1
|
Svendsen SP, Svendsen CN. Cell therapy for neurological disorders. Nat Med 2024; 30:2756-2770. [PMID: 39407034 DOI: 10.1038/s41591-024-03281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024]
Abstract
Cell therapies for neurological disorders are entering the clinic and present unique challenges and opportunities compared with conventional medicines. They have the potential to replace damaged nervous tissue and integrate into the brain or spinal cord to produce functional effects for the lifetime of the patient, which could revolutionize the way clinicians treat debilitating neurological disorders. The major challenge has been cell sourcing, which historically relied mainly on fetal brain tissue. This has largely been overcome with the advent of pluripotent stem cell technology and the ability to make almost any cell of the nervous system at scale. Furthermore, advances in gene editing now allow the generation of genetically modified cells that could perform better and evade the immune system. With all the remarkable new approaches to treat neurological disorders, we take a critical look at the state of current clinical trials and how challenges may be overcome with the evolving technology and innovation occurring in the stem cell field.
Collapse
Affiliation(s)
- Soshana P Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - Clive N Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Kim LJY, Kundu B, Moretti P, Lozano AM, Rahimpour S. Advancements in surgical treatments for Huntington disease: From pallidotomy to experimental therapies. Neurotherapeutics 2024:e00452. [PMID: 39304438 DOI: 10.1016/j.neurot.2024.e00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterized by choreic movements, behavioral changes, and cognitive impairment. The pathogenesis of this process is a consequence of mutant protein toxicity in striatal and cortical neurons. Thus far, neurosurgical management of HD has largely been limited to symptomatic relief of motor symptoms using ablative and stimulation techniques. These interventions, however, do not modify the progressive course of the disease. More recently, disease-modifying experimental therapeutic strategies have emerged targeting intrastriatal infusion of neurotrophic factors, cell transplantation, HTT gene silencing, and delivery of intrabodies. Herein we review therapies requiring neurosurgical intervention, including those targeting symptom management and more recent disease-modifying agents, with a focus on safety, efficacy, and surgical considerations.
Collapse
Affiliation(s)
- Leo J Y Kim
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Bornali Kundu
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Paolo Moretti
- Department of Neurology, University of Utah, Salt Lake City, UT, USA; Department of Neurology, George E. Wahlen VA Medical Center, Salt Lake City, UT, USA
| | - Andres M Lozano
- Division of Neurosurgery and Toronto Western Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shervin Rahimpour
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
D'Egidio F, Castelli V, Lombardozzi G, Ammannito F, Cimini A, d'Angelo M. Therapeutic advances in neural regeneration for Huntington's disease. Neural Regen Res 2024; 19:1991-1997. [PMID: 38227527 DOI: 10.4103/1673-5374.390969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 01/17/2024] Open
Abstract
Huntington's disease is a neurodegenerative disease caused by the expansion mutation of a cytosine-adenine-guanine triplet in the exon 1 of the HTT gene which is responsible for the production of the huntingtin (Htt) protein. In physiological conditions, Htt is involved in many cellular processes such as cell signaling, transcriptional regulation, energy metabolism regulation, DNA maintenance, axonal trafficking, and antiapoptotic activity. When the genetic alteration is present, the production of a mutant version of Htt (mHtt) occurs, which is characterized by a plethora of pathogenic activities that, finally, lead to cell death. Among all the cells in which mHtt exerts its dangerous activity, the GABAergic Medium Spiny Neurons seem to be the most affected by the mHtt-induced excitotoxicity both in the cortex and in the striatum. However, as the neurodegeneration proceeds ahead the neuronal loss grows also in other brain areas such as the cerebellum, hypothalamus, thalamus, subthalamic nucleus, globus pallidus, and substantia nigra, determining the variety of symptoms that characterize Huntington's disease. From a clinical point of view, Huntington's disease is characterized by a wide spectrum of symptoms spanning from motor impairment to cognitive disorders and dementia. Huntington's disease shows a prevalence of around 3.92 cases every 100,000 worldwide and an incidence of 0.48 new cases every 100,000/year. To date, there is no available cure for Huntington's disease. Several treatments have been developed so far, aiming to reduce the severity of one or more symptoms to slow down the inexorable decline caused by the disease. In this context, the search for reliable strategies to target the different aspects of Huntington's disease become of the utmost interest. In recent years, a variety of studies demonstrated the detrimental role of neuronal loss in Huntington's disease condition highlighting how the replacement of lost cells would be a reasonable strategy to overcome the neurodegeneration. In this view, numerous have been the attempts in several preclinical models of Huntington's disease to evaluate the feasibility of invasive and non-invasive approaches. Thus, the aim of this review is to offer an overview of the most appealing approaches spanning from stem cell-based cell therapy to extracellular vesicles such as exosomes in light of promoting neurogenesis, discussing the results obtained so far, their limits and the future perspectives regarding the neural regeneration in the context of Huntington's disease.
Collapse
Affiliation(s)
- Francesco D'Egidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Chen KS, Koubek EJ, Sakowski SA, Feldman EL. Stem cell therapeutics and gene therapy for neurologic disorders. Neurotherapeutics 2024; 21:e00427. [PMID: 39096590 PMCID: PMC11345629 DOI: 10.1016/j.neurot.2024.e00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Rapid advances in biological knowledge and technological innovation have greatly advanced the fields of stem cell and gene therapies to combat a broad spectrum of neurologic disorders. Researchers are currently exploring a variety of stem cell types (e.g., embryonic, progenitor, induced pluripotent) and various transplantation strategies, each with its own advantages and drawbacks. Similarly, various gene modification techniques (zinc finger, TALENs, CRISPR-Cas9) are employed with various delivery vectors to modify underlying genetic contributors to neurologic disorders. While these two individual fields continue to blaze new trails, it is the combination of these technologies which enables genetically engineered stem cells and vastly increases investigational and therapeutic opportunities. The capability to culture and expand stem cells outside the body, along with their potential to correct genetic abnormalities in patient-derived cells or enhance cells with extra gene products, unleashes the full biological potential for innovative, multifaceted approaches to treat complex neurological disorders. In this review, we provide an overview of stem cell and gene therapies in the context of neurologic disorders, highlighting recent advances and current shortcomings, and discuss prospects for future therapies in clinical settings.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Pazzin DB, Previato TTR, Budelon Gonçalves JI, Zanirati G, Xavier FAC, da Costa JC, Marinowic DR. Induced Pluripotent Stem Cells and Organoids in Advancing Neuropathology Research and Therapies. Cells 2024; 13:745. [PMID: 38727281 PMCID: PMC11083827 DOI: 10.3390/cells13090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs) and three-dimensional organoid models in propelling forward neuropathology research. With a focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a platform for personalized disease modeling, holding significant potential for regenerative therapy and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the generation of various types of neural cell differentiations and their integration into three-dimensional organoid models, effectively replicating complex tissue structures in vitro. Key advancements in organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by their successful application in animal models.
Collapse
Affiliation(s)
- Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Fernando Antonio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| |
Collapse
|
6
|
Esmaeili A, Eteghadi A, Landi FS, Yavari SF, Taghipour N. Recent approaches in regenerative medicine in the fight against neurodegenerative disease. Brain Res 2024; 1825:148688. [PMID: 38042394 DOI: 10.1016/j.brainres.2023.148688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Neurodegenerative diseases arise due to slow and gradual loss of structure and/or function of neurons and glial cells and cause different degrees of loss of cognition abilities and sensation. The little success in developing effective treatments imposes a high and regressive economic impact on society, patients and their families. In recent years, regenerative medicine has provided a great opportunity to research new innovative strategies with strong potential to treatleva these diseases. These effects are due to the ability of suitable cells and biomaterials to regenerate damaged nerves with differentiated cells, creating an appropriate environment for recovering or preserving existing healthy neurons and glial cells from destruction and damage. Ultimately, a better understanding and thus a further investigation of stem cell technology, tissue engineering, gene therapy, and exosomes allows progress towards practical and effective treatments for neurodegenerative diseases. Therefore, in this review, advances currently being developed in regenerative medicine using animal models and human clinical trials in neurological disorders are summarized.
Collapse
Affiliation(s)
- Ali Esmaeili
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Eteghadi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Saeedi Landi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadnaz Fakhteh Yavari
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Bhushan B, Singh K, Kumar S, Bhardwaj A. Advancements in CRISPR-Based Therapies for Genetic Modulation in Neurodegenerative Disorders. Curr Gene Ther 2024; 25:34-45. [PMID: 38738727 DOI: 10.2174/0115665232292246240426125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Neurodegenerative disorders pose significant challenges in the realm of healthcare, as these conditions manifest in complex, multifaceted ways, often attributed to genetic anomalies. With the emergence of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, a new frontier has been unveiled in the quest for targeted, precise genetic manipulation. This abstract explores the recent advancements and potential applications of CRISPR-based therapies in addressing genetic components contributing to various neurodegenerative disorders. The review delves into the foundational principles of CRISPR technology, highlighting its unparalleled ability to edit genetic sequences with unprecedented precision. In addition, it talks about the latest progress in using CRISPR to target specific genetic mutations linked to neurodegenerative diseases like Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease. It talks about the most important studies and trials that show how well and safely CRISPR-based therapies work. This shows how this technology can change genetic variants that cause diseases. Notably, the discussion emphasizes the challenges and ethical considerations associated with the implementation of CRISPR in clinical settings, including off-target effects, delivery methods, and long-term implications. Furthermore, the article explores the prospects and potential hurdles in the widespread application of CRISPR technology for treating neurodegenerative disorders. It touches upon the need for continued research, improved delivery mechanisms, and ethical frameworks to ensure responsible and equitable access to these groundbreaking therapies.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Anjali Bhardwaj
- Department of Pharmaceutics, Durga College of Pharmacy, Sambhal, Uttar Pradesh, India
| |
Collapse
|
8
|
Stöberl N, Donaldson J, Binda CS, McAllister B, Hall-Roberts H, Jones L, Massey TH, Allen ND. Mutant huntingtin confers cell-autonomous phenotypes on Huntington's disease iPSC-derived microglia. Sci Rep 2023; 13:20477. [PMID: 37993517 PMCID: PMC10665390 DOI: 10.1038/s41598-023-46852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a dominantly inherited CAG repeat expansion in the huntingtin gene (HTT). Neuroinflammation and microglia have been implicated in HD pathology, however it has been unclear if mutant HTT (mHTT) expression has an adverse cell-autonomous effect on microglial function, or if they are only activated in response to the neurodegenerative brain environment in HD. To establish a human cell model of HD microglia function, we generated isogenic controls for HD patient-derived induced pluripotent stem cells (iPSC) with 109 CAG repeats (Q109). Q109 and isogenic Q22 iPSC, as well as non-isogenic Q60 and Q33 iPSC lines, were differentiated to iPSC-microglia. Our study supports a model of basal microglia dysfunction in HD leading to elevated pro-inflammatory cytokine production together with impaired phagocytosis and endocytosis capacity, in the absence of immune stimulation. These findings are consistent with early microglia activation observed in pre-manifest patients and indicate that mHTT gene expression affects microglia function in a cell-autonomous way.
