1
|
Yu Y, Wang Z, Yao B, Zhou Y. Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171388. [PMID: 38432380 DOI: 10.1016/j.scitotenv.2024.171388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Significant concerns on a global scale have been raised in response to the potential adverse impacts of emerging pollutants (EPs) on aquatic creatures. We have carefully reviewed relevant research over the past 10 years. The study focuses on five typical EPs: pharmaceuticals and personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), drinking water disinfection byproducts (DBPs), brominated flame retardants (BFRs), and microplastics (MPs). The presence of EPs in the global aquatic environment is source-dependent, with wastewater treatment plants being the main source of EPs. Multiple studies have consistently shown that the final destination of most EPs in the water environment is sludge and sediment. Simultaneously, a number of EPs, such as PFASs, MPs, and BFRs, have long-term environmental transport potential. Some EPs exhibit notable tendencies towards bioaccumulation and biomagnification, while others pose challenges in terms of their degradation within both biological and abiotic treatment processes. The results showed that, in most cases, the ecological risk of EPs in aquatic environments was low, possibly due to potential dilution and degradation. Future research topics should include adding EPs detection items for the aquatic environment, combining pollution, and updating prediction models.
Collapse
Affiliation(s)
- Yuange Yu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bin Yao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Venâncio C, Monteiro B, Lopes I, Sousa ACA. Assessing the risks of capecitabine and its active metabolite 5-fluorouracil to freshwater biota. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58841-58854. [PMID: 36997780 PMCID: PMC10163094 DOI: 10.1007/s11356-023-26505-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 05/08/2023]
Abstract
Capecitabine (CAP, prodrug) and 5-fluorouracil (5-FU, its active metabolite) are two of the most prominent cytostatics, for which no clear picture can be drawn regarding potential concentrations of effect for freshwater biota, with CAP being grouped in the least studied cytostatic, whereas 5-FU has been classified as of no and of high environmental risk. Accordingly, the present work aimed to assess the ecotoxicity of CAP and 5-FU in three freshwater species, which included a 72-h assay with the producer Raphidocelis subcapitata; a 96-h assay with the invertebrate secondary consumer Hydra viridissima; and a 96-h assay with embryos of the vertebrate secondary consumer Danio rerio. The following endpoints were monitored: yield and population growth rate for the algae; mortality, morphological alterations, and post-exposure feeding rates for the cnidarian; and mortality, hatching, and malformations for the fish. Overall, organisms' sensitivity to CAP decreased in the following order: R. subcapitata > H. viridissima > D. rerio, whereas for 5-FU, it decreased in the following order: H. viridissima > D. rerio > R. subcapitata. For CAP, no median lethal effective concentrations (LC/EC50) were possible to compute for D. rerio, with no significant mortality or malformations registered in embryos exposed at concentrations up to 800 mg L-1. For R. subcapitata, the EC50s were 0.077 and 0.63 mg L-1 for yield and growth rate, respectively, and for H. viridissima, the EC50,30 min for feeding was 22.0 mg L-1. For 5-FU, no EC50s could be computed for R. subcapitata, whilst the EC50s for H. viridissima mortality and feeding were 55.4 and 67.9 mg L-1, respectively, and for D. rerio, the LC50,96 h and EC50,96 h (hatching and abnormalities) were 4546, 4100, and 2459 mg L-1, respectively. Assuming similar modes of action for both compounds and their co-occurrence, the combined risk quotient of the two chemicals was determined to be 7.97, which represents a risk for freshwater biota. Anticipating the increased consumption of these compounds and cancer development trends worldwide, these impacts may be further aggravated.
Collapse
Affiliation(s)
- Cátia Venâncio
- Department of Biology, University of Aveiro, Campus de Santiago, P-3810-193, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Bruna Monteiro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology, University of Aveiro, Campus de Santiago, P-3810-193, Aveiro, Portugal.
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal.
| | - Ana C A Sousa
- Department of Biology and Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
| |
Collapse
|
3
|
Evgenidou E, Vasilopoulou K, Koronaiou LA, Kyzas G, Bikiaris D, Lambropoulou D. AOP-Based Transformation of Abacavir in Different Environments: Evolution Profile of Descyclopropyl-Abacavir and In Silico Toxicity Assessment of the Main Transformation Products. Molecules 2023; 28:molecules28041866. [PMID: 36838865 PMCID: PMC9963360 DOI: 10.3390/molecules28041866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
This study explores the photocatalytic transformation of the antiviral drug abacavir employing different advanced oxidation processes (AOPs) such as UV/TiO2, UV/MOF/H2O2, UV/MOF/S2O82-, UV/Fe2+/H2O2, and UV/Fe2+/S2O82-. All processes appear to be effective in eliminating abacavir within a few minutes, while the evolution profile of the basic transformation product, descyclopropyl-abacavir (TP-247) was also monitored. Moreover, the implementation of the most efficient technologies towards the removal of abacavir in different matrices such as wastewater effluent and leachate was also assessed, revealing that the organic matter present or the inorganic constituents can retard the whole process. Four major transformation products were detected, and their time-evolution profiles were recorded in all studied matrices, revealing that different transformation pathways dominate in each matrix. Finally, the prediction of the toxicity of the major TPs employing ECOSAR software was conducted and showed that only hydroxylation can play a detoxification role in the treated solution.
Collapse
Affiliation(s)
- Eleni Evgenidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Centre, 570 01 Thessaloniki, Greece
| | - Konstantina Vasilopoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Lelouda-Athanasia Koronaiou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Centre, 570 01 Thessaloniki, Greece
| | - George Kyzas
- Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Dimitra Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Centre, 570 01 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
4
|
Amin V, Bowes DA, Halden RU. Systematic scoping review evaluating the potential of wastewater-based epidemiology for monitoring cardiovascular disease and cancer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160103. [PMID: 36370774 PMCID: PMC9643312 DOI: 10.1016/j.scitotenv.2022.160103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Cardiovascular disease (CVD) and cancer are collectively responsible for tens of millions of global deaths each year. These rates are projected to intensify as the COVID-19 pandemic has caused delays in individualized diagnostics, or exacerbated prevalence due to Post Acute Coronavirus (COVID-19) Syndrome. Wastewater-based epidemiology (WBE) has successfully been employed as a useful tool for generating population-level health assessments, and was examined here in this systematic scoping literature review to (i) identify endogenous human biomarkers reported to indicate CVD or cancer in clinical practice, (ii) assess specificity to the indicated diseases, (iii) evaluate the utility for estimating population-level disease prevalence in community wastewater, and (iv) contextualize the obtained information for monitoring CVD and cancer presence via WBE. A total of 48 peer-reviewed papers were critically examined identifying five urinary protein biomarkers: cardiac troponin I (cTnI) (heart attack/heart failure), cystatin C (atherosclerosis), normetanephrine (tumor presence), α-fetoprotein (prostate and liver cancer), and microtubule assisted serine/threonine kinase 4 (MAST4) (breast cancer). Next, urinary excretion information was utilized to predict biomarker concentrations extant in community wastewater, resulting in average healthy concentrations ranging from 0.02 to 1159 ng/L, and disease-indicating thresholds from 0.16 to 3041 ng/L. Finally, estimating prevalence-adjusted wastewater measurements was explored in order to assess community-level CVD and cancer presence utilizing U.S. reported prevalence rates. Results obtained suggest that WBE can serve as a viable tool in support of current methods for CVD and cancer assessment to reduce morbidities and mortalities worldwide.
Collapse
Affiliation(s)
- Vivek Amin
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA
| | - Devin A Bowes
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA
| | - Rolf U Halden
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA; School for Sustainable Engineering and the Built Environment, Arizona State University, 1001 S. McAllister Ave, AZ 85287-8101, USA; OneWaterOneHealth, The Arizona State University Foundation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA.
| |
Collapse
|
5
|
Monteiro B, Venâncio C, Francisco R, Sousa ACA, Lopes I. Contributions towards the hazard evaluation of two widely used cytostatic drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15641-15654. [PMID: 36169838 DOI: 10.1007/s11356-022-23120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Cytostatic drugs are one of the most important therapeutic options for cancer, a disease that is expected to affect 29 million individuals by 2040. After being excreted, cytostatics reach wastewater treatment plants (WWTPs), which are unable to efficiently remove them, and consequently, they will be released into the aquatic environment. Due to the highly toxic properties of cytostatics, it is particularly relevant to evaluate their potential ecological risk. Yet, cytostatics toxicity data is still not available for various species. In this work, the ecotoxicity of two widely consumed cytostatics, cyclophosphamide (CYP-as a model cytostatic) and mycophenolic acid (MPA-as a priority cytostatic), was evaluated on three freshwater species-Raphidocelis subcapitata, Brachionus calyciflorus, and Danio rerio, and the risk quotient (RQ) was assessed. Both drugs significantly affected the yield and growth inhibition of the microalgae, while for rotifers, the least sensitive species, only significant effects were registered for CYP. These drugs also caused significant effects on the mortality and morphological abnormalities on zebrafish. The estimation of the RQ discloses that CYP seems to pose a low risk to aquatic biota while MPA poses a very high risk. Altogether, these results emphasize the need for more complete environmental risk assessments, to properly prioritize and rank cytostatics according to their potentially toxic effects on the environment and aquatic biota.
