1
|
Mazhandu Z, Mashifana T. Active pharmaceutical contaminants in drinking water: myth or fact? Daru 2024; 32:925-945. [PMID: 39289294 DOI: 10.1007/s40199-024-00536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
Global water availability has been affected by a variety of factors, including climate change, water pollution, urbanization, and population growth. These issues have been particularly acute in many parts of the world, where access to clean water remains a significant challenge. In this context, preserving existing water bodies is a critical priority. Numerous studies have demonstrated the inadequacy of conventional water treatment processes in removing active pharmaceutical ingredients (APIs) from the water. These pharmaceutical active compounds have been detected in treated wastewater, groundwater, and even drinking water sources. The presence of APIs in water resources poses a significant threat not only to aquatic organisms but also to human health. These emerging contaminants have the potential to disrupt endocrine systems, promote the development of antibiotic-resistant bacteria, and bioaccumulate in the food chain, ultimately leading to unacceptable risks to public health. The inability of current conventional treatment methods to effectively remove APIs from water has raised serious concerns about the safety and reliability of water supplies. This issue requires immediate attention and the development of more effective treatment technologies to safeguard the quality of water resources and protect both aquatic ecosystems and human health. Other treatment methods, such as nanotechnology, microalgal treatment, and reverse osmosis, are promising in addressing the issue of API contamination in water resources. These innovative approaches have demonstrated higher removal efficiencies for a wide range of APIs compared to conventional methods, such as activated sludge and chlorination, which have been found to be inadequate in the removal of these emerging contaminants. The potential of these alternative treatment technologies to serve as effective tertiary treatment. To address this critical challenge, governments and policymakers should prioritize investment in research and development to establish effective and scalable solutions for eliminating APIs from various water sources. This should include comprehensive studies to assess the performance, cost-effectiveness, and environmental sustainability of emerging treatment technologies. The emerging contaminants should be included in robust water quality monitoring programs (Aus der Beek et al. in Environ Toxicol Chem 2016;35(4):823-835), with strict regulatory limits enforced to protect public health and the environment. By doing so, the scientific community and regulatory authorities can work together to develop a multi-barrier approach to safeguarding the water resources and ensuring access to safe, clean water for all. This review explores the potential of alternative treatment technologies to serve as viable solutions in the fight against API contamination. Innovative approaches, including nanotechnology, microalgal treatment, and reverse osmosis, have demonstrated remarkable success in addressing this challenge, exhibiting higher removal efficiencies compared to traditional methods.
Collapse
Affiliation(s)
- Zvanaka Mazhandu
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Tebogo Mashifana
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
2
|
Cong X, Mazierski P, Miodyńska M, Zaleska-Medynska A, Horn H, Schwartz T, Gmurek M. The role of TiO 2 and gC 3N 4 bimetallic catalysts in boosting antibiotic resistance gene removal through photocatalyst assisted peroxone process. Sci Rep 2024; 14:22897. [PMID: 39358462 PMCID: PMC11447026 DOI: 10.1038/s41598-024-74147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Antibiotics are extensively used in human medicine, aquaculture, and animal husbandry, leading to the release of antimicrobial resistance into the environment. This contributes to the rapid spread of antibiotic-resistant genes (ARGs), posing a significant threat to human health and aquatic ecosystems. Conventional wastewater treatment methods often fail to eliminate ARGs, prompting the adoption of advanced oxidation processes (AOPs) to address this growing risk. The study investigates the efficacy of visible light-driven photocatalytic systems utilizing two catalyst types (TiO2-Pd/Cu and g-C3N4-Pd/Cu), with a particular emphasis on their effectiveness in eliminating blaTEM, ermB, qnrS, tetM. intl1, 16 S rDNA and 23 S rDNA through photocatalytic ozonation and peroxone processes. Incorporating O3 into photocatalytic processes significantly enhances target removal efficiency, with the photocatalyst-assisted peroxone process emerging as the most effective AOP. The reemergence of targeted contaminants following treatment highlights the pivotal importance of AOPs and the meticulous selection of catalysts in ensuring sustained treatment efficacy. Furthermore, Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) analysis reveals challenges in eradicating GC-rich bacteria with TiO2 and g-C3N4 processes, while slight differences in Cu/Pd loadings suggest g-C3N4-based ozonation improved antibacterial effectiveness. Terminal Restriction Fragment Length Polymorphism analysis highlights the efficacy of the photocatalyst-assisted peroxone process in treating diverse samples.
Collapse
Affiliation(s)
- Xiaoyu Cong
- Institute of Functional Interfaces (IFG), Microbiology/Molecular Biology Department, Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Paweł Mazierski
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Magdalena Miodyńska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Adriana Zaleska-Medynska
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Harald Horn
- Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Institut, 76131, Karlsruhe, Germany
- Water Chemistry and Water Technology, DVGW German Technical and Scientific Association for Gas and Water Research Laboratories, 76131, Karlsruhe, Germany
| | - Thomas Schwartz
- Institute of Functional Interfaces (IFG), Microbiology/Molecular Biology Department, Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Marta Gmurek
- Institute of Functional Interfaces (IFG), Microbiology/Molecular Biology Department, Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, 93-005, Poland.
- Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Institut, 76131, Karlsruhe, Germany.
| |
Collapse
|
3
|
Love D, Slovisky M, Costa KA, Megarani D, Mehdi Q, Colombo V, Ivantsova E, Subramaniam K, Bowden JA, Bisesi JH, Martyniuk CJ. Toxicity Risks Associated With the Beta-Blocker Metoprolol in Marine and Freshwater Organisms: A Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 39291828 DOI: 10.1002/etc.5981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024]
Abstract
The detection of pharmaceuticals in aquatic ecosystems has generated concern for wildlife and human health over the past several decades. β-adrenergic blocking agents are a class of drugs designed to treat cardiovascular diseases and high blood pressure. Metoprolol is a second-generation β1-adrenergic receptor inhibitor detected in effluent derived from sewage treatment plants. Our review presents an updated survey of the current state of knowledge regarding the sources, occurrence, and toxicity of metoprolol in aquatic ecosystems. We further aimed to summarize the current literature on the presence of metoprolol in various classes of aquatic species and to consider the trophic transfer of these contaminants in marine mammals. The biological impacts of metoprolol have been reported in 20 aquatic organisms, with a primary focus on cardiac function and oxidative stress. Our review reveals that concentrations of metoprolol that cause toxicity in aquatic species are above levels that are typical of marine and freshwater environments. Future studies should investigate the effects of metoprolol at lower concentrations in aquatic organisms. Other recommendations include (1) a further focus on noncardiac endpoints, because computational assessments of currently available molecular data identify gonadotropins, vitellogenin, collagen, and cytokines as potential targets of modulation, and (2) development of adverse outcome pathways for cardiac dysfunction in aquatic species to improve our understanding of molecular interactions and outcomes following exposure. As the next generation of β-blockers is developed, continued diligence is needed for assessing environmental impacts in aquatic ecosystems to determine their potential accumulation and long-term effects on wildlife and humans. Environ Toxicol Chem 2024;00:1-14. © 2024 SETAC.
Collapse
Affiliation(s)
- Deirdre Love
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Megan Slovisky
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kaylie Anne Costa
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Dorothea Megarani
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Qaim Mehdi
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Vincent Colombo
- Department of Animal Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Emma Ivantsova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Department of Chemistry, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Zhao B, Park K, Kondo D, Wada H, Nakada N, Nishimura F, Ihara M, Tanaka H. Comparison on removal performance of virus, antibiotic-resistant bacteria, cell-associated and cell-free antibiotic resistance genes, and indicator chemicals by ozone in the filtrated secondary effluent of a sewage treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133347. [PMID: 38150766 DOI: 10.1016/j.jhazmat.2023.133347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Due to the widespread appearance of viruses, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs) in the aquatic environment, more powerful oxidation processes such as ozonation are needed to enhance the efficiency of their inactivation and removal during wastewater treatment. However, information is lacking on the elimination rates of viruses, ARBs, cell-associated ARGs (ca-ARGs), and cell-free ARGs (cf-ARGs) during ozonation. This study examined the kinetics and dose-dependent inactivation of a virus (MS2 coliphage) and an ARB (Ampicillin-resistant [AmpR] E. coli) and the removal of ca- and cf-ARGs (plasmid-encoded blaTEM) by ozonation in a filtered secondary effluent (SE) of a municipal sewage treatment plant (STP). In addition, the ozonation kinetics of carbamazepine (CBZ) and metoprolol (MTP)-ubiquitous organic micropollutants with different removal rate constants-were also investigated in order to monitor their effectiveness as indicators for the abovementioned biological risk factors. Our results showed that ozonation was an efficient way to remove MS2, AmpRE. coli, ARGs, CBZ, and MTP. We investigated the kinetics of their inactivation/removal with respect to exposure in terms of CT (dissolved ozone concentration C and contact time T) value, and found their inactivation/removal constants were in the following order: MS2 (8.66 ×103 M-1s-1) ≈ AmpRE. coli (8.19 ×103 M-1s-1) > cf-ARG (3.95 ×103 M-1s-1) > CBZ (3.21 ×103 M-1s-1) > ca-ARG (2.48×103 M-1s-1) > MTP (8.35 ×102 M-1s-1). In terms of specific ozone dose, > 5-log inactivation of MS2 was observed at > 0.30 mg O3/mg DOC, while > 5-log inactivation of AmpRE. coli was confirmed at 1.61-2.35 mg O3/mg DOC. Moreover, there was almost no removal of ca-ARG when the specific ozone dose was < 0.68 mg O3/mg DOC. However, 2.86-3.42-log removal of ca-ARG was observed at 1.27-1.31 mg O3/mg DOC, while 1.14-1.36-log removal of cf-ARG was confirmed at 3.60-4.30 mg O3/mg DOC. As alternative indicators, > 4-log removal of CBZ was observed at > 1.00 mg O3/mg DOC, while > 2-log removal of MTP was confirmed at > 2.00 mg O3/mg DOC. Thus, it was observed that inactivation of E. coli needs a greater ozone dose to achieve the same level of inactivation of AmpRE. coli; for ARGs, cf-ARG can persist longer than ca-ARG if low dosages of ozone are applied in the filtrated SE, CBZ might act as an indicator with which to monitor the inactivation of viruses and ARBs, while MTP might act as an indicator with which to monitor removal of ARGs. Moreover, cf-ARG cannot be neglected even after ozonation due to the possibility that ca-ARGs can become cf-ARGs during ozonation and be discharged with the final effluent, posing a potential risk to the receiving environment.
