1
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
Altafi M, Chen C, Korotkova T, Ponomarenko A. Sequential Activation of Lateral Hypothalamic Neuronal Populations during Feeding and Their Assembly by Gamma Oscillations. J Neurosci 2024; 44:e0518242024. [PMID: 39256049 PMCID: PMC11502232 DOI: 10.1523/jneurosci.0518-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/18/2024] [Accepted: 08/10/2024] [Indexed: 09/12/2024] Open
Abstract
Neural circuits supporting innate behaviors, such as feeding, exploration, and social interaction, intermingle in the lateral hypothalamus (LH). Although previous studies have shown that individual LH neurons change their firing relative to the baseline during one or more behaviors, the firing rate dynamics of LH populations within behavioral episodes and the coordination of behavior-related LH populations remain largely unknown. Here, using unsupervised graph-based clustering of LH neurons firing rate dynamics in freely behaving male mice, we identified distinct populations of cells whose activity corresponds to feeding, specific times during feeding bouts, or other innate behaviors-social interaction and novel object exploration. Feeding-related cells fired together with a higher probability during slow and fast gamma oscillations (30-60 and 60-90 Hz) than during nonrhythmic epochs. In contrast, the cofiring of neurons signaling other behaviors than feeding was overall similar between slow gamma and nonrhythmic epochs but increased during fast gamma oscillations. These results reveal a neural organization of ethological hierarchies in the LH and point to behavior-specific motivational systems, the dysfunction of which may contribute to mental disorders.
Collapse
Affiliation(s)
- Mahsa Altafi
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Changwan Chen
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne 50931, Germany
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Tatiana Korotkova
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne 50931, Germany
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), Cologne 50931, Germany
| | - Alexey Ponomarenko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| |
Collapse
|
3
|
Li Q, Chao T, Wang Y, Xuan R, Guo Y, He P, Zhang L, Wang J. The Transcriptome Characterization of the Hypothalamus and the Identification of Key Genes during Sexual Maturation in Goats. Int J Mol Sci 2024; 25:10055. [PMID: 39337542 PMCID: PMC11432450 DOI: 10.3390/ijms251810055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Sexual maturation in goats is a dynamic process regulated precisely by the hypothalamic-pituitary-gonadal axis and is essential for reproduction. The hypothalamus plays a crucial role in this process and is the control center of the reproductive activity. It is significant to study the molecular mechanisms in the hypothalamus regulating sexual maturation in goats. We analyzed the serum hormone profiles and hypothalamic mRNA expression profiles of female goats during sexual development (1 day old (neonatal, D1, n = 5), 2 months old (prepuberty, M2, n = 5), 4 months old (sexual maturity, M4, n = 5), and 6 months old (breeding period, M6, n = 5)). The results indicated that from D1 to M6, serum hormone levels, including FSH, LH, progesterone, estradiol, IGF1, and leptin, exhibited an initial increase followed by a decline, peaking at M4. Furthermore, we identified a total of 508 differentially expressed genes in the hypothalamus, with a total of four distinct expression patterns. Nuclear receptor subfamily 1, group D, member 1 (NR1D1), glucagon-like peptide 1 receptor (GLP1R), and gonadotropin-releasing hormone 1 (GnRH-1) may contribute to hormone secretion, energy metabolism, and signal transduction during goat sexual maturation via circadian rhythm regulation, ECM receptor interactions, neuroactive ligand-receptor interactions, and Wnt signaling pathways. This investigation offers novel insights into the molecular mechanisms governing the hypothalamic regulation of goat sexual maturation.
Collapse
Affiliation(s)
- Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
4
|
Bosulu J, Pezzulo G, Hétu S. Needing: An Active Inference Process for Physiological Motivation. J Cogn Neurosci 2024; 36:2011-2028. [PMID: 38940737 DOI: 10.1162/jocn_a_02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Need states are internal states that arise from deprivation of crucial biological stimuli. They direct motivation, independently of external learning. Despite their separate origin, they interact with reward processing systems that respond to external stimuli. This article aims to illuminate the functioning of the needing system through the lens of active inference, a framework for understanding brain and cognition. We propose that need states exert a pervasive influence on the organism, which in active inference terms translates to a "pervasive surprise"-a measure of the distance from the organism's preferred state. Crucially, we define needing as an active inference process that seeks to reduce this pervasive surprise. Through a series of simulations, we demonstrate that our proposal successfully captures key aspects of the phenomenology and neurobiology of needing. We show that as need states increase, the tendency to occupy preferred states strengthens, independently of external reward prediction. Furthermore, need states increase the precision of states (stimuli and actions) leading to preferred states, suggesting their ability to amplify the value of reward cues and rewards themselves. Collectively, our model and simulations provide valuable insights into the directional and underlying influence of need states, revealing how this influence amplifies the wanting or liking associated with relevant stimuli.
Collapse
Affiliation(s)
- Juvenal Bosulu
- Université de Montréal
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, Québec, Canada
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies (ISTC-CNR), Rome, Italy
| | - Sébastien Hétu
- Université de Montréal
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, Québec, Canada
| |
Collapse
|
5
|
Cheung KYM, Nair A, Li LY, Shapiro MG, Anderson DJ. Population coding of predator imminence in the hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607651. [PMID: 39211163 PMCID: PMC11360964 DOI: 10.1101/2024.08.12.607651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hypothalamic VMHdm SF1 neurons are activated by predator cues and are necessary and sufficient for instinctive defensive responses. However, such data do not distinguish which features of a predator encounter are encoded by VMHdm SF1 neural activity. To address this issue, we imaged VMHdm SF1 neurons at single-cell resolution in freely behaving mice exposed to a natural predator in varying contexts. Our results reveal that VMHdm SF1 neurons do not represent different defensive behaviors, but rather encode predator identity and multiple predator-evoked internal states, including threat-evoked fear/anxiety; neophobia or arousal; predator imminence; and safety. Notably, threat and safety are encoded bi-directionally by anti-correlated subpopulations. Finally, individual differences in predator defensiveness are correlated with differences in VMHdm SF1 response dynamics. Thus, different threat-related internal state variables are encoded by distinct neuronal subpopulations within a genetically defined, anatomically restricted hypothalamic cell class. Highlights Distinct subsets of VMHdm SF1 neurons encode multiple predator-evoked internal states. Anti-correlated subsets encode safety vs. threat in a bi-directional mannerA population code for predator imminence is identified using a novel assay VMHdm SF1 dynamics correlate with individual variation in predator defensiveness.
Collapse
|
6
|
Smith NR, Ameen S, Miller SN, Kasper JM, Schwarz JM, Hommel JD, Borzou A. The neuroanatomical organization of the hypothalamus is driven by spatial and topological efficiency. Front Syst Neurosci 2024; 18:1417346. [PMID: 39165582 PMCID: PMC11334159 DOI: 10.3389/fnsys.2024.1417346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
The hypothalamus in the mammalian brain is responsible for regulating functions associated with survival and reproduction representing a complex set of highly interconnected, yet anatomically and functionally distinct, sub-regions. It remains unclear what factors drive the spatial organization of sub-regions within the hypothalamus. One potential factor may be structural connectivity of the network that promotes efficient function with well-connected sub-regions placed closer together geometrically, i.e., the strongest axonal signal transferred through the shortest geometrical distance. To empirically test for such efficiency, we use hypothalamic data derived from the Allen Mouse Brain Connectivity Atlas, which provides a structural connectivity map of mouse brain regions derived from a series of viral tracing experiments. Using both cost function minimization and comparison with a weighted, sphere-packing ensemble, we demonstrate that the sum of the distances between hypothalamic sub-regions are not close to the minimum possible distance, consistent with prior whole brain studies. However, if such distances are weighted by the inverse of the magnitude of the connectivity, their sum is among the lowest possible values. Specifically, the hypothalamus appears within the top 94th percentile of neural efficiencies of randomly packed configurations and within one standard deviation of the median efficiency when packings are optimized for maximal neural efficiency. Our results, therefore, indicate that a combination of geometrical and topological constraints help govern the structure of the hypothalamus.
Collapse
Affiliation(s)
- Nathan R. Smith
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Shabeeb Ameen
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, United States
| | - Sierra N. Miller
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - James M. Kasper
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jennifer M. Schwarz
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, United States
- Indian Creek Farm, Ithaca, NY, United States
| | - Jonathan D. Hommel
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
7
|
Xing F, Han F, Wu Y, Lv B, Tian H, Wang W, Tian X, Xu C, Duan H, Zhang D, Wu Y. An epigenome-wide association study of waist circumference in Chinese monozygotic twins. Int J Obes (Lond) 2024; 48:1148-1156. [PMID: 38773251 DOI: 10.1038/s41366-024-01538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVES Central obesity poses significant health risks because it increases susceptibility to multiple chronic diseases. Epigenetic features such as DNA methylation may be associated with specific obesity traits, which could help us understand how genetic and environmental factors interact to influence the development of obesity. This study aims to identify DNA methylation sites associated with the waist circumference (WC) in Northern Han Chinese population, and to elucidate potential causal relationships. METHODS A total of 59 pairs of WC discordant monozygotic twins (ΔWC >0) were selected from the Qingdao Twin Registry in China. Generalized estimated equation model was employed to estimate the methylation levels of CpG sites on WC. Causal relationships between methylation and WC were assessed through the examination of family confounding factors using FAmiliaL CONfounding (ICE FALCON). Additionally, the findings of the epigenome-wide analysis were corroborated in the validation stage. RESULTS We identified 26 CpG sites with differential methylation reached false discovery rate (FDR) < 0.05 and 22 differentially methylated regions (slk-corrected p < 0.05) strongly linked to WC. These findings provided annotations for 26 genes, with notable emphasis on MMP17, ITGA11, COL23A1, TFPI, A2ML1-AS1, MRGPRE, C2orf82, and NINJ2. ICE FALCON analysis indicated the DNA methylation of ITGA11 and TFPI had a causal effect on WC and vice versa (p < 0.05). Subsequent validation analysis successfully replicated 10 (p < 0.05) out of the 26 identified sites. CONCLUSIONS Our research has ascertained an association between specific epigenetic variations and WC in the Northern Han Chinese population. These DNA methylation features can offer fresh insights into the epigenetic regulation of obesity and WC as well as hints to plausible biological mechanisms.