Collapse
Affiliation(s)
- Bruna Monteiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Cátia Venâncio
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Rafael Francisco
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Ana C A Sousa
- Department of Biology and Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal.
| | - Isabel Lopes
- CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
- Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Mielecki D, Grzesiuk E, Bednarska A, Garbicz D, Świderska B, Grzesiuk M. Contamination of aquatic environment with anticancer reagents influences Daphnia magna - Ecotoxicogenomics approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114372. [PMID: 36508828 DOI: 10.1016/j.ecoenv.2022.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals used in human medicine contaminate freshwater ecosystems. Chemotherapeutics applied in cancer treatment are found in freshwaters at low concentrations (in the range of ng L-1) which, however, can be toxic or mutagenic to aquatic organisms. The aim of this study was to determine the impact of the alkylating/crosslinking anticancer agents, cyclophosphamide (CP) and cisplatin (CDDP), at the concentration detected in water, on Daphnia magna life history, transcriptome, and proteome. This filter feeding cladoceran is an important member of the aquatic food webs controlling algal biomass and forming basic food for planktivorous fish. Here, observations of the D. magna growth rate, age at first reproduction, and the number of eggs produced were performed in the presence of CP or CDDP. The D. magna proteins and RNA were isolated and analysed by mass spectrometry and the mRNA-seq method, respectively. Five generations of contact with the pharmaceuticals in question significantly influenced the D. magna life history parameters with the growth rate and number of laid eggs decreased, whereas age at first reproduction was increased. A decrease in survivorship was observed when daphnids were exposed to CP. These changes are the result of modifications in the gene/transcript expression followed by differences in the proteome profile in comparison to the untreated control. The proteome changes were generally in accordance with the modified transcriptome. The ecotoxicogenomics approach makes it possible to get closer to a complete picture of the influence of CP and CDDP on Daphnia. We have gathered evidence that animals in the presence of anticancer pharmaceuticals attempt to cope with permanent stress by changing their proteome and transcriptome profile. Additionally, our analyses indicate that CDDP showed a stronger effect on tested organisms than CP.
Collapse
Affiliation(s)
- Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Anna Bednarska
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Bianka Świderska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Malgorzata Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; Department of Hydrobiology, Faculty of Biology, University of Warsaw, Poland; Department of Biochemistry and Microbiology, Institute of Biology; Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| |
Collapse
|
7
|
Alaiya MA, Odeniyi MA. Utilisation of Mangifera indica plant extracts and parts in antimicrobial formulations and as a pharmaceutical excipient: a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023; 9:29. [PMID: 37035527 PMCID: PMC10074368 DOI: 10.1186/s43094-023-00479-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/27/2023] [Indexed: 04/11/2023] Open
Abstract
Background Antimicrobial resistance and the environmental threat posed by some synthetic antimicrobial agents necessitate more research into development of novel pharmaceutical products that are environmentally friendly. Also, the use of plant derived excipients is growing and opening up new avenue to solve current drug delivery issues in the pharmaceutical industry. Main body This review summarizes studies related to the antimicrobial property of Mangifera indica extracts, possible mechanisms of antimicrobial action and antimicrobial formulations from the plant and overview of researches relating to the use of M. indica as a pharmaceutical excipient. Electronic searches were conducted on databases such as Pub Med, Wiley Online Library (WOL) and Google Scholar with focus on published articles relating to M. indica. Inclusion and exclusion criteria include publications relating to antimicrobial properties of M. indica extracts, its antimicrobial formulations and its use as a pharmaceutical excipient. The electronic searches yielded about 190 articles. From the studies reviewed, the mechanisms of action of phytochemicals described corroborate the antimicrobial activity exhibited by M. indica extracts and its selected formulations. In addition, mango pectin was observed to possess potential as a pharmaceutical excipient. Very few previous review articles based their focus on incorporating mechanism of action of phytochemicals with antimicrobial activity.This review examined antimicrobial properties of M. indica extracts and formulations, major phytochemicals in the plant parts and their possible modes of action. In addition, the study assessed the use of natural polymer derived from mango plant as excipients in pharmaceutical and pharmacological preparations. Conclusion The study concluded that effective antimicrobial activity of mango plant extracts and formulations requires synergy of actions among various phytochemical constituents of the extract or formulation. It is recommended that more researches focused on discovery of new phytochemicals in M. indica, their mechanisms of action and effective utilization of the plant in the pharmaceutical industry should be further explored.
Collapse
Affiliation(s)
- Mojisola Atinuke Alaiya
- grid.448723.eDepartment of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Michael A. Odeniyi
- grid.9582.60000 0004 1794 5983Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Kumar S, Sharma R, Gupta A, Dubey KK, Khan AM, Singhal R, Kumar R, Bharti A, Singh P, Kant R, Kumar V. TiO 2 based Photocatalysis membranes: An efficient strategy for pharmaceutical mineralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157221. [PMID: 35809739 DOI: 10.1016/j.scitotenv.2022.157221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Among the various emerging contaminants, pharmaceuticals (PhACs) seem to have adverse effects on the quality of water. Even the smallest concentration of PhACs in ground water and drinking water is harmful to humans and aquatic species. Among all the deaths reported due to COVID-19, the mortality rate was higher for those patients who consumed antibiotics. Consequently, PhAC in water is a serious concern and their removal needs immediate attention. This study has focused on the PhACs' degradation by collaborating photocatalysis with membrane filtration. TiO2-based photocatalytic membrane is an innovative strategy which demonstrates mineralization of PhACs as a safer option. To highlight the same, an emphasis on the preparation and reinforcing properties of TiO2-based nanomembranes has been elaborated in this review. Further, mineralization of antibiotics or cytostatic compounds and their degradation mechanisms is also highlighted using TiO2 assisted membrane photocatalysis. Experimental reactor configurations have been discussed for commercial implementation of photoreactors for PhAC degradation anchored photocatalytic nanomembranes. Challenges and future perspectives are emphasized in order to design a nanomembrane based prototype in future for wastewater management.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi, India; Department of Chemistry, Kirori Mal College, University of Delhi, India
| | - Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, India.
| | | | - A M Khan
- Department of Chemistry, Motilal Nehru College, India
| | - Rahul Singhal
- Department of Chemistry, Shivaji College, Delhi, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Akhilesh Bharti
- Department of Chemistry, Kirori Mal College, University of Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, Delhi, India
| | - Ravi Kant
- Department of Chemistry, Zakir Hussain Delhi College, Delhi, India
| | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
9
|
Ren J, Yang F, Ding N, Mo J, Guo J. Transcriptomic responses to cytotoxic drug cisplatin in water flea Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103964. [PMID: 36028164 DOI: 10.1016/j.etap.2022.103964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 08/07/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Cytotoxic drugs have been recognized by the European Union as the potential threat in the aquatic environment. As a typical cytotoxic drug, effects of long-term exposure to cisplatin at the environmentally relevant concentrations on the crustacean health and its molecular mechanism remain undetermined. In this study, the growth and reproduction of Daphnia magna resulting from cisplatin exposure were initially assessed. While the phenotypes were not altered in 2 μg L-1, 20 μg L-1, and 200 μg L-1 treatment groups, cisplatin at 500 µg L-1 significantly reduced the offspring number to 8-13 neonates in each brood, which was lower than 13-27 neonates in the control group. In addition to the delay in the time of first pregnancy, the body length was decreased by approximate 12.13% at day 7. Meanwhile, all daphnids died after exposure to 500 µg L-1 cisplatin for 17 days. Transcriptome profiling bioassays were performed for 10 days to explore the alternation at the molecular level. Briefly, 980 (257 up- and 723 down-regulated), 429 (182 up- and 247 down-regulated) and 1984 (616 up-regulated and 1368 down-regulated) genes were differentially expressed (adj p < 0.05) in low (2 μg L-1), medium (200 μg L-1) and high (500 μg L-1) cisplatin treatment groups, respectively. Differentially expressed genes were primarily enriched in the digestion and absorption, nerve conduction, endocrine interference, and circulatory related pathways. Specifically, the down-regulated digestive secretion and nutrient absorption and neuronal conduction pathways may lead to insufficient energy supply involved in growth and reproduction, and hinder ovarian development and cell growth. Down-regulation of ovarian steroids and relaxin signaling pathways may be related to the reduction of offspring number and delayed pregnancy, and reduced body length of D. magna may attribute to the enrichment of insulin secretion pathway. In addition, the death of D. magna may result from the reduced expression of genes in cardiomyocyte contraction and apoptosome processes. Taken together, this study revealed the potential toxic mechanism of cisplatin in a model water flea.
Collapse
Affiliation(s)
- Jingya Ren
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Ning Ding
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| |
Collapse
|
10
|
Ribeiro F, Costa-Lotufo L, Loureiro S, Pavlaki MD. Environmental Hazard of Anticancer Drugs: State of the Art and Future Perspective for Marine Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1793-1807. [PMID: 35622001 DOI: 10.1002/etc.5397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical compounds represent a class of emerging contaminants present in the environment. Their intense (and increasing) use in human and veterinary medicine leads to their discharge, mainly via human excretion, into wastewater treatment plants where their removal is inefficient. A specific class of pharmaceuticals used to fight cancer, known as antineoplastic or anticancer drugs, has gained increased attention regarding their possible environmental hazard due to their pharmacological properties, which include the nonselective targeting of DNA replication mechanisms and cell division processes, potentially inducing cell apoptosis. To date, there is limited information concerning the effects of anticancer drugs and/or their metabolites in species inhabiting freshwater environments, let alone marine and estuarine compartments. In the present review, we aimed to assemble information regarding the impact that anticancer drugs have on biological traits of marine species, to identify gaps in the current environmental hazard assessment, and to make recommendations to promote an efficient environmental hazard assessment of anticancer drugs in the marine environment. Environ Toxicol Chem 2022;41:1793-1807. © 2022 SETAC.