Collapse
Affiliation(s)
- Nina Stöberl
- School of Biosciences, Cardiff University, Cardiff, UK.
| | - Jasmine Donaldson
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Caroline S Binda
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Branduff McAllister
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Hazel Hall-Roberts
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| | - Lesley Jones
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Thomas H Massey
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
9
|
Ferlazzo GM, Gambetta AM, Amato S, Cannizzaro N, Angiolillo S, Arboit M, Diamante L, Carbognin E, Romani P, La Torre F, Galimberti E, Pflug F, Luoni M, Giannelli S, Pepe G, Capocci L, Di Pardo A, Vanzani P, Zennaro L, Broccoli V, Leeb M, Moro E, Maglione V, Martello G. Genome-wide screening in pluripotent cells identifies Mtf1 as a suppressor of mutant huntingtin toxicity. Nat Commun 2023; 14:3962. [PMID: 37407555 DOI: 10.1038/s41467-023-39552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by CAG-repeat expansions in the huntingtin (HTT) gene. The resulting mutant HTT (mHTT) protein induces toxicity and cell death via multiple mechanisms and no effective therapy is available. Here, we employ a genome-wide screening in pluripotent mouse embryonic stem cells (ESCs) to identify suppressors of mHTT toxicity. Among the identified suppressors, linked to HD-associated processes, we focus on Metal response element binding transcription factor 1 (Mtf1). Forced expression of Mtf1 counteracts cell death and oxidative stress caused by mHTT in mouse ESCs and in human neuronal precursor cells. In zebrafish, Mtf1 reduces malformations and apoptosis induced by mHTT. In R6/2 mice, Mtf1 ablates motor defects and reduces mHTT aggregates and oxidative stress. Our screening strategy enables a quick in vitro identification of promising suppressor genes and their validation in vivo, and it can be applied to other monogenic diseases.
Collapse
Affiliation(s)
- Giorgia Maria Ferlazzo
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
- Aptuit (Verona) S.r.l., an Evotec Company, Campus Levi-Montalcini, 37135, Verona, Italy
| | - Anna Maria Gambetta
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
| | - Sonia Amato
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
- Department of Neuroscience, University of Padova, Via Belzoni, 160, 35131, Padua, Italy
| | - Noemi Cannizzaro
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Silvia Angiolillo
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Mattia Arboit
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Linda Diamante
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
| | - Elena Carbognin
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
| | - Patrizia Romani
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Federico La Torre
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy
| | - Elena Galimberti
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030, Vienna, Austria
| | - Florian Pflug
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030, Vienna, Austria
| | - Mirko Luoni
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Serena Giannelli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | | | | | - Paola Vanzani
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Lucio Zennaro
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20854, Vedrano al Lambro, Italy
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030, Vienna, Austria
| | - Enrico Moro
- Department of Molecular Medicine, Medical School, University of Padua, 35131, Padua, Italy
| | | | - Graziano Martello
- Department of Biology, University of Padova, Via U. Bassi 58B, 35131, Padua, Italy.
| |
Collapse
|
10
|
Yan N, Wang S, Gao H, Chen J, Cao J, Wei P, Li X, Yu Y, Wang Y, Niu Y, Wang Y, Liu S, Jin G. Neuroprotective effect of aloe emodin against Huntington's disease-like symptoms in R6/1 transgenic mice. Food Funct 2023. [PMID: 37191091 DOI: 10.1039/d3fo00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aloe emodin is a natural anthraquinone derived from aloe or rhubarb, showing anti-renal fibrosis, anti-atherosclerosis and anti-cancer effects. Aloe emodin also shows neuroprotective effects in ischemic stroke rats. Naturally, anthraquinone derivatives generally have the effect of inhibiting the transforming growth factor-β1 (TGF-β1) pathway. There is an increase in the calcium/calmodulin-dependent protein kinase II (CaMKII) and TGF-β1 levels in both Huntington's disease (HD) patients' brains and HD transgenic mice. Thus, we hypothesized that aloe emodin may inhibit the phosphorylation of CaMKII (p-CaMKII) and TGF-β1/sma- and mad-related protein (Smad) signaling in the brain, further preventing motor and cognitive dysfunction. Aloe emodin was orally administered to 10- to 20-week-old HD R6/1 transgenic mice. Aloe emodin improved the motor coordination of R6/1 transgenic mice in the rotarod test and attenuated visual recognition impairment in the novel object recognition test. Aloe emodin downregulated levels of the mutant huntingtin protein, p-CaMKII and TGF-β1, but not the TGF-β2 or TGF-β3 levels, in the brains of R6/1 mice. Aloe emodin could also inhibit neuronal apoptosis in the hippocampus of R6/1 mice. Altogether, these results indicated that aloe emodin prevents several HD-like symptoms through the inhibition of CaMKII/Smad and TGF-β1/Smad signaling in mice.
Collapse
Affiliation(s)
- Nan Yan
- School of Medical Applied Technology, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Shuai Wang
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Haotian Gao
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Jiaqi Chen
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Jiahui Cao
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P.R. China.
| | - Pengsheng Wei
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Xue Li
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Ying Yu
- Liaoning Medical Device Test Institute, Shenyang, 110171, P.R. China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Yalin Niu
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Yijie Wang
- Basic Medical School, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Shuyuan Liu
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P.R. China.
- Key Laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, Shenyang, 110034, P.R. China
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P.R. China.
- Key Laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, Shenyang, 110034, P.R. China
| |
Collapse
|
11
|
Tshilenge KT, Aguirre CG, Bons J, Gerencser AA, Basisty N, Song S, Rose J, Lopez-Ramirez A, Naphade S, Loureiro A, Battistoni E, Milani M, Wehrfritz C, Holtz A, Hetz C, Mooney SD, Schilling B, Ellerby LM. Proteomic Analysis of Huntington's Disease Medium Spiny Neurons Identifies Alterations in Lipid Droplets. Mol Cell Proteomics 2023; 22:100534. [PMID: 36958627 PMCID: PMC10165459 DOI: 10.1016/j.mcpro.2023.100534] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin (HTT) gene. The resulting polyglutamine (polyQ) tract alters the function of the HTT protein. Although HTT is expressed in different tissues, the medium spiny projection neurons (MSNs) in the striatum are particularly vulnerable in HD. Thus, we sought to define the proteome of human HD patient-derived MSNs. We differentiated HD72 induced pluripotent stem cells and isogenic controls into MSNs and carried out quantitative proteomic analysis. Using data-dependent acquisitions with FAIMS for label-free quantification on the Orbitrap Lumos mass spectrometer, we identified 6,323 proteins with at least two unique peptides. Of these, 901 proteins were altered significantly more in the HD72-MSNs than in isogenic controls. Functional enrichment analysis of upregulated proteins demonstrated extracellular matrix and DNA signaling (DNA replication pathway, double-strand break repair, G1/S transition) with the highest significance. Conversely, processes associated with the downregulated proteins included neurogenesis-axogenesis, the brain-derived neurotrophic factor-signaling pathway, Ephrin-A: EphA pathway, regulation of synaptic plasticity, triglyceride homeostasis cholesterol, plasmid lipoprotein particle immune response, interferon-γ signaling, immune system major histocompatibility complex, lipid metabolism and cellular response to stimulus. Moreover, proteins involved in the formation and maintenance of axons, dendrites, and synapses (e.g., Septin protein members) were dysregulated in HD72-MSNs. Importantly, lipid metabolism pathways were altered, and using quantitative image, we found analysis that lipid droplets accumulated in the HD72-MSN, suggesting a deficit in the turnover of lipids possibly through lipophagy. Our proteomics analysis of HD72-MSNs identified relevant pathways that are altered in MSNs and confirm current and new therapeutic targets for HD.
Collapse
Affiliation(s)
| | - Carlos Galicia Aguirre
- The Buck Institute for Research on Aging, Novato, California, 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Akos A Gerencser
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Nathan Basisty
- The Buck Institute for Research on Aging, Novato, California, 94945, USA; Translational Gerontology Branch, National Institute on Aging (NIA), NIH, Baltimore, Maryland, 21244, USA
| | - Sicheng Song
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Jacob Rose
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | | | - Swati Naphade
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Ashley Loureiro
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Elena Battistoni
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Mateus Milani
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile
| | - Cameron Wehrfritz
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Anja Holtz
- The Buck Institute for Research on Aging, Novato, California, 94945, USA
| | - Claudio Hetz
- The Buck Institute for Research on Aging, Novato, California, 94945, USA; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile; Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Birgit Schilling
- The Buck Institute for Research on Aging, Novato, California, 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA.