Collapse
Affiliation(s)
- Fangjie Xing
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Fulei Han
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Yan Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Bosen Lv
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Huimin Tian
- Zhonglou District Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Whitten CJ, King JE, Rodriguez RM, Hennon LM, Scarborough MC, Hooker MK, Jenkins MS, Katigbak IM, Cooper MA. Activation of androgen receptor-expressing neurons in the posterior medial amygdala is associated with stress resistance in dominant male hamsters. Horm Behav 2024; 164:105577. [PMID: 38878493 PMCID: PMC11330741 DOI: 10.1016/j.yhbeh.2024.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 08/20/2024]
Abstract
Social stress is a negative emotional experience that can increase fear and anxiety. Dominance status can alter the way individuals react to and cope with stressful events. The underlying neurobiology of how social dominance produces stress resistance remains elusive, although experience-dependent changes in androgen receptor (AR) expression is thought to play an essential role. Using a Syrian hamster (Mesocricetus auratus) model, we investigated whether dominant individuals activate more AR-expressing neurons in the posterior dorsal and posterior ventral regions of the medial amygdala (MePD, MePV), and display less social anxiety-like behavior following social defeat stress compared to subordinate counterparts. We allowed male hamsters to form and maintain a dyadic dominance relationship for 12 days, exposed them to social defeat stress, and then tested their approach-avoidance behavior using a social avoidance test. During social defeat stress, dominant subjects showed a longer latency to submit and greater c-Fos expression in AR+ cells in the MePD/MePV compared to subordinates. We found that social defeat exposure reduced the amount of time animals spent interacting with a novel conspecific 24 h later, although there was no effect of dominance status. The amount of social vigilance shown by dominants during social avoidance testing was positively correlated with c-Fos expression in AR+ cells in the MePV. These findings indicate that dominant hamsters show greater neural activity in AR+ cells in the MePV during social defeat compared to their subordinate counterparts, and this pattern of neural activity correlates with their proactive coping response. Consistent with the central role of androgens in experience-dependent changes in aggression, activation of AR+ cells in the MePD/MePV contributes to experience-dependent changes in stress-related behavior.
Collapse
Affiliation(s)
- C J Whitten
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - J E King
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - R M Rodriguez
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - L M Hennon
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M C Scarborough
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M K Hooker
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M S Jenkins
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - I M Katigbak
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States
| | - M A Cooper
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, United States.
| |
Collapse
|
9
|
Chen C, Altafi M, Corbu MA, Trenk A, van den Munkhof H, Weineck K, Bender F, Carus-Cadavieco M, Bakhareva A, Korotkova T, Ponomarenko A. The dynamic state of a prefrontal-hypothalamic-midbrain circuit commands behavioral transitions. Nat Neurosci 2024; 27:952-963. [PMID: 38499854 PMCID: PMC11089001 DOI: 10.1038/s41593-024-01598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Innate behaviors meet multiple needs adaptively and in a serial order, suggesting the existence of a hitherto elusive brain dynamics that brings together representations of upcoming behaviors during their selection. Here we show that during behavioral transitions, possible upcoming behaviors are encoded by specific signatures of neuronal populations in the lateral hypothalamus (LH) that are active near beta oscillation peaks. Optogenetic recruitment of intrahypothalamic inhibition at this phase eliminates behavioral transitions. We show that transitions are elicited by beta-rhythmic inputs from the prefrontal cortex that spontaneously synchronize with LH 'transition cells' encoding multiple behaviors. Downstream of the LH, dopamine neurons increase firing during beta oscillations and also encode behavioral transitions. Thus, a hypothalamic transition state signals alternative future behaviors, encodes the one most likely to be selected and enables rapid coordination with cognitive and reward-processing circuitries, commanding adaptive social contact and eating behaviors.
Collapse
Affiliation(s)
- Changwan Chen
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany
| | - Mahsa Altafi
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mihaela-Anca Corbu
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany
| | - Aleksandra Trenk
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Hanna van den Munkhof
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany
| | - Kristin Weineck
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany
| | - Franziska Bender
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany
| | - Marta Carus-Cadavieco
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany
| | - Alisa Bakhareva
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany
| | - Tatiana Korotkova
- Max Planck Institute for Metabolism Research, Cologne, Germany.
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne/University Clinic Cologne, Cologne, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| | - Alexey Ponomarenko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Behavioural Neurodynamics Group, Leibniz Institute for Molecular Pharmacology (FMP)/NeuroCure Cluster of Excellence, Berlin, Germany.
| |
Collapse
|
10
|
Peña-Casanova J, Sánchez-Benavides G, Sigg-Alonso J. Updating functional brain units: Insights far beyond Luria. Cortex 2024; 174:19-69. [PMID: 38492440 DOI: 10.1016/j.cortex.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
This paper reviews Luria's model of the three functional units of the brain. To meet this objective, several issues were reviewed: the theory of functional systems and the contributions of phylogenesis and embryogenesis to the brain's functional organization. This review revealed several facts. In the first place, the relationship/integration of basic homeostatic needs with complex forms of behavior. Secondly, the multi-scale hierarchical and distributed organization of the brain and interactions between cells and systems. Thirdly, the phylogenetic role of exaptation, especially in basal ganglia and cerebellum expansion. Finally, the tripartite embryogenetic organization of the brain: rhinic, limbic/paralimbic, and supralimbic zones. Obviously, these principles of brain organization are in contradiction with attempts to establish separate functional brain units. The proposed new model is made up of two large integrated complexes: a primordial-limbic complex (Luria's Unit I) and a telencephalic-cortical complex (Luria's Units II and III). As a result, five functional units were delineated: Unit I. Primordial or preferential (brainstem), for life-support, behavioral modulation, and waking regulation; Unit II. Limbic and paralimbic systems, for emotions and hedonic evaluation (danger and relevance detection and contribution to reward/motivational processing) and the creation of cognitive maps (contextual memory, navigation, and generativity [imagination]); Unit III. Telencephalic-cortical, for sensorimotor and cognitive processing (gnosis, praxis, language, calculation, etc.), semantic and episodic (contextual) memory processing, and multimodal conscious agency; Unit IV. Basal ganglia systems, for behavior selection and reinforcement (reward-oriented behavior); Unit V. Cerebellar systems, for the prediction/anticipation (orthometric supervision) of the outcome of an action. The proposed brain units are nothing more than abstractions within the brain's simultaneous and distributed physiological processes. As function transcends anatomy, the model necessarily involves transition and overlap between structures. Beyond the classic approaches, this review includes information on recent systemic perspectives on functional brain organization. The limitations of this review are discussed.
Collapse
Affiliation(s)
- Jordi Peña-Casanova
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Program, Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Test Barcelona Services, Teià, Barcelona, Spain.
| | | | - Jorge Sigg-Alonso
- Department of Behavioral and Cognitive Neurobiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Queretaro, Mexico
| |
Collapse
|
11
|
Li H, Jiang T, An S, Xu M, Gou L, Ren B, Shi X, Wang X, Yan J, Yuan J, Xu X, Wu QF, Luo Q, Gong H, Bian WJ, Li A, Yu X. Single-neuron projectomes of mouse paraventricular hypothalamic nucleus oxytocin neurons reveal mutually exclusive projection patterns. Neuron 2024; 112:1081-1099.e7. [PMID: 38290516 DOI: 10.1016/j.neuron.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/07/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Oxytocin (OXT) plays important roles in autonomic control and behavioral modulation. However, it is unknown how the projection patterns of OXT neurons align with underlying physiological functions. Here, we present the reconstructed single-neuron, whole-brain projectomes of 264 OXT neurons of the mouse paraventricular hypothalamic nucleus (PVH) at submicron resolution. These neurons hierarchically clustered into two groups, with distinct morphological and transcriptional characteristics and mutually exclusive projection patterns. Cluster 1 (177 neurons) axons terminated exclusively in the median eminence (ME) and have few collaterals terminating within hypothalamic regions. By contrast, cluster 2 (87 neurons) sent wide-spread axons to multiple brain regions, but excluding ME. Dendritic arbors of OXT neurons also extended outside of the PVH, suggesting capability to sense signals and modulate target regions. These single-neuron resolution observations reveal distinct OXT subpopulations, provide comprehensive analysis of their morphology, and lay the structural foundation for better understanding the functional heterogeneity of OXT neurons.
Collapse
Affiliation(s)
- Humingzhu Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Sile An
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingrui Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingfeng Gou
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Biyu Ren
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxue Shi
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaofei Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Yan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yuan
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohong Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Feng Wu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingming Luo
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wen-Jie Bian
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
12
|
Huilgol D, Levine JM, Galbavy W, Wang BS, Josh Huang Z. Orderly specification and precise laminar deployment of cortical glutamatergic projection neuron types through intermediate progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582863. [PMID: 38645016 PMCID: PMC11027211 DOI: 10.1101/2024.03.01.582863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model whereby successive generations of PNs sequentially migrate to deep then progressively more superficial layers, but its biological significance remains unclear; and the role of iNG in this process is unknown. Using genetic strategies linking PN birth-dating to projection mapping in mice, we found that the laminar deployment of IP-derived PNs substantially deviate from an inside-out rule: PNs destined to non-consecutive layers are generated at the same time, and different PN types of the same layer are generated at non-contiguous times. The overarching scheme of iNG is the sequential specification and precise laminar deployment of projection-defined PN types, which may contribute to the orderly assembly of cortical output channels and processing streams. HIGHLIGHTS - Each IP is fate-restricted to generate a pair of near-identical PNs - Corticogenesis involves the orderly generation of fate-restricted IP temporal cohorts - IP temporal cohorts sequentially as well as concurrently specify multiple PN types - The deployment of PN types to specific layers does not follow an inside-out order.