Collapse
Affiliation(s)
- Fabianne Ribeiro
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Leticia Costa-Lotufo
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Susana Loureiro
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Maria D Pavlaki
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
11
|
Poirier Larabie S, Jutras M, Leclair G, St-Jean I, Kleinert C, Gagné F, Gagnon C. Evaluation of uptake of the cytostatic methotrexate in Elliptio complanata mussels by LC-MS/MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45303-45313. [PMID: 35146607 PMCID: PMC9209350 DOI: 10.1007/s11356-022-19064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/01/2022] [Indexed: 05/04/2023]
Abstract
Aquatic organisms are continuously exposed to emerging contaminants coming from urban effluents of wastewater treatment plants. The contamination of surface water by those effluents poses a number of environmental risks, and pharmaceuticals are part of this class of effluent contaminants. Various classes of pharmaceuticals are not treated by wastewater treatment plants and anticancer drugs are part of them. The chemotherapy drug methotrexate (MTX) is an emerging contaminant and its growing use with the increase in cancer cases worldwide raises potential risk to aquatic organisms exposed to effluent discharges. However, chemical analyses in exposed freshwater aquatic organisms for ecotoxicological studies are rarely available and no studies have been done yet to accompany ecotoxicological data of exposed filter-feeding organisms. The purpose of this study was to develop a specific and sensitive analytical LC-MS/MS method for the quantification of methotrexate uptake in mussels exposed at different concentrations of the drug. A solid/liquid extraction followed by solid phase extraction (SPE) using an MCX phase purification scheme was optimized. The optimal recovery of 65% and matrix effect of 38% allowed to achieve a limit of quantification of 0.25 ng g-1, with an accuracy of 99-106%, a precision of no more than 3% RSD, and linearity ranging from 0.25 to 25 ng g-1. This methodology was tested with mussels exposed for 96 h at different concentrations (4 to 100 µg L-1) of MTX. The data revealed tissue uptake at concentrations ranging from 0 to 2.53 ng g-1. This suggests that this drug has low uptake potential and this methodology could be used to examine tissue levels of this drug in organisms continuously exposed to urban pollution.
Collapse
Affiliation(s)
- Sylvie Poirier Larabie
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill St., 8th floor, Montréal, Québec, H2Y 2E7, Canada
| | - Martin Jutras
- Faculté de Pharmacie, Université de Montréal, Plateforme de biopharmacieC.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Grégoire Leclair
- Faculté de Pharmacie, Université de Montréal, Plateforme de biopharmacieC.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Isabelle St-Jean
- Faculté de Pharmacie, Université de Montréal, Plateforme de biopharmacieC.P. 6128, succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Christine Kleinert
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill St., 8th floor, Montréal, Québec, H2Y 2E7, Canada
| | - François Gagné
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill St., 8th floor, Montréal, Québec, H2Y 2E7, Canada
| | - Christian Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill St., 8th floor, Montréal, Québec, H2Y 2E7, Canada.
| |
Collapse
|
12
|
Photocatalytic mechanisms and photocatalyst deactivation during the degradation of 5-fluorouracil in water. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Transformation Products of Emerging Pollutants Explored Using Non-Target Screening: Perspective in the Transformation Pathway and Toxicity Mechanism—A Review. TOXICS 2022; 10:toxics10020054. [PMID: 35202240 PMCID: PMC8874687 DOI: 10.3390/toxics10020054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
The scientific community has increasingly focused on forming transformation products (TPs) from environmental organic pollutants. However, there is still a lot of discussion over how these TPs are generated and how harmful they are to living terrestrial or aquatic organisms. Potential transformation pathways, TP toxicity, and their mechanisms require more investigation. Non-target screening (NTS) via high-resolution mass spectrometry (HRMS) in model organisms to identify TPs and the formation mechanism on various organisms is the focus of this review. Furthermore, uptake, accumulation process, and potential toxicity with their detrimental consequences are summarized in various organisms. Finally, challenges and future research initiatives, such as performing NTS in a model organism, characterizing and quantifying TPs, and evaluating future toxicity studies on TPs, are also included in this review.
Collapse
|
14
|
Espinosa A, Nélieu S, Lieben P, Skarbek C, Labruère R, Benoit P. Photodegradation of methotrexate in aqueous solution: degradation kinetics and identification of transformation products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6060-6071. [PMID: 34431057 DOI: 10.1007/s11356-021-15820-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Methotrexate is an antineoplastic folate analog of high environmental concern, due to its low biodegradability and toxicological properties. This study focused on its photodegradation under two irradiation conditions, aiming to be representative of environment (300-450 nm) and drinking water treatment (254 nm). The photodegradation experiments were conducted at two pH, to vary the methotrexate ionization state and to produce a large variety of transformation products (TPs). The degradation kinetics determined through LC-UV monitoring were contrasted according to pH and irradiation wavelength. However, the quantum yields were independent of ionization state at 254 nm and the changes in kinetics at higher wavelengths were attributed to a change in the degradation mechanism. The TPs formed during the reactions were identified by UHPLC-MS/MS, using both the positive and negative modes. Among the eleven proposed structures, five were described as methotrexate TPs for the first time. The TPs result from N-demethylation, glutamic acid oxidation, and C-N cleavage, all of them leading to further degraded photoproducts presenting modified or lost glutamic acid part. This was made possible thanks to the negative mode, which allowed the exploration of the glutamic acid moiety modifications. Cytotoxicity assessment on A549 cancer cells demonstrated that all photoproducts formed at pH 7 were less toxic than the parent compound.
Collapse
Affiliation(s)
- Anaïs Espinosa
- AgroParisTech, UMR ECOSYS, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, France
| | - Sylvie Nélieu
- AgroParisTech, UMR ECOSYS, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, France.
| | - Pascale Lieben
- AgroParisTech, UMR SayFood, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, France
| | - Charles Skarbek
- Institut de chimie moléculaire et des matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Raphaël Labruère
- Institut de chimie moléculaire et des matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Pierre Benoit
- AgroParisTech, UMR ECOSYS, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, France
| |
Collapse
|
15
|
Elersek T, Novak M, Mlinar M, Virant I, Bahor N, Leben K, Žegura B, Filipič M. Lethal and Sub-Lethal Effects and Modulation of Gene Expression Induced by T Kinase Inhibitors in Zebrafish (Danio Rerio) Embryos. TOXICS 2021; 10:toxics10010004. [PMID: 35051046 PMCID: PMC8781212 DOI: 10.3390/toxics10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are designed for targeted cancer therapy. The consumption of these drugs during the last 20 years has been constantly rising. In the zebrafish (Danio rerio) embryo toxicity test, we assessed the toxicity of six TKIs: imatinib mesylate, erlotinib, nilotinib, dasatinib, sorafenib and regorafenib. Imatinib mesylate and dasatinib induced lethal effects, while regorafenib, sorfenib and dasatinib caused a significant increase of sub-lethal effects, predominantly oedema, no blood circulation and formation of blood aggregates. The analyses of the changes in the expression of selected genes associated with the hormone system after the exposure to imatinib mesylate, dasatinib and regorafenib demonstrated that all three tested TKIs deregulated the expression of oestrogen receptor esr1, cytochrome P450 aromatase (cypa19b) and hydroxysteroid-dehydrogenase (hsd3b), regorafenib, and also thyroglobulin (tg). The expression of genes involved in the DNA damage response (gadd45 and mcm6) and apoptosis (bcl2) was deregulated only by exposure to regorafenib. The data indicate that common mechanisms, namely antiangiogenic activity and interference with steroidogenesis are involved in the TKI induced sub-lethal effects and potential hormone disrupting activity, respectively. The residues of TKIs may represent an environmental hazard; therefore, further ecotoxicological studies focusing also on the effects of their mixtures are warranted.
Collapse
Affiliation(s)
- Tina Elersek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Mateja Mlinar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Igor Virant
- Institute of Oncology Ljubljana, Zaloška 2, 1000 Ljubljana, Slovenia;
| | - Nika Bahor
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Karin Leben
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; (T.E.); (M.N.); (M.M.); (N.B.); (K.L.); (B.Ž.)
- Correspondence:
| |
Collapse
|
16
|
Tkalec Ž, Negreira N, López de Alda M, Barceló D, Kosjek T. A novel workflow utilizing open-source software tools in the environmental fate studies: The example of imatinib biotransformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149063. [PMID: 34311367 DOI: 10.1016/j.scitotenv.2021.149063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study is to utilize novel and powerful workflows with publicly available tools to efficiently process data and facilitate rapid acquisition of knowledge on environmental fate studies. Taking imatinib (IMA) as an example, we developed an efficient workflow to describe IMA biodegradation with activated sludge (AS) from wastewater treatment plants (WWTP). IMA is a cytostatic pharmaceutical; a selective tyrosine kinase inhibitor used to treat chronic myeloid leukemia. Its reported ecotoxic, endocrine and genotoxic effects imply high risk for aquatic wildlife and human health, however its fate in the environment is not yet well known. The study was conducted in a batch biotransformation setup, at two AS concentration levels and in presence and absence of carbon source. Degradation profiles and formation of IMA transformation products (TPs) were investigated using UHPLC-QqOrbitrap-MS/MS which showed that IMA is readily biodegradable. TPs were determined using multivariate statistical analysis. Eight TPs were determined and tentatively identified, six of them for first time. Hydrolysis of amide bond, oxidation, demethylation, deamination, acetylation and succinylation are proposed as major biodegradation pathways. TP235, the product of amide bond hydrolysis, was detected and quantified in actual wastewaters, at levels around 1 ng/L. This calls for more studies on the environmental fate of IMA in order to properly asses the environmental risk and hazard associated to IMA and its TPs.