Collapse
Affiliation(s)
- Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan.
| | - Kyoungsoo Park
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Daisuke Kondo
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Hiroyuki Wada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Norihide Nakada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan; Graduate School of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 221-8686, Japan
| | - Fumitake Nishimura
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan; Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe-Otsu, Nankoku city, Kochi 783-8502, Japan.
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
5
|
Vijay Pradhap Singh M, Ravi Shankar K. Next-generation hybrid technologies for the treatment of pharmaceutical industry effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120197. [PMID: 38301475 DOI: 10.1016/j.jenvman.2024.120197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Water and industries are intangible units of the globe that are always set to meet the population's demand. The global population depends on one-third of freshwater increasing the demand. The increase in population along with urbanization has polluted the fresh water resources. The pharmaceutical industry is marked as an emerging contaminant of water pollution. The most common type of pharmaceutical drugs that are detected in the environment includes antibiotics, analgesics, NSAIDs, and pain-relieving drugs. These drugs alter the food chain of the organisms causing chaos mainly in the marine ecosystem. Pharmaceutical drugs are found only in shallow amounts (ng/mg) they have a huge impact on the living system. The consumption of water contaminated with pharmaceutical ingredients can disrupt reproduction, hormonal imbalance, cancer, and respiratory problems. Various methods are used to remove these chemicals from the environment. In this review, we mainly focused on the emerging hybrid technologies and their significance in the effective treatment of pharmaceutical wastewater. This review paper primarily elaborates on the merits and demerits of existing conventional technologies helpful in developing integrated technologies for the modern era of pharmaceutical effluent treatment. This review paper further in detail discusses the various strategies of eco-friendly bioremediation techniques namely biostimulation, bioaugmentation, bacterial degradation, mycoremediation, phytoremediation, and others for the ultimate removal of pharmaceutical contaminants in wastewater. The review makes clear that targeted and hybrid solutions are what the world will require in the future to get rid of these pharmacological prints.
Collapse
Affiliation(s)
- M Vijay Pradhap Singh
- Department of Biotechnology, Vivekanandha College of Engineering for Women (Autonomous), Namakkal, Elayampalayam, Tiruchengode, Tamil Nadu, 637 205, India.
| | - K Ravi Shankar
- Department of Biotechnology, University College of Engineering, Anna University-BIT Campus, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
6
|
Yan H, Zhang T, Yang Y, Li J, Liu Y, Qu D, Feng L, Zhang L. Occurrence of iodinated contrast media (ICM) in water environments and their control strategies with a particular focus on iodinated by-products formation: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119931. [PMID: 38154220 DOI: 10.1016/j.jenvman.2023.119931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Iodinated contrast media (ICM), one of the pharmaceutical and personal care products (PPCPs), are frequently detected in various water bodies due to the strong biochemical stability and recalcitrance to conventional water treatment. Additionally, ICM pose a risk of forming iodinated by-products that can be detrimental to the aquatic ecosystem. Consequently, effectively removing ICM from aqueous environments is a significant concern for environmental researchers. This article provides a comprehensive review of the structural characteristics of ICM, their primary source (e.g., domestic and hospital wastewater), detected concentrations in water environments, and ecological health hazards associated with them. The current wastewater treatment technologies for ICM control are also reviewed in detail with the aim of providing a reference for future research. Prior researches have demonstrated that traditional treatment processes (such as physical adsorption, biochemical method and chemical oxidation method) have inadequate efficiencies in the removal of ICM. Currently, the application of advanced oxidation processes to remove ICM has become extensive, but there are some issues like poor deiodination efficiency and the risk of forming toxic intermediates or iodinated by-products. Conversely, reduction technologies have a high deiodination rate, enabling the targeted removal of ICM. But the subsequent treatment issues related to iodine (such as I- and OI-) are often underestimated, potentially generating iodinated by-products during the subsequent treatment processes. Hence, we proposed using combined reduction-oxidation technologies to remove ICM and achieved synchronous control of iodinated by-products. In the future, it is recommended to study the degradation efficiency of ICM and the control efficiency of iodinated by-products by combining different reduction and oxidation processes.
Collapse
Affiliation(s)
- Hao Yan
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi Yang
- University of Science and Technology of China, Anhui 230026, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Dan Qu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Coman C, Hădade N, Pesek S, Silaghi-Dumitrescu R, Moț AC. Removal and degradation of sodium diclofenac via radical-based mechanisms using S. sclerotiorum laccase. J Inorg Biochem 2023; 249:112400. [PMID: 37844532 DOI: 10.1016/j.jinorgbio.2023.112400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The recently isolated Sclerotinia sclerotiorum laccase was used for the degradation of sodium diclofenac, a nonsteroidal anti-inflammatory drug widely found in the aquatic environment. The Michaelis-Menten parameters, half-life of diclofenac at different pH values in presence of this enzyme and potential inhibitors were evaluated. Diclofenac-based radicals formed in presence of laccase were spin-trapped and detected using EPR spectroscopy. Almost complete diclofenac degradation (> 96%) occurred after a 30-h treatment via radical-based generated oligomers and their rapid precipitation, thus ensuring an unprecedented green formula suitable not only for degradation but also for straightforward removal of the degradation products. High performance liquid chromatography coupled with atmospheric pressure chemical ionization-ion trap mass spectrometry (HPLC-APCI-MS) analyses of the degradation products of diclofenac in aqueous dosage revealed the presence of at least seven products while HR Orbitrap MS analysis showed that the enzymatic treatment produced high molecular weight metabolites through a radical oligomerization mechanism of diclofenac. The enzymatically formed products precipitated and its constituting components were also characterized using UV-vis spectroscopy, infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA).
Collapse
Affiliation(s)
- Cristina Coman
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| | - Niculina Hădade
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| | - Szilárd Pesek
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| | - Radu Silaghi-Dumitrescu
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania.
| | - Augustin C Moț
- Babeș-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry, Mihail Kogălniceanu, no. 1, Cluj-Napoca 400084, Romania
| |
Collapse
|
8
|
Ehrhart AL, Granek EF. PPCPs in coastal wastewater treatment plant effluent and uptake by Pacific oysters (Crassostrea gigas): Findings from a laboratory experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165728. [PMID: 37495135 DOI: 10.1016/j.scitotenv.2023.165728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Municipal wastewater treatment plant (WWTP) effluent is a primary source of pharmaceuticals and personal care products (PPCPs) to the marine environment, as most of these compounds are not fully removed during the treatment process. Continual discharge from WWTPs into coastal areas may act as a stressor by continually exposing organisms to a suite of PPCPs. To quantify organismal exposure to PPCP mixtures, we conducted a 12-week lab experiment that exposed Pacific oysters to effluent from two Oregon coastal WWTPs of different discharge capacities (permitted as <1 million gallons/day and >1 million gallons/day; or < or >3.785 million liters/day) at a dilution of 25 %. Composite samples of weekly collected effluent and a subset of freeze-dried oysters from experiment week 12 were analyzed for PPCPs. Though challenges with food availability inhibited our ability to confidently identify effects of the contaminants on growth and fitness, the experiment allowed us to examine uptake of contaminants from effluent into an estuarine bivalve of commercial importance. We detected 30 PPCPs and three alkylphenols in effluent and 13 PPCPs and four alkylphenols in oyster tissue, indicating high rates of release from secondary treatment and significant potential for marine organism exposure to and uptake of PPCPs in rural coastal areas.
Collapse
Affiliation(s)
- Amy L Ehrhart
- Portland State University, Department of Environmental Science and Management, Science Research and Teaching Center, Rm. 218, 1719 SW 10th Ave, Portland, OR 97201, USA.
| | - Elise F Granek
- Portland State University, Department of Environmental Science and Management, Science Research and Teaching Center, Rm. 218, 1719 SW 10th Ave, Portland, OR 97201, USA.
| |
Collapse
|
9
|
Wang A, Liu X, Wen Y, Qiu Y, Lv S, Xu M, Meng C, Wang K, Lin F, Xie S, Zhuo Q. Single-atom Zr embedded Ti 4O 7 anode coupling with hierarchical CuFe 2O 4 particle electrodes toward efficient electrooxidation of actual pharmaceutical wastewater. WATER RESEARCH 2023; 245:120596. [PMID: 37717331 DOI: 10.1016/j.watres.2023.120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Electrocatalytic oxidation is commonly restricted by low degradation efficiency, slow mass transfer, and high energy consumption. Herein, a synergetic electrocatalysis system was developed for removal of various drugs, i.e., atenolol, florfenicol, and diclofenac sodium, as well as actual pharmaceutical wastewater, where the newly-designed single-atom Zr embedded Ti4O7 (Zr/Ti4O7) and hierarchical CuFe2O4 (CFO) microspheres were used as anode and microelectrodes, respectively. In the optimal reaction system, the degradation efficiencies of 40 mg L-1 atenolol, florfenicol, and diclofenac sodium could achieve up to 98.8%, 93.4%, and 85.5% in 120 min with 0.1 g L-1 CFO at current density of 25 mA cm-2. More importantly, in the flow-through reactor, the electrooxidation lasting for 150 min could reduce the COD of actual pharmaceutical wastewater from 432 to 88.6 mg L-1, with a lower energy consumption (25.67 kWh/m3). Meanwhile, the electrooxidation system maintained superior stability and environmental adaptability. DFT theory calculations revealed that the excellent performance of this electrooxidation system could be ascribed to the striking features of the reduced reaction energy barrier by single-atom Zr loading and abundant oxygen vacancies on the Zr/Ti4O7 surface. Moreover, the characterization and experimental results demonstrated that the CFO unique hierarchical structure and synergistic effect between electrodes were also the important factors that could improve the system performance. The findings shed light on the single-atom material design for boosting electrochemical oxidation performance.