Collapse
|
13
|
Li SH, Li S, Kirouac GJ. Analysis of Monosynaptic Inputs to Thalamic Paraventricular Nucleus Neurons Innervating the Shell of the Nucleus Accumbens and Central Extended Amygdala. Neuroscience 2024; 537:151-164. [PMID: 38056620 DOI: 10.1016/j.neuroscience.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The paraventricular nucleus of the thalamus (PVT) sends dense projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and the lateral region of central nucleus of the amygdala (CeL). Projection specific modulation of these pathways has been shown to regulate appetitive and aversive behavioral responses. The present investigation applied an intersectional monosynaptic rabies tracing approach to quantify the brain-wide sources of afferent input to PVT neurons that primarily project to the NAcSh, BSTDL and CeL. The results demonstrate that these projection neurons receive monosynaptic input from similar brain regions. The prefrontal cortex and the ventral subiculum of the hippocampus were major sources of input to the PVT projection neurons. In addition, the lateral septal nucleus, thalamic reticular nucleus and the hypothalamic medial preoptic area, dorsomedial, ventromedial, and arcuate nuclei were sources of input. The subfornical organ, parasubthalamic nucleus, periaqueductal gray matter, lateral parabrachial nucleus, and nucleus of the solitary tract were consistent but lesser sources of input. This input-output relationship is consistent with recent observations that PVT neurons have axons that bifurcate extensively to divergently innervate the NAcSh, BSTDL and CeL.
Collapse
Affiliation(s)
- Shuang Hong Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | - Sa Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | - Gilbert J Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada; Department of Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada.
| |
Collapse
|
14
|
Mei L, Osakada T, Lin D. Hypothalamic control of innate social behaviors. Science 2023; 382:399-404. [PMID: 37883550 PMCID: PMC11105421 DOI: 10.1126/science.adh8489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Sexual, parental, and aggressive behaviors are central to the reproductive success of individuals and species survival and thus are supported by hardwired neural circuits. The reproductive behavior control column (RBCC), which comprises the medial preoptic nucleus (MPN), the ventrolateral part of the ventromedial hypothalamus (VMHvl), and the ventral premammillary nucleus (PMv), is essential for all social behaviors. The RBCC integrates diverse hormonal and metabolic cues and adjusts an animal's physical activity, hence the chance of social encounters. The RBCC further engages the mesolimbic dopamine system to maintain social interest and reinforces cues and actions that are time-locked with social behaviors. We propose that the RBCC and brainstem form a dual-control system for generating moment-to-moment social actions. This Review summarizes recent progress regarding the identities of RBCC cells and their pathways that drive different aspects of social behaviors.
Collapse
Affiliation(s)
- Long Mei
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10016, USA
| |
Collapse
|
15
|
Terada S, Fujiwara T, Sugawara J, Maeda K, Satoh S, Mitsuda N. Association of severe maternal morbidity with bonding impairment and self-harm ideation: A multicenter prospective cohort study. J Affect Disord 2023; 338:561-568. [PMID: 37385386 DOI: 10.1016/j.jad.2023.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Evidence on the association between severe maternal morbidity (SMM) and mother-infant bonding and self-harm ideation is limited. We aimed to examine these associations and the mediating effect of Neonatal Intensive Care Unit (NICU) admission at one-month postpartum. METHODS This multicenter, prospective cohort study was conducted in Japan (n = 5398). SMM included preeclampsia, eclampsia, severe postpartum hemorrhage, placental abruption, and a ruptured uterus. Lack of affection (LA) and Anger and Rejection (AR) were assessed using the Mother-Infant Bonding Scale (MIBS), and self-harm ideation was assessed using the 10th item of the Edinburgh Postnatal Depression Scale (EPDS). Linear and logistic regression models were used to examine the association between SMM and MIBS score and self-harm ideation. A structural equation model (SEM) was employed to examine the mediating effect of NICU admission on the association between SMM and mother-infant bonding and postpartum depressive symptoms. RESULTS Women with SMM had a 0.21 (95 % confidence interval [CI]: 0.03-0.40) point higher MIBS score and a decreasing trend in the risk of self-harm ideation (odds ratio 0.28, 95 % CI: 0.07-1.14) compared to those without SMM. SEM analysis revealed that SMM was associated with MIBS partially through NICU admission. LIMITATIONS EPDS scores during pregnancy could be an unmeasured confounder. CONCLUSIONS Women with SMM had higher MIBS scores, particularly on the LA subscale, which was partially mediated by NICU admission. Psychotherapy to support parent-infant relationships is necessary for women with SMM.
Collapse
Affiliation(s)
- Shuhei Terada
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeo Fujiwara
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Junichi Sugawara
- Graduate School of Medicine, Tohoku University, Miyagi, Japan; Suzuki Memorial Hospital, Miyagi, Japan
| | - Kazuhisa Maeda
- Department of Obstetrics and Gynecology, National Hospital Organizations: Shikoku Medical Center for Children and Adults, Kagawa, Japan
| | - Shoji Satoh
- Maternal and Perinatal Care Center, Oita Prefectural Hospital, Oita, Japan
| | - Nobuaki Mitsuda
- Department of Maternal Fetal Medicine, Osaka Women's and Children's Hospital, Osaka, Japan
| |
Collapse
|
16
|
de Araujo Salgado I, Li C, Burnett CJ, Rodriguez Gonzalez S, Becker JJ, Horvath A, Earnest T, Kravitz AV, Krashes MJ. Toggling between food-seeking and self-preservation behaviors via hypothalamic response networks. Neuron 2023; 111:2899-2917.e6. [PMID: 37442130 PMCID: PMC10528369 DOI: 10.1016/j.neuron.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/02/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Motivated behaviors are often studied in isolation to assess labeled lines of neural connections underlying innate actions. However, in nature, multiple systems compete for expression of goal-directed behaviors via complex neural networks. Here, we examined flexible survival decisions in animals tasked with food seeking under predation threat. We found that predator exposure rapidly induced physiological, neuronal, and behavioral adaptations in mice highlighted by reduced food seeking and consumption contingent on current threat level. Diminishing conflict via internal state or external environment perturbations shifted feeding strategies. Predator introduction and/or selective manipulation of danger-responsive cholecystokinin (Cck) cells of the dorsal premammilary nucleus (PMd) suppressed hunger-sensitive Agouti-related peptide (AgRP) neurons, providing a mechanism for threat-evoked hypophagia. Increased caloric need enhanced food seeking under duress through AgRP pathways to the bed nucleus of the stria terminalis (BNST) and/or lateral hypothalamus (LH). Our results suggest oscillating interactions between systems underlying self-preservation and food seeking to promote optimal behavior.
Collapse
Affiliation(s)
- Isabel de Araujo Salgado
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - C Joseph Burnett
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shakira Rodriguez Gonzalez
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jordan J Becker
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allison Horvath
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Earnest
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
17
|
Liu D, Rahman M, Johnson A, Tsutsui-Kimura I, Pena N, Talay M, Logeman BL, Finkbeiner S, Choi S, Capo-Battaglia A, Abdus-Saboor I, Ginty DD, Uchida N, Watabe-Uchida M, Dulac C. A Hypothalamic Circuit Underlying the Dynamic Control of Social Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.540391. [PMID: 37293031 PMCID: PMC10245688 DOI: 10.1101/2023.05.19.540391] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Social grouping increases survival in many species, including humans1,2. By contrast, social isolation generates an aversive state (loneliness) that motivates social seeking and heightens social interaction upon reunion3-5. The observed rebound in social interaction triggered by isolation suggests a homeostatic process underlying the control of social drive, similar to that observed for physiological needs such as hunger, thirst or sleep3,6. In this study, we assessed social responses in multiple mouse strains and identified the FVB/NJ line as exquisitely sensitive to social isolation. Using FVB/NJ mice, we uncovered two previously uncharacterized neuronal populations in the hypothalamic preoptic nucleus that are activated during social isolation and social rebound and that orchestrate the behavior display of social need and social satiety, respectively. We identified direct connectivity between these two populations of opposite function and with brain areas associated with social behavior, emotional state, reward, and physiological needs, and showed that animals require touch to assess the presence of others and fulfill their social need, thus revealing a brain-wide neural system underlying social homeostasis. These findings offer mechanistic insight into the nature and function of circuits controlling instinctive social need and for the understanding of healthy and diseased brain states associated with social context.