Collapse
Affiliation(s)
- Žiga Tkalec
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Noelia Negreira
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain.
| | - Damià Barceló
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Tina Kosjek
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Toński M, Dołżonek J, Stepnowski P, Białk-Bielińska A. Hydrolytic stability of anticancer drugs and one metabolite in the aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57939-57951. [PMID: 34105071 PMCID: PMC8536627 DOI: 10.1007/s11356-021-14360-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/06/2021] [Indexed: 05/09/2023]
Abstract
Due to the genotoxic, carcinogenic and teratogenic mechanism of action, anticancer drugs are highly hazardous compounds. Their occurrence, fate, and effects in the environment have not been systematically studied as compared to other medicaments. Therefore, reliable data, including their stability and persistency, is required in order to assess it. Taking into account, that hydrolysis is one of the most important factors regarding stability of chemicals in water, the aim of our study was to investigate the hydrolytic stability of five commonly used anticancer drugs (ifosfamide, cyclophosphamide, 5-fluorouracil, imatinib, and methotrexate) and one metabolite (7-hydroxymethotrexate), as the systematized and coherent data available is limited. The hydrolysis studies have been prepared according to the OECD 111 procedure to obtain standardized and comparable results. The preliminary tests at pH 4, 7, and 9 and 50 °C show that only cyclophosphamide and ifosfamide are unstable, whereas the estimated t1/2 at 25 °C is >1 year for other investigated compounds. Moreover, much more detailed experiments were performed and indicate that at environmentally relevant temperatures, cyclophosphamide, and ifosfamide would be quite persistent in the terms of hydrolytic stability. Moreover, the preliminary investigation on the hydrolysis products was performed.
Collapse
Affiliation(s)
- Michał Toński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
18
|
Queirós V, Azeiteiro UM, Barata C, Santos JL, Alonso E, Soares AMVM, Freitas R. Effects of the antineoplastic drug cyclophosphamide on the biochemical responses of the mussel Mytilus galloprovincialis under different temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117735. [PMID: 34271515 DOI: 10.1016/j.envpol.2021.117735] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy treatments with high consumption rates and that has been detected in the aquatic environment. After being released into the aquatic environment, CP may cause adverse effects on aquatic organisms since antineoplastics are well-known cytotoxic, genotoxic, mutagenic and teratogenic drugs. Moreover, predicted environmental changes, such as the temperature rising, may alter the impacts caused by CP on organisms. Thus, the present study aimed to assess the effects caused by CP chronic exposure in the mussel Mytilus galloprovincialis, under actual and predicted warming scenarios. Organisms were exposed for 28 days to different concentrations of CP (10, 100, 500 and 1000 ng/L) at control (17 ± 1.0 °C) and increased (21 ± 1.0 °C) temperatures. Biochemical responses related to metabolic capacity, energy reserves, oxidative stress and neurotoxicity were assessed. The results showed that the organisms were able to maintain their metabolic capacity under all exposure conditions. However, their antioxidant defense mechanisms were activated mostly at higher CP concentrations being able to prevent cellular damage, even under the warming scenario. Overall, the present findings suggest that temperature rise may not alter the impacts of CP towards M. galloprovincialis.
Collapse
Affiliation(s)
- Vanessa Queirós
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
19
|
Queirós V, Azeiteiro UM, Soares AMVM, Freitas R. The antineoplastic drugs cyclophosphamide and cisplatin in the aquatic environment - Review. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125028. [PMID: 33951853 DOI: 10.1016/j.jhazmat.2020.125028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Cyclophosphamide (CP) and Cisplatin (CDDP) are antineoplastic drugs widely used in the treatment of neoplastic diseases that have been detected in the aquatic environment. This review summarizes the current knowledge on the presence in the aquatic environment of these two drugs and their effects on freshwater and marine invertebrates, which includes good model species in ecotoxicology and risk assessment programs. The consumption levels, occurrence in freshwater and marine ecosystems, and the impacts exerted on aquatic organisms, even at low concentrations, justifies this review and the selection of these two drugs. Both pharmaceuticals were detected in different aquatic environments, with concentrations ranging from ng L-1 up to 687.0 μg L-1 (CP) and 250 μg L-1 (CDDP). The available studies showed that CP and CDDP induce individual and sub-individual impacts on aquatic invertebrate species. The most common effects reported were changes in the reproductive function, oxidative stress, genotoxicity, cytotoxicity and neurotoxicity. The literature used in this review supports the need to increase monitoring studies concerning the occurrence of antineoplastic drugs in the aquatic environment since negative effects have been reported even at trace concentrations (ng L-1). Furthermore, marine ecosystems should be considered as a priority since less is known on the occurrence and effects of antineoplastic drugs in this environment comparing to freshwater ecosystems.
Collapse
Affiliation(s)
- Vanessa Queirós
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal
| | | | | | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal.
| |
Collapse
|
20
|
Lefebvre-Raine M, Paquet N, Triffault-Bouchet G, Langlois VS. Embryotoxicity of Five Cytostatics in Fathead Minnow (Pimephales promelas) Larvae. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:747-752. [PMID: 33713142 DOI: 10.1007/s00128-021-03146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Cytostatics are compounds used in chemotherapy, known to be genotoxic, mutagenic, and teratogenic at low concentrations. The amount of cytostatic drugs prescribed increases every year as does their release into the aquatic ecosystems, which possibly is a major concern for the health of aquatic organisms. This study aimed to evaluate the putative toxicity of five cytostatics to fathead minnow (Pimephales promelas) larvae: tamoxifen, capecitabine, methotrexate, cyclophosphamide, and ifosfamide. Eggs collected post-fertilization were exposed for 6 days to a range of concentrations, including one above environmental level. At all environmental concentrations, no significant difference in mortality, hatching time, length, heart rate, and presence of malformations were found. Altogether, these cytostatics do not seem embryotoxic to fish. Although, an increased proportion of complete swim bladder were found after ifosfamide's exposure, suggesting an interaction with the thyroid axis, involved in swim bladder development. Complementary work should address other endpoints, such as behavioral changes, reproductive success, and transgenerational effects.
Collapse
Affiliation(s)
- M Lefebvre-Raine
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), Québec, QC, Canada
| | - N Paquet
- Ministère de L'Environnement et de La Lutte Contre Les Changements Climatiques (MELCC), Centre D'expertise en Analyse Environnementale du Québec (CEAEQ), Québec, QC, Canada
| | - G Triffault-Bouchet
- Ministère de L'Environnement et de La Lutte Contre Les Changements Climatiques (MELCC), Centre D'expertise en Analyse Environnementale du Québec (CEAEQ), Québec, QC, Canada
| | - V S Langlois
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), Québec, QC, Canada.
| |
Collapse
|
21
|
Insight into the Sorption of 5-Fluorouracil and Methotrexate onto Soil-pH, Ionic Strength, and Co-Contaminant Influence. Molecules 2021; 26:molecules26061674. [PMID: 33802784 PMCID: PMC8002423 DOI: 10.3390/molecules26061674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Nowadays anticancer drugs (ADs), like other pharmaceuticals, are recognized as new emerging pollutants, meaning that they are not commonly monitored in the environment; however, they have great potential to enter the environment and cause adverse effects there. The current scientific literature highlights the problem of their presence in the aquatic environment by publishing more and more results on their analytics and ecotoxicological evaluation. In order to properly assess the risk associated with the presence of ADs in the environment, it is also necessary to investigate the processes that are important in understanding the environmental fate of these compounds. However, the state of knowledge on mobility of ADs in the environment is still very limited. Therefore, the main aim of our study was to investigate the sorption potential of two anticancer drugs, 5-fluorouracil (5-FU) and methotrexate (MTX), onto different soils. Special attention was paid to the determination of the influence of pH and ionic strength as well as presence of co-contaminants (cadmium (Cd2+) and another pharmaceutical-metoprolol (MET)) on the sorption of 5-FU and MTX onto soil. The obtained distribution coefficient values (Kd) ranged from 2.52 to 6.36 L·kg-1 and from 6.79 to 12.94 L·kg-1 for 5-FU and MTX, respectively. Investigated compounds may be classified as slightly or low mobile in the soil matrix (depending on soil). 5-FU may be recognized as more mobile in comparison to MET. It was proved that presence of other soil contaminants may strongly influence their mobility in soil structures. The investigated co-contaminant (MET) caused around 25-fold increased sorption of 5-FU, whereas diminished sorption of MTX. Moreover, the influence of environmental conditions such as pH and ionic strength on their sorption has been clearly demonstrated.
Collapse
|
22
|
Puckowski A, Cwięk W, Mioduszewska K, Stepnowski P, Białk-Bielińska A. Sorption of pharmaceuticals on the surface of microplastics. CHEMOSPHERE 2021; 263:127976. [PMID: 32835979 DOI: 10.1016/j.chemosphere.2020.127976] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/21/2020] [Accepted: 08/08/2020] [Indexed: 05/22/2023]
Abstract
The presence of both pollutants: microplastics and pharmaceutical residues in various environmental compartments is an issue of increasing concern. Available literature data indicates that microplastics can affect the environmental distribution and transport of e.g. persistent organic pollutants (POPs) through sorption interactions, concentrating them at a given point and thus influencing the environmental risks represented by the sorbent and sorbate pair. Therefore, their potential to change the fate of other contaminants in the environment, such as pharmaceuticals, is worth investigating. The aim of this study was to evaluate the sorption capacity of nine pharmaceuticals, commonly used in human and veterinary medicine, which constitute known ubiquitous water pollutants: enrofloxacin (ENR), ciprofloxacin (CIP), norfloxacin (NOR), 5-fluorouracil (5-FU), methotrexate (MET), flubendazole (FLU), fenbendazole (FEN), propranolol (PRO) and nadolol (NAD), on the surface of the most often identified microscopic plastic particles in the aquatic environment, i.e. polypropylene (PP), low density polyethylene (LD-PE), high density polyethylene (HD-PE) and polyvinyl chloride (PVC). The obtained results suggest a complex nature of sorption, including both hydrophobic and electrostatic interactions. However, since the ionic strength of the medium was found to be a significant factor influencing the sorption potential, minute interactions are observed in conditions common for the natural environment.