Collapse
Affiliation(s)
- Anqi Wang
- Research Center for Eco-environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Xingxin Liu
- Research Center for Eco-environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yukai Wen
- Research Center for Eco-environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yongfu Qiu
- Research Center for Eco-environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Sihao Lv
- Research Center for Eco-environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Manman Xu
- Research Center for Eco-environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Cuilin Meng
- Research Center for Eco-environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kai Wang
- Research Center for Eco-environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Fengjie Lin
- Research Center for Eco-environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shuibo Xie
- School of Civil Engineering, University of South China, Hengyang 421001, China.
| | - Qiongfang Zhuo
- Research Center for Eco-environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China.
| |
Collapse
|
10
|
Zhang Y, Wang J, Cui H, Gao S, Ye L, Li Z, Nie S, Han J, Wang A, Liang B. Environmental occurrence, risk, and removal strategies of pyrazolones: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132471. [PMID: 37683347 DOI: 10.1016/j.jhazmat.2023.132471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Pyrazolones, widely used as analgesic and anti-inflammatory pharmaceuticals, have become a significant concern because of their persistence and widespread presence in engineered (e.g., wastewater treatment plants) and natural environments. Thus, the urgent task is to ensure the effective and cost-efficient removal of pyrazolones. Advanced oxidation processes are the most commonly used removal method. Furthermore, the biodegradation of pyrazolones has been exploited using microbial communities or pure strains; however, screening for efficient degrading bacteria and clarifying the biodegradation mechanisms required further research. In this critical review, we overview the environmental occurrence of pyrazolones, their potential ecological health risks, and their corresponding removal techniques (e.g., O3 oxidation, photocatalysis, and Fenton-like process). We also emphasize the prospects for the risk and contamination control of pyrazolones in various environments using physicochemical-biochemical coupling technology. Collectively, the environmental occurrence of pyrazolones poses significant public health concerns, necessitating heightened attention and the implementation of effective methods to minimize their environmental risks.
Collapse
Affiliation(s)
- Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jingyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Long Ye
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shichen Nie
- Shandong Hynar Water Environmental Protection Co., Ltd., Caoxian, China
| | - Jinglong Han
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
11
|
Sierra-Olea M, Kölle S, Bein E, Reemtsma T, Lechtenfeld OJ, Hübner U. Isotopically labeled ozone: A new approach to elucidate the formation of ozonation products. WATER RESEARCH 2023; 233:119740. [PMID: 36822109 DOI: 10.1016/j.watres.2023.119740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
As ozonation becomes a widespread treatment for removal of chemicals of emerging concern from wastewater treatment plant effluents, there are increasing concerns regarding the formation of ozonation products (OPs), and their possible impacts on the aquatic environment and eventually human health. In this study, a novel method was developed that utilizes heavy oxygen (18O2) for the production of heavy ozone ([18O1]O2, [18O2]O1, [18O3]) to actively label OPs from oxygen transfer reactions. To establish and validate this new approach, venlafaxine with a well-described oxygen transfer reaction (tertiary amine -> N-oxide) was chosen as a model compound. Observed 18O/16O ratios in the major OP venlafaxine N-oxide (NOV) correlated with expected 18O purities based on tracer experiments. These results confirmed the successful labeling with heavy oxygen and furthermore demonstrate the potential to monitor NOV as an indicator of 18O/16O ratios during ozonation. As a next step, 18O/16O ratios were used to elucidate the formation mechanism of previously described OPs from sulfamethoxazole (SMX). Seven OPs were detected including the frequently described nitro-SMX, which was formed with a maximum yield of 3.2% (of initial SMX). With the successful labeling of six of the seven OPs from sulfamethoxazole, it was possible to confirm their previously proposed formation pathways, and to distinguish oxygen transfer from electron transfer reactions. 18O/16O ratios in OPs indicate that hydroxylation of the aromatic ring and formation of nitro-groups mostly follows oxygen transfer reactions, while electron transfer reactions initiate the formation of hydroxylamine and the abstraction of NH2 leading to catechol.
Collapse
Affiliation(s)
- Millaray Sierra-Olea
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching D-85748, Germany
| | - Simon Kölle
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching D-85748, Germany
| | - Emil Bein
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching D-85748, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig 04318, Germany; Institute of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, Leipzig 04103, Germany
| | - Oliver J Lechtenfeld
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig 04318, Germany; ProVIS-Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, Leipzig 04318, Germany
| | - Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching D-85748, Germany.
| |
Collapse
|
12
|
An YC, Gao XX, Jiang WL, Han JL, Ye Y, Chen TM, Ren RY, Zhang JH, Liang B, Li ZL, Wang AJ, Ren NQ. A critical review on graphene oxide membrane for industrial wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 223:115409. [PMID: 36746203 DOI: 10.1016/j.envres.2023.115409] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
An important way to promote the environmental industry's goal of carbon reduction is to promote the recycling of resources. Membrane separation technology has unique advantages in resource recovery and advanced treatment of industrial wastewater. However, the great promise of traditional organic membrane is hampered by challenges associated with organic solvent tolerance, lack of oxidation resistance, and serious membrane fouling control. Moreover, the high concentrations of organic matter and inorganic salts in the membrane filtration concentrate also hinder the wider application of the membrane separation technology. The emerging cost-effective graphene oxide (GO)-based membrane with excellent resistance to organic solvents and oxidants, more hydrophilicity, lower membrane fouling, better separation performance has been expected to contribute more in industrial wastewater treatment. Herein, we provide comprehensive insights into the preparation and characteristic of GO membranes, as well as current research status and problems related to its future application in industrial wastewater treatment. Finally, concluding remarks and future perspectives have been deduced and recommended for the GO membrane separation technology application for industrial wastewater treatment, which leads to realizing sustainable wastewater recycling and a nearly "zero discharge" water treatment process.
Collapse
Affiliation(s)
- Ye-Chen An
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiao-Xu Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wen-Li Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| | - Yuan Ye
- Key Laboratory for Advanced Technology in Environment Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Tian-Ming Chen
- Key Laboratory for Advanced Technology in Environment Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Rui-Yun Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jia-Hui Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| |
Collapse
|
13
|
Manasfi T, Houska J, Gebhardt I, von Gunten U. Formation of carbonyl compounds during ozonation of lake water and wastewater: Development of a non-target screening method and quantification of target compounds. WATER RESEARCH 2023; 237:119751. [PMID: 37141690 DOI: 10.1016/j.watres.2023.119751] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/14/2023] [Indexed: 05/06/2023]
Abstract
Ozonation of natural waters is typically associated with the formation of carbonyl compounds (aldehydes, ketones and ketoacids), a main class of organic disinfection byproducts (DBPs). However, the detection of carbonyl compounds in water and wastewater is challenged by multiple difficulties inherent to their physicochemical properties. A non-target screening method involving the derivatisation of carbonyl compounds with p-toluenesulfonylhydrazine (TSH) followed by their analysis using liquid chromatography coupled to electrospray ionisation high-resolution mass spectrometry (LC-ESI-HRMS) and an advanced non-target screening and data processing workflow was developed. The workflow was applied to investigate the formation of carbonyl compounds during ozonation of different water types including lake water, aqueous solutions containing Suwannee River Fulvic acid (SRFA), and wastewater. A higher sensitivity for most target carbonyl compounds was achieved compared to previous derivatisation methods. Moreover, the method allowed the identification of known and unknown carbonyl compounds. 8 out of 17 target carbonyl compounds were consistently detected above limits of quantification (LOQs) in most ozonated samples. Generally, the concentrations of the 8 detected target compounds decreased in the order: formaldehyde > acetaldehyde > glyoxylic acid > pyruvic acid > glutaraldehyde > 2,3-butanedione > glyoxal > 1-acetyl-1-cyclohexene. The DOC concentration-normalised formation of carbonyl compounds during ozonation was higher in wastewater and SRFA-containing water than in lake water. The specific ozone doses and the type of the dissolved organic matter (DOM) played a predominant role for the extent of formation of carbonyl compounds. Five formation trends were distinguished for different carbonyl compounds. Some compounds were produced continuously upon ozonation even at high ozone doses, while others reached a maximum concentration at a certain ozone dose above which they decreased. Concentrations of target and peak areas of non-target carbonyl compounds during full-scale ozonation at a wastewater treatment plant showed an increase as a function of the specific ozone dose (sum of 8 target compounds ∼ 280 µg/L at 1 mgO3/mgC), followed by a significant decrease after biological sand filtration (> 64-94% abatement for the different compounds). This highlights the biodegradability of target and non-target carbonyl compounds and the importance of biological post-treatment.
Collapse
Affiliation(s)
- Tarek Manasfi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Joanna Houska
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Isabelle Gebhardt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
14
|
Full-Scale O3/Micro-Nano Bubbles System Based Advanced Oxidation as Alternative Tertiary Treatment in WWTP Effluents. Catalysts 2023. [DOI: 10.3390/catal13010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Wastewater treatment plant effluents can be an important source of contamination in agricultural reuse practices, as pharmaceuticals are poorly degraded by conventional treatments and can enter crops, thereby becoming a toxicological risk. Therefore, advanced tertiary treatments are required. Ozone (O3) is a promising alternative due to its capacity to degrade pharmaceutical compounds, together with its disinfecting power. However, mass transfer from the gas to the liquid phase can be a limiting step. A novel alternative for increased ozone efficiency is the combination of micro-nano bubbles (MNBs). However, this is still a fairly unknown method, and there are also many uncertainties regarding their implementation in large-scale systems. In this work, a combined O3/MNBs full-scale system was installed in a WWTP to evaluate the removal efficiency of 12 pharmaceuticals, including COVID-19-related compounds. The results clearly showed that the use of MNBs had a significantly positive contribution to the effects of ozone, reducing energy costs with respect to conventional O3 processes. Workflow and ozone production were key factors for optimizing the system, with the highest efficiencies achieved at 2000 L/h and 15.9 gO3/h, resulting in high agronomic water quality effluents. A first estimation of the transformation products generated was described, jointly with the energy costs required.