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging, Novato, California, 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA.
| |
Collapse
|
12
|
Aslan A, Yuka SA. Stem Cell-Based Therapeutic Approaches in Genetic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:19-53. [PMID: 36735185 DOI: 10.1007/5584_2023_761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stem cells, which can self-renew and differentiate into different cell types, have become the keystone of regenerative medicine due to these properties. With the achievement of superior clinical results in the therapeutic approaches of different diseases, the applications of these cells in the treatment of genetic diseases have also come to the fore. Foremost, conventional approaches of stem cells to genetic diseases are the first approaches in this manner, and they have brought safety issues due to immune reactions caused by allogeneic transplantation. To eliminate these safety issues and phenotypic abnormalities caused by genetic defects, firstly, basic genetic engineering practices such as vectors or RNA modulators were combined with stem cell-based therapeutic approaches. However, due to challenges such as immune reactions and inability to target cells effectively in these applications, advanced molecular methods have been adopted in ZFN, TALEN, and CRISPR/Cas genome editing nucleases, which allow modular designs in stem cell-based genetic diseases' therapeutic approaches. Current studies in genetic diseases are in the direction of creating permanent treatment regimens by genomic manipulation of stem cells with differentiation potential through genome editing tools. In this chapter, the stem cell-based therapeutic approaches of various vital genetic diseases were addressed wide range from conventional applications to genome editing tools.
Collapse
Affiliation(s)
- Ayça Aslan
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Selcen Arı Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey.
| |
Collapse
|
13
|
Saha S, Dey MJ, Promon SK, Araf Y. Pathogenesis and potential therapeutic application of stem cells transplantation in Huntington’s disease. Regen Ther 2022; 21:406-412. [PMID: 36196447 PMCID: PMC9513215 DOI: 10.1016/j.reth.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder which is caused due to repetitive CAG or glutamine expression along the coding region of the Huntington gene. This disease results in certain movement abnormalities, affective disturbances, dementia and cognitive impairments. To this date, there is no proper cure for this rare and fatal neurological condition but there have been certain advancements in the field of genetic animal model research studies to elucidate the understanding of the pathogenesis of this condition. Currently, HD follows a certain therapeutic approach which just relieves the symptoms but doesn't cure the underlying cause of the disease. Stem cell therapy can be a breakthrough in developing a potential cure for this condition. In this review, we have discussed the pathogenesis and the efficacy and clinical practicality of the therapeutic application of stem cell transplantation in Huntington's disease. The application of this groundbreaking therapy on genetically altered animal models has been listed and analyzed in brief.
Collapse
|
14
|
Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A, Alghamdi BS, Atta HM, Ashraf GM. Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders. Cells 2022; 11:3476. [PMID: 36359871 PMCID: PMC9655836 DOI: 10.3390/cells11213476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Zayed
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Shimaa Mohammad Yousof
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Research Unit, Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetic Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hazem M. Atta
- Clinical Biochemistry Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
15
|
Clark IH, Roman A, Fellows E, Radha S, Var SR, Roushdy Z, Borer SM, Johnson S, Chen O, Borgida JS, Steevens A, Shetty A, Strell P, Low WC, Grande AW. Cell Reprogramming for Regeneration and Repair of the Nervous System. Biomedicines 2022; 10:2598. [PMID: 36289861 PMCID: PMC9599606 DOI: 10.3390/biomedicines10102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
A persistent barrier to the cure and treatment of neurological diseases is the limited ability of the central and peripheral nervous systems to undergo neuroregeneration and repair. Recent efforts have turned to regeneration of various cell types through cellular reprogramming of native cells as a promising therapy to replenish lost or diminished cell populations in various neurological diseases. This review provides an in-depth analysis of the current viral vectors, genes of interest, and target cellular populations that have been studied, as well as the challenges and future directions of these novel therapies. Furthermore, the mechanisms by which cellular reprogramming could be optimized as treatment in neurological diseases and a review of the most recent cellular reprogramming in vitro and in vivo studies will also be discussed.
Collapse
Affiliation(s)
- Isaac H. Clark
- Department of Biomedical Engineering, Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex Roman
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily Fellows
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swathi Radha
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susanna R. Var
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary Roushdy
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel M. Borer
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha Johnson
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jacob S. Borgida
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aleta Steevens
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anala Shetty
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Molecular, Cell, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Phoebe Strell
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Comparative and Molecular Sciences Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Walter C. Low
- Department of Biomedical Engineering, Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Molecular, Cell, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Comparative and Molecular Sciences Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew W. Grande
- Department of Biomedical Engineering, Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
16
|
Altered activity-regulated H3K9 acetylation at TGF-beta signaling genes during egocentric memory in Huntington's disease. Prog Neurobiol 2022; 219:102363. [PMID: 36179935 DOI: 10.1016/j.pneurobio.2022.102363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/25/2022] [Accepted: 09/24/2022] [Indexed: 11/21/2022]
Abstract
Molecular mechanisms underlying cognitive deficits in Huntington's disease (HD), a striatal neurodegenerative disorder, are unknown. Here, we generated ChIPseq, 4Cseq and RNAseq data on striatal tissue of HD and control mice during striatum-dependent egocentric memory process. Multi-omics analyses showed altered activity-dependent epigenetic gene reprogramming of neuronal and glial genes regulating striatal plasticity in HD mice, which correlated with memory deficit. First, our data reveal that spatial chromatin re-organization and transcriptional induction of BDNF-related markers, regulating neuronal plasticity, were reduced since memory acquisition in the striatum of HD mice. Second, our data show that epigenetic memory implicating H3K9 acetylation, which established during late phase of memory process (e.g. during consolidation/recall) and contributed to glia-mediated, TGFβ-dependent plasticity, was compromised in HD mouse striatum. Specifically, memory-dependent regulation of H3K9 acetylation was impaired at genes controlling extracellular matrix and myelination. Our study investigating the interplay between epigenetics and memory identifies H3K9 acetylation and TGFβ signaling as new targets of striatal plasticity, which might offer innovative leads to improve HD.
Collapse
|
17
|
Protective effect of 3-n-butylphthalide against intrastriatal injection of malonic acid-induced neurotoxicity and biochemical alteration in rats. Biomed Pharmacother 2022; 155:113664. [PMID: 36095961 DOI: 10.1016/j.biopha.2022.113664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial abnormalities and a defective expression of neurotrophic factors contribute to neuronal damage in Huntington's disease (HD). HD patients showed a reduction in transforming growth factor-β1 (TGF-β1) levels in the peripheral blood and in cortical neurons. 3-n-butylphthalide (NBP) is first isolated from the seeds of celery, treats ischemic stroke in China. NBP could attenuate cognitive and motor impairments in the experimental models of Parkinson's disease and Alzheimer's disease, reduce mitochondrial oxidative stress and increase the expression of TGF-β1 in rats with focal cerebral ischemia. To our knowledge, the effect of NBP on Huntington's disease has not been reported. We proposed the hypothesis that whether NBP could protect mitochondria and regulate TGF-β1 and its downstream signaling in a HD animal model, further prevents motor dysfunction. Malonic acid is a reversible inhibitor of mitochondrial enzyme complex-II, induces energy crisis and free radical generation. In this study, we used intrastriatal injections of malonic acid in rats to mimic mitochondrial abnormalities and the other HD like symptoms. We found that treatment with NBP significantly attenuated malonic acid-induced motor and cognitive dysfunction in locomotor behaviour test, rotarod test, novel object recognition test and morris water maze test, prevented neurotoxicity and mitochondrial damage, activated TGF-β1/Akt/Wnt/β-Catenin pathway in striatum, but didn't regulate mitochondrial fusion and fission. The above effect was partly reversed by a PI3K/Akt inhibitor. Our data support NBP as a potential candidate for the treatment of HD.
Collapse
|
18
|
Sen T, Thummer RP. CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Disease Modelling, Research, and Therapeutics. Neurotox Res 2022; 40:1597-1623. [PMID: 36044181 PMCID: PMC9428373 DOI: 10.1007/s12640-022-00564-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
Abstract
Neurodegenerative diseases are prominent causes of pain, suffering, and death worldwide. Traditional approaches modelling neurodegenerative diseases are deficient, and therefore, improved strategies that effectively recapitulate the pathophysiological conditions of neurodegenerative diseases are the need of the hour. The generation of human-induced pluripotent stem cells (iPSCs) has transformed our ability to model neurodegenerative diseases in vitro and provide an unlimited source of cells (including desired neuronal cell types) for cell replacement therapy. Recently, CRISPR/Cas9-based genome editing has also been gaining popularity because of the flexibility they provide to generate and ablate disease phenotypes. In addition, the recent advancements in CRISPR/Cas9 technology enables researchers to seamlessly target and introduce precise modifications in the genomic DNA of different human cell lines, including iPSCs. CRISPR-iPSC-based disease modelling, therefore, allows scientists to recapitulate the pathological aspects of most neurodegenerative processes and investigate the role of pathological gene variants in healthy non-patient cell lines. This review outlines how iPSCs, CRISPR/Cas9, and CRISPR-iPSC-based approaches accelerate research on neurodegenerative diseases and take us closer to a cure for neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, and so forth.
Collapse
Affiliation(s)
- Tirthankar Sen
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
19
|
Kaye J, Reisine T, Finkbeiner S. Huntington's disease iPSC models-using human patient cells to understand the pathology caused by expanded CAG repeats. Fac Rev 2022; 11:16. [PMID: 35865413 PMCID: PMC9264339 DOI: 10.12703/r/11-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A major advance in the study of Huntington's disease (HD) has been the development of human disease models employing induced pluripotent stem cells (iPSCs) derived from patients with HD. Because iPSCs provide an unlimited source of cells and can be obtained from large numbers of HD patients, they are a uniquely valuable tool for investigating disease mechanisms and for discovering potential disease-modifying therapeutics. Here, we summarize some of the important findings in HD pathophysiology that have emerged from studies of patient-derived iPSC lines. Because they retain the genome and actual disease mutations of the patient, they provide a cell source to investigate genetic contributions to the disease. iPSCs provide advantages over other disease models. While iPSC-based technology erases some epigenetic marks, newly developed transdifferentiation methods now let us investigate epigenetic factors that control expression of mutant huntingtin (mHTT). Human HD iPSC lines allow us to investigate how endogenous levels of mHTT affect cell health, in contrast to other models that often rely on overexpressing the protein. iPSCs can be differentiated into neurons and other disease-related cells such as astrocytes from different brain regions to study brain regional differences in the disease process, as well as the cell-cell dependencies involved in HD-associated neurodegeneration. They also serve as a tissue source to investigate factors that impact CAG repeat instability, which is involved in regional differences in neurodegeneration in the HD brain. Human iPSC models can serve as a powerful model system to identify genetic modifiers that may impact disease onset, progression, and symptomatology, providing novel molecular targets for drug discovery.
