurons. J Neurosci 2017; 37:8863-8875. [PMID: 28821671 DOI: 10.1523/jneurosci.1181-17.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/06/2017] [Accepted: 07/29/2017] [Indexed: 12/22/2022] Open
Abstract
The ability to predict reward promotes animal survival. Both dopamine neurons in the ventral tegmental area and serotonin neurons in the dorsal raphe nucleus (DRN) participate in reward processing. Although the learning effects on dopamine neurons have been extensively characterized, it remains largely unknown how the response of serotonin neurons evolves during learning. Moreover, although stress is known to strongly influence reward-related behavior, we know very little about how stress modulates neuronal reward responses. By monitoring Ca2+ signals during the entire process of Pavlovian conditioning, we here show that learning differentially shapes the response patterns of serotonin neurons and dopamine neurons in mice of either sex. Serotonin neurons gradually develop a slow ramp-up response to the reward-predicting cue, and ultimately remain responsive to the reward, whereas dopamine neurons increase their response to the cue but reduce their response to the reward. For both neuron types, the responses to the cue and the reward depend on reward value, are reversible when the reward is omitted, and are rapidly reinstated by restoring the reward. We also found that stressors including head restraint and fearful context substantially reduce the response strength of both neuron types, to both the cue and the reward. These results reveal the dynamic nature of the reward responses, support the hypothesis that DRN serotonin neurons signal the current likelihood of receiving a net benefit, and suggest that the inhibitory effect of stress on the reward responses of serotonin neurons and dopamine neurons may contribute to stress-induced anhedonia.SIGNIFICANCE STATEMENT Both serotonin neurons in the dorsal raphe and dopamine neurons in the ventral tegmental area are intimately involved in reward processing. Using long-term fiber photometry of Ca2+ signals from freely behaving mice, we here show that learning produces a ramp-up activation pattern in serotonin neurons that differs from that in dopamine neurons, indicating complementary roles for these two neuron types in reward processing. Moreover, stress treatment substantially reduces the reward responses of both serotonin neurons and dopamine neurons, suggesting a possible physiological basis for stress-induced anhedonia.
Collapse
|