Collapse
|
15
|
Zhang W, Fourcade F, Amrane A, Geneste F. Removal of Iodine-Containing X-ray Contrast Media from Environment: The Challenge of a Total Mineralization. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010341. [PMID: 36615536 PMCID: PMC9822505 DOI: 10.3390/molecules28010341] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
Iodinated X-ray contrast media (ICM) as emerging micropollutants have attracted considerable attention in recent years due to their high detected concentration in water systems. It results in environmental issues partly due to the formation of toxic by-products during the disinfection process in water treatment. Consequently, various approaches have been investigated by researchers in order to achieve ICM total mineralization. This review discusses the different methods that have been used to degrade them, with special attention to the mineralization yield and to the nature of formed by-products. The problem of pollution by ICM is discussed in the first part dedicated to the presence of ICM in the environment and its consequences. In the second part, the processes for ICM treatment including biological treatment, advanced oxidation/reductive processes, and coupled processes are reviewed in detail. The main results and mechanisms involved in each approach are described, and by-products identified during the different treatments are listed. Moreover, based on their efficiency and their cost-effectiveness, the prospects and process developments of ICM treatment are discussed.
Collapse
Affiliation(s)
- Wei Zhang
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
- CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
| | - Florence Fourcade
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
- Correspondence: (F.F.); (F.G.)
| | - Abdeltif Amrane
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
| | - Florence Geneste
- CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
- Correspondence: (F.F.); (F.G.)
| |
Collapse
|
16
|
Metal-organic frameworks for the adsorptive removal of pharmaceutically active compounds (PhACs): Comparison to activated carbon. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Daniele G, Lafay F, Arnaudguilhem C, Mounicou S, Geffard A, Bonnard I, Dedourge-Geffard O, Bonnefoy C, Vulliet E. Evaluation of the accumulation of the iodinated contrast agents diatrizoic acid and iohexol in Dreissena polymorpha mollusks. CHEMOSPHERE 2023; 312:137153. [PMID: 36370762 DOI: 10.1016/j.chemosphere.2022.137153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Mollusks are very sensitive to aquatic environmental alterations and then, are important bio-indicators for monitoring the contamination of water bodies. Iodinated X-ray contrast media (ICMs) are ubiquitously present in the aquatic environment, primarily due to their high consumption for diagnosis purposes, high injection levels, low biodegradability, and low removal rates by wastewater treatment plants. Although these compounds are assumed to be of low toxicity, aquatic organisms are continuously exposed to these agents, which may result in adverse effects as ICMs can act as iodine source and disrupt the endocrine system. Thus, the evaluation of their environmental risk, especially on aquatic fauna is of great interest. To this end, we first compared the accumulation behavior, based on iodine analysis, of two ICM exhibiting different osmolality, diatrizoic acid and iohexol in Dreissena polymorpha bivalves exposed under laboratory conditions at concentrations of 0, 100, and 1000 μg/L during 4 and 7 days. This study was the first to provide information on iodine concentration in whole soft tissues and several organs in control zebra mussels. Moreover, it showed, after exposure, an increase of iodine content mainly in the digestive glands, followed by gills and gonads, highlighting that ICMs actually enter the organisms. Thus, bioaccumulation of ICMs studies were then performed, by liquid chromatography coupled to tandem mass spectrometry, on entire mollusks and digestive glands of organisms exposed at 0, 10, 100, and 1000 μg/L of both ICMs during 21 days, followed by 4 days of depuration. These first data on ICMs concentrations in zebra mussels, showed a clear accumulation of ICMs in mussels as a function of relative exposure level, as well as a rapid depuration. Osmolality did not seem to have a significant impact on the accumulation level, but a slight difference was observed on the accumulation pattern between both ICMs.
Collapse
Affiliation(s)
- Gaëlle Daniele
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France.
| | - Florent Lafay
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | | | - Sandra Mounicou
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Alain Geffard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des Milieux Aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims, Cedex 2, France
| | - Isabelle Bonnard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des Milieux Aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims, Cedex 2, France
| | - Odile Dedourge-Geffard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des Milieux Aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims, Cedex 2, France
| | - Christelle Bonnefoy
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| |
Collapse
|
18
|
Oliveras J, Marcon L, Bastús NG, Puntes V. Functionalization of graphene nanostructures with inorganic nanoparticles and their use for the removal of pharmaceutical pollutants in water. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1084035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Emerging pollutants such as pharmaceuticals are of special concern because despite their low environmental concentration, their biological activity can be intense, and they should be prevented to reach uncontrolledly to the environment. A graphene-based hybrid material decorated with Fe3O4 and TiO2 nanoparticles (NPs) has been prepared to effectively remove emerging pollutants as nonsteroidal anti-inflammatory drugs (NSAIDs) Ibuprofen and Diclofenac present in water at low environmental concentrations by a one-step functionalization process following a novel gentle and scalable surfactant depletion approach. Following this methodology, nanoparticles are progressively deprived of their original surfactant in the presence of graphene, leading to the formation of hybrid nanostructures composed of two different types of nanoparticles well dispersed over the graphene nanosheets. Ibuprofen and Diclofenac adsorption kinetics on the composites was investigated via UV-Vis spectroscopy. The as prepared hybrid material possesses high adsorption capacity, superparamagnetic properties, photocatalytic behavior, and good water dispersibility. Thanks to incorporating TiO2 nanoparticles as in situ catalysts, the adsorption performance of composites is restored after use, which could be a promising recycling pathway for the adsorbents in wastewater treatments.
Collapse
|
19
|
Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, Shiraku ML, Ling W. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. CHEMOSPHERE 2022; 308:136370. [PMID: 36113656 DOI: 10.1016/j.chemosphere.2022.136370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past two decades, steroidal estrogens (SEs) such as 17α-ethylestradiol (EE2), 17β-estradiol (E2),17α-estradiol (17α-E2), estriol (E3) and estrone (E1) have elicited worldwide attention due to their potentially harmful effects on human health and aquatic organisms even at low concentration ng/L. Natural steroidal estrogens exhibit greater endocrine disruption potency due to their high binding effect on nuclear estrogen receptors (ER). However, less has been explored regarding their associated environmental risks and fate. A comprehensive bibliometric study of the current research status of SEs was conducted using the Web of Science to assess the development trends and current knowledge of SEs in the last two decades, from 2001 to 2021 October. The number of publications has tremendously increased from 2003 to 2021. We summarized the contamination status and the associated ecological risks of SEs in different environmental compartments. The results revealed that SEs are ubiquitous in surface waters and natural SEs are most studied. We further carried out an in-depth evaluation and synthesis of major research hotspots and the dominant SEs in the matrices were E1, 17β-E2, 17α-E2, E3 and EE2. Nonetheless, investigations of SEs in soils, groundwater, and sediments remain scarce. This study elucidates SEs distribution, toxicological risks, ecological fate and mitigation measures, which will be beneficial for future monitoring, management, and risk assessment. Further studies are recommended to assess the toxicological risks of different SEs in complex environmental matrices to pursue a more precise and holistic quantitative estimation of estrogenic risk.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Margaret L Shiraku
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
20
|
Rahimi M, Salehi E, Mandooie M, Khalili N. Adsorption/Ozonation Integration for Intensified Ethyl Acetate Plant Wastewater Treatment: Process Optimization and Sensitivity Analysis Assessment. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Merkus VI, Sommer C, Smollich E, Sures B, Schmidt TC. Acute ecotoxicological effects on daphnids and green algae caused by the ozonation of ibuprofen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157611. [PMID: 35896135 DOI: 10.1016/j.scitotenv.2022.157611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Due to its ubiquitous presence in wastewaters, wastewater treatment plant effluents and even surface waters, the removal of the pharmaceutical ibuprofen from water is of special interest. Ozonation is widely applied for the treatment of micropollutants in wastewater treatment plants and is already known to also degrade ibuprofen. However, the formation of a wide range of transformation products during such oxidation steps might affect the aquatic environment. This study focuses on the acute ecotoxicological impact of the ibuprofen ozonation products on the two model organisms Daphnia magna and Desmodesmus subspicatus. For the identification of possibly ecotoxic products, a new workflow combining ecotoxicological testing, analytical methods and toxicity prediction was applied. Examination at different pH conditions with increasing ozone doses can point to respective products for further systematic examination. Seven ozonation products were confirmed in this study, two of them for the first time. Five previously postulated products were rejected. For pH 7 the inhibition of green algae growth was observed for mixtures oxidized with low ozone doses, while at pH 3 the mixtures with higher ozone doses caused toxic effects on the mobility of daphnids. Together with the analytical measurements in combination with ecotoxicity prediction, six products were identified which might have caused the toxic effect on green algae. However, no assignment to the observed toxic effects on daphnids was possible. The gained results indicate that mixture toxicity might play a role in oxidation processes and needs to be considered in ozonation studies concerning the ecotoxicological impact. Furthermore, the different observed toxicity for the two organisms underlines the importance of using multiple test systems for a comprehensive evaluation of the ecotoxicity during ozonation processes.
Collapse
Affiliation(s)
- Valentina I Merkus
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Christina Sommer
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Esther Smollich
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Bernd Sures
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany.
| |
Collapse
|
22
|
Kharel S, Tentscher PR, Bester K. Further transformation of the primary ozonation products of tramadol- and venlafaxine N-oxide: Mechanistic and structural considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157259. [PMID: 35817117 DOI: 10.1016/j.scitotenv.2022.157259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Ozonation has been used to effectively remove micropollutants from the secondary effluent in several wastewater treatment plants. It is known that ozonation transforms tertiary amine compounds into their respective N-oxides, however in an earlier study a mass balance could not be closed at elevated ozone concentrations, leading to the assumption that more ozonation products are possible. This study was conducted to elucidate which (hitherto unknown) ozonation products can be formed from venlafaxine and tramadol when ozonating wastewater. Ozonation experiments were performed with tramadol and venlafaxine N-oxide in two different set-ups. Both tramadol- and venlafaxine N-oxide degraded during ozonation in pure (deionized) water in both semi-continuous and batch mode ozonation set-ups. 13 and 17 new transformation products were detected from tramadol- and venlafaxine N-oxide respectively, using high resolution mass spectrometry with ESI(+) ionization. Empirical chemical formulas were proposed based on the determination of the exact masses and interpretation of the product ion spectra. These transformation products result from the addition of one to three oxygen atoms and removal of C, -CH2, C2H2, C3H6, etc., from the parent molecule, respectively. Quenching experiments suggested that most of the transformation products originated from the direct reaction with ozone (eight for tramadol N-oxide and ten for venlafaxine N-oxide), whereas fewer products originated from the reaction with OH radicals (three for tramadol N-oxide and three for venlafaxine N-oxide). Reaction mechanisms and chemical structures of products are proposed, based on the available active sites and past literature on ozone reaction mechanisms. The experimental results are compared to theory and literature on ozone reactive sites and ozone reaction mechanisms. All in all this shows that there can be multiple ozonation products, and ozonation pathways can be complex, even if initially only one ozonation product is formed.