Collapse
Affiliation(s)
- Julia Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, CA, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA, USA
- Department of Neurology and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
20
|
Liu M, Yang F, Xu Y. Global Trends of Stem Cell Precision Medicine Research (2018–2022): A Bibliometric Analysis. Front Surg 2022; 9:888956. [PMID: 35813047 PMCID: PMC9260221 DOI: 10.3389/fsurg.2022.888956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundStem cells are a group of cells that can self-renew and have multiple differentiation capabilities. Shinya Yamanaka first discovered a method to convert somatic cells into pluripotent stem cells in 2006. Stem cell therapy can be summarized into three aspects (regenerative treatment, therapy targeted at stem cells, and establishment of disease models). Disease models are mainly established by induced pluripotent stem cells, and the research of stem cell precision medicine has been promising in recent years. Based on the construction of 3D, patient-specific disease models from pluripotent induced stem cells, proper research on disease development and treatment prognosis can be realized. Bibliometric analysis is an efficient way to quickly understand global trends and hotspots in this field.MethodsA literature search of stem cell precision medicine research from 2018 to 2022 was carried out using the Web of Science Core Collection.VOSviewer, R-bibliometrix, and CiteSpace software programs were employed to perform the bibliometric analysis.ResultsA total of 552 publications were retrieved from 2018 to 2022. Annual publication outputs trended upward and reached a peak of 172 in 2021. The United States contributed the most publications (160, 29.0%) to the field, followed by China (63, 11.4%) and Italy (60, 10.9%). International academic collaborations were active. CANCERS was considered the most productive journal with 18 documents. NATURE was the most co-cited journal with 1860 times citations. The most cited document was entitled “Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association” with 9 times local citations. “ precision medicine” (n = 89, 12.64%), “personalized medicine” (n = 72, 10.23%), “stem cells” (n = 43, 4.40%), and “induced pluripotent stem cells” (n = 41, 5.82%), “cancer stem cells” (n = 31, 4%), “organoids” (n = 26, 3.69%) were the top 6 frequent keywords.ConclusionThe present study performs a comprehensive investigation concerning stem cell precision medicine (2018–2022) for the first time. This research field is developing, and a deeper exploration of 3D patient-specific organoid disease models is worth more research in the future.
Collapse
|
21
|
Coelho P, Fão L, Mota S, Rego AC. Mitochondrial function and dynamics in neural stem cells and neurogenesis: Implications for neurodegenerative diseases. Ageing Res Rev 2022; 80:101667. [PMID: 35714855 DOI: 10.1016/j.arr.2022.101667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Mitochondria have been largely described as the powerhouse of the cell and recent findings demonstrate that this organelle is fundamental for neurogenesis. The mechanisms underlying neural stem cells (NSCs) maintenance and differentiation are highly regulated by both intrinsic and extrinsic factors. Mitochondrial-mediated switch from glycolysis to oxidative phosphorylation, accompanied by mitochondrial remodeling and dynamics are vital to NSCs fate. Deregulation of mitochondrial proteins, mitochondrial DNA, function, fission/fusion and metabolism underly several neurodegenerative diseases; data show that these impairments are already present in early developmental stages and NSC fate decisions. However, little is known about mitochondrial role in neurogenesis. In this Review, we describe the recent evidence covering mitochondrial role in neurogenesis, its impact in selected neurodegenerative diseases, for which aging is the major risk factor, and the recent advances in stem cell-based therapies that may alleviate neurodegenerative disorders-related neuronal deregulation through improvement of mitochondrial function and dynamics.
Collapse
Affiliation(s)
- Patrícia Coelho
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal.
| | - Lígia Fão
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal; FMUC- Faculty of Medicine, University of Coimbra Polo 3, Coimbra, Portugal.
| | - Sandra Mota
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal; III, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - A Cristina Rego
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra Polo 1, Coimbra, Portugal; FMUC- Faculty of Medicine, University of Coimbra Polo 3, Coimbra, Portugal.
| |
Collapse
|
22
|
Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022; 10:1206. [PMID: 35625943 PMCID: PMC9138510 DOI: 10.3390/biomedicines10051206] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are essential for normal brain development and functioning. They respond to brain injury and disease through a process referred to as reactive astrogliosis, where the reactivity is highly heterogenous and context-dependent. Reactive astrocytes are active contributors to brain pathology and can exert beneficial, detrimental, or mixed effects following brain insults. Transforming growth factor-β (TGF-β) has been identified as one of the key factors regulating astrocyte reactivity. The genetic and pharmacological manipulation of the TGF-β signaling pathway in animal models of central nervous system (CNS) injury and disease alters pathological and functional outcomes. This review aims to provide recent understanding regarding astrocyte reactivity and TGF-β signaling in brain injury, aging, and neurodegeneration. Further, it explores how TGF-β signaling modulates astrocyte reactivity and function in the context of CNS disease and injury.
Collapse
Affiliation(s)
- Jian Luo
- Palo Alto Veterans Institute for Research, VAPAHCS, Palo Alto, CA 94304, USA
| |
Collapse
|
23
|
Asefifeyzabadi N, Durocher G, Tshilenge KT, Alam T, Ellerby LM, Shamsi MH. PNA microprobe for label-free detection of expanded trinucleotide repeats. RSC Adv 2022; 12:7757-7761. [PMID: 35424746 PMCID: PMC8982460 DOI: 10.1039/d2ra00230b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022] Open
Abstract
We present a PNA microprobe sensing platform to detect trinucleotide repeat mutation by electrochemical impedance spectroscopy. The microprobe platform discriminated Huntington's disease-associated CAG repeats in cell-derived total RNA with S/N 1 : 3. This sensitive, label-free, and PCR-free detection strategy may be employed in the future to develop biosensing platforms for the detection of a plethora of repeat expansion disorders.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale IL 62901 USA
| | - Grace Durocher
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale IL 62901 USA
| | | | - Tanimul Alam
- The Buck Institute for Research on Aging 8001 Redwood Blvd Novato CA 94945 USA
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging 8001 Redwood Blvd Novato CA 94945 USA
| | - Mohtashim H Shamsi
- School of Chemical and Biomolecular Sciences, 1245 Lincoln Dr, Southern Illinois University at Carbondale IL 62901 USA
| |
Collapse
|
24
|
Xu J, Du W, Zhao Y, Lim K, Lu L, Zhang C, Li L. Mitochondria targeting drugs for neurodegenerative diseases—design, mechanism and application. Acta Pharm Sin B 2022; 12:2778-2789. [PMID: 35755284 PMCID: PMC9214044 DOI: 10.1016/j.apsb.2022.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD) are a heterogeneous group of disorders characterized by progressive degeneration of neurons. NDDs threaten the lives of millions of people worldwide and regretfully remain incurable. It is well accepted that dysfunction of mitochondria underlies the pathogenesis of NDDs. Dysfunction of mitochondria results in energy depletion, oxidative stress, calcium overloading, caspases activation, which dominates the neuronal death of NDDs. Therefore, mitochondria are the preferred target for intervention of NDDs. So far various mitochondria-targeting drugs have been developed and delightfully some of them demonstrate promising outcome, though there are still some obstacles such as targeting specificity, delivery capacity hindering the drugs development. In present review, we will elaborately address 1) the strategy to design mitochondria targeting drugs, 2) the rescue mechanism of respective mitochondria targeting drugs, 3) how to evaluate the therapeutic effect. Hopefully this review will provide comprehensive knowledge for understanding how to develop more effective drugs for the treatment of NDDs.
Collapse
|
25
|
Chandrasekaran AP, Karapurkar JK, Chung HY, Ramakrishna S. The role of the CRISPR-Cas system in cancer drug development: Mechanisms of action and therapy. Biotechnol J 2022; 17:e2100468. [PMID: 35157790 DOI: 10.1002/biot.202100468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The recent emergence of gene editing using Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated system (Cas) tools and advances in genomics and proteomics has revolutionized drug discovery and personalized medicine. PURPOSE AND SCOPE The CRISPR-Cas system has enabled gene and cell-based therapies, screening for novel drug targets, a new generation of disease models, elucidation of drug resistance mechanisms, and drug efficacy testing. Here, we summarized recent investigations and strategies involved in cancer-related drug discovery using the CRISPR-Cas system. CONCLUSION CRISPR-Cas-mediated gene editing has shown great potential in the development of next generation drugs for treatment of Mendelian disorders and various cancer types. In this review, we focused on the impact of the CRISPR-Cas system in drug discovery and its application to biomarker identification and validation, high-end target genes, and breakthrough anticancer cell therapies. We also highlighted the role of CRISPR-Cas in precision disease modeling and functional drug screening. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | - Hee Yong Chung
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.,College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.,College of Medicine, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
26
|
Okano H, Morimoto S. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell 2022; 29:189-208. [PMID: 35120619 DOI: 10.1016/j.stem.2022.01.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been 15 years since the birth of human induced pluripotent stem cell (iPSC) technology in 2007, and the scope of its application has been expanding. In addition to the development of cell therapies using iPSC-derived cells, pathological analyses using disease-specific iPSCs and clinical trials to confirm the safety and efficacy of drugs developed using iPSCs are progressing. With the innovation of related technologies, iPSC applications are about to enter a new stage. This review outlines advances in iPSC modeling and therapeutic development for cardinal neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan.
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
27
|
Karwacka M, Olejniczak M. Advances in Modeling Polyglutamine Diseases Using Genome Editing Tools. Cells 2022; 11:cells11030517. [PMID: 35159326 PMCID: PMC8834129 DOI: 10.3390/cells11030517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Polyglutamine (polyQ) diseases, including Huntington’s disease, are a group of late-onset progressive neurological disorders caused by CAG repeat expansions. Although recently, many studies have investigated the pathological features and development of polyQ diseases, many questions remain unanswered. The advancement of new gene-editing technologies, especially the CRISPR-Cas9 technique, has undeniable value for the generation of relevant polyQ models, which substantially support the research process. Here, we review how these tools have been used to correct disease-causing mutations or create isogenic cell lines with different numbers of CAG repeats. We characterize various cellular models such as HEK 293 cells, patient-derived fibroblasts, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs) and animal models generated with the use of genome-editing technology.