Collapse
Affiliation(s)
- Alan Puckowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Weronika Cwięk
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Mioduszewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
23
|
Yadav A, Rene ER, Mandal MK, Dubey KK. Threat and sustainable technological solution for antineoplastic drugs pollution: Review on a persisting global issue. CHEMOSPHERE 2021; 263:128285. [PMID: 33297229 DOI: 10.1016/j.chemosphere.2020.128285] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
In the past 20 years, the discharge of pharmaceuticals and their presence in the aquatic environment have been continuously increasing and this has caused serious public health and environmental concerns. Antineoplastic drugs are used in chemotherapy, in large quantities worldwide, for the treatment of continuously increasing cancer cases. Antineoplastic drugs also contaminate water sources and possess mutagenic, cytostatic and eco-toxicological effects on microorganisms present in the aquatic environment as well as on human health. Due to the recalcitrant nature of antineoplastic drugs, the commonly used wastewater treatment processes are not able to eliminate these drugs. Globally, various anticancer drugs are being consumed during chemotherapy in hospitals and households by out-patients. These anti-cancer agents enter the water bodies in their original form or as metabolites via urine and faeces of the out-patients or the patients admitted in hospitals. Due to its high lipid solubility, the antineoplastic drugs accumulate in the fatty tissues of the organisms. These drugs enter through the food chain and cause adverse health effects on humans due to their cytotoxic and genotoxic properties. The United States Environmental Protection Agency (US-EPA) and the Organization for Economic Cooperation and Development (OECD) elucidated new regulations for the management of hazardous pharmaceuticals in the water environment. In this paper, the role of antineoplastic agents as emerging water contaminants, its transfer through the food chain, its eco-toxicological properties and effects, technological solutions and management aspects were reviewed.
Collapse
Affiliation(s)
- Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Mrinal Kanti Mandal
- Department of Chemical Engineering, NIT Durgapur, Durgapur, 713209, West Bengal, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India; Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
24
|
Vaudreuil MA, Vo Duy S, Munoz G, Furtos A, Sauvé S. A framework for the analysis of polar anticancer drugs in wastewater: On-line extraction coupled to HILIC or reverse phase LC-MS/MS. Talanta 2020; 220:121407. [DOI: 10.1016/j.talanta.2020.121407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022]
|
25
|
Evgenidou E, Ofrydopoulou A, Malesic-Eleftheriadou N, Nannou C, Ainali NM, Christodoulou E, Bikiaris DN, Kyzas GZ, Lambropoulou DA. New insights into transformation pathways of a mixture of cytostatic drugs using Polyester-TiO 2 films: Identification of intermediates and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140394. [PMID: 32886989 DOI: 10.1016/j.scitotenv.2020.140394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The photocatalytic activity of two bio-based polymer photocatalysts [poly(ethylene terephthalate)-TiO2 (PET-TiO2) and poly(L-lactic acid)-graphene oxide-TiO2 (PLLA-GO-TiO2)] towards Tamoxifen (TAM), Cyclophosphamide (CP), Cytarabine (CYT) and 5-Fluorouracil (5-FLU) removal was explored and compared. The highest photocatalytic activity for the degradation of the cytostatic drugs was accomplished by PET-TiO2. Among the contaminants, TAM was the most easily removed, requiring 90 min for complete elimination, while CP showed the highest resistance to photocatalysis, not being completely removed after 6 h. Liquid chromatography coupled with high-resolution mass spectrometry analysis was employed for the identification of several transformation products (TPs) and potential pathways were proposed. A total of seventy (70) TPs including thirty-four (34) novel ones detected in AOPs were identified. The ecotoxicity of the mixture of the cytostatic drugs and TPs formed during the photocatalytic treatment was evaluated using Daphnia magna assay and was associated with the occurrence of specific TPs during the treatment process. The follow-up ECOSAR (Ecological Structure Activity Relationship) analysis further elucidated that only minor chemical transformations, such as the hydroxylation or the oxidative opening of an aromatic ring system, could hamper the adverse effects of cytostatic drugs in aquatic species. Such a comparative study on the mixture toxicity of cytostatics and their TPs is presented for the first time.
Collapse
Affiliation(s)
- Eleni Evgenidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Anna Ofrydopoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Neda Malesic-Eleftheriadou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Christina Nannou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Nina Maria Ainali
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, GR-654 04 Kavala, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece.
| |
Collapse
|
26
|
Gouveia TIA, Silva AMT, Ribeiro AR, Alves A, Santos MSF. Liquid-liquid extraction as a simple tool to quickly quantify fourteen cytostatics in urban wastewaters and access their impact in aquatic biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:139995. [PMID: 32559532 DOI: 10.1016/j.scitotenv.2020.139995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Cytostatics are highly toxic pharmaceuticals used in the treatment of cancer. These substances are partially excreted by the human body after administration. The inefficient removal of some cytostatics in urban wastewater treatment plants (WWTPs) allows them to reach surface waters and consequently the aquatic biota. However, information about their occurrence in urban wastewaters is available only for certain active ingredients. A liquid-liquid extraction method coupled to liquid-chromatography-tandem mass spectrometry analysis was developed, allowing the identification and quantification of 14 cytostatics in wastewater samples, avoiding the use of expensive sorbents. Moreover, satisfactory cytostatics' recoveries were achieved when the new method was applied to wastewaters from a Portuguese WWTP: average of (74 ± 21)% for the influents, (83 ± 22)% for secondary effluents, and (94 ± 24)% for tertiary effluents collected after UV treatment, except for imatinib. Doxorubicin, etoposide, megestrol and prednisone were completely eliminated in the first stage of the WWTP treatment (i.e. detected in the influents, but not in the effluents). Bicalutamide, capecitabine, cyclophosphamide, ifosfamide and mycophenolic acid were recalcitrant to UV radiation (i.e. detected in tertiary effluents), ifosfamide being the cytostatic most difficult to be removed (its concentration did not decrease from the entrance to the outlet of the WWTP). The risk at which aquatic organisms might be subjected, due to their exposure to cytostatics' concentrations 10-times lower than those found in the tertiary effluents, was estimated and it was verified that mycophenolic acid may represent a high risk. Although no risk was estimated for the other cytostatics, the risks associated to long-term and synergic exposure should not be ruled out.
Collapse
Affiliation(s)
- Teresa I A Gouveia
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana R Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Arminda Alves
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mónica S F Santos
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
27
|
Mello LC, da Fonseca TG, Denis Moledode de Souza A. Ecotoxicological assessment of chemotherapeutic agents using toxicity tests with embryos of Mellita quinquiesperforata. MARINE POLLUTION BULLETIN 2020; 159:111493. [PMID: 32736201 DOI: 10.1016/j.marpolbul.2020.111493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The consumption of anticancer agents has increased in the recent decades, and these substances may be present in sewage. Consequently, they may reach the environment when sanitation infrastructure is ineffective. This study evaluated the toxicity of three anticancer agents-Tamoxifen (TAM), Cisplatin (CisPt), and Cyclophosphamide (CP)-on the development of embryos of the sand-dollar Mellita quinquiesperforata. Adult individuals were collected in sandy beaches, and gametes were obtained. Freshly-fertilized eggs were exposed to increasing sets of concentrations of each compound, and the effective concentrations needed to cause a 50% effect in the organisms (EC50) were calculated. The three compounds were toxic, and their EC50 values were 16.78 ± 2.42 ng·L-1 (TAM), 27.20 ± 38.26 ng·L-1 (CisPt), and 101.82 ± 70.96 ng·L-1 (CP). There is no information on the environmental levels of these compounds in Brazil, but as they were already detected in ng·L-1 levels worldwide, it can be expected that these substances pose environmental risks to the marine biota.
Collapse
Affiliation(s)
- Luiza Costa Mello
- Center of Studies on Aquatic Pollution and Ecoxicology (NEPEA), São Paulo State University - UNESP, São Vicente, SP 11330-900, Brazil
| | - Taina Garcia da Fonseca
- Center of Studies on Aquatic Pollution and Ecoxicology (NEPEA), São Paulo State University - UNESP, São Vicente, SP 11330-900, Brazil; Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Abessa Denis Moledode de Souza
- Center of Studies on Aquatic Pollution and Ecoxicology (NEPEA), São Paulo State University - UNESP, São Vicente, SP 11330-900, Brazil.
| |
Collapse
|
28
|
Environmental Remediation of Antineoplastic Drugs: Present Status, Challenges, and Future Directions. Processes (Basel) 2020. [DOI: 10.3390/pr8070747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The global burden of cancer is on the rise, and as a result, the number of therapeutics administered for chemotherapy is increasing. The occupational exposure, recalcitrant nature and ecotoxicological toxicity of these therapeutics, referred to as antineoplastic (ANP) drugs, have raised concerns about their safe remediation. This review provides an overview of the environmental source of ANPs agents, with emphasis on the currently used remediation approaches. Outpatient excreta, hospital effluents, and waste from pharmaceutical industries are the primary source of ANP waste. The current review describes various biotic and abiotic methods used in the remediation of ANP drugs in the environment. Abiotic methods often generate transformation products (TPs) of unknown toxicity. In this light, obtaining data on the environmental toxicity of ANPs and its TPs is crucial to determine their toxic effect on the ecosystem. We also discuss the biodegradation of ANP drugs using monoculture of fungal and bacterial species, and microbial consortia in sewage treatment plants. The current review effort further explores a safe and sustainable approach for ANP waste treatment to replace existing chemical and oxidation intensive treatment approaches. To conclude, we assess the possibility of integrating biotic and abiotic methods of ANP drug degradation.