Collapse
Affiliation(s)
- Suman Kharel
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark; Centre for Water Technology (WATEC) at Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Peter R Tentscher
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
| | - Kai Bester
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark; Centre for Water Technology (WATEC) at Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
23
|
Pariente MI, Segura Y, Álvarez-Torrellas S, Casas JA, de Pedro ZM, Diaz E, García J, López-Muñoz MJ, Marugán J, Mohedano AF, Molina R, Munoz M, Pablos C, Perdigón-Melón JA, Petre AL, Rodríguez JJ, Tobajas M, Martínez F. Critical review of technologies for the on-site treatment of hospital wastewater: From conventional to combined advanced processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115769. [PMID: 35944316 DOI: 10.1016/j.jenvman.2022.115769] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
This review aims to assess different technologies for the on-site treatment of hospital wastewater (HWW) to remove pharmaceutical compounds (PhCs) as sustances of emerging concern at a bench, pilot, and full scales from 2014 to 2020. Moreover, a rough characterisation of hospital effluents is presented. The main detected PhCs are antibiotics and psychiatric drugs, with concentrations up to 1.1 mg/L. On the one hand, regarding the presented technologies, membrane bioreactors (MBRs) are a good alternative for treating HWW with PhCs removal values higher than 80% in removing analgesics, anti-inflammatories, cardiovascular drugs, and some antibiotics. Moreover, this system has been scaled up to the pilot plant scale. However, some target compounds are still present in the treated effluent, such as psychiatric and contrast media drugs and recalcitrant antibiotics (erythromycin and sulfamethoxazole). On the other hand, ozonation effectively removes antibiotics found in the HWW (>93%), and some studies are carried out at the pilot plant scale. Even though, some families, such as the X-ray contrast media, are recalcitrant to ozone. Other advanced oxidation processes (AOPs), such as Fenton-like or UV treatments, seem very effective for removing pharmaceuticals, Antibiotic Resistance Bacteria (ARBs) and Antibiotic Resistance Genes (ARGs). However, they are not implanted at pilot plant or full scale as they usually consider extra reactants such as ozone, iron, or UV-light, making the scale-up of the processes a challenging task to treat high-loading wastewater. Thus, several examples of biological wastewater treatment methods combined with AOPs have been proposed as the better strategy to treat HWW with high removal of PhCs (generally over 98%) and ARGs/ARBs (below the detection limit) and lower spending on reactants. However, it still requires further development and optimisation of the integrated processes.
Collapse
Affiliation(s)
- M I Pariente
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| | - Y Segura
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - S Álvarez-Torrellas
- Department of Chemical Engineering and Materials, Universidad Complutense de Madrid, Av/ Complutense s/n, 28040, Madrid, Spain
| | - J A Casas
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - Z M de Pedro
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - E Diaz
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - J García
- Department of Chemical Engineering and Materials, Universidad Complutense de Madrid, Av/ Complutense s/n, 28040, Madrid, Spain
| | - M J López-Muñoz
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - J Marugán
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - A F Mohedano
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - R Molina
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - M Munoz
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - C Pablos
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - J A Perdigón-Melón
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering. University of Alcalá, Ctra Madrid-Barcelona, 33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - A L Petre
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering. University of Alcalá, Ctra Madrid-Barcelona, 33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - J J Rodríguez
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - M Tobajas
- Department of Chemical Engineering, Faculty of Science, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y, Valiente, 7, 28049, Madrid, Spain
| | - F Martínez
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933, Móstoles, Madrid, Spain
| |
Collapse
|
24
|
Ayyaru S, Ahn YH. Fabrication and application of novel high strength sulfonated PVDF ultrafiltration membrane for production of reclamation water. CHEMOSPHERE 2022; 305:135416. [PMID: 35738407 DOI: 10.1016/j.chemosphere.2022.135416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Advanced treated water (ATW) produced in wastewater treatment facilities was assessed as an excellent alternative water resource that can be used as reclamation water, such as indirect and direct potable reuse. The development of cutting-edge technology for simple but best practices is essential for the reliable production of safe reclamation water from wastewater. This study prepared a novel high strength sulfonated polyvinylidene fluoride (HSPVDF) ultrafiltration membrane and investigated to produce ATW, and performances were compared to sulfonated PVDF (SPVDF) (which was prepared without thermal treatment) and bare PVDF. To compare the properties of HSPVDF to hydrocarbon polymer, the polyetherimide (PEI) and Sulfonated PEI (SPEI) membrane were prepared. HSPVDF showed excellent membrane morphology, porosity, MWCO, and hydrophilicity, resulting in higher pure water flux (712 ± 6 L m-2 h-1) antifouling properties (Rir 1.3% and FRR 98.6%) compared to PVDF. It is an interesting fact that the tensile strength of the HSPVDF (3.4 ± 0.2 MPa) tremendously increased (3 folders) when compere to PVDF (1.3 ± 0.1 MPa). The HSPVDF membrane showed good removal efficiency up to 96 ± 05% and 97 ± 09% rejection for bovine serum albumin (BSA) and humic acid (HA), respectively. The membrane application studies for wastewater treatment showed that the tertiary HSPVDF UF membrane filtration following the nutrient removal activated sludge (NRAS) process can produce reliable and economic performance (125 ± 2 L m-2 h-1, 0.25 ± 0.05 NTU, no pathogens), suggesting that it can be a best practice technique that can replace the complicated multi-staged tertiary processes to produce reclamation water.
Collapse
Affiliation(s)
- Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
25
|
Integrated Electro-Ozonation and Fixed-Bed Column for the Simultaneous Removal of Emerging Contaminants and Heavy Metals from Aqueous Solutions. SEPARATIONS 2022. [DOI: 10.3390/separations9100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the current study, an integrated physiochemical method was utilized to remove tonalide (TND) and dimethyl phthalate (DMP) (as emerging contaminants, ECs), and nickel (Ni) and lead (Pb) (as heavy metals), from synthetic wastewater. In the first step of the study, pH, current (mA/cm2), and voltage (V) were set to 7.0, 30, and 9, respectively; then the removal of TND, DMP, Ni, and Pb with an electro-ozonation reactor was optimized using response surface methodology (RSM). At the optimum reaction time (58.1 min), ozone dosage (9.4 mg L−1), initial concentration of ECs (0.98 mg L−1), and initial concentration of heavy metals (28.9 mg L−1), the percentages of TND, DMP, Ni, and Pb removal were 77.0%, 84.5%, 59.2%, and 58.2%, respectively. For the electro-ozonation reactor, the ozone consumption (OC) ranged from 1.1 kg to 3.9 kg (kg O3/kg Ecs), and the specific energy consumption (SEC) was 6.95 (kWh kg−1). After treatment with the optimum electro-ozonation parameters, the synthetic wastewater was transferred to a fixed-bed column, which was filled with a new composite adsorbent (named BBCEC), as the second step of the study. BBCEC improved the efficacy of the removal of TND, DMP, Ni, and Pb to more than 92%.
Collapse
|
26
|
Qin Y, Yang S, You X, Liu Y, Qin L, Li Y, Zhang W, Liang W. Carbon nitride coupled with Fe-based MOFs as an efficient photoelectrocatalyst for boosted degradation of ciprofloxacin: Mechanism, pathway and fate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Hou M, Li X, Fu Y, Wang L, Lin D, Wang Z. Degradation of iodinated X-ray contrast media by advanced oxidation processes: A literature review with a focus on degradation pathways. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Alegbeleye O, Daramola OB, Adetunji AT, Ore OT, Ayantunji YJ, Omole RK, Ajagbe D, Adekoya SO. Efficient removal of antibiotics from water resources is a public health priority: a critical assessment of the efficacy of some remediation strategies for antibiotics in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56948-57020. [PMID: 35716301 DOI: 10.1007/s11356-022-21252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/30/2022] [Indexed: 05/27/2023]
Abstract
This review discusses the fundamental principles and mechanism of antibiotic removal from water of some commonly applied treatment techniques including chlorination, ozonation, UV-irradiation, Fenton processes, photocatalysis, electrochemical-oxidation, plasma, biochar, anaerobicdigestion, activated carbon and nanomaterials. Some experimental shortfalls identified by researchers such as certain characteristics of degradation agent applied and the strategies explored to override the identified limitations are briefly discussed. Depending on interactions of a range of factors including the type of antibiotic compound, operational parameters applied such as pH, temperature and treatment time, among other factors, all reviewed techniques can eliminate or reduce the levels of antibiotic compounds in water to varying extents. Some of the reviewed techniques such as anaerobic digestion generally require longer treatment times (up to 360, 193 and 170 days, according to some studies), while others such as photocatalysis achieved degradation within short contact time (within a minimum of 30, but up to 60, 240, 300 and 1880 minutes, in some cases). For some treatment techniques such as ozonation and Fenton, it is apparent that subjecting compounds to longer treatment times may improve elimination efficiency, whereas for some other techniques such as nanotechnology, application of longer treatment time generally meant comparatively minimal elimination efficiency. Based on the findings of experimental studies summarized, it is apparent that operational parameters such as pH and treatment time, while critical, do not exert sole or primary influence on the elimination percentage(s) achieved. Elimination efficiency achieved rather seems to be due more to the force of a combination of several factors.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| | | | - Adewole Tomiwa Adetunji
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Wellington, Western Cape, 7654, South Africa
| | - Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, P.M.B. 022, Nigeria
| | - Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria
| | - Damilare Ajagbe
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Oklahoma, USA
| | | |
Collapse
|
29
|
MacKeown H, von Gunten U, Criquet J. Iodide sources in the aquatic environment and its fate during oxidative water treatment - A critical review. WATER RESEARCH 2022; 217:118417. [PMID: 35452971 DOI: 10.1016/j.watres.2022.118417] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Iodine is a naturally-occurring halogen in natural waters generally present in concentrations between 0.5 and 100 µg L-1. During oxidative drinking water treatment, iodine-containing disinfection by-products (I-DBPs) can be formed. The formation of I-DBPs was mostly associated to taste and odor issues in the produced tap water but has become a potential health problem more recently due to the generally more toxic character of I-DBPs compared to their chlorinated and brominated analogues. This paper is a systematic and critical review on the reactivity of iodide and on the most common intermediate reactive iodine species HOI. The first step of oxidation of I- to HOI is rapid for most oxidants (apparent second-order rate constant, kapp > 103 M-1s-1 at pH 7). The reactivity of hypoiodous acid with inorganic and organic compounds appears to be intermediate between chlorine and bromine. The life times of HOI during oxidative treatment determines the extent of the formation of I-DBPs. Based on this assessment, chloramine, chlorine dioxide and permanganate are of the highest concern when treating iodide-containing waters. The conditions for the formation of iodo-organic compounds are also critically reviewed. From an evaluation of I-DBPs in more than 650 drinking waters, it can be concluded that one third show low levels of I-THMs (<1 µg L-1), and 18% exhibit concentrations > 10 µg L-1. The most frequently detected I-THM is CHCl2I followed by CHBrClI. More polar I-DBPs, iodoacetic acid in particular, have been reviewed as well. Finally, the transformation of iodide to iodate, a safe iodine-derived end-product, has been proposed to mitigate the formation of I-DBPs in drinking water processes. For this purpose a pre-oxidation step with either ozone or ferrate(VI) to completely oxidize iodide to iodate is an efficient process. Activated carbon has also been shown to be efficient in reducing I-DBPs during drinking water oxidation.