Collapse
|
28
|
Neurodegenerative diseases associated with non-coding CGG tandem repeat expansions. Nat Rev Neurol 2022; 18:145-157. [PMID: 35022573 DOI: 10.1038/s41582-021-00612-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Non-coding CGG repeat expansions cause multiple neurodegenerative disorders, including fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. The underlying genetic causes of several of these diseases have been identified only in the past 2-3 years. These expansion disorders have substantial overlapping clinical, neuroimaging and histopathological features. The shared features suggest common mechanisms that could have implications for the development of therapies for this group of diseases - similar therapeutic strategies or drugs may be effective for various neurodegenerative disorders induced by non-coding CGG expansions. In this Review, we provide an overview of clinical and pathological features of these CGG repeat expansion diseases and consider the likely pathological mechanisms, including RNA toxicity, CGG repeat-associated non-AUG-initiated translation, protein aggregation and mitochondrial impairment. We then discuss future research needed to improve the identification and diagnosis of CGG repeat expansion diseases, to improve modelling of these diseases and to understand their pathogenesis. We also consider possible therapeutic strategies. Finally, we propose that CGG repeat expansion diseases may represent manifestations of a single underlying neuromyodegenerative syndrome in which different organs are affected to different extents depending on the gene location of the repeat expansion.
Collapse
|
29
|
Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci 2022; 23:ijms23020624. [PMID: 35054808 PMCID: PMC8776084 DOI: 10.3390/ijms23020624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The development of cell reprogramming technologies became a breakthrough in the creation of new models of human diseases, including neurodegenerative pathologies. The iPSCs-based models allow for the studying of both hereditary and sporadic cases of pathologies and produce deep insight into the molecular mechanisms underlying neurodegeneration. The use of the cells most vulnerable to a particular pathology makes it possible to identify specific pathological mechanisms and greatly facilitates the task of selecting the most effective drugs. To date, a large number of studies on patient-specific models of neurodegenerative diseases has been accumulated. In this review, we focused on the alterations of such a ubiquitous and important intracellular regulatory pathway as calcium signaling. Here, we reviewed and analyzed the data obtained from iPSCs-based models of different neurodegenerative disorders that demonstrated aberrant calcium signaling.
Collapse
|
30
|
CAG repeat-binding small molecule improves motor coordination impairment in a mouse model of Dentatorubral-pallidoluysian atrophy. Neurobiol Dis 2021; 163:105604. [PMID: 34968706 DOI: 10.1016/j.nbd.2021.105604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/06/2021] [Accepted: 12/26/2021] [Indexed: 11/22/2022] Open
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a devastating genetic disease presenting myoclonus, epilepsy, ataxia, and dementia. DRPLA is caused by the expansion of a CAG repeat in the ATN1 gene. Aggregation of the polyglutamine-expanded ATN1 protein causes neuro-degeneration of the dentatorubral and pallidoluysian systems. The expanded CAG repeats are unstable, and ongoing repeat expansions contribute to disease onset, progression, and severity. Inducing contractions of expanded repeats can be a means to treat DRPLA, for which no disease-modifying or curative therapies exist at present. Previously, we characterized a small molecule, naphthyridine-azaquinolone (NA), which binds to CAG slip-out structures and induces repeat contraction in Huntington's disease mice. Here, we demonstrate that long-term intracerebroventricular infusion of NA leads to repeat contraction, reductions in mutant ATN1 aggregation, and improved motor phenotype in a murine model of DRPLA. Furthermore, NA-induced contraction resulted in the modification of repeat-length-dependent dysregulation of gene expression profiles in DRPLA mice. Our study reveals the therapeutic potential of repeat contracting small molecules for repeat expansion disorders, such as DRPLA.
Collapse
|
31
|
Grivennikov IA, Tarantul VZ. Genome Editing Technology for the Study and Correction of Neurodegenerative Diseases. NEUROCHEM J+ 2021. [DOI: 10.1134/s181971242104005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Bailus BJ, Scheeler SM, Simons J, Sanchez MA, Tshilenge KT, Creus-Muncunill J, Naphade S, Lopez-Ramirez A, Zhang N, Lakshika Madushani K, Moroz S, Loureiro A, Schreiber KH, Hausch F, Kennedy BK, Ehrlich ME, Ellerby LM. Modulating FKBP5/FKBP51 and autophagy lowers HTT (huntingtin) levels. Autophagy 2021; 17:4119-4140. [PMID: 34024231 PMCID: PMC8726715 DOI: 10.1080/15548627.2021.1904489] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Current disease-modifying therapies for Huntington disease (HD) focus on lowering mutant HTT (huntingtin; mHTT) levels, and the immunosuppressant drug rapamycin is an intriguing therapeutic for aging and neurological disorders. Rapamycin interacts with FKBP1A/FKBP12 and FKBP5/FKBP51, inhibiting the MTORC1 complex and increasing cellular clearance mechanisms. Whether the levels of FKBP (FK506 binding protein) family members are altered in HD models and if these proteins are potential therapeutic targets for HD have not been investigated. Here, we found levels of FKBP5 are significantly reduced in HD R6/2 and zQ175 mouse models and human HD isogenic neural stem cells and medium spiny neurons derived from induced pluripotent stem cells. Moreover, FKBP5 interacts and colocalizes with HTT in the striatum and cortex of zQ175 mice and controls. Importantly, when we decreased FKBP5 levels or activity by genetic or pharmacological approaches, we observed reduced levels of mHTT in our isogenic human HD stem cell model. Decreasing FKBP5 levels by siRNA or pharmacological inhibition increased LC3-II levels and macroautophagic/autophagic flux, suggesting autophagic cellular clearance mechanisms are responsible for mHTT lowering. Unlike rapamycin, the effect of pharmacological inhibition with SAFit2, an inhibitor of FKBP5, is MTOR independent. Further, in vivo treatment for 2 weeks with SAFit2, results in reduced HTT levels in both HD R6/2 and zQ175 mouse models. Our studies establish FKBP5 as a protein involved in the pathogenesis of HD and identify FKBP5 as a potential therapeutic target for HD.Abbreviations : ACTB/β-actin: actin beta; AD: Alzheimer disease; BafA1: bafilomycin A1; BCA: bicinchoninic acid; BBB: blood brain barrier; BSA: bovine serum albumin; CoIP: co-immunoprecipitation; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; FKBPs: FK506 binding proteins; HD: Huntington disease; HTT: huntingtin; iPSC: induced pluripotent stem cells; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MAPT/tau: microtubule associated protein tau; MES: 2-ethanesulfonic acid; MOPS: 3-(N-morphorlino)propanesulfonic acid); MSN: medium spiny neurons; mHTT: mutant huntingtin; MTOR: mechanistic target of rapamycin kinase; NSC: neural stem cells; ON: overnight; PD: Parkinson disease; PPIase: peptidyl-prolyl cis/trans-isomerases; polyQ: polyglutamine; PPP1R1B/DARPP-32: protein phosphatase 1 regulatory inhibitor subunit 1B; PTSD: post-traumatic stress disorder; RT: room temperature; SQSTM1/p62: sequestosome 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TBST:Tris-buffered saline, 0.1% Tween 20; TUBA: tubulin; ULK1: unc-51 like autophagy activating kinase 1; VCL: vinculin; WT: littermate controls.
Collapse
Affiliation(s)
- Barbara J. Bailus
- The Buck Institute for Research on Aging, Novato, CA, USA
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Stephen M. Scheeler
- The Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jesse Simons
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | - Swati Naphade
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Ningzhe Zhang
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | | | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Brian K. Kennedy
- The Buck Institute for Research on Aging, Novato, CA, USA
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
33
|
Sawant N, Morton H, Kshirsagar S, Reddy AP, Reddy PH. Mitochondrial Abnormalities and Synaptic Damage in Huntington's Disease: a Focus on Defective Mitophagy and Mitochondria-Targeted Therapeutics. Mol Neurobiol 2021; 58:6350-6377. [PMID: 34519969 DOI: 10.1007/s12035-021-02556-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is a fatal and pure genetic disease with a progressive loss of medium spiny neurons (MSN). HD is caused by expanded polyglutamine repeats in the exon 1 of HD gene. Clinically, HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment, and emotional disturbances. Several years of intense research revealed that multiple cellular changes, including defective axonal transport, protein-protein interactions, defective bioenergetics, calcium dyshomeostasis, NMDAR activation, synaptic damage, mitochondrial abnormalities, and selective loss of medium spiny neurons are implicated in HD. Recent research on mutant huntingtin (mHtt) and mitochondria has found that mHtt interacts with the mitochondrial division protein, dynamin-related protein 1 (DRP1), enhances GTPase DRP1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. Recent research also revealed that failure to remove dead and/or dying mitochondria is an early event in the disease progression. Currently, efforts are being made to reduce abnormal protein interactions and enhance synaptic mitophagy as therapeutic strategies for HD. The purpose of this article is to discuss recent research in HD progression. This article also discusses recent developments of cell and mouse models, cellular changes, mitochondrial abnormalities, DNA damage, bioenergetics, oxidative stress, mitophagy, and therapeutics strategies in HD.