Collapse
Affiliation(s)
- Ding Liu
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Autumn Johnson
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Iku Tsutsui-Kimura
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Present address: Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Nicolai Pena
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mustafa Talay
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Brandon L. Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Samantha Finkbeiner
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Seungwon Choi
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Present address: Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Athena Capo-Battaglia
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Ishmail Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute, Department of Biological Sciences, Columbia University, New York, NY, USA
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
18
|
Zhang M, Pan X, Jung W, Halpern A, Eichhorn SW, Lei Z, Cohen L, Smith KA, Tasic B, Yao Z, Zeng H, Zhuang X. A molecularly defined and spatially resolved cell atlas of the whole mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531348. [PMID: 36945367 PMCID: PMC10028822 DOI: 10.1101/2023.03.06.531348] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
In mammalian brains, tens of millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells in the brain have so far hindered our understanding of the molecular and cellular basis of its functions. Recent advances in spatially resolved single-cell transcriptomics have allowed systematic mapping of the spatial organization of molecularly defined cell types in complex tissues1-3. However, these approaches have only been applied to a few brain regions1-11 and a comprehensive cell atlas of the whole brain is still missing. Here, we imaged a panel of >1,100 genes in ~8 million cells across the entire adult mouse brain using multiplexed error-robust fluorescence in situ hybridization (MERFISH)12 and performed spatially resolved, single-cell expression profiling at the whole-transcriptome scale by integrating MERFISH and single-cell RNA-sequencing (scRNA-seq) data. Using this approach, we generated a comprehensive cell atlas of >5,000 transcriptionally distinct cell clusters, belonging to ~300 major cell types, in the whole mouse brain with high molecular and spatial resolution. Registration of the MERFISH images to the common coordinate framework (CCF) of the mouse brain further allowed systematic quantifications of the cell composition and organization in individual brain regions defined in the CCF. We further identified spatial modules characterized by distinct cell-type compositions and spatial gradients featuring gradual changes in the gene-expression profiles of cells. Finally, this high-resolution spatial map of cells, with a transcriptome-wide expression profile associated with each cell, allowed us to infer cell-type-specific interactions between several hundred pairs of molecularly defined cell types and predict potential molecular (ligand-receptor) basis and functional implications of these cell-cell interactions. These results provide rich insights into the molecular and cellular architecture of the brain and a valuable resource for future functional investigations of neural circuits and their dysfunction in diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Xingjie Pan
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Won Jung
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- These authors contributed equally
| | - Aaron Halpern
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Stephen W. Eichhorn
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Zhiyun Lei
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Limor Cohen
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | | | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
19
|
Giarrocco F, Averbeck BB. Anatomical organization of forebrain circuits in the primate. Brain Struct Funct 2023; 228:393-411. [PMID: 36271258 PMCID: PMC9944689 DOI: 10.1007/s00429-022-02586-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022]
Abstract
The primate forebrain is a complex structure. Thousands of connections have been identified between cortical areas, and between cortical and sub-cortical areas. Previous work, however, has suggested that a number of principles can be used to reduce this complexity. Here, we integrate four principles that have been put forth previously, including a nested model of neocortical connectivity, gradients of connectivity between frontal cortical areas and the striatum and thalamus, shared patterns of sub-cortical connectivity between connected posterior and frontal cortical areas, and topographic organization of cortical-striatal-pallidal-thalamocortical circuits. We integrate these principles into a single model that accounts for a substantial amount of connectivity in the forebrain. We then suggest that studies in evolution and development can account for these four principles, by assuming that the ancestral vertebrate pallium was dominated by medial, hippocampal and ventral-lateral, pyriform areas, and at most a small dorsal pallium. The small dorsal pallium expanded massively in the lineage leading to primates. During this expansion, topological, adjacency relationships were maintained between pallial and sub-pallial areas. This maintained topology led to the connectivity gradients seen between cortex, striatum, pallidum, and thalamus.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Building 49 Room 1B80, 49 Convent Drive MSC 4415, Bethesda, MD, 20892-4415, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Building 49 Room 1B80, 49 Convent Drive MSC 4415, Bethesda, MD, 20892-4415, USA.
| |
Collapse
|
20
|
Ge M, Balleine BW. The role of the bed nucleus of the stria terminalis in the motivational control of instrumental action. Front Behav Neurosci 2022; 16:968593. [DOI: 10.3389/fnbeh.2022.968593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
We review recent studies assessing the role of the bed nucleus of the stria terminalis (BNST) in the motivational control of instrumental conditioning. This evidence suggests that the BNST and central nucleus of the amygdala (CeA) form a circuit that modulates the ventral tegmental area (VTA) input to the nucleus accumbens core (NAc core) to control the influence of Pavlovian cues on instrumental performance. In support of these claims, we found that activity in the oval region of BNST was increased by instrumental conditioning, as indexed by phosphorylated ERK activity (Experiment 1), but that this increase was not due to exposure to the instrumental contingency or to the instrumental outcome per se (Experiment 2). Instead, BNST activity was most significantly incremented in a test conducted when the instrumental outcome was anticipated but not delivered, suggesting a role for BNST in the motivational effects of anticipated outcomes on instrumental performance. To test this claim, we examined the effect of NMDA-induced cell body lesions of the BNST on general Pavlovian-to-instrumental transfer (Experiment 3). These lesions had no effect on instrumental performance or on conditioned responding during Pavlovian conditioning to either an excitory conditioned stimulus (CS) or a neutral CS (CS0) but significantly attenuated the excitatory effect of the Pavlovian CS on instrumental performance. These data are consistent with the claim that the BNST mediates the general excitatory influence of Pavlovian cues on instrumental performance and suggest BNST activity may be central to CeA-BNST modulation of a VTA-NAc core circuit in incentive motivation.
Collapse
|
21
|
Bedenbaugh MN, Brener SC, Maldonado J, Lippert RN, Sweeney P, Cone RD, Simerly RB. Organization of neural systems expressing melanocortin-3 receptors in the mouse brain: Evidence for sexual dimorphism. J Comp Neurol 2022; 530:2835-2851. [PMID: 35770983 PMCID: PMC9724692 DOI: 10.1002/cne.25379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
The central melanocortin system is fundamentally important for controlling food intake and energy homeostasis. Melanocortin-3 receptor (MC3R) is one of two major receptors of the melanocortin system found in the brain. In contrast to the well-characterized melanocortin-4 receptor (MC4R), little is known regarding the organization of MC3R-expressing neural circuits. To increase our understanding of the intrinsic organization of MC3R neural circuits, identify specific differences between males and females, and gain a neural systems level perspective of this circuitry, we conducted a brain-wide mapping of neurons labeled for MC3R and characterized the distribution of their projections. Analysis revealed MC3R neuronal and terminal labeling in multiple brain regions that control a diverse range of physiological functions and behavioral processes. Notably, dense labeling was observed in the hypothalamus, as well as areas that share considerable connections with the hypothalamus, including the cortex, amygdala, thalamus, and brainstem. Additionally, MC3R neuronal labeling was sexually dimorphic in several areas, including the anteroventral periventricular area, arcuate nucleus, principal nucleus of the bed nucleus of the stria terminalis, and ventral premammillary region. Altogether, anatomical evidence reported here suggests that MC3R has the potential to influence several different classes of motivated behavior that are essential for survival, including ingestive, reproductive, defensive, and arousal behaviors, and is likely to modulate these behaviors differently in males and females.
Collapse
Affiliation(s)
- Michelle N. Bedenbaugh
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Samantha C. Brener
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Rachel N. Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition Potsdam-Rehbruecke, Potsdam, Germany
| | - Patrick Sweeney
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger D. Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard B. Simerly
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
22
|
Rodrigo AH, Di Domenico SI, Wright L, Page-Gould E, Fournier MA, Ayaz H, Ruocco AC. Interpersonal traits and the neural representations of cognitive control in the prefrontal cortex. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1001-1020. [PMID: 35332509 DOI: 10.3758/s13415-022-00986-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Adaptive interpersonal functioning relies on the effectiveness of behavioral and neural systems involved in cognitive control. Whether different subcomponents of cognitive control and their neural representations are associated with distinctive interpersonal dispositions has yet to be determined. The present study investigated the relationships between prefrontal cortex (PFC) activation associated with two subcomponents of cognitive control and individual differences in interpersonally relevant traits and facets within the Five-Factor Model of personality. Undergraduate participants (n = 237) provided self-ratings of interpersonal traits and underwent functional near-infrared spectroscopy to measure activation in regions-of-interest linked to subcomponents of cognitive control: the right lateral PFC and its involvement in response selection and inhibition/suppression (RS) during a go/no-go task, and the left lateral PFC associated with goal selection, updating, representation, and maintenance (GS) on a tower planning task. Multilevel models revealed that during both RS and GS, Neuroticism and Extraversion were associated with lower and higher levels of activation, respectively. Higher Agreeableness was related to lower activation during RS but also with greater activation during GS. More narrowly defined interpersonal facets subsumed within the broader trait domains were differentially associated with RS- and GS-related neural responses. Taken together, these findings highlight potential avenues of future research to better understand the ways in which the neural processes that subserve cognitive control may underlie interpersonal dispositions.
Collapse
Affiliation(s)
- Achala H Rodrigo
- Department of Psychological Clinical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto (Scarborough), Toronto, ON, Canada
| | | | - Liam Wright
- Department of Psychology, University of Toronto (Scarborough), Toronto, ON, Canada
| | - Elizabeth Page-Gould
- Department of Psychology, University of Toronto (St. George), Toronto, ON, Canada
| | - Marc A Fournier
- Department of Psychological Clinical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto (Scarborough), Toronto, ON, Canada
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Anthony C Ruocco
- Department of Psychological Clinical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, University of Toronto (Scarborough), Toronto, ON, Canada.
| |
Collapse
|
23
|
Rahy R, Asari H, Gross CT. Sensory-thresholded switch of neural firing states in a computational model of the ventromedial hypothalamus. Front Comput Neurosci 2022; 16:964634. [PMID: 36157840 PMCID: PMC9491323 DOI: 10.3389/fncom.2022.964634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
The mouse ventromedial hypothalamus (VMH) is both necessary and sufficient for defensive responses to predator and social threats. Defensive behaviors typically involve cautious approach toward potentially threatening stimuli aimed at obtaining information about the risk involved, followed by sudden avoidance and flight behavior to escape harm. In vivo neural recording studies in mice have identified two major populations of VMH neurons that either increase their firing activity as the animal approaches the threat (called Assessment+ cells) or increase their activity as the animal flees the threat (called Flight+ cells). Interestingly, Assessment+ and Flight+ cells abruptly decrease and increase their firing activity, respectively, at the decision point for flight, creating an escape-related “switch” in functional state. This suggests that the activity of the two cell types in VMH is coordinated and could result from local circuit interactions. Here, we used computational modeling to test if a local inhibitory feedback circuit could give rise to key features of the neural activity seen in VMH during the approach-to-flight transition. Starting from a simple dual-population inhibitory feedback circuit receiving repeated trains of monotonically increasing sensory input to mimic approach to threat, we tested the requirement for balanced sensory input, balanced feedback, short-term synaptic plasticity, rebound excitation, and inhibitory feedback exclusivity to reproduce an abrupt, sensory-thresholded reciprocal firing change that resembles Assessment+ and Flight+ cell activity seen in vivo. Our work demonstrates that a relatively simple local circuit architecture is sufficient for the emergence of firing patterns similar to those seen in vivo and suggests that a reiterative process of experimental and computational work may be a fruitful avenue for better understanding the functional organization of mammalian instinctive behaviors at the circuit level.