Collapse
Affiliation(s)
- Henry MacKeown
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratory of Advanced Spectroscopy for Interactions, Reactivity and Environment, Lille F-59000, France
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, Duebendorf 8600, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich 8092, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Justine Criquet
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratory of Advanced Spectroscopy for Interactions, Reactivity and Environment, Lille F-59000, France.
| |
Collapse
|
30
|
Mahgoub SM, Shehata MR, Zaher A, Abo El-Ela FI, Farghali A, Amin RM, Mahmoud R. Cellulose-based activated carbon/layered double hydroxide for efficient removal of Clarithromycin residues and efficient role in the treatment of stomach ulcers and acidity problems. Int J Biol Macromol 2022; 215:705-728. [DOI: 10.1016/j.ijbiomac.2022.06.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/05/2022]
|
31
|
Asghar A, Lutze HV, Tuerk J, Schmidt TC. Influence of water matrix on the degradation of organic micropollutants by ozone based processes: A review on oxidant scavenging mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128189. [PMID: 35077976 DOI: 10.1016/j.jhazmat.2021.128189] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The prevalence of organic micropollutants (OMPs) in aquatic environment has expedited scientific and regulatory efforts to retrofit existing wastewater treatment plants (WWTPs). The current strategy involves WWTPs upgrading with post-ozonation i.e., ozone (O3) and/or peroxone process (O3 +H2O2). Still, ozone-based degradation of OMPs faces several challenges. For example, the degradation mechanism and kinetics of OMPs could largely be affected by water matrix compounds which include inorganic ions and natural organic matter (NOM). pH also plays a decisive role in determining the reactivity of the oxidants (O3, H2O2, andHO•), stability and speciation of matrix constituents and OMPs and thus susceptibility of OMPs to the reactions with oxidants. There have been reviews discussing the impact of matrix components on the degradation of OMPs by advanced oxidation processes (AOPs). Nevertheless, a review focusing on scavenging mechanisms, formation of secondary oxidants and their scavenging effects with a particular focus on ozonation and peroxone process is lacking. Therefore, in order to broaden the knowledge on this subject, the database 'Web of Science' was searched for the studies related to the 'matrix effect on the degradation of organic micropollutants by ozone based processes' over the time period of 2004-2021. The relevant literature was thoroughly reviewed and following conclusions were made: i) chloride has inhibitory effects if it exits at higher concentrations or as free chlorine i.e. HOCl/ClO-. ii) The inhibitory effects of chloride, bromide, HOBr/OBr- and HOCl/ClO- are dominant in neutral and alkaline conditions and may result in the formation of secondary oxidants (e.g., chlorine atoms or free bromine), which in turn contribute to pollutant degradation or form undesired oxidation by-products such as BrO3-, ClO3- and halogenated organic products. ii) NOM may induce inhibitory or synergetic effects depending on the type, chemical properties and concentration of NOM. Therefore, more efforts are required to understand the importance of pH variation as well as the effects of water matrix on the reactivity of oxidants and subsequent degradation of OMPs.
Collapse
Affiliation(s)
- Anam Asghar
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany.
| | - Holger V Lutze
- Department of Civil and Environmental Engineering Sciences, Technische Universität Darmstadt, Karolinenpl. 5, 64289 Darmstadt, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
| | - Jochen Tuerk
- Institut für Energie, und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
| |
Collapse
|
32
|
Cristóvão M, Bernardo J, Bento-Silva A, Ressureição M, Bronze M, Crespo J, Pereira V. Treatment of anticancer drugs in a real wastewater effluent using nanofiltration: A pilot scale study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Lim S, Shi JL, von Gunten U, McCurry DL. Ozonation of organic compounds in water and wastewater: A critical review. WATER RESEARCH 2022; 213:118053. [PMID: 35196612 DOI: 10.1016/j.watres.2022.118053] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Ozonation has been applied in water treatment for more than a century, first for disinfection, later for oxidation of inorganic and organic pollutants. In recent years, ozone has been increasingly applied for enhanced municipal wastewater treatment for ecosystem protection and for potable water reuse. These applications triggered significant research efforts on the abatement efficiency of organic contaminants and the ensuing formation of transformation products. This endeavor was accompanied by developments in analytical and computational chemistry, which allowed to improve the mechanistic understanding of ozone reactions. This critical review assesses the challenges of ozonation of impaired water qualities such as wastewaters and provides an up-to-date compilation of the recent kinetic and mechanistic findings of ozone reactions with dissolved organic matter, various functional groups (olefins, aromatic compounds, heterocyclic compounds, aliphatic nitrogen-containing compounds, sulfur-containing compounds, hydrocarbons, carbanions, β-diketones) and antibiotic resistance genes.
Collapse
Affiliation(s)
- Sungeun Lim
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Jiaming Lily Shi
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
34
|
Gao Y, Fan W, Zhang Z, Zhou Y, Zeng Z, Yan K, Ma J, Hanna K. Transformation mechanisms of iopamidol by iron/sulfite systems: Involvement of multiple reactive species and efficiency in real water. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128114. [PMID: 34971989 DOI: 10.1016/j.jhazmat.2021.128114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Although the ability of iron/sulfite system for decontamination purposes has been investigated, the complex reactive species generated and the underlying transformation mechanisms remain elusive. Here, we have comprehensively examined the transformation of iopamidol (IPM), a representative of iodinated X-ray contrast media, by iron catalyzed sulfite oxidation process under different water chemistry conditions. Multiple reactive intermediates including Fe(IV), SO4•-, and SO5•- were identified by conducting a series of experiments. Eight transformation products were detected by mass spectrometry analysis, and correlation with the nature of involved reactive species has been made. Further, the transformation pathways including amide hydrolysis, deiodination, amino and hydroxyl groups oxidation were proposed. Interestingly, these transformation products could be removed through adsorption to iron precipitates formed via pH adjustment. Combining Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, we revealed an effective way to reduce the amount of transformation products in the treated solutions. Since the iron/sulfite process appears to be less sensitive to natural organic matter, it exhibited very good efficiency for IPM removal in real water samples, even with a high organic carbon loading. These findings may have strong implications in the development of novel oxidation process based on the sulfite/iron systems for wastewater treatment.
Collapse
Affiliation(s)
- Yuan Gao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wenxia Fan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhong Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Zhu Zeng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Kai Yan
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Khalil Hanna
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, UMR CNRS 6226, 11 Allée de Beaulieu, F-35708 Cedex 7 Rennes, France.
| |
Collapse
|
35
|
Venâncio JPF, Rodrigues CSD, Nunes OC, Madeira LM. Application of iron-activated persulfate for municipal wastewater disinfection. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127989. [PMID: 34920225 DOI: 10.1016/j.jhazmat.2021.127989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
To address the increasing contamination of aquatic environments and incidence of waterborne diseases, advanced oxidation processes with activated persulfate have emerged as tools to inactivate wastewater microorganisms and contaminants. In this work, the disinfection of a secondary effluent from a wastewater treatment plant by iron-based persulfate activation was studied. Experiments in a batch stirred tank reactor were carried out to evaluate the performance along reaction time and the effect of operational parameters in the oxidative process efficiency (oxidant and iron concentration, pH and temperature). After 60 min of reaction, persulfate and iron concentrations of 3 mM and 0.75 mM, respectively, combined with a neutral initial pH (7.5) and a temperature of 40 °C, allowed to reach values below the detection limit (<10 CFU/100 mL) of enterococci and enterobacteria with and without ciprofloxacin resistance, as well as a 91% inactivation of total heterotrophic organisms and a 70% removal of total organic carbon. Regrowth of microorganisms was evaluated 72 h after treatment and it was only noticed a slight increase in total heterotrophs. Evaluation of physico-chemical characteristics of the treated water showed that it meets the requirements imposed by European and Portuguese legislation for its reuse in irrigation and most urban utilities.