Collapse
Affiliation(s)
- Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neurology, Department of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Internal Medicine, Cell Biology & Biochemistry, Public Health and School of Health Professions, Texas Tech University Health Sciences Center, Neuroscience & Pharmacology3601 4th Street, NeurologyLubbock, TX, 79430, USA.
| |
Collapse
|
34
|
Akimov SS, Jiang M, Kedaigle AJ, Arbez N, Marque LO, Eddings CR, Ranum PT, Whelan E, Tang A, Wang R, DeVine LR, Talbot CC, Cole RN, Ratovitski T, Davidson BL, Fraenkel E, Ross CA. Immortalized striatal precursor neurons from Huntington's disease patient-derived iPS cells as a platform for target identification and screening for experimental therapeutics. Hum Mol Genet 2021; 30:2469-2487. [PMID: 34296279 PMCID: PMC8643509 DOI: 10.1093/hmg/ddab200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/12/2022] Open
Abstract
We have previously established induced pluripotent stem cell (iPSC) models of Huntington's disease (HD), demonstrating CAG-repeat-expansion-dependent cell biological changes and toxicity. However, the current differentiation protocols are cumbersome and time consuming, making preparation of large quantities of cells for biochemical or screening assays difficult. Here, we report the generation of immortalized striatal precursor neurons (ISPNs) with normal (33) and expanded (180) CAG repeats from HD iPSCs, differentiated to a phenotype resembling medium spiny neurons (MSN), as a proof of principle for a more tractable patient-derived cell model. For immortalization, we used co-expression of the enzymatic component of telomerase hTERT and conditional expression of c-Myc. ISPNs can be propagated as stable adherent cell lines, and rapidly differentiated into highly homogeneous MSN-like cultures within 2 weeks, as demonstrated by immunocytochemical criteria. Differentiated ISPNs recapitulate major HD-related phenotypes of the parental iPSC model, including brain-derived neurotrophic factor (BDNF)-withdrawal-induced cell death that can be rescued by small molecules previously validated in the parental iPSC model. Proteome and RNA-seq analyses demonstrate separation of HD versus control samples by principal component analysis. We identified several networks, pathways, and upstream regulators, also found altered in HD iPSCs, other HD models, and HD patient samples. HD ISPN lines may be useful for studying HD-related cellular pathogenesis, and for use as a platform for HD target identification and screening experimental therapeutics. The described approach for generation of ISPNs from differentiated patient-derived iPSCs could be applied to a larger allelic series of HD cell lines, and to comparable modeling of other genetic disorders.
Collapse
Affiliation(s)
- Sergey S Akimov
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amanda J Kedaigle
- Department of Biological Engineering, Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leonard O Marque
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chelsy R Eddings
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul T Ranum
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emma Whelan
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Anthony Tang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ronald Wang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lauren R DeVine
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Conover C Talbot
- The Johns Hopkins School of Medicine, Institute for Basic Biomedical Sciences, Baltimore, MD 21205, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Beverly L Davidson
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, The Raymond G Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurology, Neuroscience and Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
35
|
Brustovetsky T, Khanna R, Brustovetsky N. Involvement of CRMP2 in Regulation of Mitochondrial Morphology and Motility in Huntington's Disease. Cells 2021; 10:cells10113172. [PMID: 34831395 PMCID: PMC8619197 DOI: 10.3390/cells10113172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial morphology and motility (mitochondrial dynamics) play a major role in the proper functioning of distant synapses. In Huntington’s disease (HD), mitochondria become fragmented and less motile, but the mechanisms leading to these changes are not clear. Here, we found that collapsin response mediator protein 2 (CRMP2) interacted with Drp1 and Miro 2, proteins involved in regulating mitochondrial dynamics. CRMP2 interaction with these proteins inversely correlated with CRMP2 phosphorylation. CRMP2 was hyperphosphorylated in postmortem brain tissues of HD patients, in human neurons derived from induced pluripotent stem cells from HD patients, and in cultured striatal neurons from HD mouse model YAC128. At the same time, CRMP2 interaction with Drp1 and Miro 2 was diminished in HD neurons. The CRMP2 hyperphosphorylation and dissociation from Drp1 and Miro 2 correlated with increased fission and suppressed motility. (S)-lacosamide ((S)-LCM), a small molecule that binds to CRMP2, decreased its phosphorylation at Thr 509/514 and Ser 522 and rescued CRMP2’s interaction with Drp1 and Miro 2. This was accompanied by reduced mitochondrial fission and enhanced mitochondrial motility. Additionally, (S)-LCM exerted a neuroprotective effect in YAC128 cultured neurons. Thus, our data suggest that CRMP2 may regulate mitochondrial dynamics in a phosphorylation-dependent manner and modulate neuronal survival in HD.
Collapse
Affiliation(s)
- Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85721, USA;
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-278-9229; Fax: +1-317-274-7714
| |
Collapse
|
36
|
Cirnaru MD, Song S, Tshilenge KT, Corwin C, Mleczko J, Galicia Aguirre C, Benlhabib H, Bendl J, Apontes P, Fullard J, Creus-Muncunill J, Reyahi A, Nik AM, Carlsson P, Roussos P, Mooney SD, Ellerby LM, Ehrlich ME. Unbiased identification of novel transcription factors in striatal compartmentation and striosome maturation. eLife 2021; 10:e65979. [PMID: 34609283 PMCID: PMC8492065 DOI: 10.7554/elife.65979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Many diseases are linked to dysregulation of the striatum. Striatal function depends on neuronal compartmentation into striosomes and matrix. Striatal projection neurons are GABAergic medium spiny neurons (MSNs), subtyped by selective expression of receptors, neuropeptides, and other gene families. Neurogenesis of the striosome and matrix occurs in separate waves, but the factors regulating compartmentation and neuronal differentiation are largely unidentified. We performed RNA- and ATAC-seq on sorted striosome and matrix cells at postnatal day 3, using the Nr4a1-EGFP striosome reporter mouse. Focusing on the striosome, we validated the localization and/or role of Irx1, Foxf2, Olig2, and Stat1/2 in the developing striosome and the in vivo enhancer function of a striosome-specific open chromatin region 4.4 Kb downstream of Olig2. These data provide novel tools to dissect and manipulate the networks regulating MSN compartmentation and differentiation, including in human iPSC-derived striatal neurons for disease modeling and drug discovery.
Collapse
Affiliation(s)
- Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sicheng Song
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | | | - Chuhyon Corwin
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Justyna Mleczko
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Houda Benlhabib
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | - Jaroslav Bendl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Pasha Apontes
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Fullard
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Azadeh Reyahi
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Ali M Nik
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Psychiatry, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mental Illness Research, Education, and Clinical Center (VISN 2 South)BronxUnited States
| | - Sean D Mooney
- Department of Biomedical Informatics and Medical Education, University of WashingtonSeattleUnited States
| | | | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
37
|
Cell Transdifferentiation and Reprogramming in Disease Modeling: Insights into the Neuronal and Cardiac Disease Models and Current Translational Strategies. Cells 2021; 10:cells10102558. [PMID: 34685537 PMCID: PMC8533873 DOI: 10.3390/cells10102558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cell transdifferentiation and reprogramming approaches in recent times have enabled the manipulation of cell fate by enrolling exogenous/artificial controls. The chemical/small molecule and regulatory components of transcription machinery serve as potential tools to execute cell transdifferentiation and have thereby uncovered new avenues for disease modeling and drug discovery. At the advanced stage, one can believe these methods can pave the way to develop efficient and sensitive gene therapy and regenerative medicine approaches. As we are beginning to learn about the utility of cell transdifferentiation and reprogramming, speculations about its applications in translational therapeutics are being largely anticipated. Although clinicians and researchers are endeavoring to scale these processes, we lack a comprehensive understanding of their mechanism(s), and the promises these offer for targeted and personalized therapeutics are scarce. In the present report, we endeavored to provide a detailed review of the original concept, methods and modalities enrolled in the field of cellular transdifferentiation and reprogramming. A special focus is given to the neuronal and cardiac systems/diseases towards scaling their utility in disease modeling and drug discovery.
Collapse
|
38
|
CRISPR/Cas9 mediated gene correction ameliorates abnormal phenotypes in spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cells. Transl Psychiatry 2021; 11:479. [PMID: 34535635 PMCID: PMC8448778 DOI: 10.1038/s41398-021-01605-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive autosomal dominant neurodegenerative disease caused by abnormal CAG repeats in the exon 10 of ATXN3. The accumulation of the mutant ataxin-3 proteins carrying expanded polyglutamine (polyQ) leads to selective degeneration of neurons. Since the pathogenesis of SCA3 has not been fully elucidated, and no effective therapies have been identified, it is crucial to investigate the pathogenesis and seek new therapeutic strategies of SCA3. Induced pluripotent stem cells (iPSCs) can be used as the ideal cell model for the molecular pathogenesis of polyQ diseases. Abnormal CAG expansions mediated by CRISPR/Cas9 genome engineering technologies have shown promising potential for the treatment of polyQ diseases, including SCA3. In this study, SCA3-iPSCs can be corrected by the replacement of the abnormal CAG expansions (74 CAG) with normal repeats (17 CAG) using CRISPR/Cas9-mediated homologous recombination (HR) strategy. Besides, corrected SCA3-iPSCs retained pluripotent and normal karyotype, which can be differentiated into a neural stem cell (NSCs) and neuronal cells, and maintained electrophysiological characteristics. The expression of differentiation markers and electrophysiological characteristics were similar among the neuronal differentiation from normal control iPSCs (Ctrl-iPSCs), SCA3-iPSCs, and isogenic control SCA3-iPSCs. Furthermore, this study proved that the phenotypic abnormalities in SCA3 neurons, including aggregated IC2-polyQ protein, decreased mitochondrial membrane potential (MMP) and glutathione expressions, increased reactive oxygen species (ROS), intracellular Ca2+ concentrations, and lipid peroxidase malondialdehyde (MDA) levels, all were rescued in the corrected SCA3-NCs. For the first time, this study demonstrated the feasibility of CRISPR/Cas9-mediated HR strategy to precisely repair SCA3-iPSCs, and reverse the corresponding abnormal disease phenotypes. In addition, the importance of genetic control using CRISPR/Cas9-mediated iPSCs for disease modeling. Our work may contribute to providing a potential ideal model for molecular mechanism research and autologous stem cell therapy of SCA3 or other polyQ diseases, and offer a good gene therapy strategy for future treatment.