Collapse
|
24
|
Bortoloci JGT, Motta SC. Failure of AAV retrograde tracer transduction in hypothalamic projections to the periaqueductal gray matter. Heliyon 2022; 8:e10243. [PMID: 36061004 PMCID: PMC9433681 DOI: 10.1016/j.heliyon.2022.e10243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 10/25/2022] Open
|
25
|
Yeates DCM, Leavitt D, Sujanthan S, Khan N, Alushaj D, Lee ACH, Ito R. Parallel ventral hippocampus-lateral septum pathways differentially regulate approach-avoidance conflict. Nat Commun 2022; 13:3349. [PMID: 35688838 PMCID: PMC9187740 DOI: 10.1038/s41467-022-31082-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
The ability to resolve an approach-avoidance conflict is critical to adaptive behavior. The ventral CA3 (vCA3) and CA1 (vCA1) subfields of the ventral hippocampus (vHPC) have been shown to facilitate avoidance and approach behavior, respectively, in the face of motivational conflict, but the neural circuits by which this subfield-specific regulation is implemented is unknown. We demonstrate that two distinct pathways from these subfields to lateral septum (LS) contribute to this divergent control. In Long-Evans rats, chemogenetic inhibition of the vCA3- LS caudodorsal (cd) pathway potentiated approach towards a learned conflict-eliciting stimulus, while inhibition of the vCA1-LS rostroventral (rv) pathway potentiated approach non-specifically. Additionally, vCA3-LScd inhibited animals were less hesitant to explore food during environmental uncertainty, while the vCA1- LSrv inhibited animals took longer to initiate food exploration. These findings suggest that the vHPC influences multiple behavioral systems via differential projections to the LS, which in turn send inhibitory projections to motivational centres of the brain.
Collapse
Affiliation(s)
- Dylan C M Yeates
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Dallas Leavitt
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Sajeevan Sujanthan
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Nisma Khan
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Denada Alushaj
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada
- Rotman Research Institute, Baycrest Centre, Toronto, ON, M6A 2E1, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, ON, M1C 1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
26
|
de Almeida AP, Baldo MVC, Motta SC. Dynamics in brain activation and behaviour in acute and repeated social defensive behaviour. Proc Biol Sci 2022; 289:20220799. [PMID: 35703050 PMCID: PMC9198769 DOI: 10.1098/rspb.2022.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In nature, confrontations between conspecifics are recurrent and related, in general, due to the lack of resources such as food and territory. Adequate defence against a conspecific aggressor is essential for the individual's survival and the group integrity. However, repeated social defeat is a significant stressor promoting several behavioural changes, including social defence per se. What would be the neural basis of these behavioural changes? To build new hypotheses about this, we here investigate the effects of repeated social stress on the neural circuitry underlying motivated social defence behaviour in male mice. We observed that animals re-exposed to the aggressor three times spent more time in passive defence during the last exposure than in the first one. These animals also show less activation of the amygdalar and hypothalamic nuclei related to the processing of conspecific cues. In turn, we found no changes in the activation of the hypothalamic dorsal pre-mammillary nucleus (PMD) that is essential for passive defence. Therefore, our data suggest that the balance between the activity of circuits related to conspecific processing and the PMD determines the pattern of social defence behaviour. Changes in this balance may be the basis of the adaptations in social defence after repeated social defeat.
Collapse
Affiliation(s)
- Alisson P. de Almeida
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Marcus V. C. Baldo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Simone C. Motta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| |
Collapse
|
27
|
Lacy TJ, Hughes JD. A Systems Approach to Behavioral Neurobiology: Integrating Psychodynamics and Neuroscience in a Psychiatric Curriculum. Psychodyn Psychiatry 2022; 50:228-255. [PMID: 35653521 DOI: 10.1521/pdps.2022.50.2.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the practice of medicine, an understanding of the biological functioning of organs and organ systems is the basis for theories of pathology and clinical practice. If psychoanalysis is to be accepted by the medical and psychiatric community, it must be based on a sophisticated understanding of the organ from which mental and emotional experiences emanate and use scientifically acceptable language. Each approach to psychotherapy has its own vocabulary for describing neuropsychological processes. Neurobiological vocabulary provides the various factions "neutral ground" upon which to carry on a multidisciplinary integrative dialogue. An understanding of behavioral neuroscience allows the therapist to look beyond the labels that spawn division and identify unifying biological principles that are described in a variety of ways in a multitude of theories. We contend that the neural network/representational approach to neurobiology views human mental experience as the result of multiple complex integrated systems, and is therefore holistic and antireductionistic in its perspective. Such a biologically informed psychotherapy facilitates integration of skill sets and flexibility in technique. With these principles in mind, the therapist can base his or her approach to the patient based on these principles rather than on devotion to one particular "school" or another. Because behavioral neuroscience supports many of the basic tenets of psychoanalytic theory, such an integrative psychotherapy would be psychody-namically informed. In this paper, we outline some of the ideas we present in our neuroscience course and how we relate biological concepts with some core principles of psychodynamics and psychotherapy.
Collapse
Affiliation(s)
- Timothy J Lacy
- Chief of Air Force Telehealth, Office of the Air Force Surgeon General, Directorate of Modernization
| | - John D Hughes
- Chief, Department of Neurology, National Naval Medical Center, Bethesda, MD
| |
Collapse
|
28
|
Beier K. Modified viral-genetic mapping reveals local and global connectivity relationships of ventral tegmental area dopamine cells. eLife 2022; 11:e76886. [PMID: 35604019 PMCID: PMC9173742 DOI: 10.7554/elife.76886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine cells in the ventral tegmental area (VTADA) are critical for a variety of motivated behaviors. These cells receive synaptic inputs from over 100 anatomically defined brain regions, which enables control from a distributed set of inputs across the brain. Extensive efforts have been made to map inputs to VTA cells based on neurochemical phenotype and output site. However, all of these studies have the same fundamental limitation that inputs local to the VTA cannot be properly assessed due to non-Cre-dependent uptake of EnvA-pseudotyped virus. Therefore, the quantitative contribution of local inputs to the VTA, including GABAergic, DAergic, and serotonergic, is not known. Here, I used a modified viral-genetic strategy that enables examination of both local and long-range inputs to VTADA cells in mice. I found that nearly half of the total inputs to VTADA cells are located locally, revealing a substantial portion of inputs that have been missed by previous analyses. The majority of inhibition to VTADA cells arises from the substantia nigra pars reticulata, with large contributions from the VTA and the substantia nigra pars compacta. In addition to receiving inputs from VTAGABA neurons, DA neurons are connected with other DA neurons within the VTA as well as the nearby retrorubal field. Lastly, I show that VTADA neurons receive inputs from distributed serotonergic neurons throughout the midbrain and hindbrain, with the majority arising from the dorsal raphe. My study highlights the importance of using the appropriate combination of viral-genetic reagents to unmask the complexity of connectivity relationships to defined cells in the brain.
Collapse
Affiliation(s)
- Kevin Beier
- Department of Physiology and Biophysics, Neurobiology and Behavior, Biomedical Engineering, Pharmaceutical Sciences, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| |
Collapse
|
29
|
Hahn JD, Gao L, Boesen T, Gou L, Hintiryan H, Dong HW. Macroscale connections of the mouse lateral preoptic area and anterior lateral hypothalamic area. J Comp Neurol 2022; 530:2254-2285. [PMID: 35579973 PMCID: PMC9283274 DOI: 10.1002/cne.25331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
The macroscale neuronal connections of the lateral preoptic area (LPO) and the caudally adjacent lateral hypothalamic area anterior region (LHAa) were investigated in mice by anterograde and retrograde axonal tracing. Both hypothalamic regions are highly and diversely connected, with connections to >200 gray matter regions spanning the forebrain, midbrain, and rhombicbrain. Intrahypothalamic connections predominate, followed by connections with the cerebral cortex and cerebral nuclei. A similar overall pattern of LPO and LHAa connections contrasts with substantial differences between their input and output connections. Strongest connections include outputs to the lateral habenula, medial septal and diagonal band nuclei, and inputs from rostral and caudal lateral septal nuclei; however, numerous additional robust connections were also observed. The results are discussed in relation to a current model for the mammalian forebrain network that associates LPO and LHAa with a range of functional roles, including reward prediction, innate survival behaviors (including integrated somatomotor and physiological control), and affect. The present data suggest a broad and intricate role for LPO and LHAa in behavioral control, similar in that regard to previously investigated LHA regions, contributing to the finely tuned sensory‐motor integration that is necessary for behavioral guidance supporting survival and reproduction.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Lei Gao
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Tyler Boesen
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Lin Gou
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Houri Hintiryan
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Hong-Wei Dong
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
30
|
Optimal deep brain stimulation sites and networks for cervical vs. generalized dystonia. Proc Natl Acad Sci U S A 2022; 119:e2114985119. [PMID: 35357970 PMCID: PMC9168456 DOI: 10.1073/pnas.2114985119] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied deep brain stimulation effects in two types of dystonia and conclude that different specific connections between the pallidum and thalamus are responsible for optimal treatment effects. Since alternative treatment options for dystonia beyond deep brain stimulation are scarce, our results will be crucial to maximize treatment outcome in this population of patients. Dystonia is a debilitating disease with few treatment options. One effective option is deep brain stimulation (DBS) to the internal pallidum. While cervical and generalized forms of isolated dystonia have been targeted with a common approach to the posterior third of the nucleus, large-scale investigations regarding optimal stimulation sites and potential network effects have not been carried out. Here, we retrospectively studied clinical results following DBS for cervical and generalized dystonia in a multicenter cohort of 80 patients. We model DBS electrode placement based on pre- and postoperative imaging and introduce an approach to map optimal stimulation sites to anatomical space. Second, we investigate which tracts account for optimal clinical improvements, when modulated. Third, we investigate distributed stimulation effects on a whole-brain functional connectome level. Our results show marked differences of optimal stimulation sites that map to the somatotopic structure of the internal pallidum. While modulation of the striatopallidofugal axis of the basal ganglia accounted for optimal treatment of cervical dystonia, modulation of pallidothalamic bundles did so in generalized dystonia. Finally, we show a common multisynaptic network substrate for both phenotypes in the form of connectivity to the cerebellum and somatomotor cortex. Our results suggest a brief divergence of optimal stimulation networks for cervical vs. generalized dystonia within the pallidothalamic loop that merge again on a thalamo-cortical level and share a common whole-brain network.