Collapse
Affiliation(s)
- João P F Venâncio
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carmen S D Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luis M Madeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
36
|
Ponkshe A, Thakur P. Solar light-driven photocatalytic degradation and mineralization of beta blockers propranolol and atenolol by carbon dot/TiO 2 composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15614-15630. [PMID: 34628578 DOI: 10.1007/s11356-021-16796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Herein improved solar light-driven photocatalytic degradation and mineralization of two emerging pollutants as well as recalcitrant beta blockers propranolol (PR) and atenolol (AT) have been demonstrated by metal-free carbon dot/TiO2 (CDT) composite. Hydrothermally synthesized TiO2 has been decorated with electrochemically synthesized carbon dots (CDs) and was well characterized by various analytical techniques viz. XRD, FTIR, Raman, XPS, UV-visible DRS, FESEM, and TEM. The optimized CDT composite, 2CDT (2 mL carbon dot/TiO2), showed ~ 3.45- and ~ 1.75-fold enhancement in the photodegradation rate as compared to pristine TiO2 for PR and AT respectively in 1 hour of irradiation along with complete degradation of PR and AT after 3 hours of irradiation. 2CDT exhibited 76% and 80% mineralization of PR and AT in contrast with 62% and 47% observed by pristine TiO2. Further, the major reaction intermediates formed after degradation have been identified by HPLC/MS analysis, confirming more than 99% reduction of the parent compound for both PR and AT. Reusability of the optimized catalyst also showed successful degradation up to 3 cycles, showing reduction abilities of 97%, 95%, and 94% for 1st, 2nd, and 3rd cycle respectively. The enhanced degradation and mineralization efficiency of the 2CDT composite could be attributed to the excellent photosensitizer and electron reservoir properties of the CD along with upconverted photoluminescence behavior. The present study unlocks the possibility of using metal-free, facile CDT composite for effective degradation and mineralization of widely used beta blockers and other pharmaceuticals.
Collapse
Affiliation(s)
- Amruta Ponkshe
- Department of Environmental Sciences, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Pragati Thakur
- epartment of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune , 411007, India.
| |
Collapse
|
37
|
Peng Y, Chen Z, Li Y, Wang Y, Ye C, Xu J, Zhang S. Bacteriostasis and cleaning effect of trace ozone replacing personal care products. ENVIRONMENTAL TECHNOLOGY 2022:1-14. [PMID: 35099355 DOI: 10.1080/09593330.2022.2036818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Ozone is widely used to inactivate bacteria, fungi, and viruses. In recent years, the treatment of itchy skin diseases (eczema and atopic dermatitis) using trace ozone has also received attention. However, the feasibility of using trace ozone to replace personal care products (PCPs) has rarely been analyzed. In this study, the applicability of trace ozone was evaluated in terms of its efficiency for microbial inactivation in three types of skin microbiomes, cleaning performance on simulated human hair and epidermis, safety for simulated human hair, and contribution to emission reduction. The results revealed that at a 10:1 ratio of ozonated water to bacterial suspension, the inactivation ratios of Malassezia, C. albicans, and S. epidermidis reached 99.63%, 83.47%, and 100%, respectively. In addition, the cleaning performance of an ozone solution (0.4 mg/L) for simulated human skin contaminated with carbon black and sebum could reach 95.89% and 95.63%, respectively, with 5 min of washing. The average scores were 0.40 and 0.37 after 5 min and 10 min of ozone treatments, respectively, indicating that trace ozone does not significantly damage simulated human hair. Results also revealed that the total emissions of COD, TP, and TN would be reduced by 1.29×106, 3.55×103, and 3.63×103 mg/ (household · year), respectively, if PCPs are replaced by trace ozone. In short, our findings indicate that trace ozone is a potential alternative to PCPs. By replacing PCPs with trace ozone, the use of synthetic chemical products can be reduced and carbon emissions from oil extraction can be countered.
Collapse
Affiliation(s)
- Yanyan Peng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR People's Republic of China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR People's Republic of China
| | - Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR People's Republic of China
| | - Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR People's Republic of China
| | - Yuantao Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR People's Republic of China
| | - Chengsong Ye
- Xiamen University, Xiamen, PR People's Republic of China
| | - Junming Xu
- Confosin Technology Co. Ltd., Dongguan, PR People's Republic of China
| | - Shenghua Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR People's Republic of China
| |
Collapse
|
38
|
Hazra M, Durso LM. Performance Efficiency of Conventional Treatment Plants and Constructed Wetlands towards Reduction of Antibiotic Resistance. Antibiotics (Basel) 2022; 11:114. [PMID: 35052991 PMCID: PMC8773441 DOI: 10.3390/antibiotics11010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022] Open
Abstract
Domestic and industrial wastewater discharges harbor rich bacterial communities, including both pathogenic and commensal organisms that are antibiotic-resistant (AR). AR pathogens pose a potential threat to human and animal health. In wastewater treatment plants (WWTP), bacteria encounter environments suitable for horizontal gene transfer, providing an opportunity for bacterial cells to acquire new antibiotic-resistant genes. With many entry points to environmental components, especially water and soil, WWTPs are considered a critical control point for antibiotic resistance. The primary and secondary units of conventional WWTPs are not designed for the reduction of resistant microbes. Constructed wetlands (CWs) are viable wastewater treatment options with the potential for mitigating AR bacteria, their genes, pathogens, and general pollutants. Encouraging performance for the removal of AR (2-4 logs) has highlighted the applicability of CW on fields. Their low cost of construction, operation and maintenance makes them well suited for applications across the globe, especially in developing and low-income countries. The present review highlights a better understanding of the performance efficiency of conventional treatment plants and CWs for the elimination/reduction of AR from wastewater. They are viable alternatives that can be used for secondary/tertiary treatment or effluent polishing in combination with WWTP or in a decentralized manner.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Lisa M. Durso
- Agroecosystem Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE 68583, USA;
| |
Collapse
|
39
|
Pandiyan R, Dharmaraj S, Ayyaru S, Sugumaran A, Somasundaram J, Kazi AS, Samiappan SC, Ashokkumar V, Ngamcharussrivichai C. Ameliorative photocatalytic dye degradation of hydrothermally synthesized bimetallic Ag-Sn hybrid nanocomposite treated upon domestic wastewater under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126734. [PMID: 34365234 DOI: 10.1016/j.jhazmat.2021.126734] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Industrial and textile dyes are the major source of water pollutants in the Coimbatore Districts of Tamil Nadu, India. The highly stable organic dyes from these industries are being discharged untreated into neighboring rivers, lakes, and ponds. Thus, the present study mainly focused on the preparation of bimetallic nanocomposite (Ag-Sn) through Free-facile Teflon autoclave methodology and their subsequent stimulation has given to the photocatalyst by visible light irradiation. This visible light stimulates and irradiates the photocatalysts from steady state to the excited state and might help in absorption of the nanosized dye materials and organic matter. The nanocomposite was characterized using UV, FTIR, Zeta-sizer, XRD and FE-SEM. These parameters exhibited significant lattice structures with an average size of 127.6 nm. Further the nanocomposite treated samples were tested for water quality parameters like TDS, BOD, COD, heavy metals, sedimentation rate and bacterial population. Likewise, the samples irradiated with visible light for photocatalytic activity exhibited a significant intensity of C/C0 at 0.42 and 0.28. The treated water used for green gram seedling assay exhibited significant growth. Scavengers from Ag-Sn bimetallic nanocomposite plays the major role in dye degradation. The results clearly suggest that Ag-Sn bimetallic nanocomposite can be used for wastewater treatment and the subsequent treated water can be utilized for agriculture purposes.
Collapse
Affiliation(s)
- Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Bharath University (Deemed to be University) Selaiyur, Chennai 600073, Tamil Nadu, India.
| | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, AMET University, Chennai 603103, Tamil Nadu, India
| | - Sivasankaran Ayyaru
- Environmental Biology Laboratory, Department of Civil Engineering, Yeungnam University, Gyungsan 712-749, South Korea
| | - Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Jeevasree Somasundaram
- Department of Biochemistry, Karpagam Academy of Higher Education, Karpagam University, Coimbatore 641021, Tamil Nadu, India
| | - Amsa Samreen Kazi
- Department of Biochemistry, Karpagam Academy of Higher Education, Karpagam University, Coimbatore 641021, Tamil Nadu, India
| | - Sumathi C Samiappan
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA University, Kumbakonam 612001, Tamil Nadu, India
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
40
|
Brillas E. A critical review on ibuprofen removal from synthetic waters, natural waters, and real wastewaters by advanced oxidation processes. CHEMOSPHERE 2022; 286:131849. [PMID: 34426267 DOI: 10.1016/j.chemosphere.2021.131849] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/07/2021] [Indexed: 05/20/2023]
Abstract
Ibuprofen (IBP) is one ubiquitous drug prescribed as anti-inflammatory, analgesic, and antipyretic. It has been detected in effluents of wastewater plant treatments, sewage sludge, hospital wastewaters, surface waters, and drinking water due to its continuous release to the environment, mainly from the excretion in the urine of animals and humans. IBP is a carcinogenic and non-steroidal endocrine disrupting drug with harmful effects over fungal, bacterial, algae, microorganisms, crustacean, and fish species, and can be potentially hazard for human health. Since conventional treatments remove inefficiently this drug, many advanced oxidation processes (AOPs) have been developed aiming their abatement from waters to avoid their harmful health problems. This paper presents an exhaustive and critical review on the application of AOPs to treat synthetic waters, natural waters, and real wastewaters polluted with IBP alone or mixed with other common drugs covering up to 2020. The characteristics and main results obtained for single, hybrid, and sequential treatments are described. Dielectric barrier or pulsed-corona discharges are detailed among the single processes. Hybrid processes such as photocatalysis (UV/H2O2, UV/chlorine, TiO2/UV), hybrid ozonation (O3/H2O2, electro-peroxone, catalytic ozonation), Fenton-based processes (photo-Fenton, electro-Fenton, photoelectro-Fenton), zero-valent iron, ultrasonic, peroxymonosulfate, and persulfate, are discussed. The effect of the kind of irradiation (UV, visible, solar) on photo-assisted processes is analyzed. Sequential processes with biological pre- or post-treatments using or not membranes for natural water and real wastewater remediation are described. Finally, 38 by-products detected during IBP removal by AOPs are reported, allowing envisaging three parallel pathways for its initial degradation.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| |
Collapse
|
41
|
Comparative adsorption of polycylic aromatic compounds on organo-vermiculites modified by imidazolium- and pyridinium-based gemini surfactants. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Gulde R, Clerc B, Rutsch M, Helbing J, Salhi E, McArdell CS, von Gunten U. Oxidation of 51 micropollutants during drinking water ozonation: Formation of transformation products and their fate during biological post-filtration. WATER RESEARCH 2021; 207:117812. [PMID: 34839057 DOI: 10.1016/j.watres.2021.117812] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Micropollutants (MP) with varying ozone-reactive moieties were spiked to lake water in the influent of a drinking water pilot plant consisting of an ozonation followed by a biological sand filtration. During ozonation, 227 transformation products (OTPs) from 39 of the spiked 51 MPs were detected after solid phase extraction by liquid chromatography high-resolution mass spectrometry (LC-HRMS/MS). Based on the MS/MS data, tentative molecular structures are proposed. Reaction mechanisms for the formation of a large number of OTPs are suggested by combination of the kinetics of formation and abatement and state-of-the-art knowledge on ozone and hydroxyl radical chemistry. OTPs forming as primary or higher generation products from the oxidation of MPs could be differentiated. However, some expected products from the reactions of ozone with activated aromatic compounds and olefins were not detected with the applied analytical procedure. 187 OTPs were present in the sand filtration in sufficiently high concentrations to elucidate their fate in this treatment step. 35 of these OTPs (19%) were abated in the sand filtration step, most likely due to biodegradation. Only 24 (13%) of the OTPs were abated more efficiently than the parent compounds, with a dependency on the functional group of the parent MPs and OTPs. Overall, this study provides evidence, that the common assumption that OTPs are easily abated in biological post-treatment is not generally valid. Nevertheless, it is unknown how the OTPs, which escaped detection, would have behaved in the biological post-treatment.