Collapse
|
39
|
Umek T, Olsson T, Gissberg O, Saher O, Zaghloul EM, Lundin KE, Wengel J, Hanse E, Zetterberg H, Vizlin-Hodzic D, Smith CIE, Zain R. Oligonucleotides Targeting DNA Repeats Downregulate Huntingtin Gene Expression in Huntington's Patient-Derived Neural Model System. Nucleic Acid Ther 2021; 31:443-456. [PMID: 34520257 PMCID: PMC8713517 DOI: 10.1089/nat.2021.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is one of the most common, dominantly inherited neurodegenerative disorders. It affects the striatum, cerebral cortex, and other subcortical structures leading to involuntary movement abnormalities, emotional disturbances, and cognitive impairments. HD is caused by a CAG•CTG trinucleotide-repeat expansion in exon 1 of the huntingtin (HTT) gene leading to the formation of mutant HTT (mtHTT) protein aggregates. Besides the toxicity of the mutated protein, there is also evidence that mtHTT transcripts contribute to the disease. Thus, the reduction of both mutated mRNA and protein would be most beneficial as a treatment. Previously, we designed a novel anti-gene oligonucleotide (AGO)-based strategy directly targeting the HTT trinucleotide-repeats in DNA and reported downregulation of mRNA and protein in HD patient fibroblasts. In this study, we differentiate HD patient-derived induced pluripotent stem cells to investigate the efficacy of the AGO, a DNA/Locked Nucleic Acid mixmer with phosphorothioate backbone, to modulate HTT transcription during neural in vitro development. For the first time, we demonstrate downregulation of HTT mRNA following both naked and magnetofected delivery into neural stem cells (NSCs) and show that neither emergence of neural rosette structures nor self-renewal of NSCs is compromised. Furthermore, the inhibition potency of both HTT mRNA and protein without off-target effects is confirmed in neurons. These results further validate an anti-gene approach for the treatment of HD.
Collapse
Affiliation(s)
- Tea Umek
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Thomas Olsson
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Cytology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Olof Gissberg
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Osama Saher
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman M Zaghloul
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden.,Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense M, Denmark
| | - Eric Hanse
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom
| | - Dzeneta Vizlin-Hodzic
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden.,Department of Clinical Genetics, Center for Rare Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
Abstract
Induced pluripotent stem cell (iPSC) technology holds promise for modeling neurodegenerative diseases. Traditional approaches for disease modeling using animal and cellular models require knowledge of disease mutations. However, many patients with neurodegenerative diseases do not have a known genetic cause. iPSCs offer a way to generate patient-specific models and study pathways of dysfunction in an in vitro setting in order to understand the causes and subtypes of neurodegeneration. Furthermore, iPSC-based models can be used to search for candidate therapeutics using high-throughput screening. Here we review how iPSC-based models are currently being used to further our understanding of neurodegenerative diseases, as well as discuss their challenges and future directions.
Collapse
Affiliation(s)
- Jonathan Li
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Ernest Fraenkel
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
41
|
Świtońska-Kurkowska K, Krist B, Delimata J, Figiel M. Juvenile Huntington's Disease and Other PolyQ Diseases, Update on Neurodevelopmental Character and Comparative Bioinformatic Review of Transcriptomic and Proteomic Data. Front Cell Dev Biol 2021; 9:642773. [PMID: 34277598 PMCID: PMC8281051 DOI: 10.3389/fcell.2021.642773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Polyglutamine (PolyQ) diseases are neurodegenerative disorders caused by the CAG repeat expansion mutation in affected genes resulting in toxic proteins containing a long chain of glutamines. There are nine PolyQ diseases: Huntington’s disease (HD), spinocerebellar ataxias (types 1, 2, 3, 6, 7, and 17), dentatorubral-pallidoluysian atrophy (DRPLA), and spinal bulbar muscular atrophy (SBMA). In general, longer CAG expansions and longer glutamine tracts lead to earlier disease presentations in PolyQ patients. Rarely, cases of extremely long expansions are identified for PolyQ diseases, and they consistently lead to juvenile or sometimes very severe infantile-onset polyQ syndromes. In apparent contrast to the very long CAG tracts, shorter CAGs and PolyQs in proteins seems to be the evolutionary factor enhancing human cognition. Therefore, polyQ tracts in proteins can be modifiers of brain development and disease drivers, which contribute neurodevelopmental phenotypes in juvenile- and adult-onset PolyQ diseases. Therefore we performed a bioinformatics review of published RNAseq polyQ expression data resulting from the presence of polyQ genes in search of neurodevelopmental expression patterns and comparison between diseases. The expression data were collected from cell types reflecting stages of development such as iPSC, neuronal stem cell, neurons, but also the adult patients and models for PolyQ disease. In addition, we extended our bioinformatic transcriptomic analysis by proteomics data. We identified a group of 13 commonly downregulated genes and proteins in HD mouse models. Our comparative bioinformatic review highlighted several (neuro)developmental pathways and genes identified within PolyQ diseases and mouse models responsible for neural growth, synaptogenesis, and synaptic plasticity.
Collapse
Affiliation(s)
| | - Bart Krist
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Delimata
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
42
|
Monk R, Connor B. Cell Reprogramming to Model Huntington's Disease: A Comprehensive Review. Cells 2021; 10:cells10071565. [PMID: 34206228 PMCID: PMC8306243 DOI: 10.3390/cells10071565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder characterized by the progressive decline of motor, cognitive, and psychiatric functions. HD results from an autosomal dominant mutation that causes a trinucleotide CAG repeat expansion and the production of mutant Huntingtin protein (mHTT). This results in the initial selective and progressive loss of medium spiny neurons (MSNs) in the striatum before progressing to involve the whole brain. There are currently no effective treatments to prevent or delay the progression of HD as knowledge into the mechanisms driving the selective degeneration of MSNs has been hindered by a lack of access to live neurons from individuals with HD. The invention of cell reprogramming provides a revolutionary technique for the study, and potential treatment, of neurological conditions. Cell reprogramming technologies allow for the generation of live disease-affected neurons from patients with neurological conditions, becoming a primary technique for modelling these conditions in vitro. The ability to generate HD-affected neurons has widespread applications for investigating the pathogenesis of HD, the identification of new therapeutic targets, and for high-throughput drug screening. Cell reprogramming also offers a potential autologous source of cells for HD cell replacement therapy. This review provides a comprehensive analysis of the use of cell reprogramming to model HD and a discussion on recent advancements in cell reprogramming technologies that will benefit the HD field.
Collapse
|
43
|
Zhu X, Zhang Y, Yang X, Hao C, Duan H. Gene Therapy for Neurodegenerative Disease: Clinical Potential and Directions. Front Mol Neurosci 2021; 14:618171. [PMID: 34194298 PMCID: PMC8236824 DOI: 10.3389/fnmol.2021.618171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases (NDDs) is complex and diverse. Over the decades, our understanding of NDD has been limited to pathological features. However, recent advances in gene sequencing have facilitated elucidation of NDD at a deeper level. Gene editing techniques have uncovered new genetic links to phenotypes, promoted the development of novel treatment strategies and equipped researchers with further means to construct effective cell and animal models. The current review describes the history of evolution of gene editing tools, with the aim of improving overall understanding of this technology, and focuses on the four most common NDD disorders to demonstrate the potential future applications and research directions of gene editing.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hubin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Neurosurgery, Lvliang People's Hospital, Lvliang, China
| |
Collapse
|
44
|
Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson's disease: Midbrain organoid-NSCs (Og-NSC) as a stable source for PD treatment. Prog Neurobiol 2021; 204:102086. [PMID: 34052305 DOI: 10.1016/j.pneurobio.2021.102086] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Successful clinical translation of stem cell-based therapy largely relies on the scalable and reproducible preparation of donor cells with potent therapeutic capacities. In this study, midbrain organoids were yielded from human pluripotent stem cells (hPSCs) to prepare cells for Parkinson's disease (PD) therapy. Neural stem/precursor cells (NSCs) isolated from midbrain organoids (Og-NSCs) expanded stably and differentiated into midbrain-type dopamine(mDA) neurons, and an unprecedentedly high proportion expressed midbrain-specific factors, with relatively low cell line and batch-to-batch variations. Single cell transcriptome analysis followed by in vitro assays indicated that the majority of cells in the Og-NSC cultures are ventral midbrain (VM)-patterned with low levels of cellular senescence/aging and mitochondrial stress, compared to those derived from 2D-culture environments. Notably, in contrast to current methods yielding mDA neurons without astrocyte differentiation, mDA neurons that differentiated from Og-NSCs were interspersed with astrocytes as in the physiologic brain environment. Thus, the Og-NSC-derived mDA neurons exhibited improved synaptic maturity, functionality, resistance to toxic insults, and faithful expressions of the midbrain-specific factors, in vitro and in vivo long after transplantation. Consequently, Og-NSC transplantation yielded potent therapeutic outcomes that are reproducible in PD model animals. Collectively, our observations demonstrate that the organoid-based method may satisfy the demands needed in the clinical setting of PD cell therapy.
Collapse
|
45
|
Monk R, Lee K, Jones KS, Connor B. Directly reprogrammed Huntington's disease neural precursor cells generate striatal neurons exhibiting aggregates and impaired neuronal maturation. STEM CELLS (DAYTON, OHIO) 2021; 39:1410-1422. [PMID: 34028139 DOI: 10.1002/stem.3420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/08/2021] [Indexed: 11/07/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by the progressive loss of striatal medium spiny neurons. Using a highly efficient protocol for direct reprogramming of adult human fibroblasts with chemically modified mRNA, we report the first generation of HD induced neural precursor cells (iNPs) expressing striatal lineage markers that differentiated into DARPP32+ neurons from individuals with adult-onset HD (41-57 CAG). While no transcriptional differences between normal and HD reprogrammed neurons were detected by NanoString nCounter analysis, a subpopulation of HD reprogrammed neurons contained ubiquitinated polyglutamine aggregates. Importantly, reprogrammed HD neurons exhibited impaired neuronal maturation, displaying altered neurite morphology and more depolarized resting membrane potentials. Reduced BDNF protein expression in reprogrammed HD neurons correlated with increased CAG repeat lengths and earlier symptom onset. This model represents a platform for investigating impaired neuronal maturation and screening for neuronal maturation modifiers to treat HD.