Collapse
|
31
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
32
|
Hollunder B, Rajamani N, Siddiqi SH, Finke C, Kühn AA, Mayberg HS, Fox MD, Neudorfer C, Horn A. Toward personalized medicine in connectomic deep brain stimulation. Prog Neurobiol 2022; 210:102211. [PMID: 34958874 DOI: 10.1016/j.pneurobio.2021.102211] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023]
Abstract
At the group-level, deep brain stimulation leads to significant therapeutic benefit in a multitude of neurological and neuropsychiatric disorders. At the single-patient level, however, symptoms may sometimes persist despite "optimal" electrode placement at established treatment coordinates. This may be partly explained by limitations of disease-centric strategies that are unable to account for heterogeneous phenotypes and comorbidities observed in clinical practice. Instead, tailoring electrode placement and programming to individual patients' symptom profiles may increase the fraction of top-responding patients. Here, we propose a three-step, circuit-based framework with the aim of developing patient-specific treatment targets that address the unique symptom constellation prevalent in each patient. First, we describe how a symptom network target library could be established by mapping beneficial or undesirable DBS effects to distinct circuits based on (retrospective) group-level data. Second, we suggest ways of matching the resulting symptom networks to circuits defined in the individual patient (template matching). Third, we introduce network blending as a strategy to calculate optimal stimulation targets and parameters by selecting and weighting a set of symptom-specific networks based on the symptom profile and subjective priorities of the individual patient. We integrate the approach with published literature and conclude by discussing limitations and future challenges.
Collapse
Affiliation(s)
- Barbara Hollunder
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Nanditha Rajamani
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA
| | - Clemens Neudorfer
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Cisek P. Evolution of behavioural control from chordates to primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200522. [PMID: 34957850 PMCID: PMC8710891 DOI: 10.1098/rstb.2020.0522] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
This article outlines a hypothetical sequence of evolutionary innovations, along the lineage that produced humans, which extended behavioural control from simple feedback loops to sophisticated control of diverse species-typical actions. I begin with basic feedback mechanisms of ancient mobile animals and follow the major niche transitions from aquatic to terrestrial life, the retreat into nocturnality in early mammals, the transition to arboreal life and the return to diurnality. Along the way, I propose a sequence of elaboration and diversification of the behavioural repertoire and associated neuroanatomical substrates. This includes midbrain control of approach versus escape actions, telencephalic control of local versus long-range foraging, detection of affordances by the dorsal pallium, diversified control of nocturnal foraging in the mammalian neocortex and expansion of primate frontal, temporal and parietal cortex to support a wide variety of primate-specific behavioural strategies. The result is a proposed functional architecture consisting of parallel control systems, each dedicated to specifying the affordances for guiding particular species-typical actions, which compete against each other through a hierarchy of selection mechanisms. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montreal CP 6123 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
34
|
Leopold DA, Averbeck BB. Self-tuition as an essential design feature of the brain. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200530. [PMID: 34957855 PMCID: PMC8710880 DOI: 10.1098/rstb.2020.0530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We are curious by nature, particularly when young. Evolution has endowed our brain with an inbuilt obligation to educate itself. In this perspectives article, we posit that self-tuition is an evolved principle of vertebrate brain design that is reflected in its basic architecture and critical for its normal development. Self-tuition involves coordination between functionally distinct components of the brain, with one set of areas motivating exploration that leads to the experiences that train another set. We review key hypothalamic and telencephalic structures involved in this interplay, including their anatomical connections and placement within the segmental architecture of conserved forebrain circuits. We discuss the nature of educative behaviours motivated by the hypothalamus, innate stimulus biases, the relationship to survival in early life, and mechanisms by which telencephalic areas gradually accumulate knowledge. We argue that this aspect of brain function is of paramount importance for systems neuroscience, as it confers neural specialization and allows animals to attain far more sophisticated behaviours than would be possible through genetic mechanisms alone. Self-tuition is of particular importance in humans and other primates, whose large brains and complex social cognition rely critically on experience-based learning during a protracted childhood period. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.
Collapse
Affiliation(s)
- David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.,Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bruno B Averbeck
- Section on Learning and Decision Making, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Yu X, Li W. Comparative insights into the integration mechanism of neuropeptides to starvation and temperature stress. Gen Comp Endocrinol 2022; 316:113945. [PMID: 34826429 DOI: 10.1016/j.ygcen.2021.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/08/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Stress is known as the process of biological responses evoked by internal or external stimuli. The ability to sense, integrate and respond to stress signals is a requisite for life. Temperature and photoperiod are very important environmental factors for animals. In addition, stress signals can also be inputted from peripheral tissue, such as starvation and inflammation. Through afferent pathways, stress signals input to the central nervous system (CNS), where various signals will integrate, and the integrated information will transmit to the peripheral effectors. As the regulators of neural activity, neuropeptides play important roles in these processes. The present review summarizes recent findings about the integration mechanism of stress signals in the CNS, emphasizing on the role of neuropeptides.
Collapse
Affiliation(s)
- Xiaozheng Yu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
36
|
Besnard A, Leroy F. Top-down regulation of motivated behaviors via lateral septum sub-circuits. Mol Psychiatry 2022; 27:3119-3128. [PMID: 35581296 PMCID: PMC7613864 DOI: 10.1038/s41380-022-01599-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
Abstract
How does cognition regulate innate behaviors? While the cognitive functions of the cortex have been extensively studied, we know much less about how cognition can regulate innate motivated behaviors to fulfill physiological, safety and social needs. Selection of appropriate motivated behaviors depends on external stimuli and past experiences that helps to scale priorities. With its abundant inputs from neocortical and allocortical regions, the lateral septum (LS) is ideally positioned to integrate perception and experience signals in order to regulate the activity of hypothalamic and midbrain nuclei that control motivated behaviors. In addition, LS receives numerous subcortical modulatory inputs, which represent the animal internal states and also participate in this regulation. In this perspective, we argue that LS sub-circuits regulate distinct motivated behaviors by integrating neural activity from neocortical, allocortical and neuromodulatory inputs. In addition, we propose that lateral inhibition between LS sub-circuits may allow the emergence of functional units that orchestrates competing motivated behaviors.
Collapse
Affiliation(s)
| | - Felix Leroy
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain.
| |
Collapse
|
37
|
Li J, Curley WH, Guerin B, Dougherty DD, Dalca AV, Fischl B, Horn A, Edlow BL. Mapping the subcortical connectivity of the human default mode network. Neuroimage 2021; 245:118758. [PMID: 34838949 PMCID: PMC8945548 DOI: 10.1016/j.neuroimage.2021.118758] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023] Open
Abstract
The default mode network (DMN) mediates self-awareness and introspection, core components of human consciousness. Therapies to restore consciousness in patients with severe brain injuries have historically targeted subcortical sites in the brainstem, thalamus, hypothalamus, basal forebrain, and basal ganglia, with the goal of reactivating cortical DMN nodes. However, the subcortical connectivity of the DMN has not been fully mapped, and optimal subcortical targets for therapeutic neuromodulation of consciousness have not been identified. In this work, we created a comprehensive map of DMN subcortical connectivity by combining high-resolution functional and structural datasets with advanced signal processing methods. We analyzed 7 Tesla resting-state functional MRI (rs-fMRI) data from 168 healthy volunteers acquired in the Human Connectome Project. The rs-fMRI blood-oxygen-level-dependent (BOLD) data were temporally synchronized across subjects using the BrainSync algorithm. Cortical and subcortical DMN nodes were jointly analyzed and identified at the group level by applying a novel Nadam-Accelerated SCAlable and Robust (NASCAR) tensor decomposition method to the synchronized dataset. The subcortical connectivity map was then overlaid on a 7 Tesla 100 µm ex vivo MRI dataset for neuroanatomic analysis using automated segmentation of nuclei within the brainstem, thalamus, hypothalamus, basal forebrain, and basal ganglia. We further compared the NASCAR subcortical connectivity map with its counterpart generated from canonical seed-based correlation analyses. The NASCAR method revealed that BOLD signal in the central lateral nucleus of the thalamus and ventral tegmental area of the midbrain is strongly correlated with that of the DMN. In an exploratory analysis, additional subcortical sites in the median and dorsal raphe, lateral hypothalamus, and caudate nuclei were correlated with the cortical DMN. We also found that the putamen and globus pallidus are negatively correlated (i.e., anti-correlated) with the DMN, providing rs-fMRI evidence for the mesocircuit hypothesis of human consciousness, whereby a striatopallidal feedback system modulates anterior forebrain function via disinhibition of the central thalamus. Seed-based analyses yielded similar subcortical DMN connectivity, but the NASCAR result showed stronger contrast and better spatial alignment with dopamine immunostaining data. The DMN subcortical connectivity map identified here advances understanding of the subcortical regions that contribute to human consciousness and can be used to inform the selection of therapeutic targets in clinical trials for patients with disorders of consciousness.