Collapse
Affiliation(s)
- Rebekka Gulde
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Baptiste Clerc
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Moreno Rutsch
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | | | - Elisabeth Salhi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600 Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015 Switzerland; Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, CH-8092, Switzerland.
| |
Collapse
|
43
|
Aminzadeh H, Shahabi Nejad M, Mohammadzadeh I, Sheibani H. Assembly of CuO nanorods onto poly(glycidylmethacrylate)@polyaniline core–shell microspheres: Photocatalytic degradation of paracetamol. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hossein Aminzadeh
- Department of Chemistry Shahid Bahonar University of Kerman Kerman Iran
| | | | - Iman Mohammadzadeh
- Oral and Dental Disease Research Center Kerman University of Medical Sciences Kerman Iran
| | - Hassan Sheibani
- Department of Chemistry Shahid Bahonar University of Kerman Kerman Iran
| |
Collapse
|
44
|
Ye T, Zhang TY, Tian FX, Xu B. The fate and transformation of iodine species in UV irradiation and UV-based advanced oxidation processes. WATER RESEARCH 2021; 206:117755. [PMID: 34695669 DOI: 10.1016/j.watres.2021.117755] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Iodinated disinfection byproducts (I-DBPs) formed in water treatment are of emerging concern due to their high toxicity and the tase-and-odor problems associated with iodinated trihalomethanes (I-THMs). Iodoacetic acid and dichloroiodomethane are currently regulated in Shenzhen, China and the Ministry of Health of the People's Republic of China has also been considering regulating I-DBPs. Iodide (I-), organoiodine compounds (e.g., iodinated X-ray contrast media [ICM]), and iodate (IO3-) are the three common iodine sources in aquatic environment that lead to I-DBP formation. While UV irradiation effectively inactivate a wide range of microorganisms in water, it induces the transformation of these iodine sources, enabling the formation of I-DBPs. This review focuses on the fate and transformation of these iodine sources in UV-based water treatment (i.e., UV irradiation and UV-based advanced oxidation processes [UV-AOPs]) and the formation of I-DBPs in post-disinfection. I- released in UV-based treatments of ICM and can be oxidized in subsequent disinfection to hypoiodous acid (HOI), which reacts with natural organic matter (NOM) to produce I-DBPs. Both UV and UV-AOPs are not able to fully mineralize ICM and completely oxidize the released I- to (except UV/O3). Results reveal that UV and UV-AOPs are adequate for I-DBP degradation but require high UV doses. While the ideal I-DBP mitigation strategy awaits to be developed, understanding their sources and formation pathways aids in informed selections of water treatment processes, empowers water suppliers to meet drinking water standards, and minimizes consumers' exposure to I-DBPs.
Collapse
Affiliation(s)
- Tao Ye
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fu-Xiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
45
|
Kadhem AJ, Gentile GJ, Fidalgo de Cortalezzi MM. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021; 26:6233. [PMID: 34684813 PMCID: PMC8540986 DOI: 10.3390/molecules26206233] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/30/2023] Open
Abstract
Molecular imprinted polymers are custom made materials with specific recognition sites for a target molecule. Their specificity and the variety of materials and physical shapes in which they can be fabricated make them ideal components for sensing platforms. Despite their excellent properties, MIP-based sensors have rarely left the academic laboratory environment. This work presents a comprehensive review of recent reports in the environmental and biomedical fields, with a focus on electrochemical and optical signaling mechanisms. The discussion aims to identify knowledge gaps that hinder the translation of MIP-based technology from research laboratories to commercialization.
Collapse
Affiliation(s)
- Abbas J. Kadhem
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| | - Guillermina J. Gentile
- Department of Chemical Engineering, Instituto Tecnológico de Buenos Aires, Lavardén 315, Buenos Aires C1437FBG, Argentina;
| | - Maria M. Fidalgo de Cortalezzi
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| |
Collapse
|
46
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
47
|
Xu H, Wang L, Li X, Chen Z, Zhang T. Thiourea Dioxide Coupled with Trace Cu(II): An Effective Process for the Reductive Degradation of Diatrizoate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12009-12018. [PMID: 34431661 DOI: 10.1021/acs.est.1c03823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diatrizoate, a refractory ionic iodinated X-ray contrast media (ICM) compound, cannot be efficiently degraded in a complex wastewater matrix even by advanced oxidation processes. We report in this research that a homogeneous process, thiourea dioxide (TDO) coupled with trace Cu(II) (several micromoles, ubiquitous in some wastewater), is effective for reductive deiodination and degradation of diatrizoate at neutral pH values. Specifically, the molar ratio of iodide released to TDO consumed reached 2 under ideal experimental conditions. TDO eventually decomposed into urea and sulfite/sulfate. Based on the results of diatrizoate degradation, TDO decomposition, and Cu(I) generation and consumption during the TDO-Cu(II) reaction, we confirmed that Cu(I) is responsible for diatrizoate degradation. However, free Cu(I) alone did not work. It was proposed that Cu(I) complexes are actual reactive species toward diatrizoate. Inorganic anions and effluent organic matter negatively influence diatrizoate degradation, but by increasing the TDO dosage, as well as extending the reaction time, its degradation efficiency can still be guaranteed for real hospital wastewater. This reduction reaction could be potentially useful for in situ deiodination and degradation of diatrizoate in hospital wastewater before discharge into municipal sewage networks.
Collapse
Affiliation(s)
- Haodan Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lihong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
48
|
Yalçın Ö, Baylan N, Çehreli S. Competitive Adsorption of Anti-Parkinson Drugs on Different Amberlite Resins from Water: Quantitative Analysis by Ultra Performance Liquid Chromatography (UPLC). Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Özge Yalçın
- Abdi İbrahim Pharmaceutical Company, Esenyurt, 34538 Istanbul, Turkey
| | - Nilay Baylan
- Department of Chemical Engineering, Istanbul University-Cerrahpaşa, Avcılar, 34320 Istanbul, Turkey
| | - Süheyla Çehreli
- Department of Chemical Engineering, Istanbul University-Cerrahpaşa, Avcılar, 34320 Istanbul, Turkey
| |
Collapse
|
49
|
Borrull J, Colom A, Fabregas J, Borrull F, Pocurull E. Presence, behaviour and removal of selected organic micropollutants through drinking water treatment. CHEMOSPHERE 2021; 276:130023. [PMID: 33744648 DOI: 10.1016/j.chemosphere.2021.130023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/04/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
This paper investigates the occurrence and removal of 60 organic micropollutants (OMPs) including pharmaceuticals, personal care products, pesticides and per- and polyfluoroalkyl substances in a drinking water treatment plant (DWTP) treating raw water from the Ebro River (NE Spain). The behaviour of the OMPs was evaluated in each treatment: pre-ozonation, flocculation-coagulation-decantation-sand filtration, post-ozonation and granular activated carbon filtration. Thirty-one of the sixty OMPs studied were detected in source water with individual median concentrations below 10 ng L-1 for all the compounds except for caffeine (64.1 ng L-1). The highest concentration peaks in the source water were found for caffeine (124.5 ng L-1), terbuthylazine (52.0 ng L-1), imidacloprid (30.2 ng L-1) and paracetamol (25.6 ng L-1). Of the 31 compounds detected in the source water, 17 were also detected in the finished drinking water. Of these 17 compounds, 10 were PFASs, which indicated that this group of compounds had not been effectively removed throughout the drinking water treatments. The overall removal efficiencies of OMPs in the DWTP ranged from -50.9% to 100%. The most efficient removal technologies were ozonation and granular activated carbon.
Collapse
Affiliation(s)
- Josep Borrull
- Consorci d'Aigües de Tarragona, N-340 km 1.094. 43895 L'Ampolla, Spain; Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili. Marcel·lí Domingo s/n. Sescelades Campus, 43007 Tarragona, Spain
| | - Agustí Colom
- Consorci d'Aigües de Tarragona, N-340 km 1.094. 43895 L'Ampolla, Spain
| | - Josepa Fabregas
- Consorci d'Aigües de Tarragona, N-340 km 1.094. 43895 L'Ampolla, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili. Marcel·lí Domingo s/n. Sescelades Campus, 43007 Tarragona, Spain.
| | - Eva Pocurull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili. Marcel·lí Domingo s/n. Sescelades Campus, 43007 Tarragona, Spain
| |
Collapse
|
50
|
Effectiveness of Advanced Oxidation Processes in Wastewater Treatment: State of the Art. WATER 2021. [DOI: 10.3390/w13152094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, many scientific studies have focused their efforts on quantifying the different types of pollutants that are not removed in wastewater treatment plants. Compounds of emerging concern (CECs) have been detected in different natural environments. The presence of these compounds in wastewater is not new, but they may have consequences in the future. These compounds reach the natural environment through various routes, such as wastewater. This review focuses on the study of tertiary treatment with advanced oxidation processes (AOPs) for the degradation of CECs. The main objective of the different existing AOPs applied to the treatment of wastewater is the degradation of pollutants that are not eliminated by means of traditional wastewater treatment.
Collapse
|