Collapse
Affiliation(s)
- Ruth Monk
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Department of Physiology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn S Jones
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
Malankhanova T, Sorokin M, Medvedev S, Zakian S, Malakhova A. Introducing an Expanded Trinucleotide Repeat Tract into the Human Genome for Huntington's Disease Modeling In Vitro. ACTA ACUST UNITED AC 2021; 106:e100. [PMID: 32469433 DOI: 10.1002/cphg.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In neurodegeneration studies, researchers are faced with problems such as limited material availability and late disease manifestation. Cell models provide the opportunity to investigate molecular mechanisms of pathogenesis. Moreover, genome editing technologies enable generation of isogenic cell models of hereditary diseases. Our protocol outlines an approach for introducing an expanded CAG repeat tract into the first exon of the HTT gene, the Huntington's disease causing mutation. The protocol allows modeling the disease at various severity levels by introducing different numbers of CAG repeats. Furthermore, the protocol can be applicable for modeling other diseases caused by trinucleotide repeat expansion. It is important to note there are many difficulties with cloning repeated sequences and amplification of GC-rich regions. Here, we also propose troubleshooting options, which overcome these problems. The protocol is based on CRISPR/Cas9-mediated homologous recombination with a uniquely designed donor plasmid harboring an expanded CAG tract flanked with long homology arms. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Design and assembling donor and CRISPR/Cas9-expressing plasmids Basic Protocol 2: Transfection of cells with plasmids and sorting GFP-positive cells Basic Protocol 3: PCR screening single-cell clones and validation of the mutant HTT expression.
Collapse
Affiliation(s)
- Tuyana Malankhanova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Michael Sorokin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey Medvedev
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Suren Zakian
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia Malakhova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
47
|
Beatriz M, Lopes C, Ribeiro ACS, Rego ACC. Revisiting cell and gene therapies in Huntington's disease. J Neurosci Res 2021; 99:1744-1762. [PMID: 33881180 DOI: 10.1002/jnr.24845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Neurodegenerative movement disorders, such as Huntington's disease (HD), share a progressive and relentless course with increasing motor disability, linked with neuropsychiatric impairment. These diseases exhibit diverse pathophysiological processes and are a topic of intense experimental and clinical research due to the lack of therapeutic options. Restorative therapies are promising approaches with the potential to restore brain circuits. However, there were less compelling results in the few clinical trials. In this review, we discuss cell replacement therapies applied to animal models and HD patients. We thoroughly describe the initial trials using fetal neural tissue transplantation and recent approaches based on alternative cell sources tested in several animal models. Stem cells were shown to generate the desired neuron phenotype and/or provide growth factors to the degenerating host cells. Besides, genetic approaches such as RNA interference and the CRISPR/Cas9 system have been studied in animal models and human-derived cells. New genetic manipulations have revealed the capability to control or counteract the effect of human gene mutations as described by the use of antisense oligonucleotides in a clinical trial. In HD, innovative strategies are at forefront of human testing and thus other brain genetic diseases may follow similar therapeutic strategies.
Collapse
Affiliation(s)
- Margarida Beatriz
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra - Polo I, Coimbra, Portugal
| | - Carla Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra - Polo I, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra - Polo II, Coimbra, Portugal
| | | | - Ana Cristina Carvalho Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra - Polo I, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra - Polo III, Coimbra, Portugal
| |
Collapse
|
48
|
O'Regan GC, Farag SH, Casey CS, Wood-Kaczmar A, Pocock JM, Tabrizi SJ, Andre R. Human Huntington's disease pluripotent stem cell-derived microglia develop normally but are abnormally hyper-reactive and release elevated levels of reactive oxygen species. J Neuroinflammation 2021; 18:94. [PMID: 33874957 PMCID: PMC8054367 DOI: 10.1186/s12974-021-02147-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/01/2021] [Indexed: 01/13/2023] Open
Abstract
Background Neuroinflammation may contribute to the pathogenesis of Huntington’s disease, given evidence of activated microglia and elevated levels of inflammatory molecules in disease gene carriers, even those many years from symptom onset. We have shown previously that monocytes from Huntington’s disease patients are hyper-reactive to stimulation in a manner dependent on their autonomous expression of the disease-causing mutant HTT protein. To date, however, whether human microglia are similarly hyper-responsive in a cell-autonomous manner has not been determined. Methods Microglial-like cells were derived from human pluripotent stem cells (PSCs) expressing mutant HTT containing varying polyglutamine lengths. These included lines that are otherwise isogenic, such that any observed differences can be attributed with certainty to the disease mutation itself. Analyses by quantitative PCR and immunofluorescence microscopy respectively of key genes and protein markers were undertaken to determine whether Huntington’s disease PSCs differentiated normally to a microglial fate. The resultant cultures and their supernatants were then assessed by various biochemical assays and multiplex ELISAs for viability and responses to stimulation, including the release of pro-inflammatory cytokines and reactive oxygen species. Conditioned media were applied to PSC-derived striatal neurons, and vice versa, to determine the effects that the secretomes of each cell type might have on the other. Results Human PSCs generated microglia successfully irrespective of the expression of mutant HTT. These cells, however, were hyper-reactive to stimulation in the production of pro-inflammatory cytokines such as IL-6 and TNFα. They also released elevated levels of reactive oxygen species that have neurotoxic potential. Accompanying such phenotypes, human Huntington’s disease PSC-derived microglia showed increased levels of apoptosis and were more susceptible to exogenous stress. Such stress appeared to be induced by supernatants from human PSC-derived striatal neurons expressing mutant HTT with a long polyglutamine tract. Conclusions These studies show, for the first time, that human Huntington’s disease PSC-derived microglia are hyper-reactive due to their autonomous expression of mutant HTT. This provides a cellular basis for the contribution that neuroinflammation might make to Huntington’s disease pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02147-6.
Collapse
Affiliation(s)
- Grace C O'Regan
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Sahar H Farag
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Caroline S Casey
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Alison Wood-Kaczmar
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, WC1N 1PJ, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK.
| | - Ralph Andre
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, London, UK.
| |
Collapse
|
49
|
Latoszek E, Czeredys M. Molecular Components of Store-Operated Calcium Channels in the Regulation of Neural Stem Cell Physiology, Neurogenesis, and the Pathology of Huntington's Disease. Front Cell Dev Biol 2021; 9:657337. [PMID: 33869222 PMCID: PMC8047111 DOI: 10.3389/fcell.2021.657337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
One of the major Ca2+ signaling pathways is store-operated Ca2+ entry (SOCE), which is responsible for Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. SOCE and its molecular components, including stromal interaction molecule proteins, Orai Ca2+ channels, and transient receptor potential canonical channels, are involved in the physiology of neural stem cells and play a role in their proliferation, differentiation, and neurogenesis. This suggests that Ca2+ signaling is an important player in brain development. Huntington’s disease (HD) is an incurable neurodegenerative disorder that is caused by polyglutamine expansion in the huntingtin (HTT) protein, characterized by the loss of γ-aminobutyric acid (GABA)-ergic medium spiny neurons (MSNs) in the striatum. However, recent research has shown that HD is also a neurodevelopmental disorder and Ca2+ signaling is dysregulated in HD. The relationship between HD pathology and elevations of SOCE was demonstrated in different cellular and mouse models of HD and in induced pluripotent stem cell-based GABAergic MSNs from juvenile- and adult-onset HD patient fibroblasts. The present review discusses the role of SOCE in the physiology of neural stem cells and its dysregulation in HD pathology. It has been shown that elevated expression of STIM2 underlying the excessive Ca2+ entry through store-operated calcium channels in induced pluripotent stem cell-based MSNs from juvenile-onset HD. In the light of the latest findings regarding the role of Ca2+ signaling in HD pathology we also summarize recent progress in the in vitro differentiation of MSNs that derive from different cell sources. We discuss advances in the application of established protocols to obtain MSNs from fetal neural stem cells/progenitor cells, embryonic stem cells, induced pluripotent stem cells, and induced neural stem cells and the application of transdifferentiation. We also present recent progress in establishing HD brain organoids and their potential use for examining HD pathology and its treatment. Moreover, the significance of stem cell therapy to restore normal neural cell function, including Ca2+ signaling in the central nervous system in HD patients will be considered. The transplantation of MSNs or their precursors remains a promising treatment strategy for HD.
Collapse
Affiliation(s)
- Ewelina Latoszek
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
50
|
Sorek M, Oweis W, Nissim-Rafinia M, Maman M, Simon S, Hession CC, Adiconis X, Simmons SK, Sanjana NE, Shi X, Lu C, Pan JQ, Xu X, Pouladi MA, Ellerby LM, Zhang F, Levin JZ, Meshorer E. Pluripotent stem cell-derived models of neurological diseases reveal early transcriptional heterogeneity. Genome Biol 2021; 22:73. [PMID: 33663567 PMCID: PMC7934477 DOI: 10.1186/s13059-021-02301-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Many neurodegenerative diseases develop only later in life, when cells in the nervous system lose their structure or function. In many forms of neurodegenerative diseases, this late-onset phenomenon remains largely unexplained. RESULTS Analyzing single-cell RNA sequencing from Alzheimer's disease (AD) and Huntington's disease (HD) patients, we find increased transcriptional heterogeneity in disease-state neurons. We hypothesize that transcriptional heterogeneity precedes neurodegenerative disease pathologies. To test this idea experimentally, we use juvenile forms (72Q; 180Q) of HD iPSCs, differentiate them into committed neuronal progenitors, and obtain single-cell expression profiles. We show a global increase in gene expression variability in HD. Autophagy genes become more stable, while energy and actin-related genes become more variable in the mutant cells. Knocking down several differentially variable genes results in increased aggregate formation, a pathology associated with HD. We further validate the increased transcriptional heterogeneity in CHD8+/- cells, a model for autism spectrum disorder. CONCLUSIONS Overall, our results suggest that although neurodegenerative diseases develop over time, transcriptional regulation imbalance is present already at very early developmental stages. Therefore, an intervention aimed at this early phenotype may be of high diagnostic value.
Collapse
Affiliation(s)
- Matan Sorek
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Edmond and Lily Center for Brain Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Walaa Oweis
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Moria Maman
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Shahar Simon
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Cynthia C Hession
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean K Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neville E Sanjana
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- New York Genome Center and Department of Biology, New York University, New York, NY, USA
| | - Xi Shi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Congyi Lu
- New York Genome Center and Department of Biology, New York University, New York, NY, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaohong Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West, Guangzhou, 510632, Guangdong, China
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
- Department of Physiology, National University of Singapore, Singapore, 117597, Singapore
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
- The Edmond and Lily Center for Brain Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|