Collapse
|
29
|
Cristóvão MB, Janssens R, Yadav A, Pandey S, Luis P, Van der Bruggen B, Dubey KK, Mandal MK, Crespo JG, Pereira VJ. Predicted concentrations of anticancer drugs in the aquatic environment: What should we monitor and where should we treat? JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122330. [PMID: 32172069 DOI: 10.1016/j.jhazmat.2020.122330] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Anticancer drugs have been detected in the aquatic environment, they have a potent mechanism of action and their consumption is expected to drastically increase in the future. Consequently, it is crucial to routinely monitor the occurrence of anticancer drugs and to develop effective treatment options to avoid their release into the environment. Prior to implementing a monitoring program, it is important to define which anticancer drugs are more prone to be found in the surface waters. In this study the consumption of anticancer drugs in the Lisbon region (Portugal), Belgium and Haryana state (India) were used to estimate the concentrations that can be expected in surface waters. Moreover, one important aspect is to define the major entry route of anticancer drugs in the aquatic environment: is it hospital or household effluents? The results disclosed in this study showed that in Belgium and Lisbon, 94 % of the total amount of anticancer drugs were delivered to outpatients, indicating that household effluents are the primary input source of these drugs and thus, upgrading the treatment in the domestic wastewater facilities should be the focus.
Collapse
Affiliation(s)
- M B Cristóvão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; LAQV-REQUIMTE/Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - R Janssens
- Materials and Process Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - A Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - S Pandey
- National Institute of Technology Durgapur, M.G. Avenue, Durgapur, West Bengal, India
| | - P Luis
- Materials and Process Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | | | - K K Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - M K Mandal
- National Institute of Technology Durgapur, M.G. Avenue, Durgapur, West Bengal, India
| | - J G Crespo
- LAQV-REQUIMTE/Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - V J Pereira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
30
|
Škvára P, Santana-Viera S, Montesdeoca-Esponda S, Mordačíková E, Santana-Rodríguez JJ, Vojs Staňová A. Determination of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine in hospital wastewater by liquid chromatography-mass spectrometry. J Sep Sci 2020; 43:3074-3082. [PMID: 32432394 DOI: 10.1002/jssc.202000144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 11/08/2022]
Abstract
Chemotherapeutics are pharmaceutical compounds the occurrence of which in the environment is of growing concern because of the increase in treatments against cancer diseases. They can reach the aquatic ecosystems after passing through wastewater treatment plants without complete removal. One of the most frequently used chemotherapeutics is 5-fluorouracil which exhibits a strong cytostatic effect. In this paper, an analytical methodology was developed, validated, and applied to determine 5-fluorouracil, its precursor, 5-fluorocytosine, and its major active metabolite, 5-fluorouridine, in hospital wastewater samples. Due to the expected low concentrations after dilution and interferences present in such a complex matrix, a very selective and sensitive detection method is required. Moreover, an extraction method must be implemented prior to the determination in order to purify the sample extract and preconcentrate the target analytes at micrograms per liter concentration levels. Solid-phase extraction followed by liquid chromatography with tandem mass spectrometry was the combination of choice and all included parameters were studied. Under optimized conditions for wastewater samples analysis, recoveries from 63 to 108% were obtained, while intraday and interday relative standard deviations never exceeded 20 and 25%, respectively. Limits of detection between 61 and 620 ng/L were achieved. Finally, the optimized method was applied to samples from hospital wastewater effluents.
Collapse
Affiliation(s)
- Pavel Škvára
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Bratislava, Slovak Republic
| | - Sergio Santana-Viera
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Erika Mordačíková
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Bratislava, Slovak Republic
| | - José Juan Santana-Rodríguez
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Andrea Vojs Staňová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Bratislava, Slovak Republic.,University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic
| |
Collapse
|
31
|
Yadav A, Pandey S, Mandal MK, Dubey KK. Development of cost‐effective RP‐HPLC methods for detection of cyclophosphamide, etoposide and paclitaxel. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.201900071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ankush Yadav
- Bioprocess Engineering LaboratoryDepartment of BiotechnologyCentral University of Haryana Mahendergarh 123031 India
| | - Shailesh Pandey
- Department of Chemical EngineeringNational Institute of Technology Durgapur West‐Bengal 713209 India
| | - Mrinal Kanti Mandal
- Department of Chemical EngineeringNational Institute of Technology Durgapur West‐Bengal 713209 India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering LaboratoryDepartment of BiotechnologyCentral University of Haryana Mahendergarh 123031 India
| |
Collapse
|
32
|
Zhang X, Yan S, Chen J, Tyagi R, Li J. Physical, chemical, and biological impact (hazard) of hospital wastewater on environment: presence of pharmaceuticals, pathogens, and antibiotic-resistance genes. CURRENT DEVELOPMENTS IN BIOTECHNOLOGY AND BIOENGINEERING 2020. [PMCID: PMC7252251 DOI: 10.1016/b978-0-12-819722-6.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hospital wastewater contains various pharmaceuticals and pathogens. Improper management of the wastewater has caused the leakage of these harmful materials to the environment. The presence of pathogens, pharmaceuticals, and their derivatives such as antibiotic resistance genes as the most typical one in the environment leads to physical, chemical, and biological harmful impact. This chapter has reviewed the pharmaceuticals and pathogens in the hospital; discussed the development of antibiotic resistance genes; and revealed the possible impact of these harmful materials in microorganisms, organism, and human being. In addition, the measures that can be taken to prevent the transportation of pharmaceuticals and pathogens into environment have been stated in this chapter.
Collapse
|
33
|
Nassour C, Barton SJ, Nabhani-Gebara S, Saab Y, Barker J. Occurrence of anticancer drugs in the aquatic environment: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1339-1347. [PMID: 31832963 PMCID: PMC6994516 DOI: 10.1007/s11356-019-07045-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 06/01/2023]
Abstract
Water contamination with pharmaceutical products is a well-studied problem. Numerous studies have demonstrated the presence of anticancer drugs in different water resources that failed to be eliminated by conventional wastewater treatment plants. The purpose of this report was to conduct a systematic review of anticancer drugs in the aquatic environment. The methodology adopted was carried out in compliance with the PRISMA guidelines. From the 75 studies that met the specific requirements for inclusion, data extracted showed that the most common anticancer drugs studied are cyclophosphamide, tamoxifen, ifosfamide and methotrexate with concentrations measured ranging between 0.01 and 86,200 ng/L. There was significant variation in the methodologies employed due to lack of available guidelines to address sampling techniques, seasonal variability and analytical strategy. The most routinely used technique for quantitative determination was found to be solid-phase extraction followed by LC-MS analysis. The lowest reported recovery percentage was 11%, and the highest limit of detection was 1700 ng/L. This indicated the inadequacy of some methods to analyse anticancer drugs and the failure to obtain reliable results. The significant heterogeneity within methodologies made it difficult to compare results and draw conclusions, nevertheless, this study aids in the extrapolation of proposed recommendations to guide future studies and reviews. Graphical abstract.
Collapse
Affiliation(s)
- Carla Nassour
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK.
| | - Stephen J Barton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK
| | - Shereen Nabhani-Gebara
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK
| | - Yolande Saab
- School of Pharmacy, Lebanese American University, Beirut, Lebanon
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK
| |
Collapse
|
34
|
Gouveia TIA, Alves A, Santos MSF. New insights on cytostatic drug risk assessment in aquatic environments based on measured concentrations in surface waters. ENVIRONMENT INTERNATIONAL 2019; 133:105236. [PMID: 31675568 DOI: 10.1016/j.envint.2019.105236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 05/21/2023]
Abstract
Cytostatic drugs are compounds used to treat cancer, one of the deadliest diseases worldwide with a rising yearly incidence. However, the occurrence and concentrations of a large number of cytostatics in waters and wastewaters are unknown. Thus, this study sought to analyze the concentrations of these compounds in different aquatic environments worldwide to assess the risk that these compounds pose to aquatic organisms. The top five most monitored cytostatics in aquatic environments are fluorouracil, methotrexate, tamoxifen, ifosfamide, and cyclophosphamide. Risk quotients (RQs) based on maximum reported measured concentrations revealed that mycophenolic acid and tamoxifen pose a high risk to aquatic organisms (RQmax ≥ 1) at concentrations observed in surface waters. Moreover, methotrexate and tegafur were categorized as moderate risk compounds, and bicalutamide was found to pose a low risk. Importantly, the available analytical methodologies for the quantification of some cytostatics (e.g., cisplatin, fluorouracil, daunorubicin, imatinib, and mycophenolic acid) in water could not rule out potential risk to aquatic biota, since estimated risks for these compounds using the lowest method detection limits reported in the literature (RQ MDL) were all ≥0.01 (i.e., low risk or higher). Moreover, risks based on predicted concentrations (RQ PEC) were consistently lower than those based on measured concentrations, highlighting the importance of risk assessment based on measured values. Thus, accurate and sensitive analytical methods are crucial to identify and quantify cytostatic exposure in aquatic ecosystems in order to preserve biodiversity and ensure a safer environment.