Collapse
Affiliation(s)
- Jian Li
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - William H Curley
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Darin D Dougherty
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Adrian V Dalca
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andreas Horn
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Movement Disorders & Neuromodulation Section, Department of Neurology, Charité - Universitätsmedizin, Berlin, Germany
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
38
|
Arendt D, Urzainqui IQ, Vergara HM. The conserved core of the nereid brain: Circular CNS, apical nervous system and lhx6-arx-dlx neurons. Curr Opin Neurobiol 2021; 71:178-187. [PMID: 34861534 DOI: 10.1016/j.conb.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022]
Abstract
When bilaterian animals first emerged, an enhanced perception of the Precambrian environment was key to their stunning success. This occurred through the acquisition of an anterior brain, as found in most extant bilaterians. What were the core circuits of the first brain, and how do they relate to today's diversity? With two landmark resources - the full connectome and a multimodal cellular atlas combining gene expression and ultrastructure - the young worm of the marine annelid Platynereis dumerilii takes center stage in comparative bilaterian neuroanatomy. The new data suggest a composite structure of the ancestral bilaterian brain, with the anterior end of a circular CNS fused to a sensory-neurosecretory apical system, and with lhx6-arx-dlx chemosensory circuits giving rise to associative centers in the descending bilaterian lineages.
Collapse
Affiliation(s)
- Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012, Heidelberg, Germany.
| | - Idoia Quintana Urzainqui
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012, Heidelberg, Germany
| | | |
Collapse
|
39
|
Johnson CS, Hong W, Micevych PE. Posterodorsal Medial Amygdala Regulation of Female Social Behavior: GABA versus Glutamate Projections. J Neurosci 2021; 41:8790-8800. [PMID: 34470806 PMCID: PMC8528505 DOI: 10.1523/jneurosci.1103-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/21/2022] Open
Abstract
Social behaviors, including reproductive behaviors, often display sexual dimorphism. Lordosis, the measure of female sexual receptivity, is one of the most apparent sexually dimorphic reproductive behaviors. Lordosis is regulated by estrogen and progesterone (P4) acting within a hypothalamic-limbic circuit, consisting of the arcuate, medial preoptic, and ventromedial nuclei of the hypothalamus. Social cues are integrated into the circuit through the amygdala. The posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors, and sends projections to hypothalamic neuroendocrine regions. GABA from the MeApd appears to facilitate social behaviors, while glutamate may play the opposite role. To test these hypotheses, adult female vesicular GABA transporter (VGAT)-Cre and vesicular glutamate transporter 2 (VGluT2)-Cre mice were transfected with halorhodopsin (eNpHR)-expressing or channelrhodopsin-expressing adeno-associated viruses (AAVs), respectively, in the MeApd. The lordosis quotient (LQ) was measured following either photoinhibition of VGAT or photoexcitation of VGluT2 neurons, and brains were assessed for c-Fos immunohistochemistry (IHC). Photoinhibition of VGAT neurons in the MeApd decreased LQ, and decreased c-Fos expression within VGAT neurons, within the MeApd as a whole, and within the ventrolateral part of the ventromedial nucleus (VMHvl). Photoexcitation of VGluT2 neurons did not affect LQ, but did increase time spent self-grooming, and increased c-Fos expression within VGluT2 neurons in the MeApd. Neither condition altered c-Fos expression in the medial preoptic nucleus (MPN) or the arcuate nucleus (ARH). These data support a role for MeApd GABA in the facilitation of lordosis. Glutamate from the MeApd does not appear to be directly involved in the lordosis circuit, but appears to direct behavior away from social interactions.SIGNIFICANCE STATEMENT Lordosis, the measure of female sexual receptivity, is a sexually dimorphic behavior regulated within a hypothalamic-limbic circuit. Social cues are integrated through the amygdala, and the posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors. Photoinhibition of GABAergic neurons in the MeApd inhibited lordosis, while photoactivation of glutamate neurons had no effect on lordosis, but increased self-grooming. These data support a role for MeApd GABA in the facilitation of social behaviors and MeApd glutamate projections in anti-social interactions.
Collapse
Affiliation(s)
- Caroline S Johnson
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Weizhe Hong
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Paul E Micevych
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
40
|
Understanding the Significance of the Hypothalamic Nature of the Subthalamic Nucleus. eNeuro 2021; 8:ENEURO.0116-21.2021. [PMID: 34518367 PMCID: PMC8493884 DOI: 10.1523/eneuro.0116-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) is an essential component of the basal ganglia and has long been considered to be a part of the ventral thalamus. However, recent neurodevelopmental data indicated that this nucleus is of hypothalamic origin which is now commonly acknowledged. In this work, we aimed to verify whether the inclusion of the STN in the hypothalamus could influence the way we understand and conduct research on the organization of the whole ventral and posterior diencephalon. Developmental and neurochemical data indicate that the STN is part of a larger glutamatergic posterior hypothalamic region that includes the premammillary and mammillary nuclei. The main anatomic characteristic common to this region involves the convergent cortical and pallidal projections that it receives, which is based on the model of the hyperdirect and indirect pathways to the STN. This whole posterior hypothalamic region is then integrated into distinct functional networks that interact with the ventral mesencephalon to adjust behavior depending on external and internal contexts.
Collapse
|
41
|
Neuroplasticity and Multilevel System of Connections Determine the Integrative Role of Nucleus Accumbens in the Brain Reward System. Int J Mol Sci 2021; 22:ijms22189806. [PMID: 34575969 PMCID: PMC8471564 DOI: 10.3390/ijms22189806] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence suggests that nucleus accumbens (NAc) plays a significant role not only in the physiological processes associated with reward and satisfaction but also in many diseases of the central nervous system. Summary of the current state of knowledge on the morphological and functional basis of such a diverse function of this structure may be a good starting point for further basic and clinical research. The NAc is a part of the brain reward system (BRS) characterized by multilevel organization, extensive connections, and several neurotransmitter systems. The unique role of NAc in the BRS is a result of: (1) hierarchical connections with the other brain areas, (2) a well-developed morphological and functional plasticity regulating short- and long-term synaptic potentiation and signalling pathways, (3) cooperation among several neurotransmitter systems, and (4) a supportive role of neuroglia involved in both physiological and pathological processes. Understanding the complex function of NAc is possible by combining the results of morphological studies with molecular, genetic, and behavioral data. In this review, we present the current views on the NAc function in physiological conditions, emphasizing the role of its connections, neuroplasticity processes, and neurotransmitter systems.
Collapse
|
42
|
Natale S, Esteban Masferrer M, Deivasigamani S, Gross CT. A role for cerebral cortex in the suppression of innate defensive behaviour. Eur J Neurosci 2021; 54:6044-6059. [PMID: 34405470 DOI: 10.1111/ejn.15426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/14/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022]
Abstract
The cerebral cortex is widely accepted to be involved in the control of cognition and the processing of learned information. However, data suggest that it may also have a role in the regulation of innate responses because rodents, cats or primates with surgical removal of cortical regions show excessive aggression and rage elicited by threatening stimuli. Nevertheless, the imprecision and chronic nature of these lesions leave open the possibility that compensatory processes may underlie some of these phenotypes. In the present study we applied a precise, rapid and reversible inhibition approach to examine the contribution of the cerebral cortex to defensive behaviours elicited by a variety of innately aversive stimuli in laboratory mice. Pharmacological treatment of mice carrying the pharmacogenetic inhibitory receptor hM4D selectively in neocortex, archicortex and related dorsal telencephalon-derived structures resulted in the rapid inhibition of cerebral cortex neural activity. Cortical inhibition was associated with a selective increase in defensive behaviours elicited by an aggressive conspecific, a novel prey and a physically stressful stimulus. These findings are consistent with a role for cortex in the acute inhibition of innate defensive behaviours.
Collapse
Affiliation(s)
- Silvia Natale
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy.,Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Esteban Masferrer
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | | | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| |
Collapse
|
43
|
Zhang C, Lai Y, Li J, He N, Liu Y, Li Y, Li H, Wei H, Yan F, Horn A, Li D, Sun B. Subthalamic and Pallidal Stimulations in Patients with Parkinson's Disease: Common and Dissociable Connections. Ann Neurol 2021; 90:670-682. [PMID: 34390280 PMCID: PMC9292442 DOI: 10.1002/ana.26199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The subthalamic nucleus (STN) and internal globus pallidus (GPi) are the most effective targets in deep brain stimulation (DBS) for Parkinson's disease (PD). However, the common and specific effects on brain connectivity of stimulating the 2 nuclei remain unclear. METHODS Patients with PD receiving STN-DBS (n = 27, 6 women, mean age 64.8 years) or GPi-DBS (n = 28, 13 women, mean age 64.6 years) were recruited for resting-state functional magnetic resonance imaging to assess the effects of STN-DBS and GPi-DBS on brain functional dynamics. RESULTS The functional connectivity both between the somatosensory-motor cortices and thalamus, and between the somatosensory-motor cortices and cerebellum decreased in the DBS-on state compared with the off state (p < 0.05). The changes in thalamocortical connectivity correlated with DBS-induced motor improvement (p < 0.05) and were negatively correlated with the normalized intersection volume of tissues activated at both DBS targets (p < 0.05). STN-DBS modulated functional connectivity among a wider range of brain areas than GPi-DBS (p = 0.009). Notably, only STN-DBS affected connectivity between the postcentral gyrus and cerebellar vermis (p < 0.001) and between the somatomotor and visual networks (p < 0.001). INTERPRETATION Our findings highlight common alterations in the motor pathway and its relationship with the motor improvement induced by both STN- and GPi-DBS. The effects on cortico-cerebellar and somatomotor-visual functional connectivity differed between groups, suggesting differentiated neural modulation of the 2 target sites. Our results provide mechanistic insight and yield the potential to refine target selection strategies for focal brain stimulation in PD. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.,Department of Anatomy and Physiology, Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijie Lai
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Information Science and Technology, Shanghai Tech University, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyang Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Berlin, Germany
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Abstract
Interactions between the immune system and the nervous system have been described mostly in the context of diseases. More recent studies have begun to reveal how certain immune cell-derived soluble effectors, the cytokines, can influence host behaviour even in the absence of infection. In this Review, we contemplate how the immune system shapes nervous system function and how it controls the manifestation of host behaviour. Interactions between these two highly complex systems are discussed here also in the context of evolution, as both may have evolved to maximize an organism's ability to respond to environmental threats in order to survive. We describe how the immune system relays information to the nervous system and how cytokine signalling occurs in neurons. We also speculate on how the brain may be hardwired to receive and process information from the immune system. Finally, we propose a unified theory depicting a co-evolution of the immune system and host behaviour in response to the evolutionary pressure of pathogens.