Collapse
Affiliation(s)
- Teresa I A Gouveia
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Arminda Alves
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Mónica S F Santos
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
35
|
Potential of enzymatic process as an innovative technology to remove anticancer drugs in wastewater. Appl Microbiol Biotechnol 2019; 104:23-31. [DOI: 10.1007/s00253-019-10229-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
|
36
|
Jureczko M, Kalka J. Cytostatic pharmaceuticals as water contaminants. Eur J Pharmacol 2019; 866:172816. [PMID: 31758938 DOI: 10.1016/j.ejphar.2019.172816] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 11/30/2022]
Abstract
Due to the growing problem of cancer diseases, cytostatic drugs have become a great environmental threat. Their main sources are hospital effluents, household discharge and drug manufacturers. As these compounds are not removed during wastewater treatment with sufficient efficiency, they are found in the surface, ground and drinking water in quantities up to 2.12 × 10-4 mg/l. The current knowledge about their harmful influence on humans does not indicate a significant risk to the health of water consumers, although it points to certain groups of risk (children and lactating women) in particular. In aquatic organisms, anticancer drugs in detected concentrations can cause chronic toxicity and have a detrimental impact on their genetic material. The acute toxicity effect is less likely. The HC5 value calculated by us (the concentration at which 5% of the species is potentially affected) equalling 2.1 × 10-4 mg/l shows that anticancer drugs are real hazardous contaminants for the environment. It indicates that effective elimination of cytostatics from water still requires intensive research.
Collapse
Affiliation(s)
- Marcelina Jureczko
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Akademicka 2 Str., 44-100, Gliwice, Poland; The Biotechnology Centre, The Silesian University of Technology, Krzywoustego 8 Str., 44-100, Gliwice, Poland.
| | - Joanna Kalka
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Akademicka 2 Str., 44-100, Gliwice, Poland
| |
Collapse
|
37
|
Wielińska J, Nowacki A, Liberek B. 5-Fluorouracil-Complete Insight into Its Neutral and Ionised Forms. Molecules 2019; 24:molecules24203683. [PMID: 31614932 PMCID: PMC6832121 DOI: 10.3390/molecules24203683] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/06/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022] Open
Abstract
5-Fluorouracil (5FU), a common anti-cancer drug, occurs in four tautomeric forms and possesses two potential sites of both protonation and deprotonation. Tautomeric and resonance structures of the ionized forms of 5FU create the systems of connected equilibriums. Since there are contradictory reports on the ionized forms of 5FU in the literature, complex theoretical studies on neutral, protonated and deprotonated forms of 5FU, based on the broad spectrum of DFT methods, are presented. These indicate that the O4 oxygen is more willingly protonated than the O2 oxygen and the N1 nitrogen is more willingly deprotonated than the N3 nitrogen in a gas phase. Such preferences are due to advantageous charge delocalization of the respective ions, which is demonstrated by the NBO and ESP analyses. In an aqueous phase, stability differences between respective protonated and deprotonated forms of 5FU are significantly diminished due to the competition between the mesomeric effect and solvation. The calculated pKa values of the protonated, neutral and singly deprotonated 5FU indicate that 5FU does not exist in the protonated and double-deprotonated forms in the pH range of 0–14. The neutral form dominates below pH 8 and the N1 deprotonated form dominates above pH 8.
Collapse
Affiliation(s)
- Justyna Wielińska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Andrzej Nowacki
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Beata Liberek
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
38
|
Šťastný M, Štengl V, Štenglová-Netíková I, Šrámová-Slušná M, Janoš P. Removal of anthracycline cytostatics from aquatic environment: Comparison of nanocrystalline titanium dioxide and decontamination agents. PLoS One 2019; 14:e0223117. [PMID: 31603899 PMCID: PMC6788709 DOI: 10.1371/journal.pone.0223117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/13/2019] [Indexed: 11/29/2022] Open
Abstract
Anthracyclines are a class of pharmaceuticals used in cancer treatment have the potential to negatively impact the environment. To study the possibilities of anthracyclines (represented by pirarubicin and valrubicin) removal, chemical inactivation using NaOH (0.01 M) and NaClO (5%) as decontamination agents and adsorption to powdered nanocrystalline titanium dioxide (TiO2) were compared. The titanium dioxide (TiO2) nanoparticles were prepared via homogeneous precipitation of an aqueous solution of titanium (IV) oxy-sulfate (TiOSO4) at different amount (5-120 g) with urea. The as-prepared TiO2 samples were characterized by XRD, HRSEM and nitrogen physisorption. The adsorption process of anthracycline cytostatics was determined followed by high-performance liquid chromatography coupled with mass spectrometry (LC-MS) and an in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) technique. It was found that NaClO decomposes anthracyclines to form various transformation products (TPs). No TPs were identified after the reaction of valrubicin with a NaOH solution as well as in the presence of TiO2 nanoparticles. The best degree of removal, 100% of pirarubicin and 85% of valrubicin, has been achieved in a sample with 120 grams of TiOSO4 (TIT120) and TiO2 with 60 grams (TIT60), respectively.
Collapse
Affiliation(s)
- Martin Šťastný
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež, Czech Republic
| | - Václav Štengl
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež, Czech Republic
| | | | | | - Pavel Janoš
- Faculty of the Environment, J.E.Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| |
Collapse
|
39
|
|
40
|
Grzesiuk M, Bednarska A, Mielecki D, Garbicz D, Marcinkowski M, Pilžys T, Malinowska A, Świderska B, Grzesiuk E. Anticancer agents found in environment affect Daphnia at population, individual and molecular levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105288. [PMID: 31526926 DOI: 10.1016/j.aquatox.2019.105288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 05/21/2023]
Abstract
Pharmaceuticals are used in medical treatment on a large scale and as a waste contaminate freshwater ecosystems. Growing amount of so-called civilization diseases, such as different type of cancer, significantly contribute to this form of pollution. The aim of the present study was to determine how the exposure to chemotherapeutics: cyclophosphamide (CP) and cisplatin (CDDP), at detected in environment concentrations, influence proteome profile, life history and population parameters of naturally setting surface waters Daphnia pulex and Daphnia pulicaria. The parameters important for crustaceans, survivorship and population growth rate, were importantly decreased by CDDP treatment but not influenced by CP. On the contrary, the individual growth rate was affected only by CP and exclusively in the case of D. pulicaria. In both clones treated with CP or CDDP, decreased number of eggs was observed. Interestingly, Daphnia males were less sensitive to tested chemotherapeutic than females. Proteome profile revealed that tested anticancer pharmaceuticals modified expression of some proteins involved in Daphnia metabolism. Moreover, males exposed to CDDP showed increased level of enzymes participating in DNA repair. Summing up, the contaminating environment chemotherapeutics reduced fitness of naturally occurring Daphnia species. In consequence this may affect functioning of the aquatic food webs.
Collapse
Affiliation(s)
- Małgorzata Grzesiuk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biological and Chemical Research Centre, Warsaw, Poland; Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland; Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Poland.
| | - Anna Bednarska
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biological and Chemical Research Centre, Warsaw, Poland
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Agata Malinowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Bianka Świderska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
41
|
Wilczewska P, Bielicka-Giełdoń A, Borzyszkowska AF, Ryl J, Klimczuk T, Siedlecka EM. Photocatalytic activity of solvothermal prepared BiOClBr with imidazolium ionic liquids as a halogen sources in cytostatic drugs removal. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Santana-Viera S, Marzullo L, Torres Padrón ME, Del Bubba M, Sosa-Ferrera Z, Santana-Rodríguez JJ. Microwave assisted extraction for the determination of antineoplastic compounds in marine fish. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Racles C, Zaltariov MF, Silion M, Macsim AM, Cozan V. Photo-oxidative degradation of doxorubicin with siloxane MOFs by exposure to daylight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19684-19696. [PMID: 31081534 DOI: 10.1007/s11356-019-05288-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent from anthracycline class, which acts unselectively on all cells; thus, it may have genotoxic and/or mutagenic effects and cause serious environmental problems. Herein, the decomposition of a diluted solution of DOX hydrochloride for injection has been investigated under photo-oxidative conditions, in ambient light and without pH modification, using hydrogen peroxide as oxidizing agent and hydrophobic siloxane-based metal-organic frameworks (MOFs) as heterogeneous catalysts. The kinetics of the photodegradation process was followed by UV-Vis spectroscopy and by ESI-MS. According to UV-Vis data, two pseudo-first-order kinetic steps describe the process, with rate constants in the order of 10-3-10-2 min-1 for the rate-determining one. ESI-MS provided more accurate information, with a rate constant of 2.6 · 10-2 min-1 calculated from the variation of DOX ion abundance. Complete decomposition of DOX was achieved after 120 min in the shade and after only 20 min by exposure to sunlight. The analysis of the residual waters by mass spectrometry and 1D and 2D NMR spectroscopy showed complete disappearance of DOX in all cases, excluded any anthracycline species, which are destroyed in the tested conditions, and proved formation of an un-harmful compound-glycerol, while no trace of metal was detected by XRF. Preliminary data also showed decomposition of oxytetracycline in similar conditions. By this study, we bring into attention a less-addressed pollution issue and we propose a mild and effective method for the removal of drug emerging pollutants.
Collapse
Affiliation(s)
- Carmen Racles
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487, Iasi, Romania.
| | - Mirela-Fernanda Zaltariov
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487, Iasi, Romania
| | - Mihaela Silion
- Advanced Research Centre for Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487, Iasi, Romania
| | - Ana-Maria Macsim
- NMR Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487, Iasi, Romania
| | - Vasile Cozan
- Department of Polycondensation and Thermostable Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487, Iasi, Romania
| |
Collapse
|
44
|
Bielicka–Giełdoń A, Wilczewska P, Malankowska A, Szczodrowski K, Ryl J, Zielińska-Jurek A, Siedlecka EM. Morphology, surface properties and photocatalytic activity of the bismuth oxyhalides semiconductors prepared by ionic liquid assisted solvothermal method. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Gómez-Canela C, Sala-Comorera T, Pueyo V, Barata C, Lacorte S. Analysis of 44 pharmaceuticals consumed by elderly using liquid chromatography coupled to tandem mass spectrometry. J Pharm Biomed Anal 2019; 168:55-63. [DOI: 10.1016/j.jpba.2019.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
|
46
|
Koltsakidou Α, Antonopoulou M, Εvgenidou Ε, Konstantinou I, Lambropoulou D. A comparative study on the photo-catalytic degradation of Cytarabine anticancer drug under Fe 3+/H 2O 2, Fe 3+/S 2O 82-, and [Fe(C 2O 4) 3] 3-/H 2O 2 processes. Kinetics, identification, and in silico toxicity assessment of generated transformation products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7772-7784. [PMID: 30673949 DOI: 10.1007/s11356-018-4019-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Cytarabine (CY) is an anticancer drug which has been identified in wastewater influents, effluents, and surface waters. In the present study, the degradation of CY under simulated solar light (SSL), by photo-Fenton (Fe3+/H2O2/SSL) and photo-Fenton-like processes (Fe3+/S2O82-/SSL and [Fe(C2O4)3]3-/H2O2/SSL), was investigated. The major parameters affecting the applied treatments (e.g., concentration of CY, Fe3+, H2O2, and S2O82-) were optimized and CY's complete removal was achieved within 45 min for all techniques used. Mineralization studies indicated that [Fe(C2O4)3]3-/H2O2/SSL treatment was the most efficient procedure since faster kinetics are achieved and higher mineralization percentage is reached compared to the other techniques used. Furthermore, 12 transformation products (TPs) were identified during the applied processes, by high resolution mass spectrometry, four of which were identified for the first time, indicating that CY molecule undergoes hydroxylation and subsequent oxidation, during the applied processes. Moreover, predictions of acute and chronic ecotoxicity of CY and its TPs on fish, daphnia, and green algae were conducted, using in silico quantitative structure activity relationship (QSAR) calculations. According to these predictions, the TPs generated during the studied treatments may pose a threat to aquatic environment. Finally, the efficiency of CY degradation by photo-Fenton and photo-Fenton-like treatment in real wastewater was evaluated, under the optimized conditions, which resulted in lower degradation rate constants compared to ultrapure water.
Collapse
Affiliation(s)
- Αnastasia Koltsakidou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Antonopoulou
- Department of Environmental and Natural Resources Management, University of Patras, 30100, Agrinio, Greece
| | - Εleni Εvgenidou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | - Dimitra Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
47
|
Transformation Products of Organic Contaminants and Residues-Overview of Current Simulation Methods. Molecules 2019; 24:molecules24040753. [PMID: 30791496 PMCID: PMC6413221 DOI: 10.3390/molecules24040753] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
The formation of transformation products (TPs) from contaminants and residues is becoming an increasing focus of scientific community. All organic compounds can form different TPs, thus demonstrating the complexity and interdisciplinarity of this topic. The properties of TPs could stand in relation to the unchanged substance or be more harmful and persistent. To get important information about the generated TPs, methods are needed to simulate natural and manmade transformation processes. Current tools are based on metabolism studies, photochemical methods, electrochemical methods, and Fenton’s reagent. Finally, most transformation processes are based on redox reactions. This review aims to compare these methods for structurally different compounds. The groups of pesticides, pharmaceuticals, brominated flame retardants, and mycotoxins were selected as important residues/contaminants relating to their worldwide occurrence and impact to health, food, and environmental safety issues. Thus, there is an increasing need for investigation of transformation processes and identification of TPs by fast and reliable methods.
Collapse
|
48
|
Mesak C, Montalvão MF, Paixão CFC, Mendes BDO, Araújo APDC, Quintão TC, Malafaia G. Do Amazon turtles exposed to environmental concentrations of the antineoplastic drug cyclophosphamide present mutagenic damages? If so, would such damages be reversible? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6234-6243. [PMID: 30637546 DOI: 10.1007/s11356-019-04155-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Antineoplastic drugs (AD) have been increasingly used, but the disposal of their wastes in the environment via hospital effluent and domestic sewage has emerged as an environmental issue. The current risks posed to these animals and effects of pollutants on the reptiles' population level remain unknown due to lack of studies on the topic. The aim of the present study was to evaluate the mutagenicity of neonate Podocnemis expansa exposed to environmental concentrations (EC) of cyclophosphamide (Cyc). The adopted doses were EC-I 0.2 μg/L and EC-II 0.5 μg/L Cyc. These doses correspond to 1/10 and ¼ of concentrations previously identified in hospital effluents. Turtles exposed to the CyC recorded larger total number of erythrocyte nuclear abnormalities than the ones in the control group after 48-h exposure. The total number of abnormalities for both groups (EC-I and EC-II) 96 h after the experiment had started was statistically similar to that of animals exposed to high Cyc concentration (positive control 5 × 104 μg/L). This outcome confirms the mutagenic potential of Cyc, even at low concentrations. On the other hand, when the animals were taken to a pollutant-free environment, their mutagenic damages disappeared after 240 h. After such period, their total of abnormalities matched the basal levels recorded for the control group. Therefore, our study is the first evidence of AD mutagenicity in reptiles, even at EC and short-term exposure, as well as of turtles' recovery capability after the exposure to Cyc.
Collapse
Affiliation(s)
- Carlos Mesak
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Caroliny Fátima Chaves Paixão
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Bruna de Oliveira Mendes
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Thales Chagas Quintão
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, 75790-000, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil.
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí, Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, 75790-000, Brazil.
| |
Collapse
|
49
|
Santos MSF, Franquet-Griell H, Alves A, Lacorte S. Development of an analytical methodology for the analysis of priority cytostatics in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1264-1272. [PMID: 30248851 DOI: 10.1016/j.scitotenv.2018.07.232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 05/24/2023]
Abstract
The consumption of cytostatics has remarkably increased over the last years due to the high cancer incidence worldwide. In previous studies, seven cytostatics were already recognized to potentially induce chronic effects in aquatic organisms, taking into account their estimated concentrations in surface waters: cyclophosphamide (CYC), capecitabine (CAP), mycophenolic acid (MPA), imatinib (IMA), bicalutamide (BICA), prednisone (PRED) and 5-fluorouracil (5FU). The objective of the present study was to simultaneously analyse these 7 prioritized compounds, which have the highest chances to be found in surface and wastewaters. The analytical challenge relies in the determination of these very polar compounds, which have different chemical and structural properties. Solid-phase extraction with an Ultra Performance Liquid Chromatograph-Mass Spectrometer in electrospray ionization mixed mode (5-fluorouracil and bicalutamide in negative mode and the others in positive one) was developed to determine seven cytostatics in wastewater and surface water. Among eight tested cartridges with different sorbents and conditions, the best extraction performance was attained with Oasis WAX at pH 10, with recoveries ranging from 31 ± 4 (5FU) and 103 ± 17% (MPA). Regarding the chromatographic analysis, the best results were achieved with an XBridge amide column. The final analytical methodology was successfully applied for the analysis of real water samples, confirming the presence of risky cytostatics in surface and wastewaters.
Collapse
Affiliation(s)
- Mónica S F Santos
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Helena Franquet-Griell
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Arminda Alves
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|
50
|
Broto M, McCabe R, Galve R, Marco MP. A high throughput immunoassay for the therapeutic drug monitoring of tegafur. Analyst 2018; 142:2404-2410. [PMID: 28555688 DOI: 10.1039/c7an00418d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer is a group of diseases in which abnormal cells grow and divide without control, with the potential to invade other parts of the body. Chemotherapy is a type of treatment that uses chemical agents to treat cancer. These drugs are toxic and produce undesirable adverse drug reactions due to their narrow therapeutic window and highly variable pharmacokinetics, thus, they need to be monitored to establish personalized treatment to achieve maximal efficiency and reduce drug toxicity. Nowadays, therapeutic drug monitoring (TDM) is not routinely used for chemotherapy agents, however, TDM has the potential to improve the clinical benefit of chemotherapy drugs. Tegafur, a prodrug of 5-fluorouracil (5FU), is one of the main anti-cancer drugs used worldwide. Herein, a reproducible and sensitive indirect competitive ELISA has been developed and validated in plasma samples. The assay reports an IC50 of 35.6 nM, reaching a limit of detection of 2.7 nM. It is highly reproducible and does not show cross-reactivity with any related compound. In summary, this assay provides a sensitive, accurate and high throughput analytical method for tegafur quantification in plasma, which fits TDM requirements.
Collapse
Affiliation(s)
- Marta Broto
- Nanobiotechnology for diagnostics (Nb4D), Department of Chemical and Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council for Scientific Research (CSIC), Spain.
| | | | | | | |
Collapse
|