Collapse
|
45
|
Lkhagvasuren B, Mee-Inta O, Zhao ZW, Hiramoto T, Boldbaatar D, Kuo YM. Pancreas-Brain Crosstalk. Front Neuroanat 2021; 15:691777. [PMID: 34354571 PMCID: PMC8329585 DOI: 10.3389/fnana.2021.691777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
The neural regulation of glucose homeostasis in normal and challenged conditions involves the modulation of pancreatic islet-cell function. Compromising the pancreas innervation causes islet autoimmunity in type 1 diabetes and islet cell dysfunction in type 2 diabetes. However, despite the richly innervated nature of the pancreas, islet innervation remains ill-defined. Here, we review the neuroanatomical and humoral basis of the cross-talk between the endocrine pancreas and autonomic and sensory neurons. Identifying the neurocircuitry and neurochemistry of the neuro-insular network would provide clues to neuromodulation-based approaches for the prevention and treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Battuvshin Lkhagvasuren
- Brain Science Institute, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Onanong Mee-Inta
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Zi-Wei Zhao
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Tetsuya Hiramoto
- Department of Psychosomatic Medicine, Fukuoka Hospital, National Hospital Organization, Fukuoka, Japan
| | - Damdindorj Boldbaatar
- Brain Science Institute, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan
| |
Collapse
|
46
|
Benavidez NL, Bienkowski MS, Zhu M, Garcia LH, Fayzullina M, Gao L, Bowman I, Gou L, Khanjani N, Cotter KR, Korobkova L, Becerra M, Cao C, Song MY, Zhang B, Yamashita S, Tugangui AJ, Zingg B, Rose K, Lo D, Foster NN, Boesen T, Mun HS, Aquino S, Wickersham IR, Ascoli GA, Hintiryan H, Dong HW. Organization of the inputs and outputs of the mouse superior colliculus. Nat Commun 2021; 12:4004. [PMID: 34183678 PMCID: PMC8239028 DOI: 10.1038/s41467-021-24241-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
The superior colliculus (SC) receives diverse and robust cortical inputs to drive a range of cognitive and sensorimotor behaviors. However, it remains unclear how descending cortical input arising from higher-order associative areas coordinate with SC sensorimotor networks to influence its outputs. Here, we construct a comprehensive map of all cortico-tectal projections and identify four collicular zones with differential cortical inputs: medial (SC.m), centromedial (SC.cm), centrolateral (SC.cl) and lateral (SC.l). Further, we delineate the distinctive brain-wide input/output organization of each collicular zone, assemble multiple parallel cortico-tecto-thalamic subnetworks, and identify the somatotopic map in the SC that displays distinguishable spatial properties from the somatotopic maps in the neocortex and basal ganglia. Finally, we characterize interactions between those cortico-tecto-thalamic and cortico-basal ganglia-thalamic subnetworks. This study provides a structural basis for understanding how SC is involved in integrating different sensory modalities, translating sensory information to motor command, and coordinating different actions in goal-directed behaviors.
Collapse
Affiliation(s)
- Nora L Benavidez
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Bienkowski
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Muye Zhu
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Luis H Garcia
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Marina Fayzullina
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lei Gao
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ian Bowman
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lin Gou
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Neda Khanjani
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kaelan R Cotter
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Laura Korobkova
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marlene Becerra
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chunru Cao
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Monica Y Song
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Bin Zhang
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Seita Yamashita
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Amanda J Tugangui
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Brian Zingg
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kasey Rose
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Darrick Lo
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas N Foster
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Tyler Boesen
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hyun-Seung Mun
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sarvia Aquino
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giorgio A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Houri Hintiryan
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hong-Wei Dong
- Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Zhou X, Risold PY, Alvarez-Bolado G. Development of the GABAergic and glutamatergic neurons of the lateral hypothalamus. J Chem Neuroanat 2021; 116:101997. [PMID: 34182088 DOI: 10.1016/j.jchemneu.2021.101997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
In the last few years we assist to an unexpected deluge of genomic data on hypothalamic development and structure. Perhaps most surprisingly, the Lateral Zone has received much attention too. The new information focuses first of all on transcriptional heterogeneity. Many already known and a number of hitherto unknown lateral hypothalamic neurons have been described to an enormous degree of detail. Maybe the most surprising novel discoveries are two: First, some restricted regions of the embryonic forebrain neuroepithelium generate specific LHA neurons, either GABAergic or glutamatergic. Second, evidence is mounting that supports the existence of numerous kinds of "bilingual" lateral hypothalamic neurons, expressing (and releasing) glutamate and GABA both as well as assorted neuropeptides. This is not accepted by all, and it could be that genomic researchers need a common set of rules to interpret their data (sensitivity, significance, age of analysis). In any case, some of the new results appear to confirm hypotheses about the ability of the hypothalamus and in particular its Lateral Zone to achieve physiological flexibility on a fixed connectivity ("biochemical switching"). Furthermore, the results succinctly reviewed here are the basis for future advances, since the transcriptional databases generated can now be mined e.g. for adhesion genes, to figure out the causes of the peculiar histology of the Lateral Zone; or for ion channel genes, to clarify present and future electrophysiological data. And with the specific expression data about small subpopulations of neurons, their connections can now be specifically labeled, revealing novel relations with functional significance.
Collapse
Affiliation(s)
- Xunlei Zhou
- Dept. Neuroanatomy, University of Heidelberg School of Medicine, D-69120, Heidelberg, Germany
| | - Pierre-Yves Risold
- Neurosciences Intégratives et Cliniques EA481, Université de Bourgogne Franche-Comté, 25000, Besançon, France
| | - Gonzalo Alvarez-Bolado
- Dept. Neuroanatomy, University of Heidelberg School of Medicine, D-69120, Heidelberg, Germany.
| |
Collapse
|
48
|
Pasin Neto H, Bicalho E, Bortolazzo G. Interoception and Emotion: A Potential Mechanism for Intervention With Manual Treatment. Cureus 2021; 13:e15923. [PMID: 34336427 PMCID: PMC8312802 DOI: 10.7759/cureus.15923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 11/05/2022] Open
Abstract
Interoception is considered a perception pathway as important as the exteroceptive pathways for determining responses to maintain homeostasis. There is evidence about the influence of the interoception on emotional responses as these expressions are considered to be a combination of physical, environmental and individual beliefs. A large percentage of afferent fibers in the body are related to free nerve endings which, when stimulated, reach the insular cortex that participates in the process of emotions. The viscera afferent fibers represent 5% to 15% of all these inputs. Evidence emerges that demonstrates the importance of visceral health as part of the treatment of patients with emotional imbalances. It can be postulated that manual treatment applied to visceral fasciae can assist in interoceptive balance and have a positive impact on emotions. Therefore, the objective of the present study is to discuss the concepts of interoception, central sensitization, emotional health and visceral manual treatment.
Collapse
Affiliation(s)
- Hugo Pasin Neto
- Osteopathy, Brazilian College of Osteopathy, Sorocaba, BRA.,Physiotherapy, University of Sorocaba, Sorocaba, BRA
| | | | | |
Collapse
|
49
|
Yamaguchi T. Neural circuit mechanisms of sex and fighting in male mice. Neurosci Res 2021; 174:1-8. [PMID: 34175319 DOI: 10.1016/j.neures.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Surviving in the animal kingdom hinges on the ability to fight competitors and to mate with partners. Dedicated neural circuits in the brain allow animals to mate and attack without any prior experience. Classical lesioning and stimulation studies demonstrated that medial hypothalamic and limbic areas are crucial for male sexual and aggressive behaviors. Moreover, recent functional manipulation tools have uncovered neural circuits critical for mating and aggression, and optical and electrophysiological recordings have revealed how socially relevant information (e.g. sex-specific sensory signals, action commands for specific behaviors, mating- and aggression-specific motivational states) is encoded in these circuits. A better understanding of the neural mechanisms of innate social behaviors will provide critical insights to how complex behavioral outputs are coordinated at the circuit level. In this paper, I review these recent studies and discuss the potential circuit logic of male sexual and aggressive behaviors in mice.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, United States.
| |
Collapse
|
50
|
Abstract
Many concepts in mathematics are not fully defined, and their properties are implicit, which leads to paradoxes. New foundations of mathematics were formulated based on the concept of innate programs of behavior and thinking. The basic axiom of mathematics is proposed, according to which any mathematical object has a physical carrier. This carrier can store and process only a finite amount of information. As a result of the D-procedure (encoding of any mathematical objects and operations on them in the form of qubits), a mathematical object is digitized. As a consequence, the basis of mathematics is the interaction of brain qubits, which can only implement arithmetic operations on numbers. A proof in mathematics is an algorithm for finding the correct statement from a list of already-existing statements. Some mathematical paradoxes (e.g., Banach–Tarski and Russell) and Smale’s 18th problem are solved by means of the D-procedure. The axiom of choice is a consequence of the equivalence of physical states, the choice among which can be made randomly. The proposed mathematics is constructive in the sense that any mathematical object exists if it is physically realized. The consistency of mathematics is due to directed evolution, which results in effective structures. Computing with qubits is based on the nontrivial quantum effects of biologically important molecules in neurons and the brain.
Collapse
|